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Abstract. An assessment of the soil and bedrock thermal structure of the Sierra de Guadarrama, in Central Spain, is provided

using subsurface and ground surface temperature data coming from four deep (20 m) monitoring profiles belonging to the

Guadarrama Monitoring Network (GuMNet), and two shallow profiles (1 m) from the Spanish Meteorology Service (AEMET),

covering the timespan of 2015-2021 and 1989-2018, respectively. An evaluation of air and ground surface temperature coupling

shows soil insulation due to snow cover is the main source of seasonal decoupling, being especially relevant in winter at high5

altitude sites. Temperature propagation in the subsurface is characterized by assuming a heat conductive regime, by considering

apparent thermal diffusivity values derived from the amplitude attenuation and phase shift of the annual cycle with depth. This

methodology is further extended to consider the attenuation of all harmonics in the spectral domain, which allows for analyzing

thermal diffusivity from high-frequency changes in the soil near the surface at short timescales. For the deep profiles, the

apparent thermal diffusivity ranges from 1 to 1.3 10−6 m2s−1, consistent with values for gneiss and granite, the major bedrock10

components in the Sierra de Guadarrama. However, thermal diffusivity is lower and more heterogeneous in the soil layers

close to the surface (0.4-0.8 10−6 m2s−1). An increase of diffusivity with depth is observed, being generally larger in the

soil-bedrock transition, at 4-8 m depth. The results are relevant for the understanding of soil thermodynamics in relation to

other soil properties and suggest that changes in near-surface thermal diffusivity are related to soil moisture content changes.

The spectral method shows to be capable of detecting this correlation at short time scales, which makes it a potential tool in15

soil drought and water resource availability reconstruction from soil temperature data.
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1 Introduction

The last decades have witnessed substantial steps forward in knowledge of the climate system and ongoing anthropogenic

climate change (Chen et al., 2021). An increase in observational datasets (Hansen et al., 2010; Lawrimore et al., 2011; Jones

et al., 2012; Rohde et al., 2013; Lenssen et al., 2019; Osborn et al., 2021), and progressively more realistic climate model20

ensembles (von Storch, 2010; Taylor et al., 2012; Eyring et al., 2016; Maher et al., 2019) has allowed the attribution of a global

mean near-surface air temperature rise of more than 1oC since the end of the 19th century to human activities (Chen et al., 2021;

Gulev et al., 2021). At the global scale, the increase of air temperature affects the ocean and land surface disproportionally,

with warming in the oceans being smaller mostly due to its larger heat capacity. Hence, while oceans have warmed about

0.88 oC since the last half of the 19th century, land has experienced a temperature increase of 1.59 oC (Chen et al., 2021).25

It is important to understand how this temperature rise has propagated into the soil and subsoil, which has been shown to be

important for land surface processes and meteorological extreme events (Miralles et al., 2019; Zhou et al., 2019; Seneviratne

et al., 2021).

Ground surface temperature (GST) and surface air temperature (SAT) are coupled at multi-decadal and centennial scales

(Pollack and Huang, 2000; Beltrami and Kellman, 2003; Melo-Aguilar et al., 2018), and GST perturbations are subsequently30

propagated into depth by heat transfer (Carslaw and Jaeger, 1959). A warming of near-surface soil has an impact on its bio-

geochemical activity (Soong et al., 2021), enhancing the metabolic activity of microorganisms, mineral weathering, and de-

composition of soil organic matter (Schlesinger and Emily, 2013). It also affects soil hydrology (Krakauer et al., 2013) and

increases soil respiration (Pries et al., 2017a), contributing to an acceleration of the terrestrial carbon cycle (Bond-Lamberty and

Thomson, 2010; Pries et al., 2017b). Moreover, soil warming has relevant impacts on high latitude regions, where permafrost35

thawing can produce changes in soil hydrology (Andresen et al., 2020; Burke et al., 2020) and eventually subsurface collapse

(Abbott and Jones, 2015; Pegoraro et al., 2021), posing risks to infrastructures (Rotta Loria, 2023) and reshaping landscapes.

Moreover, permafrost thawing triggers the release of pollutants (e.g., Schaefer et al., 2020) and massive amounts of carbon

(Turetsky et al., 2019) to the atmosphere, potentially affecting global climate (e.g., de Vrese et al., 2023). The subsurface is not

only sensitive to present global warming but also to past climate changes. Deep subsurface temperatures allow recovery of past40

SAT histories by Borehole Temperature Profile (BTP) inversion techniques (Mareschal and Beltrami, 1992; Huang et al., 2000;

Pollack and Smerdon, 2004; Jaume-Santero et al., 2016; Cuesta-Valero et al., 2022a), which make them a valuable source for

climate reconstruction as far as the two fundamental hypotheses are sustained: SAT and GST changes are coupled at long-term

scales and GST changes are propagated downwards by heat conduction, the main heat transfer mechanism in solids..

Support for SAT-GST coupling has been found so far, both from observational temperature data at some sites in North45

America (e.g., Putnam and Chapman, 1996; Beltrami and Kellman, 2003; Smerdon et al., 2004; Bartlett et al., 2005, 2006;

Smerdon et al., 2006) and Europe (e.g., Cermak et al., 2014; Cermak and Bodri, 2016; Melo-Aguilar et al., 2022; Petersen,

2022; Dorau et al., 2022), and climate simulations (González-Rouco et al., 2006; Smerdon et al., 2009; García-García et al.,

2016; Melo-Aguilar et al., 2018; García-García et al., 2019; González-Rouco et al., 2021). These studies show a strong coupling

at long-term scales globally, with some degree of seasonal decoupling due to snow cover (Beltrami and Kellman, 2003) or50
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changes in the surface energy balance (Smerdon et al., 2004; Melo-Aguilar et al., 2018) at regional scales. Examining whether

conduction is the main heat transport mechanism in the subsurface has been usually tackled by assessing the propagation of

temperature perturbations and verifying that they experience an amplitude damping and phase shift with depth to an extent

controlled by thermal diffusivity, a parameter that governs heat conduction processes (Carslaw and Jaeger, 1959). Previous

works assess the propagation of temperature trends (Lesperance et al., 2010), and thermal orbits (Smerdon et al., 2009), using55

a priori defined constant values of thermal diffusivity. Other studies tackled the propagation of single frequency harmonic

signals with depth, i.e. the annual cycle (Hurley and Wiltshire, 1993; Smerdon et al., 2003), in order to derive estimates of the

apparent thermal diffusivity. Nevertheless, this approach requires a continuous monitorization of subsurface temperature for at

least a relatively long lapse of time, of at least a few years. That has only been achieved at a scarce number of places in North

America (Smerdon et al., 2004; Bartlett et al., 2006) and Europe (Smerdon et al., 2004; Demetrescu et al., 2007; Dědeček60

et al., 2013; Melo-Aguilar et al., 2022). Moreover, the analysis might be hampered by potential deviations from the conductive

regime in the soil near the surface due to biological, chemical, and hydrological processes (Gao et al., 2008; Tong et al., 2017).

A deeper insight into the soil thermal structure is required to understand changes in its thermal properties with depth, relevant

for Land Surface Models (LSMs) and therefore with implications on land-atmosphere interactions affecting Earth System

(Smerdon and Stieglitz, 2006; Ekici et al., 2014; Hermoso de Mendoza et al., 2020; Steinert et al., 2021) and forecast models65

(Miralles et al., 2019). A better characterization of subsurface thermal properties can also contribute to more accurate land heat

uptake estimates, i.e. energy storage in the subsurface due to industrial warming, which is the second component contributing

the most to terrestrial energy partitioning (Beltrami et al., 2002; Cuesta-Valero et al., 2022b; von Schuckmann et al., 2022).

This paper assesses the validity of the SAT-GST coupling and conductive thermal propagation hypotheses in the penetration

of SAT perturbations into the subsurface at a high-altitude area in Central Spain. This is achieved by determining the apparent70

soil thermal diffusivity from four short and two relatively long subsurface temperature records obtained at six sites in the area

of the Sierra de Guadarrama, and studying its variability in time and depth through the soil and down to the first meters of

bedrock. The data set presented in this work is quite unique since it gathers shallow and deep subsurface information (down to

20 m) from different sites and sensors in a relatively high mountain area. The complex orography of the Sierra de Guadarrama

has been shown to dominate the spatial mean and variability of SAT, while temporal variability has been found to be very75

homogeneous over the region (Vegas-Cañas et al., 2020). In a first stage, we explore the SAT-GST coupling at different sites,

considering the influence of processes at seasonal timescales. Then, the propagation of the annual wave with depth is studied.

This allows us to test the conductive hypothesis and establish a comparison between different sites by using the standard

approach of focusing on the propagation of the annual wave with depth. The analysis is further extended by assessing changes

in thermal diffusivity in the subsurface temperature profile, which are linked to the soil-bedrock mineral composition transition80

observed from samples extracted at each of the sites.

The study of the conductive regime also explores changes in apparent thermal diffusivity with time. This is feasible for the

longer records for which the analysis can be performed focusing on different multi-annual temporal intervals. This approach

is however hampered by the short time span of observations at most sites considered herein. This problem is overcome by

introducing a new method that makes use of the information in the spectral domain. Instead of considering only the annual85
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cycle, the propagation of the complete range of harmonics of different frequencies that contribute to temperature variability is

used. This allows for focusing on intra-annual timescales and using shorter time series to estimate soil thermal diffusivity near

the surface. The fact that apparent thermal diffusivity values can be retrieved from shorter timespans also allows diffusivity

changes to be evaluated through time and connected to changes in soil moisture content (Sorour et al., 1990; Fuchs et al.,

2021).90

2 Data

The subsurface data analysed hereafter consist of temperature time series from six locations distributed over the Sierra de

Guadarrama. Table 1 includes a more detailed description of the name, code, geographical position, and date range of available

data of each location. The Sierra de Guadarrama is part of the Sistema Central, a mountain system that splits the Spanish

Central Plateau into a southeastern side, with altitudes of around 600 m above sea level (m.a.s.l.), and a northwestern side,95

of higher elevation (ca. 750 m.a.s.l.). Elevations in the Sierra span from 900 at the foothills to ca. 2200-2400 m.a.s.l. at the

summits. Two sites, Puerto de Navacerrada, and Segovia, belong to the Spanish Meteorological Service (Agencia Estatal de

Meteorología, AEMET), and the rest are part of the Guadarrama Monitoring Network (GuMNet). The latter was created in

2014 with the aim of gaining further insights into climate variability in mountain environments in Central Spain (Vegas-Cañas

et al., 2020). GuMNet consists of 10 atmosphere and subsurface monitoring stations, which cover a vertical gradient ranging100

from 900 to 2200 m.a.s.l., spreading over the mountainous terrain of the Sierra de Guadarrama. In this work, four stations

were selected that provide information of atmospheric variables and subsurface temperatures (Fig. 1a). In all cases, vegetation

cover at the sites consists of small grass that can show minimal changes during the year. No site has trees or shrubs within the

fenced perimeter of the monitoring station.

The subsurface thermal regime is monitored by two different arrangements. Near-surface soil temperatures are measured105

at various levels in trenches (TRCH; Fig. 1b) at all sites. Trenches are excavations forming a slope in which the frontal wall

was used to analyse the vertical structure of soil horizons (Brady and Weil, 2017) and to insert soil temperature reflectometer

sensors down to a depth of about 1 m. Trenches were refilled with the previously extracted material. Deeper temperatures

in the soil and bedrock are monitored within cased boreholes. They consist of a small diameter (ca. 76 mm) cylindrical drill

in depth where a casing was inserted and afterward filled up with a silicone gel. Temperatures therein are measured with110

calibrated platinum resistance thermometers embedded inside the casing (BRH; Fig. 1c,d). For the sake of having a finer

vertical resolution in the soil near the surface and some level of redundancy, two boreholes were installed at these sites: a deep

one going down to 20 m (BRH 20 m in Fig. 1 and Table 2), and a shallow one of 2 m (BRH 2 m in Fig. 1). Table 2 provides

a detailed list of the depths at which subsurface temperature sensors were installed. Levels with malfunctioning sensors are

marked with a dash.115

During the borehole drilling process at the GuMNet sites, the extracted cores were preserved. They were subsequently

sampled and characterised. The result is shown in Fig. 2, where the limits between the soil, sediment, and rock layers were de-

termined. The superficial soil layer is made up of different soil horizons (Brady and Weil, 2017), containing an O and/or A (i.e.
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topsoil) followed by E and/or B (i.e. subsoil) and several C (i.e. parent material) horizons that reach a depth of approximately

1 m. The underlying sediment layer contains eroded material of loose debris rocks that have accumulated at the corresponding120

locations. The CTS, HYS, and RPI profiles are located over gneiss rock and HRR on granite rock. In all profiles, the upper

layers have weathered bedrock and with depth this bedrock is unweathered and compact. This information is used in Section 4

to compare changes in apparent thermal diffusivity to changes in mineral composition and textures with depth.

Subsurface temperature measurements were taken at a 10-minute time resolution at every GuMNet station. As a first step

prior to the analysis carried out in this work, subsurface data are subjected to quality control and resampling procedures.125

AEMET stations (NVC and SGV) were independently processed and resampled to daily resolution, as described in Melo-

Aguilar et al. (2022). The quality control of GuMNet sites focused first on removing data outliers. Since subsurface temperature

sensors are connected in series both in boreholes and trenches (see Fig. 1b-d), most often erroneous extreme values are recorded

at all levels simultaneously. Thus, to prevent discarding values that might be correct meteorological extremes, this correction

is applied both for boreholes and trenches, using the deepest time series to detect the erroneous values. The lowermost level130

is used because it shows the lowest temperature variability due to conductive damping of the surface signal. This reduces the

range of high-frequency variability in the series except for the erroneous data, which makes non-reliable outliers easier to be

detected (Fig. 3). First, outliers flagged as nonphysically plausible are removed, i.e. values falling below 230 K or exceeding

350 K. The detection of outliers below 230 K can be considered redundant since the next step would have detected all the values

lying beneath this threshold. Second, the remaining spikes are flagged and discarded. Spikes are detected by calculating the135

sequential differences of each value minus its preceding one and screening the values in the interval (Q1−3IQR,Q3+3IQR),

where Q1, Q3, and IQR are the first and third quartiles and the interquartile range of the distribution of temperature differences

(Tukey, 1977). Time steps whose difference values are missing or outside of the screening interval are removed. Fig. 3 shows

an example of such spike screening for the BRH 2 m at CTS. The outliers depict coinciding failures at all levels. The procedure

is very conservative as the bottom levels bear very low temperature variability and all spikes are identified and removed at each140

level. Note the decrease in high-frequency variability with subsurface depth , which is consistent with conductive law (Carslaw

and Jaeger, 1959). Once outliers have been removed, time series are subjected to a one-by-one inspection, and periods with

clear drifts or strong changes in variability are manually removed (check Table 3 for a list of removed periods at CTS and

HYS). Fig. 3 also shows an example of one of such periods for the 1.5 m depth temperatures at CTS (green arrow).

After applying the aforementioned quality control procedures, the GuMNet series are resampled at hourly resolution, which145

filters out noisy intra-hourly variability unnecessary for the subsequent analysis of the data. This is attained by calculating

pseudo-hourly time series, which is carried out with a Nearest Neighbour Resampling technique (Brandsma and Können, 2006)

by selecting the 10-minute data closest to the hour. Finally, the resulting series are averaged to obtain daily mean subsurface

temperatures that are subsequently used to analyse the propagation of the annual cycle.

In addition to subsurface temperature data, all the stations include SAT measurements as well as soil moisture content150

within the trench monitoring levels. SAT is recorded at 2 m above the ground surface at all sites using a temperature probe

encapsulated within a shield. Snow cover data are also available at CTS, HYS, and RPI (see codes in Table 1). Snow depth is

measured with an ultrasonic snow depth sensor that captures the distance to the surface. Depth values are obtained from the
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subtraction of surface level measured from the reference ground surface level value. These additional data are used to explore

potential drivers of the GST-SAT seasonal decoupling and temporal changes in soil apparent thermal diffusivity at some sites.155

3 Methodology

The SAT-GST seasonal coupling is explored by quantifying the offset and correlation of seasonal (December-January-February,

DJF; June-July-August, JJA) and annual 2 m air with GSTs taken from the top level temperaturesin the BRH 2 m set up. The

estimates are obtained from the complete time span of available data at each site (Tables 1,2).

Furthermore, the subsurface temperature distribution is analysed by assuming that GST perturbations are propagated down-160

wards by heat conduction. Considering that every level is at a thermal equilibrium state, horizontal heat transport may be

neglected. Thus, the problem is reduced to resolve the one-dimensional time-dependent heat conduction equation, ∂T/∂t=

α∂2T/∂z2. If GST is assumed to follow a sinusoidal (e.g. annual) cycle, subsurface temperatures at any depth z can be derived

as follows (Hurley and Wiltshire, 1993; Smerdon and Stieglitz, 2006):

T (z, t) = T0 +A0e
−z

√
πfa/α cos(2πfat− z

√
πfa/α), (1)165

where T0 and A0 are the mean temperature and wave amplitude of the annual cycle at the ground surface, respectively, fa is

the frequency of the annual cycle, and α is the thermal diffusivity, which is a direct function of thermal conductivity (k), and

inverse of density (ρ) and heat capacity (c), i.e. α= k/ρc. Equation 1 shows that the annual cycle amplitude is attenuated and

phase shifted with depth. The amplitude attenuation is exponential and the phase shift is linear with depth and dependent on

the thermal diffusivity, i.e. increasing this parameter produces both a greater amplitude attenuation and phase shift.170

Amplitude and phase values of the annual cycle at every level are obtained by least-squares fitting subsurface temperature

series at a daily resolution to an annual-period sinusoidal wave. Then, a linear regression analysis on the annual cycle amplitude

(phase shift) values with depth yields estimates of the apparent thermal diffusivity of the subsurface, since the resulting slope is

equal to
√
πfa/α in Equation 1. Amplitude and phase shift values coming from every installation (TRCH 1 m, BRH 2 m, and

BRH 20 m) are independently adjusted and normalised to prevent any disruption due to blending data from different sources175

when assessing heat propagation from ground surface to 20 m depth. Normalization was achieved by dividing the amplitude

values of the annual cycle at every level by the amplitude value at the ground surface, and by subtracting the phase shift value

at the ground surface from the phase shift values of the annual cycle at every level. The values at the ground surface were

obtained through a linear regression adjustment. Once normalised, all amplitude and phase shift values are brought together

and linearly adjusted to obtain a single estimate of thermal diffusivity for the whole subsurface profile at every station. A similar180

methodological approach based on the analysis of the annual cycle has been widely used in the literature (e.g., Smerdon et al.,

2004; Pollack et al., 2005; González-Rouco et al., 2009) and it will be referred to as the classic analytical approach, CA

hereafter. This CA frame will also be used to estimate changes in apparent thermal diffusivity with depth, either considering

changes between pairs of subsurface levels or using a two-phase regression analysis (Solow, 1987, 1995; Melo-Aguilar et al.,

2018) to identify depths where significant changes in apparent thermal diffusivity occur.185
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Beyond the regular nature of the annual cycle, GST variability encloses perturbations at different frequencies. If GST is

considered as a sum of temperature harmonics, each harmonic is also propagated with depth following Carslaw and Jaeger

(1959):

T (z, t) = T0 +

N∑
i=1

A0e
−z

√
πfi/α cos(2πfi − z

√
πfi/α), (2)

where fi is the frequency of each wave component in a spectral decomposition, as yielded by a Fourier periodogram for190

instance (Brigham and Morrow, 1967). Equation 2 shows amplitude attenuation and phase shift are frequency-dependent.

More precisely, amplitude attenuation grows exponentially with frequency, i.e. high-frequency harmonics decay increasingly

faster with depth, whilst low-frequency perturbations can propagate deeper. For instance, the daily cycle hardly reaches a depth

of 50 cm, while the annual cycle propagates down to 15 m (Putnam and Chapman, 1996). The temperature spectral attenuation

with depth can be expressed as:195

ζ =
√

Pz(ω)/PGST (ω) = e−z
√

πf/α (3)

where PGST (ω) and Pz(ω) are the spectral power densities of GST and that at a given level z, respectively:

Pz(ω) =
1

Ns

∣∣∣∣∣
N∑
t=1

T (z, t)e−iωt

∣∣∣∣∣
2

, with ω = 2πf (4)

where Ns is the temporal resolution of the temperature time signal at z, T (z, t), f is the frequency and ω is the angular

frequency of the different wave components of T (z, t). In order to minimise the undesirable effect of Gibbs’ noise at high200

frequencies, P is calculated making use of Welch’s modified periodogram (Stoica and Moses, 1997). Since periodogram

calculation requires evenly spaced data, data gaps were previously filled by linear interpolation. As the spectral attenuation

must follow an exponential relationship with frequency, the spectral amplitude attenuation curves attained from the analysis

of Equation 3 are subsequently linearised (i.e. taking the natural logarithm) and linearly fitted by least-squares to the values

obtained at all available depths:205

(lnζ)2 =
πz2

α
f (5)

Estimates for the apparent thermal diffusivity of the soil layer in between the ground surface and level z can be retrieved by

dividing πz2 by the regression line slope, πz2/α, in Equation 5. To prevent that poor signal-to-noise ratios at high-frequencies

bias the analysis, amplitude attenuation values at frequencies higher than the corresponding e2-fold decay cut-off frequency

(i.e. spectral harmonics attenuated more than e2 times) are filtered out at every level. To determine this frequency at every site210

and level, near-surface soil thermal diffusivity values coming from the CA are used. This alternative approach to the CA will
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from now on be called the spectral method (SpM). Whereas the CA needs at least a few years of data to provide reliable fits

of the annual cycle to subsequently retrieve the apparent thermal diffusivity, the SpM can be applied to data at shorter time

intervals. That makes it suitable to analyse short time series, which is the case of some of the time series presented in this work.

Consequently, the SpM is used in this work to retrieve apparent thermal diffusivity values in the first meter of the soil at every215

station. These values are then compared to the estimates coming from the CA to assess the robustness of the results from both

methods. Furthermore, the SpM allows to gain some insight into short-term changes in soil apparent thermal diffusivity and its

potential relation with changes in snow cover and soil moisture content.

4 Results

4.1 Temperature variability at the ground surface220

In order to illustrate the amplitude attenuation and shift with depth, Fig. 4 compiles all the subsurface temperature series at

hourly resolution coming from BRH 20 m, BRH 2 m, and TRCH 1 m at HRR; SAT is also represented to illustrate the coupling

at the surface. A first inspection reveals that the only regular temperature variation at all levels, both in timing and magnitude,

is the annual cycle. The daily cycle, while regular in occurrence, changes a lot in magnitude due to weather conditions and

seasonality. The annual cycle is the most prominent at the ground surface (ca. 9 K amplitude) despite the fact that both SAT and225

GST also show remarkable daily temperature variations (ca. 4 K amplitude). It is noteworthy how the annual cycle decreases

in amplitude with depth to be imperceptible at 15 m, where annual temperature variations are of the same order as the accuracy

of the sensor, i.e. 0.1 K. Furthermore, the increasing lag in the occurrence of temperature maxima in summer and minima in

winter are indicative of the phase shift due to conductive propagation of the temperature variations. Both phenomena can be

inferred either by observing the subsurface temperature series or the sinusoidal curves adjusted to an annual cycle (blue dashed230

lines). Moreover, SAT and GST daily variabilities are similar during the year except in winter, when GST variability is smaller

in comparison with SAT. For the other soil levels, warm or cold anomalies that last a few weeks are propagated only in the first

meter of the soil.

The long-term mean temperatures with depth for CTS, HYS, RPI, and HRR are shown in Fig. 5. The annual vertical mean

temperature of the profile, which is observed below the depth at which the annual cycle has been attenuated (ca. 15 m), is235

remarkably higher at HRR (286.8 K) than at CTS (281.3 K), HYS (279.2 K), and RPI (280.9 K). The JJA and DJF temperature

profiles further depict the seasonal temperature variations towards warmer values in summer and colder values in winter, as

well as the amplitude attenuation of these seasonal variations with depth. JJA and DJF temperature profiles converge at a depth

of around 5 m at all sites to then cross over, which is a sign of the phase shift of the annual cycle. The transition from the

BRH 2 m to the BRH 20 m profiles show noticeable discontinuities that are of the order of 2.7 K and 2.2 K at HYS and240

about 1.5 K and 1 K at HRR for the 1.5 and 2 m temperature levels, respectively. These discontinuities are most likely due to

heterogeneous soil and sediment formations. The uppermost soil and sediment layers vary according to the sites and in all cases

reach a depth greater than 2 m (Fig. 2). In the case of HYS, for instance, the greatest annual temperature difference is observed

between the 2 m and 20 m boreholes at 1.5 m depth. The site is on a middle slope with a slope gradient of 10 to 15 % and the
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soil horizons have a sandy loam to a sandy clay loam texture. What is most notable is the varying content of rock fragments245

(15 to >80 %) within the different soil horizons. This is further observed throughout the sediment layer where rock fragment

distribution varies with depth and is very weathered. Therefore, temperature variations over short distances and within the

uppermost soil and sediment layers are expected due to their different properties which will also influence the water infiltration

and circulation. With regard to SAT-GST coupling, Fig. 5 shows the annual cycle is less pronounced for SAT than GST due to

radiative warming and cooling of the ground surface, resulting in a negative SAT-GST offset in summer and positive in winter.250

The distribution of SAT and GST mean values of the sites agree with their different altitudes, which yields a vertical gradient

of -5.81 K km−1 in SAT given by Vegas-Cañas et al. (2020) for the area of the Sierra de Guadarrama. SATs in Fig. 5 comply

well with this value, rendering a gradient of -6.55 K km−1, larger in magnitude due to this subset of sites being distributed

over the higher altitudes of the region. Subsurface temperatures in depth follow the distribution of SAT at HYS and HRR, with

HRR exhibiting higher values for the whole profile. However, this pattern is not observed at RPI and CTS, as RPI shows lower255

temperatures below 5 m despite SAT and GST being warmer. This might be the result of the interaction between enhanced

radiative warming and low ventilation in JJA due to the fact that RPI is surrounded by the canopy of a pine tree forest.

Temperature anomalies with respect to the long-term mean at each depth are shown in Fig. 6 as an example for CTS and

HRR. This allows for a more clear visualization of the amplitude attenuation and phase shift with depth. Two cycles are clearly

identified again at both sites: the daily cycle, which is visible at GST and hardly noticeable at 0.5 m (Fig. 6a and b), and260

the annual cycle, with an amplitude reduction and phase shift that are traceable down to 15 m. Nevertheless, there are two

differences that are worth mentioning. On the one hand, GST and subsurface temperatures underneath at CTS show some

constant signal time periods in winter that are not found in SAT, as shown in Fig. 6c, where SAT and GST are represented

for a shared period in January 2019 at CTS and HRR. As soon as a snow layer emerges at CTS on January 19, 2019, GST

oscillations are suppressed despite SAT still varying. This is due to the combination of the soil insulating effect of snow cover265

(Bartlett et al., 2005; Zhang, 2005) and the zero-curtain effect, which halts temperatures at the ground surface to drop much

below zero due to latent heat release (Outcalt et al., 1990). This behaviour is not shared by HRR, since at this lower altitude a

regular seasonal snow layer is less frequent. Hence, HRR is snow-free during the same dates, so SAT and GST variations are

strongly coupled. On the other hand, note that SAT variability differs from one site to the other, being the daily cycle stronger

and the annual cycle weaker at CTS than HRR, as illustrated by a more prominent amplitude (i.e. greater differences) of SAT270

variations in July 2019 with respect to those in January 2019. This is consistent with SAT annual variability decreasing and

intra-annual increasing with altitude in the same area, as shown by Vegas-Cañas et al. (2020).

Air-ground temperature seasonal decoupling is further explored in Table 4, where SAT-GST differences and Pearson’s corre-

lation coefficient were computed after filtering out the annual cycle. SAT-GST differences show that on average GST is warmer

than SAT, with annual differences being negative. Correlations using daily data are all significant (p < 0.05, Student’s t-test)275

and above 0.58 for all sites. Differences tend to be larger during DJF, likely due to the insulating effect of snow cover, which

hampers soil cooling and disrupts SAT-GST coupling. During JJA, significantly warmer GSTs are found at HRR, NVC, and

SGV, likely due to surface radiative warming. Additionally, correlation analysis yields the weakest values in DJF at the highest

altitude sites, i.e. RPI, HYS, and CTS, which may be linked to the presence of a more steady seasonal snow layer than at the
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lowest sites. Low correlation is found in JJA at HRR, which might be due to weaker latent heat fluxes connected to Iberian280

soils’ summer drought (Vicente-Serrano et al., 2013). Nevertheless, the diverse local responses at the various sites could be

due to land cover differences, water or latent heat exchanges, or other factors (Cermak and Bodri, 2016; Cermak et al., 2017)

that have not been further examined herein.

4.2 Subsurface thermal regime: the CA

The subsurface thermal structure in the area of the Sierra de Guadarrama is assessed hereafter. The conductive propagation of285

GST changes is first addressed by applying a CA (Section 3). Results for CA over the whole profile for every site are included

in Fig. 7. As can be seen CTS, HYS, RPI, and HRR integrate data coming from both BRH 2 m, BRH 20 m, and TRCH 1 m

down to 20 m, while NVC and SGV provide TRCH 1 m data. Hence, apparent thermal diffusivity values only account for the

first meter underground at these two sites. For the rest of the sites, all the information at each location down to 20 m is used

to derive apparent thermal diffusivity estimates. Table 5 segregates results for the case in which only TRCH 1 m would be290

considered, as well as for the cases that include information available down to 1 m (TRCH 1 m + BRH 2 m) and down to 20 m

using only BRH 20 m. This information complements the estimates provided in Fig. 7.

Thermal diffusivity estimates, i.e. apparent thermal diffusivities, yielded from the slope of the regression lines for both phase

shift and amplitude attenuation are very similar for all deep sites, generally in the range of 1-1.3 10−6 m2s−1. These values

are close to the mineral diffusivity values for quartz (ca. 1.4 10−6 m2s−1) and feldspar (ca. 1.1 10−6 m2s−1), two of the295

main components of gneiss and granite (de Vries, 1963), which are the dominating materials found at the sites of this study

(Fig. 2). The observations at NVC and SGV render values out of this range, with apparent diffusivity values between 0.5 and

1.7 10−6 m2s−1. The shallower observations refer within this first meter of depth to soil material and sediment present in

TRCH 1 m rather than the gneiss (granite) characteristic of the other sites at depth. Near the surface the different composition,

compactness, and soil moisture content can account for the different apparent diffusivity values. In fact, if apparent diffusivity300

is estimated at all sites using only TRCH 1 m observations, values in the range of 0.46 (RPI) to 0.88 10−6 m2s−1 (CTS) are

attained (Table 5). Furthermore, if both TRCH 1 m and BRH 2 m temperatures within the first meter are considered, values

hardly change and range from 0.42 (RPI) to 0.87 10−6 m2s−1 (CTS). It is often the case that apparent diffusivity values

rendered by amplitude attenuation and phase shift within the first meter of the soil can differ considerably, as shown for NVC

in Fig. 7. This is an indication that changes in apparent thermal diffusivity occur towards the surface, as seen at NVC and305

SGV in Fig. 7. Additionally, changes in the conductive regime may occur within these depths due to soil moisture variability

(Melo-Aguilar et al., 2022), freezing and thawing processes (Gao et al., 2008), and near-surface evaporation and latent heat

exchanges (Tong et al., 2017) affecting the soil.

The regression spread when considering deep sites in Fig. 7 can be remarkable, scaling up to 25 % at RPI, for instance.

Even if the logarithm of the amplitude damping and phase shift for the whole soil column can be considered linear in a first310

approach, values do not seem to distribute randomly around the regression line. For instance, between 2 and 7 m all sites tend

to show larger amplitude attenuations and phase shifts, hence indicating changes in the regression line slope, i.e. diffusivity,

with depth. A further analysis using a two-phase regression model (Fig. ?? Solow, 1987, 1995), confirms there is a tilt in
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the slope, indicating a significant change in the apparent thermal diffusivity values with depth. Even though the coefficient of

determination is very high and significant for every site both for the simple CA in Fig. 7 and for the two-phase CA in Fig.315

8 regression lines, always above 0.9, there is a significant reduction of the square sum of residuals in the second case. For

instance, this quantity plunges from 5.67 to 1.02 at HYS and from 8.22 to 0.62 at RPI for amplitude attenuation and from 3.21

to 0.91 day2 and 11.46 to 1.20 day2 for phase shift respectively, thus indicating the two-phase regression represents the data

more accurately than a single slope linear regression model. Since amplitude attenuation and phase shift values at every depth

were normalized before applying the CA (see Section 3), the change point position is certainly not produced by gathering320

information from TRCH 1 m and the BRHs. A change in apparent thermal diffusivity might be indicative of the soil-bedrock

transition, where porous non-consolidated is progressively substituted by consolidated and more comprised material, which

yields higher diffusivity values with depth (de Vries, 1963; Pollack et al., 2005). Apparent diffusivity values scale up from

0.7-1 to 1.4-2.6 10−6 m2s−1 at most of the sites, which is consistent with the aforementioned transition. In Fig. 8, CTS and

HYS show similar change point values for the amplitude attenuation and the phase shift analysis around 5 m. However, there325

is more uncertainty at RPI and HRR, where amplitude attenuation yields shallower change points (7 and 4 m) than the phase

shift analysis (11 and 8 m, respectively).

The previous changes in apparent diffusivity inferred by the CA can be partially traced to the soil-bedrock transitions

observed in Fig. 2 (see Section 2), where the profiles of subsurface composition have a superficial soil layer which is succeeded

by accumulated sediments and crystalline materials of granite and gneiss. Results coming from the CA and the stratigraphy330

of the samples agree at HYS, placing the soil-bedrock transition at a depth of 5 m. However, if the change points should be

due to the bedrock limit, the CA underestimates the observed depth at CTS, where the bedrock starts in the sampled cores at 8

m (Fig. 8). The fact that the amplitude attenuation and phase shift CA results do not coincide at RPI and HRR might be also

an indication that other factors influence the occurrence of change points (e.g. soil moisture), the CA failing again to produce

consistent amplitude and phase estimates for change points, both above the value of sampled cores that show the soil-bedrock335

transition at 5 and 2 m, respectively. Considering the combined results from the stratigraphy and the CA for the four sites, it

becomes clear that there is some uncertainty in the relationship between subsurface material and apparent thermal diffusivity

changes, and other influences play a role in producing the step changes in thermal properties with depth.

The afore-explained sample analysis illustrates that changes in subsurface material do not occur abruptly but rather pro-

gressively into depth, contributing to changes in apparent thermal diffusivity with depth as well. For that reason, subsurface340

diffusivity profiles were derived by applying the CA level by level for CTS, HYS, RPI, and HRR (Fig. 9). This shows that

diffusivity increases with depth at every site, which agrees with a previous analysis conducted at Fargo (Smerdon et al., 2003).

Whilst RPI and HRR manifest a more linear behaviour, apparent thermal diffusivity values at CTS and HYS differ considerably

from one layer to the other, with the profiles being particularly variable near the surface. In general, mean diffusivity values

and spread attained in Fig. 7 are well represented by the profiles, being higher at the deepest layers. Since diffusivity estimates345

in Fig. 9 are weighted by the layer thickness, small values in the thinner soil layers near the surface are down-weighted and the

total vertical estimates tend to be greater than those provided in Fig. 7. Overall, Fig. 9 agrees well with results derived from

Figs. 2, 7, 8 and Table 5 and illustrates better the deviations from the linear behaviour for the natural logarithm of amplitude
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attenuation and the phase shift with depth identified in Fig. 7. These deviations are explained by an increase in apparent thermal

diffusivity with depth.350

4.3 Subsurface thermal regime: the SM

Heterogeneity near the surface and soil moisture spatial and temporal variability can produce changes in diffusivity. To study

this effect, the SpM is introduced in the analysis, taking into account the damping of all temperature perturbation amplitudes

in the frequency spectrum, although overseeing alterations of the conductive regime due to convection, advection or latent heat

exchange processes (Gao et al., 2008; Tong et al., 2017). Nevertheless, it can provide some hints on the diffusivity changes with355

depth and mostly with time. An example of its performance is given in Fig. 10, where it was applied to monthly temperature

data at SGV and NVC in the 1999-2008 period. Apparent thermal diffusivity was retrieved at 0.05, 0.1, 0.25, and 0.5 m layers

assessing the spectral amplitude attenuation of GST in its propagation to the 0.1, 0.2, 0.5, and 1 m levels, respectively. Results

for both sites show soil thermal diffusivity increases with depth, being higher for NVC than for SGV. The value of apparent

thermal diffusivity for the whole soil column derived from the SpM at SGV (see points in Fig. 10) agrees with the CA estimate360

at the annual frequency from Fig. 7 (1/12 month−1; 0.55 for CA vs. 0.56 10−6 m2s−1 for SM), while it is slightly smaller at

NVC (0.82 vs. 0.76 10−6 m2s−1). The consistency of CA and SpM in reproducing the amplitude attenuation of the annual cycle

indicates the robustness of SpM in reproducing CA results. Furthermore, SpM allows for extending the amplitude attenuation

analysis to the whole harmonic spectrum. This entails that shorter periods, i.e. higher frequencies than the annual cycle, can be

considered. In fact, the application of the SpM is not limited to data at monthly resolution but is applicable to higher temporal365

resolutions.

Fig. 11 expands the use of the SpM as an example to estimate thermal diffusivity values for weekly (a), 3-daily (b), daily

(c), and 3-hourly (d) resolutions at HRR. It is observed how the SpM consistently reproduces the amplitude attenuation of

the annual cycle stemming from CA at every resolution. Moreover, Fig. 11 shows the effect of frequency in amplitude decay:

whilst in Fig. 11a, the observed amplitude attenuation curves show an exponential decay in every case, with values over 1/e2370

except for 1 m, all levels in Fig. 11d are affected by poor signal-to-noise ratios at the high frequencies. Therefore, filtering out

unreliable amplitude attenuation values at high frequencies with a suitable criterion (e2-fold decay in our case) becomes crucial

to prevent unbiased thermal diffusivity estimates. If the whole frequency band was considered in the SM, unbiased estimates

would still be attained at shallow soil layers and low frequencies, but poor performance should be expected at the deep and

high ones, respectively.375

As it has already been mentioned, soil properties are especially heterogeneous near the surface, due to changes in soil

material and texture (Cermak et al., 2017) and hydrological (i.e. soil moisture content) changes (Pollack et al., 2005; Gao

et al., 2008; Tong et al., 2017). The last factor mostly affects subsurface thermal conductivity and volumetric heat capacity

by filling up the empty pore spaces embedded in the soil (Arkhangelskaya and Lukyashchenko, 2018), which in turn modifies

apparent thermal diffusivity. Fig. 11e explores the relation between soil moisture content and apparent thermal diffusivity near380

the surface at HRR.
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The SpM at 3-hourly resolution (Fig. 11e) in a 10-day running window is applied to derive a intra-monthly evolution of

apparent thermal diffusivity at the shallowest layers (0.1 m and 0.2 m), which is subsequently compared to changes in soil

moisture and precipitation. It is observed how soil moisture presents a seasonal cycle, with extremely low content values in

summer and relatively high but variable values in winter and spring. Transitions between these two states are remarkably abrupt,385

with soil moisture content increasing substantially by the beginning of autumn and responding to enhanced precipitation, and

the opposite occurring by the end of spring. In contrast to other sites in the Sierra de Guadarrama, HRR is rarely snow-covered

in winter, which usually occurs after high-impact snow events (e.g. Filomena, which hit the Iberian Peninsula in January 2021,

shading in Figs. 6c, 11e; Smart, 2021; Tapiador et al., 2021). Apparent thermal diffusivity also shows a seasonal behaviour,

which corresponds to soil moisture low-frequency variability. In summer, poor soil moisture content drives apparent thermal390

diffusivity values down. However, even though diffusivity in winter increases with soil moisture content, the relation between

these two variables at the high frequencies is not conclusive. For instance, the evolution of diffusivity in winter-spring 2018 at

both soil levels correctly mimics soil moisture content variations (Fig. 11e), yet fails to capture its strong variations in winter

2020. This agrees on a clear increase of apparent thermal diffusivity from dry to wet soils, but a rather stable diffusivity in

wet soils close to its field capacity observed by Arkhangelskaya and Lukyashchenko (2018). An analogous result for thermal395

conductivity by Dai et al. (2019) complies with this result as well. Moreover, SpM fails to provide reliable estimates of apparent

thermal diffusivity when the ground is insulated by the snow, due to signal loss in the whole frequency band. This is clearly

shown in Fig. 11e in January 2021, when the R coefficient, that is the square root of the goodness-of-fit of the amplitude

attenuation to an exponential function, becomes extremely poor.

Inter-annual correlation is hard to establish from our assessment due to the shortness of the time series in Fig. 11. However,400

previous studies (e.g., Melo-Aguilar et al., 2022) suggest soil moisture and apparent thermal diffusivity changes are propor-

tionally related to some degree. Nevertheless, the lack of strong evidence of a linear relationship between apparent thermal

diffusivity and soil moisture near the surface could also suggest that heat conduction is no longer the most important mecha-

nism of heat transfer. Heat convective transport via soil moisture and latent energy fluxes, water advection, and horizontal heat

transport due to uneven temperature changes at the ground surface can also contribute to modifying the vertical heat conduction405

regime near the surface. The use of a running window SpM over longer time series or developing an alternate SpM based on a

conductive-convective amplitude attenuation (Gao et al., 2008; Tong et al., 2017) solution to the heat diffusion equation might

better define this relation in wet soils.

5 Conclusions

The subsurface thermal structure at six sites in the Sierra de Guadarrama is consistent with with the hypothesis of conduction410

being the main heat propagation mechanism of SAT changes into depth. On the one hand, SAT changes are transferred to

the near-surface at the ground. Although SAT and GST are coupled at long-time scales, snow insulation, and zero-curtain

effects produce a decoupling in winter in the uppermost stations (CTS, HYS, and RPI), which are affected by the presence of

a seasonal snow cap (Figs. 5 and 6). This result agrees with previous studies carried out at cold and snowy sites, such as Fargo
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(North Dakota, US; Smerdon et al., 2003), Emigrant Pass (Utah, US; Bartlett et al., 2006), Bistrit,a (Romania; Demetrescu415

et al., 2007), and Hveravellir (Iceland; Petersen, 2022).

On the other hand, GST changes are propagated to depth by heat conduction to an extent controlled by the apparent thermal

diffusivity of the subsurface. A CA method based on the amplitude attenuation and phase shift of the annual cycle yielded

values that are between 1 and 1.3 10−6 m2s−1 for the whole soil column (i.e. 20 m) at most of the sites (Fig. 7), which are

in the range of typical diffusivity values for granite or gneiss, main materials found in the Sierra de Guadarrama’s subsurface420

(Fig. 2). These values are higher than those observed at other sites (e.g. Fargo, Prague, Cape Henlopen; Smerdon et al., 2004),

which include shallower measures. If apparent thermal diffusivity is assessed near the surface, the values are smaller and

closer to the previous literature (0.4 to 0.8 10−6 m2s−1; Table 5). A subsequent two-phase adjustment (Fig. 8) and a profile

derivation based on CA (Fig. 9) portrays an increase of thermal diffusivity with depth at all sites, being more remarkable near

the soil-bedrock transition. Evaluating thermal diffusivity changes with depth using a CA can therefore be a useful approach425

to determine soil depth at observational sites when no borehole rock samples are available. The deep monitoring profiles at the

Sierra de Guadarrama are unique and provide a wider insight into subsurface thermal structure, which may have implications

for calibrating soil and bedrock properties in models (Tong et al., 2016; Dai et al., 2019) and monitoring land heat uptake in

the terrestrial energy budget (Cuesta-Valero et al., 2022a, b; von Schuckmann et al., 2022).

Near-surface (i.e. 1 m) soil apparent thermal diffusivity vertical and temporal heterogeneity is further explored by introducing430

a new SpM, which extends the analysis of temperature amplitude attenuation to the whole frequency spectrum. The SpM reports

consistent apparent thermal diffusivity values in the first soil meter at SGV, NVC, and HRR with those previously derived with

the CA for each of the respective sites and regardless of the time resolution of the input data. Then, it was used in a intra-

monthly (10-daily) sliding window to explore apparent thermal diffusivity changes in time at the ground surface at HRR (Fig.

11e). Results suggest this parameter presents a seasonal cycle that is positively correlated with soil moisture, mostly under435

soil drought conditions. However, the fact that these changes are poorly correlated under high soil moisture contents might

indicate that heat conduction is not the main heat transfer mechanism in wet soils. Heat transport via water advection and

phase changes might not be negligible near the surface, so thermal structure in the shallow soil could be better characterised

using a modification of SpM that complies with a conduction-convection heat transfer equation (Gao et al., 2008; Tong et al.,

2017). Even so, the results show the potential of the SpM for inferring soil moisture content changes from soil temperatures,440

becoming a powerful tool for evaluating soil drought and water resource availability from observational and simulation-based

subsurface temperature data.

Code and data availability. Quality controlled temperature data at daily resolution and the most relevant codes for data processing used

in this work are available at https://doi.org/10.5281/zenodo.7499419. Nevertheless, all data can be freely obtained for research from the

original data sources, GuMNet and AEMET (see Section 2 for web addresses). Further details of the code are available upon request to the445

corresponding author.
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Table 1. Name, code, coordinates (longitude, latitude), altitude and timespan of available subsurface temperature data at both the GuMNet

and AEMET observational sites.

Name Code Lon. (◦) Lat. (◦) Alt. (m.a.s.l.) Timespan

GuMNet

Herrería HRR -4.136 40.582 920 2016.06.11 to 2021.03.31

Raso del Pino I RPI -3.969 40.874 1803 2017.07.19 to 2020.01.11

Cotos CTS -3.961 40.825 1873 2015.09.16 to 2021.03.31

Hoyas HYS -3.955 40.834 2019 2015.10.03 to 2021.03.31

AEMET

Segovia SGV -4.118 40.945 1005 1989.01.01 to 2012.07.31

P. de Navacerrada NVC -4.011 40.793 1894 1998.06.01 to 2018.12.31

Table 2. Depths corresponding to the available individual temperature series in the trenches and boreholes at each of the sites used in this

work (see Table 1 for codes). Dash indicates missing data due to sensor malfunction.

Soil temperature sensor depths (m)

TRCH 1 m BRH 2 m BRH 20 m

CTS HYS RPI HRR NVC SGV CTS HYS RPI HRR CTS HYS RPI HRR

0.10 0.20 0.20 0.20 0.05 0.05 GST GST GST GST 1.50 1.50 1.50 1.50

0.65 0.50 0.45 0.50 0.10 0.10 0.05 - 0.05 - 2.00 2.00 2.00 2.00

1.00 0.75 0.80 1.00 0.20 0.20 0.10 - 0.10 0.10 3.00 - 3.00 3.00

0.50 0.50 0.20 0.20 - 0.20 5.00 5.00 5.00 5.00

1.00 1.00 0.50 0.50 0.50 0.50 7.50 - 7.50 7.50

1.00 1.00 1.00 1.00 10.00 10.00 10.00 10.00

1.50 1.50 1.50 1.50 - 15.00 15.00 15.00

2.00 2.00 2.00 2.00 20.00 20.00 20.00 -
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Figure 1. (a) Subsurface data availability over the area of the Sierra de Guadarrama used in this work. The map in the inset (left upper corner)

points out the location of the Sierra de Guadarrama in the Iberian Peninsula. The extension covered by the map in (a) is represented by the

orange-shaded area in the inset. (Right) Conceptual sketches of subsurface equipment for 1 m trenches (b), 2 m (c), and 20 m boreholes

(d). The same distribution of subsurface temperature (referred to as ST in the figure) sensor depths is carried out at every site (c, d). Sensors

in trenches are unevenly placed within the first meter of the ground at different sites. Pale yellow (grey) background color refers to soil

(bedrock) in all panels. The transition depth between soil and bedrock (blurred area in d) is only intended for illustration and takes place

at different depths for each site. Colors and shapes of the symbols are also illustrative. In addition to subsurface temperature data, all the

stations provide SAT measurements as well as soil moisture content (referred to as SH in the figure) in the trenches.
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Figure 2. Subsurface mineral composition of the borehole cores extracted when drilling at CTS, HYS, RPI, and HRR. The top soil layer (red)

covers approximately the first soil meter at every site, whilst sediments (brown) depth varies from one site to the other. Bedrock (magenta)

underneath is of gneiss or granite, normally weathered at the top. In the case of CTS, some photos of the material at different depths are also

included for illustration. 24
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Figure 3. Example of errors in BRH 2 m at CTS in year 2017. The 10-minute GST observations (grey) and those of temperatures for

seven levels below the surface are shown. Time series are shifted an offset equivalent to 10 K and ticks are included every 5 K for clearer

visualization. The value of 270 K is shown for all levels as a reference. The olive color band at the bottom represents the level of 230 K

for the 2 m depth temperature time series, used to determine nonphysical values. The segment of the level of 1.5 m pointed by the arrow

indicates a shift in the mean temperature value.Time values after the shift are subsequently eliminated.

Table 3. Record of periods discarded at CTS and HYS for the analysis subsequently performed in this work. Records are sorted by log depths

(descending) and span from the dates indicated up to the present.

Code Sensor Depth (m) Timespan (from)

CTS BRH 2 m 1.5 2017.09.11

BRH 20 m 3.0 2019.05.21

BRH 20 m 2.0 2019.04.09

BRH 20 m 1.5 2018.08.19

HYS BRH 2 m 2.0 2018.08.31

BRH 2 m 1.5 2018.09.14

BRH 2 m 1.0 2017.09.21

BRH 20 m 2.0 2019.11.03
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Figure 4. SAT, GST, and subsurface temperatures (K) at HRR. Subsurface temperatures stem from the BRH 20 m (black lines), BRH 2 m

(brown lines), and TRCH 1 m (orange lines). Blue dashed lines show the resulting fit to an annual cycle at each depth.
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Figure 5. SAT (triangles) and subsurface temperature profiles (continuous line with diamonds for BRH 2 m, squares for BRH 20 m, and

circles for TRCH 1 m) at CTS (blue), HYS (green), RPI (purple), and HRR (red) for their respective whole time spans (see Table 1). Annual

mean temperatures are shown on the left-hand side of the figure, whilst JJA (DJF) is shown on the right in dark (light) colors.

Table 4. SAT-GST differences in mean (K) and Pearson’s correlation coefficient using daily data. The annual wave was previously filtered

out both from SAT and GST data for this analysis. Non-significant (p < 0.05) differences and correlations are shown in bold.

Code SAT - GST (K) Correlation coefficient

Annual JJA DJF Annual JJA DJF

CTS -1.80 0.21 -3.45 0.61 0.57 0.54

HYS -0.47 0.52 -0.59 0.68 0.83 0.43

RPI -0.92 -0.34 -2.37 0.58 0.75 0.16

HRR -1.58 -2.36 -0.11 0.59 0.44 0.74

NVC -1.99 -3.52 -1.38 0.71 0.56 0.67

SGV -0.46 -1.65 0.20 0.81 0.76 0.77
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Figure 7. Phase shift in days (blue) and the logarithm of amplitude ratios (red) vs. depth at CTS, HYS, RPI, HRR, NVC, and SGV (see Table

1). Points in orange, brown and black stem from a least-squares adjustment for sinusoidal fitting of the annual cycle of TRCH 1 m, BRH 2

m, and BRH 20 m data, respectively. Diffusivity values (10−6 m2s−1) are retrieved by linearly fitting all the points available at every site

(see text for details). Regression lines, confidence intervals using a significance level of p= 0.05 and diffusivity values for the logarithm of

the amplitude ratios (phase shift) are included in red (blue).
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Table 5. Apparent thermal diffusivity values (10−6 m2s−1) obtained from the amplitude attenuation, ln(A/A0), and phase shift, ϕ, for TRCH

1 m only (first column), the first meter of depth using a blend of TRCH 1 m and BRH 2 m data (second column), and BRH 20 m (third

column) at CTS, HYS, RPI, HRR, SGV, and NVC.

TRCH 1 m 1 m (TRCH 1 m + BRH 2 m) BRH 20 m

ln(A/A0) ϕ ln(A/A0) ϕ ln(A/A0) ϕ

CTS 0.88 ± 0.16 0.85 ± 0.06 0.87 ± 0.57 0.70 ± 0.26 1.41 ± 0.21 1.44 ± 0.38

HYS 0.73 ± 0.28 1.26 ± 0.33 0.45 ± 0.15 0.58 ± 0.33 1.38 ± 0.29 1.07 ± 0.13

RPI 0.46 ± 0.18 0.84 ± 0.29 0.42 ± 0.09 0.67 ± 0.20 1.41 ± 0.27 1.49 ± 0.40

HRR 0.50 ± 0.17 0.69 ± 0.21 0.45 ± 0.12 0.68 ± 0.10 1.20 ± 0.16 1.15 ± 0.19

NVC 0.82 ± 0.51 1.75 ± 1.24

SGV 0.55 ± 0.24 0.77 ± 0.07
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Figure 8. Two-phase regression of the points shown in Fig. 7. Lines represent the linear trends that are the best fit to the data before and

after the estimated point of change for the logarithm of the amplitude ratio (phase shift), depicted in red (blue). Apparent thermal diffusivity

values (10−6 m2s−1) before and after the change point are given as well in every case. The 20 m level at CTS was omitted from the analysis.
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Figure 9. Thermal diffusivity (α, 10−6 m2s−1) and wave velocity (ν, m yr−1) profiles with depth (m). The red curves were obtained from

normalized amplitude attenuation values ln(A/A0) and the blue ones from phase shift values with depth. Dashed (solid) lines represent

the raw (3-running layer thickness-weighted average) estimate. Points at the bottom of the profile (shaded yellow) represent the thickness-

weighted average of the whole subsurface profile. Shaded areas in red (blue) represent the thermal diffusitivity values obtained by linearly

fitting amplitude attenuation (phase shift) in Fig. 7.
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Figure 10. SpM amplitude attenuation analysis at NVC (left panel) and SGV (right panel). Monthly time series at both sites were selected

for a common interval spanning from 1999 to 2008. Missing data were linearly interpolated. Spectral attenuation curves are calculated as a

ratio of amplitudes of the Welch’s periodogram at (Stoica and Moses, 1997) 0.1 (orange), 0.2 (red), 0.5 (green), and 1 (blue) m temperature

levels with respect to GST. Solid (dashed) lines represent observed (theoretical) curves at every level. Diffusivity values below come from

least-squares fitting the observed to theoretical curves. Diffusivity values in grey (top left of each panel) show the result of the CA for the

amplitude attenuation of the annual cycle (1/12 month−1) shown in Fig. 7. Colored points at the annual frequency (vertical grey dashed line)

show the corresponding result of the CA for the amplitude attenuation at every level with respect to GST, which can be compared with the

corresponding SpM observed (solid) and theoretical (dashed) values.
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Figure 11. As in Fig. 10, SpM analysis of subsurface temperature attenuation at HRR for weekly (a), 3-daily (b), daily (c), and 3-hourly (d)

data. The hollow parts of the observed attenuation curves were excluded in the estimation of apparent thermal diffusivity, according to the

e2-fold decay criterion explained in Section 3. (e) Precipitation, soil moisture content, and estimated near-surface thermal diffusivity from

applying the SpM at the 0.1 m (light orange) and 0.2 m (light red) levels with respect to the GST with a 10-day running window at 3-hourly

resolution; 11-day low pass running averages are provided in dark colors. Soil moisture content at 4 cm is shown at daily (10-daily) resolution

in light blue (blue). Precipitation at 10-daily resolution is shown in purple. Least-square regression correlation (R) for SpM at every time step

is given below in each case. The gray shaded thick line represents the only time interval (4 days) with snow insulation in Fig. 6c for HRR.
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