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Abstract. In geoscientific models, simulating the properties associated with particles in a continuum can serve many scientific

purposes, and this has commonly been addressed using Lagrangian models. As an alternative approach, we present an Eulerian

method here: Diffusion-advection-reaction type of partial differential equations are derived for centralized moments, which can

describe the distribution of properties associated with chemicals in reaction-transport models. When the property is age, the

equations for centralized moments (unlike non-central moments) do not require terms to account for aging, making this method5

suitable for modeling age tracers. The properties described by the distributions may also represent kinetic variables affecting

reaction rates. In practical applications, continuous distributions of ages and reactivities are resolved to simulate organic matter

mineralization in surficial sediments, where macrofaunal and physical mixing processes typically dominate transport. In test

simulations, mixing emerged as the predominant factor shaping reactivity and age distributions. Furthermore, the applications

showcase the method’s aptitude for modeling continua in mixed environments while also highlighting practical considerations10

and challenges.

1 Introduction

The partial differential equation (PDE) to describe chemical diffusion (Fick, 1855) is mathematically equivalent to Fourier’s

heat conduction equation (Fourier et al., 1822), which has become ubiquitous in science to describe random transport pro-

cesses (Narasimhan, 1999). When materials are transported, tracking other associated properties besides the concentration can15

be desirable. For example, the age (or transit time) of fluids and chemicals has often been simulated. Diffusive mixing will

lead to a local spreading in ages. Resolving these distributions is commonly achieved through Lagrangian approaches, which

aim to simulate sufficiently large numbers of individual particles to describe the evolution of the properties and their statistical

distributions. Alternatively, Eulerian approaches utilizing PDEs offer the advantage of analytical evaluation and are computa-

tionally less expensive. Analytical solutions for age distributions in particular boundary condition problems can be found in20

Delhez and Deleersnijder (2002) and Kuderer (2022). Deleersnijder et al. (2001) and Delhez and Deleersnijder (2002) derived

Eulerian PDEs to simulate the effect of diffusion on the mean and higher raw moments and considered the effect of radioactive

decay on age distributions. In this study, we derive Eulerian PDEs for centralized moments. These are more readily intuitively

understood than raw moments and are not affected by aging, making them ideal for modeling time tracers.
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Beyond modeling passive tracers, we intend to test moment-based PDEs in more complex applications whereby chemical25

reactions depend on and affect distributions. Modeling the effect of "aging" on the apparent organic matter reactivity (Middel-

burg, 1989, 2019) provides an interesting practical case study. Bulk organic matter in sediments and soils contains materials

with varying reactivities (e.g., De Leeuw and Largeau, 1993), and the bulk degradation rate depends on the entire matrix. As

more reactive components disappear first, the remaining organic matter becomes more refractory (Zonneveld et al., 2010).

Organic molecules also undergo transformations, which generally lower the reactivity (Burdige, 2007). The overall decreasing30

reactivity over time is contained in the concept of aging. In multi-G models, separate state variables represent discrete classes of

varying reactivities (Jørgensen, 1978; Westrich and Berner, 1984). The disadvantage of this approach is that reactivity classes

and their distribution in deposited organic matter are somewhat arbitrarily chosen (Jørgensen, 1978), resulting in parameteriza-

tions that are difficult to compare between studies. Also, no more than three classes are usually defined, which cannot represent

more gradual changes in reactivity. The reactivity of organic matter may also be described as a continuum for which various35

distribution functions have been proposed (e.g., Boudreau and Ruddick, 1991; Vähätalo et al., 2010; Xu et al., 2022). The

gamma distribution is most commonly used (Arndt et al., 2013; Freitas et al., 2021), in part because it allows an analytical

solution for the evolution of the continuum over time (Boudreau and Ruddick, 1991). It can be easily implemented in sediment

models by replacing time with sediment depth based on the assumption of a constant burial velocity or a reconstruction of

the deposition history. However, the space-for-time substitution only accounts for the burial of particulate organic matter and40

ignores mixing processes.

Animals and plants continuously cause disturbances in sediments, which is referred to as bioturbation in literature (Meysman

et al., 2006). Bioturbation typically dominates the transport of solids in sediments up to a depth of∼10 cm (Tromp et al., 1995;

Middelburg et al., 1997; Boudreau, 1994). In reaction-transport models, this process is most commonly implemented as Fickian

transport (Goldberg and Koide, 1962; Guinasso and Schink, 1975; Meysman et al., 2005), i.e., as chemical diffusion, but with45

a diffusivity decreasing over depth. Mixing of particulate organic matter can also be the result of other natural processes or

anthropogenic activities, such as trawl fishing (e.g., De Borger et al., 2021). The inability of reactivity continuum models

to account for mixing either caused an error or limited their application to environments without significant mixing processes

(Freitas et al., 2021). Previously, Lagrangian methods have been developed to simulate organic matter mineralization in turbated

sediments (Meile and Van Cappellen, 2005; Kuderer, 2022), but these have only included reaction networks with few chemicals.50

The development of an alternative Eulerian approach, compatible with classical early diagenetic reaction-transport models

(Wang and Van Cappellen, 1996; Boudreau, 1997), may be needed to encourage wider usage of modeled reactivity continua in

turbated environments.

Here, we first derive expressions that describe the effect of diffusion on central moments in partial differential equations

(sect. 2). Next, we develop an approach to derive additional reaction terms that may depend on the distribution (sect. 3),55

expanding beyond previous studies that used raw moments to simulate transit time distributions and only considered radioactive

decay. Finally, the central-moment-based method is tested for age distributions and organic matter mineralization in bioturbated

sediment (sect. 4) to explore whether a moments-based approach can effectively describe age or reactivity continua in reaction-

transport models.
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2 Derivation of partial differential equations for diffusion60

Diffusion is a process that mixes distributions of properties associated with moving particles. In the derivation, we will assume

that the property of interest is age, even though it could be any other scalar property that does not affect transport. First, we

derive equations for chemical diffusion (see 2.1) and the effect of diffusion on mean age (see 2.2) to illustrate the method based

on microscopic diffusion. We then derive partial differential equations for higher centralized moments (see 2.3).

2.1 Miscroscopic derivation for concentration65

Following Crank (1956), microscopic diffusion can be represented as random jumps forth and back. Consider three locations

left (L), center (C), and right (R) aligned on a line and separated by the jumping distance of particles δx. The change in the

number of molecules at location ‘C’ is given by

∆nC
∆t

= 0.5fr(nR−nC)− 0.5fl(nC −nL) (1)

where fx is the jumping frequency in two directions, and nX is the number of particles at location X. Smaller case and upper70

case subscripts indicate evaluations at the boundaries and centers of cells, respectively. After dividing by volume V , defining

C = n/V , and also multiplying the right-hand side by δ2
x/δ

2
x

∆CC
∆t

=
1

δx

(
0.5frδ

2
x(CR−CC)

δx
− 0.5flδ

2
x(CC −CL)

δx

)
(2)

is obtained. The diffusivity is identified as D = 0.5fδ2
x. One linearization is made, i.e. ∆C = ∂C/∂xδx, resulting in

∆CC
∆t

=
1

δx

(
Dr

∂C

∂x

∣∣∣∣
r

−Dl
∂C

∂x

∣∣∣∣
l

)
(3)75

Applying the divergence theorem yields

∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
(4)

which is the diffusion equation.

2.2 Microscopic derivation of the diffusion equation for the mean

The same method is applied to the mean age associated with particles, which is the first raw moment. Let χi be the age of a80

particle and
∑n
i=1χi the total age of all particles n in a control volume V , so that the mean age of the particles is µ=

∑
χ/n.

Then µC =
∑
χ/V is the summed ages of all particles per control volume.

Let j1 and j4 be the fluxes that transport particles into the control volume from left and right, respectively. Similarly, let j2

and j3 be the fluxes that remove matter in the rightward and leftward direction, respectively. Substituting the summed total age

of particles for the total number of particles in equation 1 yields85

∆(CCµC)

∆t
=

1

V
[j4µj4 − j3µj3 − (j2µj2 − j1µj1)] (5)
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Table 1. Notation

n number of particles mol

f particle jumping frequency T−1

δx particle jumping distance L

j particle flux mol T−1

λ direction of particle flux

V volume L3

t time T

C concentration mol L−3

D diffusivity L2 T−1

χ particle property such as age or reactivity

µ mean (
∑
χ/n)

µq q-th raw moment (
∑
χq/n)

σ2 variance (
∑

[χ−µ]2/n)

S skewness (
∑

[χ−µ]3/n)

φq q-th central moment (
∑

[χ−µ]q/n)

J diffusive transport terms listed in Table 2

R reaction rate mol L−3 T−1

k reactivity T−1

P producion rate mol L−3 T−1

Pq Production term for q-th moment

r(χ) rate expression

ω advective velocity L T−1

g(χ,w) distribution function

w distribution parameters

f(χ) function dependent on distributed property

v reactivity parameter (see equation 37)

α reactivity parameter (see equation 37) T

whereby µj are the mean ages of the jumping particles, and the fluxes jk have dimensions of number of particles over time.

Note that this section only considers changes to the local mean age caused by diffusive transport. In section 4, derivations will

also account for the effect of aging on the mean. From equation 1 follows that j1 = 0.5flnL, j2 = 0.5flnC , j3 = 0.5frnC , and

j4 = 0.5frnR. When it is assumed that the random jumps are not affected by age, the mean age of a larger number of jumping90

particles will approach the mean age at the source location X , so that 〈µjk〉= µX . Making this substitution and repeating the

steps that were taken for the derivation of chemical diffusion yields〈
∆(CCµC)

∆t

〉
=

1

δx

(
Dr(CRµR−CCµC)

δx
− Dl(CCµC −CLµL)

δx

)
(6)

4



Again a linearizing assumption ∆(µC) = ∂(µC)/∂xδx is made, after which the partial differential equation

∂(Cµ)

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)
(7)95

is obtained. Deleersnijder et al. (2001) derived this equation with a generalized macroscopic approach.

2.3 Derivation of partial differential equations for higher centralized moments

Centralized moments are defined as

φq =

∑n
i=1(χi−µ)q

n
(8)

The zeroth and first centralized moments are always one and zero, respectively. The variance (σ2), skewness, and other higher100

moments correspond to q = 2, q = 3, and q > 3. Throughout the text, we shall refer to raw moments as µq = n−1
∑
χqi and to

non-central moments in general as n−1
∑n
i=1(χi−ψ)q , where ψ 6= µ.

Considering the exchange of matter with the surroundings through the fluxes jk (section 2.2), the change of q-powered

differences in the control volume can be described by

1

V

nn∑
i=1

(χi−µo)q =
1

V

no∑
j=1

(χj −µo)q +
1

V
(φj1j1−φj2j2−φj3j3 +φj4j4)∆t (9)105

whereby nn and no denote the number of particles in the updated and old population, respectively. All differences from the

mean in equation 9, including those associated with mass fluxes, are relative to µo. A Taylor series expansion of φ around µo

is used to relate the new state of a population (the left-hand side of equation 9) to the new mean age

1

V

nn∑
i=1

(χi−µn)
q

=
1

V

nn∑
i=1

(χi−µo)q +Cnφ
′∆µ+Cn

φ′′

2
∆µ2 +Cn

φ′′′

6
∆µ3 + . . . (10)

where Cn = nn/V , ∆µ= µn−µo, and φ′ = ∂φ/∂µ, etc. The term on the left-hand side of equation 10 and the first on the110

right-hand-side of equation 9 can be replaced by Cnφn and Coφo, respectively. By inserting equation 10 into equation 9 and

rearranging the terms, the expression

Cnφn−Coφo−Cnφ′∆µ−Cn
φ′′

2
∆µ2−Cn

φ′′′

6
∆µ3− . . .= 1

V
(

4∑
k=1

λkφjkjk)∆t (11)

is obtained, whereby λk =±1 depending on the direction of the flux.

2.3.1 Derivation of a partial differential equation for variance115

The derivatives of variance in the Taylor series are

∂σ2

∂µ
=−2

∑
(χi−µ)

n
= 0 (12a)

∂2σ2

∂µ2
= 2 (12b)

∂3σ2

∂µ3
= 0 (12c)
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Table 2. Partial differentials equation for diffusion of concentration, mean, and centralized moments.

Moment Variable Diffusion equation

Concentration C
∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)

Mean µ
∂(Cµ)

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)

Variance φ2 = σ2 ∂(Cσ2)

∂t
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+2DC

(
∂µ

∂x

)2

Higher moments φq
∂(Cφq)

∂t
=

∂

∂x

(
D
∂(Cφq)

∂x

)
+2qDC

∂φq−1

∂x

∂µ

∂x

See for the definition of the centralized moments (φq) equation 8.

The only non-zero derivative is inserted into equation 11. The linearization ∆µ= ∂µ/∂t∆t is made, and the result is divided120

by ∆t. Taking the limit of ∆t to zero yields

lim
∆t→0

[
Cnσ

2
n−Coσ2

o

∆t
−Cn

(
∂µ

∂t

)2

∆t

]
=

1

V

4∑
k=1

λkσ
2
jk
jk (13)

or, under the assumption that ∂µ/∂t is finite,

∂(Cσ2)

∂t
=

1

V

4∑
k=1

λkσ
2
jk
jk (14)

in differential form.125

In the next step, the unknown fluxes on the right-hand side are expressed by known local properties, which can only be done

for expected mean values of a large number of random particle jumps. It will be assumed for the partial differential equation

for variance, as well as for higher order moments, that i) the flux is determined by the average jumping frequency and the

number of particles from a source location X, i.e. jk = fnX , ii) that q-powered differences reflect the average differences from

the location where the particles are jumping, i.e. φjk = φX , and iii) that the properties of particles do not effect the jumping130

probability, i.e. 〈jkφjk〉= 〈jk〉〈φjk〉.
With these assumptions, one can write〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉
=
fr
2

[
σ2
R(µC)CR−σ2

C(µC)CC
]
− fl

2

[
σ2
C(µC)CC −σ2

L(µC)CL
]

(15)

Using the Taylor series for spatial instead of temporal derivatives, i.e. ∆µ= µR−µC or µC−µL, gives according to equations

12a - 12c135

σ2
L(µC) = σ2

L(µL) + (µC −µL)2 (16a)

σ2
R(µC) = σ2

R(µR) + (µC −µR)2 (16b)
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and substituting these into equation 15 yields〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉
=

fr
2

[
(σ2
R(µR) + (µC −µR)2)CR−σ2

C(µC)CC
]
−

fl
2

[
σ2
C(µC)CC − (σ2

L(µL) + (µC −µL)2)CL
]

(17)140

Ignoring the terms with derivatives obtained from the Taylor series for the moment, a part of the equation can be isolated〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗
=
fr
2

[
σ2
R(µR)CR−σ2

C(µC)CC
]
− fl

2

[
σ2
C(µC)CC −σ2

L(µL)CL
]

(18)

which is similar to equation 5. A linearization of ∂(σ2C)/∂x and repeating the procedure leading from equation 5 to equation

7 gives here〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
(19)145

The remaining terms not accounted for yet are〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
=
fr
2

(µC −µR)2CR +
fl
2

(µC −µL)2CL (20)

which can also be written as〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
=
Dr

δ2
x

(
∂µ

∂x
δx

)2

CR +
Dl

δ2
x

(
∂µ

∂x
δx

)2

CL (21)

yielding in the limit of ∆x→ 0150 〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
= 2DC

(
∂µ

∂x

)2

(22)

Therefore,

∂(Cσ2)

∂x
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2DC

(
∂µ

∂x

)2

(23)

is the final result describing the effect of diffusion on the centralized variance. As demonstrated in supplement section 2.1, the

PDE for diffusion of the raw variance can be derived from equation 23 and matches with the result of Delhez and Deleersnijder155

(2002), which shows that the additional linearizations made in the derivation do not affect the accuracy.

2.3.2 Derivation of partial equations for skewness and all higher order moments

For a finite ∂µ/∂t, dividing equation 11 by an infinitesimally small time step will drop the higher-order terms in the Taylor

series, leaving

∂(Cφ)

∂t
−Cφ′ ∂µ

∂t
=

1

V

4∑
k=1

λkφjkjk (24)160
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The presence of a non-zero first-order derivative makes the derivation of the PDEs for higher-order moments different from

that of the variance. It can be found in appendix A and is further analytically validated in the supplement section 2.2. Table 2

shows an overview of all diffusion PDEs.

3 Derivation of reaction terms for partial differential equations of moments

Here, we will first give a general mathematical approach to derive reaction terms that can be incorporated in the PDEs for165

centralized moments (sect. 3.1). The application of this method to particular kinetic expressions relevant to the test applications

in this paper will be demonstrated in section 3.2.

3.1 General derivation of differential terms for reactions

Reactions change the concentration and can also influence the shape of distributions characterized by their mean and higher

moments. To evaluate the effect of reactions on central moments, we start with an alternative notation for the definition of170

central moments

Cφq =

q∑
p=0

[(
q

p

)
(−µ)p

n∑
i=1

(χq−pi )

]
(25)

which can be obtained by applying the binomial theorem to equation 8. Next, we differentiate using the product rule to obtain

d(Cφq)

dt
=

q∑
p=0

{
(−1)p

(
q

p

)[
µp
d(Cµq−p)

dt
+
dµp

dt
Cµq−p

]}
(26)

whereby µx = C−1
∫
χxCχ dχ can be identified as the x-th raw moment, andCµx =

∑
χx. When no subscript is given, µ= µ1175

denotes the mean. The task at hand is to find expressions for all terms when only the concentration and moments are known

from a previous time step during a simulation, and a reaction rate is defined, for which we will assume it follows

R=

∫
r(χ)dχ (27)

as a generic rate expression.

Starting with µq−p in the second term (eq. 26), we note that raw moments (µx) can be obtained by transforming central180

moments (φ):

µx = C

x∑
k=0

(
x

k

)
φkµ

x−k (28)

The second term is further worked out by substituting

dµp

dt
= pµp−1 dµ

dt
(29)

Solving for d(Cφq)/dt|R (eq. 26) requires expressions for the terms d(Cµq−p)/dt|R and dµ/dt|R (eq. 29). The first one is185

obtained by integrating

d(Cµq−p)

dt

∣∣∣∣
R

=

∫
χq−pr(χ)dχ (30)
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Following the product rule, this derivative also allows

dµ

dt

∣∣∣∣
R

=

[
d(Cµ)

dt

∣∣∣∣
R

−µR
]
C−1 (31)

to be solved.190

3.2 Implementation of reaction kinetics and aging

Production of new material may be represented by a single zeroth-order kinetic term defined by r = 0 and R= P (eq. 27).

When χ represents age, the PDEs for raw moments times concentration do not need additional terms to account for production

(d[Cµq]/dt|R = 0 since χ= 0, eq. 30). However, the production will decrease the mean age (eq. 31). To incorporate production

into the PDEs of variance and higher central moments, the additional term Pq is obtained by inserting d(Cµq)/dt|R = 0 and195

dµ/dt|R =−µPC−1 into equation 26.

The formulation

r = f(χ)C(χ) (32)

describes first-order reaction kinetics, whereby f(χ) is the reactivity as a function of the distributed property, and the inte-

grations in equations 27 and 30 are performed over the domain bounded by the scope of the χ distribution. However, when200

f(χ) =−k is constant, the reaction rate only depends on concentration (R=−kC), as is the case for radioactive decay and

simple first-order kinetics. As these reactions do not discriminate with respect to age, the moments will not change (i.e.,

dφq/dt|R = dµq/dt|R = 0). Consequently, the reaction term becomes d(Cφq)/dt|R =Rφq , following the product rule.

The distribution may directly represent the reactivity, e.g., f(χ) =−χ (see the application in sect. 4.2). When in total x

moments are simulated, functions of χx+1 will have to be integrated (eqns. 30, 32). For simulations whereby the integrations205

are numerically performed, this may substantially impact the computation time.

In the final application (sect. 4.3), a hypothetical first-order reaction rate will be considered, whereby the reactivity function

(f [χ]) depends on the inverse of χ, which will represent age. Aging affects the mean but not the concentration. Hence, the

product rule implies d(Cµ)/∂t= Cdµ/dt, whereby dµ/dt due to aging will be unity provided the same units are used for χ

and t. Aging shifts the distribution along the age axis but does not change the shape of the distribution. It does not contribute210

to changes in the differences between particle ages and the mean (d(χi−µ)q = 0), nor does it impact the concentration. This

implies that d(Cφq)/dt due to aging is zero.

4 Applications

Three applications related to sedimentary environments are presented. For the sake of simplicity and generality, the effect of

sediment properties, such as porosity and tortuosity, on transport will be ignored. Instead, the focus is on adding reactions.215
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Figure 1. Profiles of moments evolving over time due to diffusion. Solution of numerical integration of partial differential equations (solid

lines) is compared to a particle tracking simulation (circles). Domain contains 50 cells. The spacing and time steps are set equal to the

jumping distance and the inverse jumping frequency of particles, respectively.

4.1 Simulating an age tracer

In sediment modeling, resolving the age of a chemical compound understood as the time since its formation or deposition onto

the sediment, can help to fit a measured profile and serve other diagnostic purposes.

A general system of equations for an age associated with a chemical concentration C is given by

∂C

∂t
= J0−

∂(ωC)

∂x
+P +R (33a)220

∂(Cµ)

∂t
= J1−

∂(ωCµ)

∂x
+C +µR (33b)

∂(Cφq)

∂t
= Jq −

∂(ωCφq)

∂x
+Pq +φqR (33c)

In the equations, J denotes the diffusive transport terms listed in Table 2. The second term accounts for advective transport,

whereby ω is the velocity. In early diagenetic models, the accumulation of the sediment column is typically described as a

downward advective burial process, since the sediment surface stays at a zero vertical coordinate. The term P denotes the225

production of new material with an age of zero, Pq accounts for the effect of production on higher centralized moments, R

represents a consumption reaction that does not discriminate with respect to age (e.g.,R=−kC), and the third term in equation

33b accounts for aging. Refer to section 3.2 for the derivation of these terms.

An example of a simulation involving diffusion without aging, advection, and reactions is shown in Figure 1. Here fixed

concentrations and moments were imposed for the last and first cells in the domain as boundary conditions. The initial condi-230

tions for the domain were set to the left boundary condition, which has a lower concentration and different moments compared

to the right boundary. Over time, there is net chemical diffusion in the leftward direction throughout the domain, eventually
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leading to a new steady state. The computed concentration and the first seven moments match well with those computed by a

particle-based simulation. There is a small but noticeable mismatch at the peak for the skewness and higher moments, which

is potentially due to the finite step size in the Lagrangian simulation.235

The Eulerian simulation is based on a finite differences scheme, implemented in R (R Core Team, 2022) and run with

the CVODE solver (Brown et al., 1989; Soetaert et al., 2010). The Lagrangian model employed for validating the Eulerian

simulation is described in the supplement sect. 1.1. The script to run these simulations is relatively simple and publicly available

online. Therein, it is possible to add reactions for production and consumption.

4.2 Simulating organic matter mineralization with a reactivity continuum model in turbated sediments240

In this application, C denotes organic carbon concentration, χ is the reactivity (degradation rate coefficient) with dimensions

T−1, and no explicit aging process is involved. As an example, we will consider the deposition of organic carbon with an ini-

tially uniform distribution for χ ∈ [0,m], which is described by the state variables concentration, mean reactivity, and variance

of the reactivity. The rate expression from equation 32 is applied with f(χ) =−χ so that R=−µC. By working out eq. 26

with these definitions, the following equations245

∂C

∂t

∣∣∣∣
R

=−µC (34a)

∂(Cµ)

∂t

∣∣∣∣
R

=−
m∫

0

(χ2C)dχ (34b)

∂(Cσ2)

∂t

∣∣∣∣
R

=−
m∫

0

(χ3C)dχ+ 2µ

m∫
0

(χ2C)dχ−µ3C (34c)

can be obtained.

The integrals will be evaluated numerically, meaning that the full distribution needs to be constructed from the moments.250

Based on a finite number of moments, it can only be estimated, and we chose the function

g(χ,w) = C0e
w0
√
χ+w1χ +w2χe

χ (35)

to represent the reactivity distribution. It is motivated as follows: The concentration of unreactive organic matter at the inter-

cept does not change (g(0,w) = C0). For the diffusion-reaction equation ∂C/∂t=D∂2C/∂x2−χC, the general solution is

Ae±
√
χ/Dx. The solution for ∂C/∂t=−χC isC(t) =Ae−χt. The first term can capture both these dynamics. The last term is255

linearly independent and introduces a third fitting parameter to match the number of equations. These terms have the desirable
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Figure 2. A simulated reactivity continuum model run to a steady state (black line), validated against a model using 30 bins to encompass the

reactivity range (dashed light blue line). Concentration, mean reactivity, and standard deviation are shown in panels A, B, and C, respectively;

panel D depicts the distribution function for reactivities at the upper (green line) and lower (brown line) boundaries of the model domain in

comparison to the validation simulation (points).

properties that they cannot fluctuate or become negative and can be evaluated at χ= 0. The equations

C −
m∫

0

g(χ,w)dχ= 0 (36a)

µ−
m∫

0

g(χ,w)χdχ= 0 (36b)

σ2−
m∫

0

(χ−µ)2g(χ,w)dχ= 0 (36c)260

are solved with a multidimensional root-finding procedure (Soetaert, 2009) to fit the parameter vector w.

In the example shown in Figure 2, transport involves bioturbation and advection. The burial velocity was set to 1 mm y−1.

The bioturbation coefficient had a maximum value of 10−10 m2 s−1 at the sediment-water interface and decreased exponen-

tially over depth with an e-folding distance set to 2 cm. The uniform distribution implemented as Dirichlet upper boundary

conditions was defined by the moments C = 1, µ= 2.5 · 10−2 y−1, and σ = 1.44 · 10−2 y−1, which were also used as initial265

conditions throughout the domain. A no-gradient condition was set as lower boundary condition. In total, 50 evenly spaced

cells discretized a domain length of 50 cm. The simulation, using finite differences (Soetaert and Meysman, 2012), was run

with the VODE solver (Brown et al., 1989).

The organic matter concentration imposed to a fixed value at the upper boundary condition decreases due to degradation over

depth (Figure 2A). Due to mixing, the mean reactivity of organic matter remains relatively constant in the bioturbated zone270

but decreases below it (Figure 2B) as the more reactive organic matter is degraded. The variance is also kept relatively stable

within the bioturbated zone and decreases strongly below (Figure 2C), as the removal of more reactive material decreases the

spreading of the reactivity distribution. The distributions at the top and bottom are shown as well (Figure 2D). The obtained
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results closely resemble those of a 30-G model, which partitions the reactivity range defined at the upper boundary into 30

equally spaced distinct reactivity values, treating each bin as an independent state variable (see for more details section 1.2 of275

the supplementary materials).

4.3 Apparent organic matter reactivity as a function of age

In this application, the age distribution is modeled and determines the reactivity of organic carbon. The transport equations are

the same as in the previous applications, and aging is included (see eq. 33b). The age-dependent reactivity (eq. 32) is specified

as280

f(χ) =− v

α+χ
(37)

whereby α prevents division by zero and may also be used as a fitting parameter. It resembles the long-established expression

for the mean reactivity, k̄ = v/(α+µ)β (Middelburg, 1989). Conceptually it may be the most simple expression to model the

effect of aging on reactivity.

Here we consider the application of four moments: concentration (C), mean age (µ), variance (σ2 = φ2), and skewness285

(S = φ3). For this, three-parameter distributions describe the distribution’s shape and mean, and a fourth parameter serves as a

multiplier to adjust the concentration.

We present our analysis using two distinct distributions to represent age continua, which will be compared later to evaluate

the distribution shape’s role. The first one is the triangular distribution,

g(χ,w) =

w1
2(χ−w2)

(w3−w2)(w4−w2) if w2 ≤ χ≤ w4

w1
2(w3−χ)

(w3−w2)(w3−w4) if w4 < χ≤ w3

(38)290

whereby w1 is the multiplier, w2 and w3 denote the lower and upper limit of the distribution (outside this interval, the function

evaluates to zero), andw4 corresponds to the mode. Given the closed-form expressions for the central moments of the triangular

distribution (Forbes et al., 2010), the distribution parameters for given moments are found by first determining b and c in the

equations

σ2− (b2 + c2− bc)/18 = 0 (39a)295

S+ (b− 2c)(c− 2b)(b+ c)/270 = 0 (39b)

with a root-solver, which allows the distribution parameters to be calculated as follows: w1 = C, w2 = (3µ− b− c)/3, w3 =

w2 + b, and w4 = w2 + c.

The other demonstrated distribution is the translated Weibull distribution, formulated as

g(χ,w) =
w1w2

w3

(
χ−w4

w3

)w2−1

e
−
(
χ−w4
w3

)w2

(40)300

whereby w1 serves as a multiplier to adjust the concentration, w2 is the shape parameter, w3 is the scaling parameter, and w4 is

the location parameter (Forbes et al., 2010). All parameters were obtained by solving a set of equations as shown in equations

36, along with an additional equation to account for skewness.

13



The numerical model calculates first the reaction rates for all moments, as described in section 3.2. The PDEs are solved

with an implicit finite volume scheme with hybrid differences to account for advection and diffusion, using the implementation305

from JurRTM (Rooze et al., 2020; Zindorf et al., 2021). For the state variable Cµ, the aging term is added to the reaction

term. Also, the last term in the diffusion equations for variance and skewness (Table 2) is accounted for by calculating first the

∂µ/∂x gradient and adding the resulting term as a reaction rate.

The model divides a domain length of 10 cm into 50 evenly spaced cells. The upper boundary condition is added as a

Dirichlet boundary condition with a prescribed distribution. The initial values are set to the values of the upper boundary310

condition. A zero-gradient condition is imposed at the lower boundary of the domain. The reactivity parameters (eq. 37) were

set to v = 0.8 and α= 1 y.

The simulations were run for 53 years with a maximum time step of 1 year. For root-solving the ‘nleqslv’ and ‘numDeriv’

packages in R were utilized (Hasselman, 2023; Gilbert and Varadhan, 2016; R Core Team, 2022). Numerical integrations

were carried out over the domain χ ∈ [0,150]. To validate the simulation, a complementary model capturing concentration315

evolution across binned ages was employed. This validation model adopts matching boundary and initial conditions, along

with a congruent simulation setup. Detailed technical documentation for the validation model is provided in the supplementary

material (sect. 1.3).

For the simulations shown in Figure 3, the burial velocity was set to 2 mm y−1. The bioturbation coefficient had a maximum

value of 10−11 m2 s−1 at the top. It decreased exponentially with depth, having an e-folding distance set to 3 cm, implying320

that the diffusivity at the bottom of the domain is effectively zero and that the zero-gradient condition has a negligible effect

on the results. The distributions set as upper boundary and initial conditions had moments set to C = 1, µ= 15 y, σ2 = 13 y2,

S = 0 y3.

The results (Fig. 3) demonstrate accurate concentration and mean age computation throughout the simulations. However, a

noticeable mismatch appears in the simulated variance and skewness after 50 years in the triangular distribution simulation,325

whereas the translated Weibull distribution simulation reproduces the moments accurately.

In the two lower rows of Figure 3, distributions are presented as resolved during simulations for integration. After 15 years,

the moment-based simulation distributions closely match the validation simulation, except at 2.5 cm depth for the triangular

distribution. Mixing of younger and older materials from the upper boundary results in a positive skew near the upper boundary

and a negative skew at greater depths.330

Over time, the influence of the initial conditions diminishes. Considering only advection, the time to transport all initial

material out of the model domain is 50 years. However, upward diffusion, despite net downward chemical diffusion, can

increase the residence time of some particles. The triangular distribution struggles to accurately depict the resulting positively

skewed distributions, as it degenerates into nearly right triangles at and below 2.5 cm depth (Fig. 3). The much more versatile

Weibull distribution provides a better representation of the age distribution, but the distribution is clearly off in the most actively335

turbated zone (Fig. 3), which, however, does not appear to affect the accuracy of the simulated moments. When the simulation

is run for 100 years (not shown), the moments maintain their accuracy, and the visual comparison of the distribution even

slightly improves.
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Figure 3. Results of simulations based on age distributions. The left and right halves of the figure depict simulations utilizing the triangular

and translated Weibull distributions, respectively. Presented are results after both 15 and 50 years of simulation. The moments-based simu-

lation is compared to a simulation using age bins. The moment-based and age bin simulations are distinguished by solid and dashed lines

in the upper two rows (see legend) and by lines and points in the lower two rows, which display distribution functions (df). For additional

details on the simulations, refer to section 4.3.

Interestingly, the limited impact of the precise shape of the distribution also transpires from the great similarity of the

distributions that evolve at depth over time in the validation simulations, regardless of the imposed distribution type at the340

upper boundary condition (compare distributions below 2.5 cm depth after 50 years emerging from triangular and Weibull
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distributions in Fig. 3). Similar distributions also formed when the reaction was turned off (not shown). Therefore, the interplay

between bioturbation and aging appeared to be of greater consequence for the evolution of the moments than the reaction and

choice of distribution at the upper boundary.

5 Discussion345

5.1 Evaluation of the applications

The theory outlined in this paper gives modelers a free hand to simulate properties associated with particles described as

a concentration. Modelers can use different reaction kinetics and simulate the effect on a continuous distribution. The first

application shows that it is possible to reliably simulate numerous moments of an age distribution. In this type of application,

it is unnecessary to reconstruct the distribution function from its moments during the simulation. In principle, any distribution350

is uniquely defined by a large or infinite number of moments. However, in practice, there does not exist a universal solution

to retrieve distributions from their moments. Numerical methods have been developed for this purpose (e.g., John et al., 2007;

Arbel et al., 2016) but do not always succeed.

In the two other applications, the shape of the distribution affected the reaction rates and, therefore, needed to be resolved in

the simulations. In the reactivity continuum model, the shape could be well predicted, i.e., the chosen class of distribution func-355

tion was a good approximation of the exact solutions. The bounds of the initial distribution of deposited material also provided

bounds for the numerical integration of deeper (older) material since the domain only becomes smaller as the more reactive

materials are consumed, and the refractory organics remain. These simulations were stable and ran relatively fast, despite the

requirement to determine the parameters of the distribution in run-time, which involves several numerical integrations. This

approach could be attractive as an alternative to the multi-G approach, as it does not require the arbitrary definition of various360

reactivity classes (Jørgensen, 1978) and can better represent slight differences in reactivity naturally developing over depth.

However, the multi-G simulation will run faster, even though the numerical scheme adopted here could be significantly im-

proved (see suggestions below). The initial uniform distribution used in the simulation may not be realistic for organic matter

in marine sediment (Boudreau and Ruddick, 1991). Instead, distributions similar to multi-G or continuous distributions found

in the literature (Arndt et al., 2013) can be imposed for freshly deposited organics.365

The third application posed the greatest challenge, as the shape of the age distribution strongly changed during the simulation

and was hard to predict. The emergence of pronounced asymmetry motivated the addition of skewness as a state variable. The

translated Weibull distribution performed best due to its versatility, as it can represent the exponential, Rayleigh, normal, and

other two-parameter distributions.

Occasional substantial deviations were observed between distributions reconstructed from their moments and the actual370

distributions. An illustration of such discrepancies is evident in the left tails of the distributions after 50 years at a depth

of 2.5 cm (Figure 3), even though the moments of both the triangular and translated Weibull distributions were nearly or

entirely accurate. A fundamental problem of reconstructing distributions from moments pertains to the unequal weighting for

concentration differences along the age/reactivity axis. Central moments exhibit zero weight at χ= µ (eq. 8), while weights are
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maximized at the distribution’s extremes. Consequently, the reconstruction process tends to fit the tails better than the central375

region encompassing the mean and mode. This tendency could introduce biases, particularly in scenarios where the extremes

influence the dynamics less; for instance, when the precise age of very old material has minimal impact on overall reactivity.

The bias, depending on q in eq. 8, will be stronger for higher-order moments.

Numerous optimizations can be considered to improve the numerical schemes. In the third simulation, a transition from the

method of lines (Sarmin and Chudov, 1963), characterized by continuous time and discrete space, to the classical finite differ-380

ences/volumes approach, characterized by discrete space and time, yielded substantial improvements in simulation time and

stability. This approach, affording greater control over time stepping and the execution frequency of root-solving procedures

and numerical integrations, could likely also shorten computation times in the other applications. Other polynomial type or

spline expressions could be tried to describe the distributions. Finally, pre-calculated search tables for distribution functions

could be designed to look up parameters corresponding to a combination of moments. Then numerical integrations during385

run-time would become obsolete, letting simulations run faster.

5.2 The application of central moments-based models in comparison to alternative approaches

Instead of utilizing central moments, an alternative consideration involves using raw moments. When focusing solely on pro-

duction processes and age distributions are simulated, raw moments could prove more practical, as they are not affected by the

production of new material, but the disadvantage will be that aging will still affect them.390

In scenarios involving consumption reactions, the use of raw moments generally leads to the evaluation of the fewest number

of terms. For example, consider the rate expression in equation 30 compared to those in equation 34 for central moments.

However, the steps outlined in section 3.1 can be automated to obtain all necessary terms. For the complete set of equations

encompassing all moments, the same integrations must be carried out, regardless of whether raw or central moments are

employed. Hence, the choice between raw and central moments may have limited practical significance when considering only395

the consumption reactions in numerical models.

Central moments can be converted into raw moments (as in eq. 28) or any other non-central moment. This implies that the

choice of moment type for the PDEs is not critical for additional steps, such as the reconstruction of distributions from the

moments (see previous section).

Central moments have advantages in simulating age or transit time distributions, as it lets aging only affect the mean and not400

higher moments like variance and skewness. In contrast, PDEs for non-central moments necessitate additional terms to account

for aging (Delhez and Deleersnijder, 2002). While moments-based distributions have been employed for simulating age tracers

and radioactive decay, their application in more complex dynamics remains unexplored. Determining the practical benefits of

central versus non-central moments would require further testing.

For each application within this study, alternative numerical approaches were presented. One such approach involves uti-405

lizing Lagrangian simulation, which typically demands more computation time and may be less suitable for boundary value

problems involving extended simulation durations needed to reach a steady state. In the second and third applications, contin-

uous distributions were discretized by multiple state variables. While multi-G models run faster and are easier to implement,
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continuous approaches become particularly relevant when the goal is to examine aging processes. Discretizing age distribu-

tions presents challenges, as aging involves exchanges between different age bins. Similar to numerical advection schemes, this410

can lead to numerical diffusion, distorting the variance and skewness (Klingbeil et al., 2014). To circumvent this concern, the

validation simulation in the third application utilized a moving grid for age bins (supplement sect. 1.3). This approach reaches

high accuracy. However, it has the disadvantage of requiring many state variables to represent age classes for the simulated

period, which could become problematic, particularly in simulations with larger grids. Moments-based simulations offer an

elegant and efficient solution, while the versatile applicability of PDEs makes their implementation in various models more415

convenient.

6 Conclusions

The derived diffusion-advection-reaction PDEs for central moments can be valuable tools for assessing the effect of processes

on distributions, computing transit time/age distributions, and simulating reactivity distributions. Central moments hold advan-

tages over raw moments, being intuitively interpretable and unaffected by aging.420

The central moments of transit time/age distributions can be simulated first to allow the actual distribution reconstruction

afterward. When the reactivity depends on the distribution, the distribution must be reconstructed and integrated at each time

step. An adequate function could be defined to carry out the reconstruction from the mean and variance for the simulated

distributions representing the reactivity continua in the second application. However, resolving age distributions in the third

application to compute reactivities based on ages encountered distribution-choice-related accuracy challenges, suggesting a425

need for additional validation, particularly when the distribution is more sensitive to the reaction term and vice versa.

The second and third applications underscored bioturbation’s considerable influence on chemicals’ reactivity and age distri-

butions in surficial sediments, highlighting potential inaccuracies in prior reactivity continuum approaches that ignore mixing.

Despite employing realistic transport parameters, applying the models to field data remains essential, particularly for more

robust validation of the chosen reaction dynamics. Also, a more thorough analysis is required to assess the significance of430

age/reactivity distribution shapes for mineralization rates within mixed zones. The framework developed within this study is

well-suited to address these aspects in future research.

Code availability. During the review process, the scripts for the applications are available at

https://drive.google.com/drive/folders/1UdQuAaxXq-VTA1JKyMD_7DDIy5HRJCal?usp=sharing.

Appendix A: Derivation of diffusion PDEs for higher centralized moments435

Continuing the derivation of the PDE for the diffusion of higher moments from equation 24, one can write

1

V

〈∑
λkφjkjk

〉
=−fl

2
[φC(µC)CC −φL(µC)CL] +

fr
2

[φR(µC)CR−φC(µC)CC ] (A1)
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when the same assumptions are made with regard to the fluxes as in the derivation for the PDE of the variance. The fluxes j1

and j4, transporting material into the control volume, can be written as functions of the mean age at the source location,

φL(µL) = φL(µC) +φ′ · (µL−µC) + 0.5φ′′ · (µL−µC)2 + . . . (A2a)440

φR(µR) = φR(µC) +φ′ · (µR−µC) + 0.5φ′′ · (µR−µC)2 + . . . (A2b)

Inserting these equations into equation A1, the part not accounting for the derivatives of the Taylor series is isolated

1

V

〈∑
λkφjkjk

〉∗
=

∂

∂x

(
D
∂(Cφ)

∂x

)
(A3)

whereby ∂(Cφ)/∂x has been linearized. The terms for the derivatives can be written as

1

V

〈∑
λkφjkjk

〉∗∗
= −flCL

2

(
∂φ

∂µL
(µL−µC) +

1

2

∂2φ

∂µ2
L

(µL−µC)2 + . . .

)
−445

frCR
2

(
∂φ

∂µR
(µR−µC) +

1

2

∂2φ

∂µ2
R

(µR−µC)2 + . . .

)
(A4)

Substituting this and f/2 =D/δ2
x into the last equation yields

1

V

〈∑
λkφjkjk

〉∗∗
=
DlCL
δx

(
∂φ

∂µL

∆µ

δx l

− 1

2

∂2φ

∂µ2
L

(∆µ)2

δx l

+ . . .

)
− DrCR

δx

(
∂φ

∂µR

∆µ

δx r

+
1

2

∂2φ

∂µ2
R

(∆µ)2

δx r

+ . . .

)
(A5)

whereby µC−µL = ∆µl and µR−µC = ∆µr. Taking the limit of ∆x to zero, the second-order Taylor series terms will drop.

Linearizing ∂µ/∂x yields450

1

V

〈∑
λkφjkjk

〉∗∗
=
DlCL
δx

∂φ

∂µL

∂µ

∂x l
− DrCR

δx

∂φ

∂µR

∂µ

∂x r
(A6)

Inserting the linearizations

∂φ

∂µL
=
∂φ

∂µC
− ∂2φ

∂µ∂xC
δx (A7a)

∂φ

∂µR
=
∂φ

∂µC
+

∂2φ

∂µ∂xC
δx (A7b)

into equation A6 gives455

1

V

〈∑
λkφjkjk

〉∗∗
=
∂φ

∂µ

(
DlCL
δx

∂µ

∂x l
− DrCR

δx

∂µ

∂x r

)
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A8)

The concentration gradient is also linearized

CL = Cl−
1

2

∂C

∂x
δx (A9a)

CR = Cr +
1

2

∂C

∂x
δx (A9b)

When these expressions are inserted and the divergence theorem is applied, the following partial differential equation460

1

V

〈∑
λkφjkjk

〉∗∗
=−∂φ

∂µ

[
∂

∂x

(
DC

∂µ

∂x

)
+D

∂C

∂x

∂µ

∂x

]
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A10)
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is obtained.

In the remaining steps, it will be shown that the second term on the left-hand side of equation 24 will cancel out with the first

term on the right-hand side of equation A10. Applying the product rule to ∂(Cµ)/∂t and substituting ∂C/∂t and ∂(Cµ)/∂t

with equations 4 and 7 results in465

C
∂µ

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)
−µ ∂

∂x

(
D
∂C

∂x

)
(A11)

Since the product rule, applied twice, also implies

∂

∂x

(
D
∂(Cµ)

∂x

)
=

∂

∂x

(
DC

∂µ

∂x

)
+µ

∂

∂x

(
D
∂C

∂x

)
+D

∂C

∂x

∂µ

∂x
(A12)

equation A11 can be recast into

C
∂µ

∂t
=

∂

∂x

(
DC

∂µ

∂x

)
+D

∂µ

∂x

∂C

∂x
(A13)470

which matches the part between square brackets in equation A10. These terms will cancel each other out when the last equation

is inserted on the left-hand side and equations A3 and A10 on the right-hand side of equation 24, leaving

∂(Cφ)

∂t
=

∂

∂x

(
D
∂(Cφ)

∂x

)
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A14)

Finally, by substituting

∂φq
∂µ

=−qφq−1 (A15)475

the final result shown in Table 2 is derived.
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