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Abstract. In geoscientific models, it can be useful to attribute properties to
::::::::
simulating

:::
the

:::::::::
properties

::::::::
associated

::::
with

:
particles

in a continuum . Lagrangian frameworks aim to simulate sufficiently large numbers of individual particles to describe the

evolution of the properties and their statistical distributions. Here
:::
can

:::::
serve

:::::
many

:::::::
scientific

::::::::
purposes,

::::
and

:::
this

::::
has

:::::::::
commonly

::::
been

::::::::
addressed

:::::
using

:::::::::
Lagrangian

:::::::
models.

:::
As

::
an

:::::::::
alternative

::::::::
approach,

:
we present an Eulerian approach

::::::
method

:::
here: Diffusion-

advection-reaction type of partial differential equations are derived for centralized moments, which can describe the distribution5

of properties associated with chemicals in reaction-transport models. When the property is age, the equations for centralized

moments (unlike non-central moments) do not require terms to account for aging, making this method suitable for modeling

age tracers. The properties described by the distributions may also affect
:::::::
represent

::::::
kinetic

::::::::
variables

::::::::
affecting reaction rates.

In practical applications, continuous distributions of ages or
:::
and

:
reactivities are resolved to simulate organic matter mineral-

ization in surficial sediments, where transport is typically dominated by macrofaunal and physical mixing processes . These10

applications show the potential of the methodto simulate reactivity continua in disturbed environments and reveal practical

limitations
:::::::
typically

::::::::
dominate

::::::::
transport.

::
In

:::
test

:::::::::::
simulations,

::::::
mixing

:::::::
emerged

:::
as

:::
the

::::::::::
predominant

:::::
factor

:::::::
shaping

::::::::
reactivity

::::
and

:::
age

:::::::::::
distributions.

:::::::::::
Furthermore,

:::
the

::::::::::
applications

::::::::
showcase

:::
the

::::::::
method’s

:::::::
aptitude

::
for

:::::::::
modeling

:::::::
continua

::
in

:::::
mixed

::::::::::::
environments

::::
while

::::
also

::::::::::
highlighting

::::::::
practical

::::::::::::
considerations

:::
and

:::::::::
challenges.

1 Introduction15

The partial differential equation (PDE) to describe chemical diffusion (Fick, 1855) is mathematically equivalent to Fourier’s

heat conduction equation (Fourier et al., 1822), which has become ubiquitous in science to describe random transport pro-

cesses (Narasimhan, 1999). When material is transported, it can be desirable to track
:::::::
materials

:::
are

::::::::::
transported,

:::::::
tracking

:
other

associated properties besides the concentration . Particularly, age
::
can

:::
be

:::::::::
desirable.

:::
For

::::::::
example,

:::
the

::::
age

:::
(or

::::::
transit

:::::
time)

of fluids and chemicals have
:::
has

:
often been simulated. Diffusive mixing will lead to a local spreading in ages. To resolve20

the distributions , Langrangian and Eulerian approaches have been developed. The latter have the advantage that they can

be analytically evaluated
::::::::
Resolving

:::::
these

:::::::::::
distributions

::
is

:::::::::
commonly

::::::::
achieved

:::::::
through

::::::::::
Lagrangian

::::::::::
approaches,

::::::
which

::::
aim
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::
to

:::::::
simulate

::::::::::
sufficiently

::::
large

::::::::
numbers

::
of

:::::::::
individual

:::::::
particles

:::
to

:::::::
describe

:::
the

::::::::
evolution

:::
of

:::
the

:::::::::
properties

:::
and

::::
their

:::::::::
statistical

::::::::::
distributions.

::::::::::::
Alternatively,

:::::::
Eulerian

::::::::::
approaches

:::::::
utilizing

:::::
PDEs

::::
offer

:::
the

:::::::::
advantage

::
of

::::::::
analytical

:::::::::
evaluation

:
and are computa-

tionally less expensive. Analytical solutions for age distributions in particular boundary condition problems can be found in25

Delhez and Deleersnijder (2002) and Kuderer (2022). Deleersnijder et al. (2001) and Delhez and Deleersnijder (2002) derived

Eulerian PDEs to simulate the effect of diffusion on the mean and higher non-central
:::
raw moments and considered the effect of

radioactive decay on age distributions. Here we will
:
In

::::
this

:::::
study,

:::
we derive Eulerian PDEs for centralized moments. These are

more readily intuitively understood than non-central moments , and they
:::
raw

::::::::
moments

:::
and

:
are not affected by aging, making

them ideal for modeling time tracers.30

Beyond modeling passive tracers, we intend to test moment-based PDEs in more complex applications , whereby reaction

rates
:::::::
whereby

::::::::
chemical

::::::::
reactions

:
depend on and affect distributions. Modeling the effect of "aging" on the apparent organic

matter reactivity (Middelburg, 1989, 2019) provides an interesting practical case study. Bulk organic matter in sediments and

soils contains materials with varying reactivities (e.g., De Leeuw and Largeau, 1993), and the bulk degradation rate depends

on the entire matrix. As more reactive components disappear first, the remaining organic matter becomes more refractory35

(Zonneveld et al., 2010). Organic molecules also undergo transformations, which generally lower the reactivity (Burdige,

2007). The overall decreasing reactivity over time is contained in the concept of aging. In multi-G models, separate state

variables represent discrete classes of varying reactivities (Jørgensen, 1978; Westrich and Berner, 1984). The
:::::::::::
disadvantage

::
of

:::
this

::::::::
approach

::
is
::::
that

::::::::
reactivity

::::::
classes

::::
and

::::
their

::::::::::
distribution

::
in

:::::::::
deposited

::::::
organic

::::::
matter

:::
are

:::::::::
somewhat

:::::::::
arbitrarily

::::::
chosen

::::::::::::::
(Jørgensen, 1978)

:
,
:::::::
resulting

::
in

:::::::::::::::
parameterizations

:::
that

:::
are

:::::::
difficult

::
to

:::::::
compare

:::::::
between

:::::::
studies.

::::
Also,

:::
no

::::
more

::::
than

:::::
three

::::::
classes40

::
are

:::::::
usually

:::::::
defined,

:::::
which

::::::
cannot

::::::::
represent

:::::
more

::::::
gradual

:::::::
changes

:::
in

::::::::
reactivity.

::::
The reactivity of organic matter may also be

described as a continuum for which various distribution functions have been proposed (e.g., Boudreau and Ruddick, 1991;

Vähätalo et al., 2010; Xu et al., 2022). The gamma distribution is most commonly used (Arndt et al., 2013; Freitas et al.,

2021), in part , because it allows an analytical solution for the evolution of the continuum over time (Boudreau and Ruddick,

1991). It can be easily implemented in sediment models by replacing time with sediment depth based on the assumption of a45

constant burial velocity or a reconstruction of the deposition history. However, the space-for-time substitution only accounts

for the burial of particulate organic matter and ignores mixing processes.

Animals and plants continuously cause disturbances in sediments, which is referred to as bioturbation in literature (Meysman

et al., 2006). Bioturbation typically dominates the transport of solids in sediments up to a depth of∼10 cm (Tromp et al., 1995;

Middelburg et al., 1997; Boudreau, 1994). In reaction-transport models, this process is most commonly implemented as Fick-50

ian transport (Goldberg and Koide, 1962; Guinasso and Schink, 1975; Meysman et al., 2005), i.e., as chemical diffusion, but

with a diffusivity decreasing over depth. Mixing of particulate organic matter can also be the result of other natural processes

or anthropogenic activities, such as trawl fishing (e.g., De Borger et al., 2021).
::::
The

:::::::
inability

::
of

::::::::
reactivity

:::::::::
continuum

:::::::
models

::
to

::::::
account

:::
for

::::::
mixing

:::::
either

::::::
caused

:::
an

::::
error

:::
or

::::::
limited

::::
their

:::::::::
application

::
to
::::::::::::
environments

::::::
without

:::::::::
significant

:::::::
mixing

::::::::
processes

::::::::::::::::
(Freitas et al., 2021)

:
. Previously, Lagrangian methods have been developed to simulate organic matter mineralization in tur-55

bated sediments (Meile and Van Cappellen, 2005; Kuderer, 2022), but these have only included limited reaction networks

with few chemicals. The development of an alternative Eulerian approach, compatible with classical early diagenetic reaction-
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transport models (Wang and Van Cappellen, 1996; Boudreau, 1997), may be needed to encourage wider usage of modeled

reactivity continua in turbated environments.

::::
Here,

:::
we

::::
first

::::::
derive

::::::::::
expressions

:::
that

::::::::
describe

:::
the

:::::
effect

::
of

::::::::
diffusion

:::
on

::::::
central

::::::::
moments

::
in

::::::
partial

:::::::::
differential

:::::::::
equations60

::::
(sect.

:::
2).

:::::
Next,

:::
we

:::::::
develop

:::
an

::::::::
approach

::
to
::::::

derive
:::::::::
additional

:::::::
reaction

:::::
terms

::::
that

::::
may

:::::::
depend

:::
on

:::
the

::::::::::
distribution

:::::
(sect.

:::
3),

::::::::
expanding

:::::::
beyond

:::::::
previous

::::::
studies

:::
that

::::
used

::::
raw

:::::::
moments

::
to

:::::::
simulate

::::::
transit

::::
time

::::::::::
distributions

:::
and

::::
only

::::::::::
considered

:::::::::
radioactive

:::::
decay.

::::::
Finally,

:::
the

:::::::::::::::::::
central-moment-based

::::::
method

::
is

:::::
tested

:::
for

:::
age

::::::::::
distributions

:::
and

:::::::
organic

:::::
matter

::::::::::::
mineralization

::
in

::::::::::
bioturbated

:::::::
sediment

:::::
(sect.

::
4)

::
to

::::::
explore

:::::::
whether

:
a
:::::::::::::
moments-based

::::::::
approach

:::
can

:::::::::
effectively

:::::::
describe

:::
age

::
or

::::::::
reactivity

:::::::
continua

::
in

:::::::::::::::
reaction-transport

::::::
models.

:
65

2 Derivation of partial differential equations for diffusion

Diffusion is a process that mixes distributions of properties associated with moving particles. In the derivation, we will assume

that the property of interest is age, even though it could be any other scalar property that does not affect transport. First, we

derive equations for chemical diffusion (see 2.1) and the effect of diffusion on mean age (see 2.2) to illustrate the method based

on microscopic diffusion. We then derive partial differential equations for higher centralized moments (see 2.3).70

2.1 Miscroscopic derivation for concentration

Following Crank (1956), microscopic diffusion can be represented as random jumps forth and back. Consider three locations

left (L), center (C), and right (R) aligned on a line and separated by the jumping distance of particles δx. The change in the

number of molecules at location ‘C’ is given by

∆nC
∆t

= 0.5fr(nR−nC)− 0.5fl(nC −nL) (1)75

where fx is the jumping frequency in two directions, and nX is the number of particles at location X. Smaller case and upper

case subscripts indicate evaluations at the boundaries and centers of cells, respectively. After dividing by volume V , defining

C = n/V , and also multiplying the right-hand side by δ2
x/δ

2
x

∆CC
∆t

=
1

δx

(
0.5frδ

2
x(CR−CC)

δx
− 0.5flδ

2
x(CC −CL)

δx

)
(2)

is obtained. The diffusivity is identified as D = 0.5fδ2
x. One linearization is made, i.e. ∆C = ∂C/∂xδx, resulting in80

∆CC
∆t

=
1

δx

(
Dr

∂C

∂x

∣∣∣∣
r

−Dl
∂C

∂x

∣∣∣∣
l

)
(3)

Applying the divergence theorem yields

∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
(4)

which is the diffusion equation.
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Table 1.
:::::::
Notation

:
n
: ::::::

number
::
of

::::::
particles

:::
mol

:
f
: ::::::

particle
::::::
jumping

::::::::
frequency

:::
T−1

:

::
δx: ::::::

particle
::::::
jumping

::::::
distance

: :
L
:

:
j
: ::::::

particle
:::
flux

:::
mol

::::
T−1

:
λ
: :::::::

direction
::
of

:::::
particle

::::
flux

:
V

: ::::::
volume

::
L3

:

:
t
: :::

time
: :

T
:

:
C

: ::::::::::
concentration

:::
mol

::::
L−3

::
D

: ::::::::
diffusivity

::
L2

::::
T−1

:
χ
: ::::::

particle
::::::
property

::::
such

::
as

:::
age

::
or

:::::::
reactivity

:
µ
: ::::

mean
:::::::
(
∑
χ/n)

:

::
µq: :::

q-th
:::
raw

:::::::
moment

:::::::
(
∑
χq/n)

:

::
σ2

: ::::::
variance

::::::::::::
(
∑

[χ−µ]2/n)
:

:
S
: :::::::

skewness
::::::::::::
(
∑

[χ−µ]3/n)

::
φq: :::

q-th
:::::
central

:::::::
moment

::::::::::::
(
∑

[χ−µ]q/n)

:
J
: ::::::

diffusive
:::::::

transport
:::::
terms

::::
listed

::
in

::::
Table

::
2

:
R

: ::::::
reaction

:::
rate

: :::
mol

::::
L−3

:::
T−1

:

:
k
: :::::::

reactivity
:::
T−1

:

:
P

: :::::::
producion

::::
rate

:::
mol

::::
L−3

:::
T−1

:

::
Pq: ::::::::

Production
::::
term

::
for

::::
q-th

::::::
moment

:

:::
r(χ)

: :::
rate

::::::::
expression

:
ω
: :::::::

advective
::::::
velocity

: :
L
::::
T−1

::::::
g(χ,w)

: ::::::::
distribution

:::::::
function

::
w

: ::::::::
distribution

:::::::::
parameters

::::
f(χ)

: ::::::
function

::::::::
dependent

::
on

::::::::
distributed

:::::::
property

:
v
: :::::::

reactivity
::::::::
parameter

:::
(see

:::::::
equation

::
37)

:

:
α
: :::::::

reactivity
::::::::
parameter

:::
(see

:::::::
equation

::
37)

: :
T
:

2.2 Microscopic derivation of the diffusion equation for the mean85

The same method is applied to the mean age associated with particles, which is the first non-central
:::
raw

:
moment. Let τi::

χi:be

the age of a particle and
∑n
i=1 τi:::::::

∑n
i=1χi:the total age of all particles n in a control volume V , so that the mean age of the

particles is µ=
∑
τ/n. Then µC =

∑
τ/V

::::::::::
µ=

∑
χ/n.

:::::
Then

::::::::::::
µC =

∑
χ/V is the summed ages of all particles per control

volume.

Let j1 and j4 be the fluxes that transport particles into the control volume from left and right, respectively. Similarly, let j290

and j3 be the fluxes that remove matter in
::
the rightward and leftward direction, respectively. Substituting the summed total age
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of particles for the total number of particles in equation 1 yields

∆(CCµC)

∆t
=

1

V
[j4µj4 − j3µj3 − (j2µj2 − j1µj1)] (5)

whereby µj are the mean ages of the jumping particles, and the fluxes jk have dimensions of number of particles over time.

Note that this section only considers changes to the local mean age caused by diffusive transport. In section 4, derivations will95

also account for the effect of aging on the mean. From equation 1 follows that j1 = 0.5flnL, j2 = 0.5flnC , j3 = 0.5frnC , and

j4 = 0.5frnR. When it is assumed that the random jumps are not affected by age, the mean age of a larger number of jumping

particles will approach the mean age at the source location X
::
X , so that 〈µjk〉= µX . Making this substitution and repeating

the steps that were taken for the derivation of chemical diffusion yields〈
∆(CCµC)

∆t

〉
=

1

δx

(
Dr(CRµR−CCµC)

δx
− Dl(CCµC −CLµL)

δx

)
(6)100

Again a linearizing assumption ∆(µC) = ∂(µC)/∂xδx is made, after which the partial differential equation

∂(Cµ)

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)
(7)

is obtained. Deleersnijder et al. (2001) derived this equation with a generalized macroscopic approach.

2.3 Derivation of partial differential equations for higher centralized moments

Centralized moments are defined as105

φq =

∑n
i=1(Xi−µ)q

n

∑n
i=1(χi−µ)q

n
:::::::::::::

(8)

The zeroth and first centralized moments are always one and zero, respectively. The variance (σ2), skewness, and other higher

moments correspond to q = 2, q = 3, and q > 3.
:::::::::
Throughout

:::
the

::::
text,

:::
we

::::
shall

:::::
refer

::
to

:::
raw

::::::::
moments

::
as

:::::::::::::
µq = n−1

∑
χqi::::

and
::
to

:::::::::
non-central

::::::::
moments

::
in

::::::
general

:::
as

:::::::::::::::::
n−1

∑n
i=1(χi−ψ)q ,

:::::
where

::::::
ψ 6= µ.

:

Considering the exchange of matter with the surroundings through the fluxes jk (see section 2.2), the change of q-powered110

differences in the control volume can be described by

1

V

nn∑
i=1

(
Xχ

:
i−µo

)q
=

1

V

no∑
j=1

(
Xχ

:
j −µo

)q
+

1

V
(φj1j1−φj2j2−φj3j3 +φj4j4)∆t (9)

whereby nn and no denote the number of particles in the updated and old population, respectively. All differences
::::
from

:::
the

::::
mean

:
in equation 9, including those associated with mass fluxes, are relative to µo. A Taylor series expansion of φ around µo

is used to relate the new state of a population (the left-hand side of equation 9) to the new mean age115

1

V

nn∑
i=1

(
Xχ

:
i−µn

)q
=

1

V

nn∑
i=1

(
Xχ

:
i−µo

)q
+Cnφ

′∆µ+Cn
φ′′

2
∆µ2 +Cn

φ′′′

6
∆µ3 + . . . (10)
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Table 2. Partial differentials equation for diffusion of concentration, mean, and centralized moments.

Moment Variable Diffusion equation

Concentration C
∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)

Mean µ
∂(Cµ)

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)

Variance φ2 = σ2 ∂(Cσ2)

∂t
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+2DC

(
∂µ

∂x

)2

Higher moments φq
∂(Cφq)

∂t
=

∂

∂x

(
D
∂(Cφq)

∂x

)
+2qDC

∂φq−1

∂x

∂µ

∂x

See for the definition of the centralized moments (φq) equation 8.

where Cn = nn/V , ∆µ= µn−µo, and φ′ = ∂φ/∂µ, etc. The term on the left-hand side of equation 10 and the first on the

right hand-side
::::::::::::
right-hand-side of equation 9 can be replaced by Cnφn and Coφo, respectively. By inserting equation 10 into

equation 9 and rearranging the terms, the expression

Cnφn−Coφo−Cnφ′∆µ−Cn
φ′′

2
∆µ2−Cn

φ′′′

6
∆µ3− . . .= 1

V
(

4∑
k=1

λkφjkjk)∆t (11)120

is obtained, whereby λk =±1 depending on the direction of the flux.

2.3.1 Derivation of a partial
:::::::::
differential

:
equation for variance

The derivatives of variance in the Taylor series are

∂σ2

∂µ
=−2

∑
(Xi−µ)

n

∑
(χi−µ)

n
:::::::::

= 0 (12a)

∂2σ2

∂µ2
= 2 (12b)125

∂3σ2

∂µ3
= 0 (12c)

The only non-zero derivative is inserted into equation 11. The linearization ∆µ= ∂µ/∂t∆t is made, and the result is divided

by ∆t. Taking the limit of ∆t to zero yields

lim
∆t→0

[
Cnσ

2
n−Coσ2

o

∆t
−Cn

(
∂µ

∂t

)2

∆t

]
=

1

V

4∑
k=1

λkσ
2
jk
jk (13)

or, under the assumption that ∂µ/∂t is finite,130

∂(Cσ2)

∂t
=

1

V

4∑
k=1

λkσ
2
jk
jk (14)

6



in differential form.

In the next step, the unknown fluxes on the right-hand side are expressed by known local properties, which can only be done

for expected mean values of a large number of random particle jumps. It will be assumed for the partial differential equation

for variance, as well as for higher order moments, that i) the flux is determined by the average jumping frequency and the135

number of particles from a source location X, i.e. jk = fnX , ii) that q-powered differences reflect the average differences from

the location where the particles are jumping, i.e. φjk = φX , and iii) that the properties of particles do not effect the jumping

probability, i.e. 〈jkφjk〉= 〈jk〉〈φjk〉.
With these assumptions, one can write〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉
=
fr
2

[
σ2
R(µC)CR−σ2

C(µC)CC
]
− fl

2

[
σ2
C(µC)CC −σ2

L(µC)CL
]

(15)140

Using the Taylor series for spatial instead of temporal derivatives, i.e. ∆µ= µR−µC or µC−µL, gives according to equations

12a - 12c

σ2
L(µC) = σ2

L(µL) + (µC −µL)2 (16a)

σ2
R(µC) = σ2

R(µR) + (µC −µR)2 (16b)

and substituting these into equation 15 yields145 〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉
=

fr
2

[
(σ2
R(µR) + (µC −µR)2)CR−σ2

C(µC)CC
]
−

fl
2

[
σ2
C(µC)CC − (σ2

L(µL) + (µC −µL)2)CL
]

(17)

Ignoring the terms with derivatives obtained from the Taylor series for the moment, a part of the equation can be isolated〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗
=
fr
2

[
σ2
R(µR)CR−σ2

C(µC)CC
]
− fl

2

[
σ2
C(µC)CC −σ2

L(µL)CL
]

(18)

which is similar to equation 5. A linearization of ∂(σ2C)/∂x and repeating the procedure leading from equation 5 to equation150

7 gives here〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
(19)

The remaining terms not accounted for yet are〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
=
fr
2

(µC −µR)2CR +
fl
2

(µC −µL)2CL (20)

which can also be written as155 〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
=
Dr

δ2
x

(
∂µ

∂x
δx

)2

CR +
Dl

δ2
x

(
∂µ

∂x
δx

)2

CL (21)
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yielding in the limit of ∆x→ 0〈
1

V

4∑
k=1

λkσ
2
jk
jk

〉∗∗
= 2DC

(
∂µ

∂x

)2

(22)

Therefore,

∂(Cσ2)

∂x
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2DC

(
∂µ

∂x

)2

(23)160

is the final result describing the effect of diffusion on the centralized variance. The
::
As

:::::::::::
demonstrated

:::
in

:::::::::
supplement

:::::::
section

:::
2.1,

:::
the PDE for diffusion of the non-central variance (not shown)

::
raw

::::::::
variance can be derived from equation 23 and matches

with the result of Delhez and Deleersnijder (2002), which shows that the additional linearizations made in the derivation do

not affect the accuracy.

2.3.2 Derivation of partial equations for skewness and all higher order moments165

In equation 11 , we divide
::
For

::
a
:::::
finite

::::::
∂µ/∂t,

:::::::
dividing

:::::::
equation

:::
11

:
by an infinitesimally small time step . For a finite ∂µ/∂t,

this implies that
:::
will

:::::
drop the higher-order terms in the Taylor seriesdrop, leaving

∂(Cφ)

∂t
−Cφ′ ∂µ

∂t
=

1

V

4∑
k=1

λkφjkjk (24)

The presence of a non-zero first-order derivative makes the derivation of the PDEs for higher-order moments different from

that of the variance. It can be found in appendix A . An
:::
and

::
is

::::::
further

::::::::::
analytically

::::::::
validated

::
in

:::
the

::::::::::
supplement

::::::
section

::::
2.2.170

::::
Table

::
2
:::::
shows

:::
an overview of all PDEs for diffusion is shown in Table 2

:::::::
diffusion

:::::
PDEs.

:

3
:::::::::
Derivation

::
of

::::::::
reaction

:::::
terms

:::
for

::::::
partial

::::::::::
differential

:::::::::
equations

::
of

:::::::::
moments

::::
Here,

:::
we

::::
will

::::
first

::::
give

::
a

::::::
general

::::::::::::
mathematical

::::::::
approach

::
to

:::::
derive

::::::::
reaction

:::::
terms

:::
that

::::
can

::
be

:::::::::::
incorporated

::
in
:::

the
::::::

PDEs
:::
for

:::::::::
centralized

::::::::
moments

::::
(sect.

::::
3.1).

::::
The

:::::::::
application

::
of

::::
this

::::::
method

::
to

::::::::
particular

::::::
kinetic

::::::::::
expressions

:::::::
relevant

::
to

::
the

::::
test

::::::::::
applications

::
in

:::
this

:::::
paper

:::
will

:::
be

:::::::::::
demonstrated

::
in

::::::
section

::::
3.2.175

3.1
::::::

General
::::::::::
derivation

::
of

::::::::::
differential

:::::
terms

:::
for

::::::::
reactions

::::::::
Reactions

::::::
change

:::
the

::::::::::::
concentration

:::
and

::::
can

:::
also

::::::::
influence

:::
the

::::::
shape

::
of

::::::::::
distributions

::::::::::::
characterized

::
by

:::::
their

:::::
mean

:::
and

::::::
higher

::::::::
moments.

:::
To

:::::::
evaluate

:::
the

:::::
effect

::
of
::::::::

reactions
:::

on
::::::
central

:::::::::
moments,

:::
we

::::
start

::::
with

:::
an

:::::::::
alternative

:::::::
notation

:::
for

:::
the

::::::::
definition

:::
of

:::::
central

::::::::
moments

:

Cφq =

q∑
p=0

[(
q

p

)
(−µ)p

n∑
i=1

(χq−pi )

]
:::::::::::::::::::::::::::::

(25)180
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:::::
which

:::
can

:::
be

:::::::
obtained

::
by

::::::::
applying

:::
the

:::::::
binomial

:::::::
theorem

:::
to

:::::::
equation

::
8.

:::::
Next,

:::
we

::::::::::
differentiate

:::::
using

:::
the

::::::
product

::::
rule

::
to

:::::
obtain

:

d(Cφq)

dt
=

q∑
p=0

{
(−1)p

(
q

p

)[
µp
d(Cµq−p)

dt
+
dµp

dt
Cµq−p

]}
:::::::::::::::::::::::::::::::::::::::::::::::::

(26)

:::::::
whereby

::::::::::::::::::
µx = C−1

∫
χxCχ dχ:::

can
::
be

::::::::
identified

::
as

:::
the

::::
x-th

:::
raw

:::::::
moment,

::::
and

:::::::::::
Cµx =

∑
χx.

::::::
When

::
no

::::::::
subscript

:
is
::::::
given,

::::::
µ= µ1

::::::
denotes

:::
the

::::::
mean.

:::
The

::::
task

::
at

:::::
hand

:
is
:::

to
:::
find

::::::::::
expressions

:::
for

:::
all

:::::
terms

:::::
when

::::
only

:::
the

:::::::::::
concentration

::::
and

::::::::
moments

:::
are

::::::
known

::::
from

:
a
::::::::
previous

::::
time

:::
step

::::::
during

::
a

:::::::::
simulation,

:::
and

::
a
:::::::
reaction

:::
rate

::
is

:::::::
defined,

:::
for

:::::
which

:::
we

::::
will

::::::
assume

::
it

::::::
follows185

R=

∫
r(χ)dχ

::::::::::::

(27)

::
as

:
a
::::::
generic

::::
rate

:::::::::
expression.

:

::::::
Starting

:::::
with

::::
µq−p:::

in
:::
the

::::::
second

::::
term

::::
(eq.

::::
26),

:::
we

::::
note

::::
that

:::
raw

::::::::
moments

::::
(µx)

::::
can

::
be

::::::::
obtained

:::
by

:::::::::::
transforming

::::::
central

:::::::
moments

::::
(φ):

µx = C

x∑
k=0

(
x

k

)
φkµ

x−k

::::::::::::::::::::

(28)190

:::
The

::::::
second

::::
term

::
is
::::::
further

:::::::
worked

:::
out

::
by

::::::::::
substituting

dµp

dt
= pµp−1 dµ

dt
::::::::::::::

(29)

::::::
Solving

:::
for

::::::::::::
d(Cφq)/dt|R :::

(eq.
::::
26)

:::::::
requires

::::::::::
expressions

:::
for

:::
the

:::::
terms

:::::::::::::
d(Cµq−p)/dt|R::::

and
:::::::
dµ/dt|R::::

(eq.
::::
29).

::::
The

:::
first

::::
one

::
is

:::::::
obtained

::
by

::::::::::
integrating

d(Cµq−p)

dt

∣∣∣∣
R

=

∫
χq−pr(χ)dχ

::::::::::::::::::::::::::

(30)195

::::::::
Following

:::
the

:::::::
product

::::
rule,

:::
this

:::::::::
derivative

:::
also

::::::
allows

dµ

dt

∣∣∣∣
R

=

[
d(Cµ)

dt

∣∣∣∣
R

−µR
]
C−1

::::::::::::::::::::::::::

(31)

::
to

::
be

::::::
solved.

:

3.2
:::::::::::::

Implementation
::
of

::::::::
reaction

:::::::
kinetics

::::
and

:::::
aging

:::::::::
Production

::
of

::::
new

:::::::
material

::::
may

:::
be

::::::::::
represented

::
by

::
a
:::::
single

:::::::::::
zeroth-order

::::::
kinetic

::::
term

:::::::
defined

::
by

:::::
r = 0

::::
and

::::::
R= P

::::
(eq.

::::
27).200

:::::
When

:
χ
:::::::::
represents

::::
age,

:::
the

:::::
PDEs

:::
for

:::
raw

::::::::
moments

:::::
times

:::::::::::
concentration

::
do

:::
not

:::::
need

::::::::
additional

:::::
terms

::
to

:::::::
account

:::
for

:::::::::
production

:::::::::::::::
(d[Cµq]/dt|R = 0

::::
since

::::::
χ= 0,

:::
eq.

:::
30).

::::::::
However,

:::
the

:::::::::
production

::::
will

:::::::
decrease

:::
the

:::::
mean

:::
age

:::
(eq.

::::
31).

::
To

::::::::::
incorporate

:::::::::
production

:::
into

:::
the

:::::
PDEs

::
of

::::::::
variance

:::
and

::::::
higher

::::::
central

::::::::
moments,

:::
the

:::::::::
additional

::::
term

:::
Pq ::

is
:::::::
obtained

:::
by

:::::::
inserting

:::::::::::::::
d(Cµq)/dt|R = 0

::::
and

:::::::::::::::::
dµ/dt|R =−µPC−1

::::
into

:::::::
equation

:::
26.

:
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:::
The

::::::::::
formulation

:
205

r = f(χ)C(χ)
:::::::::::

(32)

:::::::
describes

:::::::::
first-order

:::::::
reaction

:::::::
kinetics,

:::::::
whereby

::::
f(χ)

::
is

:::
the

::::::::
reactivity

::
as

:
a
:::::::
function

::
of

:::
the

:::::::::
distributed

:::::::
property,

::::
and

:::
the

:::::::::
integrations

::
in

::::::::
equations

::
27

:::
and

:::
30

:::
are

::::::::
performed

::::
over

:::
the

::::::
domain

::::::::
bounded

::
by

:::
the

:::::
scope

::
of

:::
the

::
χ

::::::::::
distribution.

::::::::
However,

::::
when

::::::::::
f(χ) =−k

::
is

:::::::
constant,

:::
the

:::::::
reaction

:::
rate

::::
only

:::::::
depends

:::
on

:::::::::::
concentration

:::::::::::
(R=−kC),

::
as

:
is
:::
the

::::
case

:::
for

:::::::::
radioactive

:::::
decay

::::
and

:::::
simple

:::::::::
first-order

:::::::
kinetics.

::
As

:::::
these

:::::::
reactions

:::
do

:::
not

::::::::::
discriminate

::::
with

::::::
respect

::
to

::::
age,

::
the

::::::::
moments

::::
will

:::
not

::::::
change

::::
(i.e.,

:::::::::::::::::::::::
dφq/dt|R = dµq/dt|R = 0).210

:::::::::::
Consequently,

:::
the

:::::::
reaction

::::
term

::::::::
becomes

::::::::::::::::::
d(Cφq)/dt|R =Rφq ,::::::::

following
:::
the

:::::::
product

::::
rule.

:::
The

::::::::::
distribution

::::
may

:::::::
directly

::::::::
represent

:::
the

:::::::::
reactivity,

::::
e.g.,

::::::::::
f(χ) =−χ

:::
(see

::::
the

:::::::::
application

::
in
:::::

sect.
::::
4.2).

:::::
When

:::
in

::::
total

::
x

:::::::
moments

:::
are

:::::::::
simulated,

::::::::
functions

::
of

:::::
χx+1

::::
will

::::
have

::
to

:::
be

::::::::
integrated

::::::
(eqns.

:::
30,

:::
32).

::::
For

:::::::::
simulations

::::::::
whereby

:::
the

::::::::::
integrations

::
are

::::::::::
numerically

::::::::::
performed,

:::
this

::::
may

:::::::::::
substantially

::::::
impact

:::
the

::::::::::
computation

:::::
time.

::
In

:::
the

::::
final

:::::::::
application

:::::
(sect.

::::
4.3),

:
a
:::::::::::
hypothetical

::::::::
first-order

:::::::
reaction

::::
rate

:::
will

:::
be

:::::::::
considered,

::::::::
whereby

:::
the

::::::::
reactivity

:::::::
function215

:::::
(f [χ])

:::::::
depends

:::
on

:::
the

::::::
inverse

:::
of

::
χ,

:::::
which

::::
will

::::::::
represent

::::
age.

::::::
Aging

::::::
affects

:::
the

:::::
mean

:::
but

:::
not

:::
the

::::::::::::
concentration.

:::::::
Hence,

:::
the

::::::
product

::::
rule

::::::
implies

:::::::::::::::::::
d(Cµ)/∂t= Cdµ/dt,

:::::::
whereby

::::::
dµ/dt

:::
due

::
to

:::::
aging

::::
will

::
be

:::::
unity

::::::::
provided

:::
the

::::
same

:::::
units

:::
are

::::
used

:::
for

::
χ

:::
and

::
t.

:::::
Aging

:::::
shifts

:::
the

::::::::::
distribution

:::::
along

:::
the

:::
age

::::
axis

:::
but

::::
does

:::
not

::::::
change

:::
the

::::::
shape

::
of

:::
the

::::::::::
distribution.

::
It

::::
does

:::
not

:::::::::
contribute

::
to

:::::::
changes

::
in

:::
the

:::::::::
differences

:::::::
between

:::::::
particle

::::
ages

:::
and

:::
the

:::::
mean

:::::::::::::::
(d(χi−µ)q = 0),

:::
nor

::::
does

::
it

::::::
impact

:::
the

::::::::::::
concentration.

::::
This

::::::
implies

:::
that

::::::::::
d(Cφq)/dt:::

due
::
to

:::::
aging

::
is

::::
zero.220

4 Applications

Three applications related to sedimentary environments are presented. For the sake of simplicity and generality, the effect

of sediment properties, such as porosity and tortuosity, on transport will be ignored. Instead, the focus is on adding reaction

terms
::::::::
reactions.

4.1 Simulating an age tracer225

In sediment modeling, resolving the age of a chemical compound , understood as the time since its formation or deposition

onto the sediment, can help to fit a measured profile . For instance, it allows to relate the presence of peaks and troughs in a

solid profile, such as the concentration of particulate organic carbon over depth, to changes in the depositional history
:::
and

:::::
serve

::::
other

:::::::::
diagnostic

:::::::
purposes.

A general system of equations for an age associated with a chemical concentration C is given by230

∂C

∂t
= J0−

∂(ωC)

∂x
+P+

:::
R1−R2 (33a)

∂(Cµ)

∂t
= J1−

∂(ωCµ)

∂x
+C−+

:
µR2 (33b)

∂(Cφq)

∂t
= Jq −

∂(ωCφq)

∂x
+R

φq
1 −Pq+

:::
φqR2 (33c)
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In the equations, J denotes the diffusive transport terms listed in Table 2. The second term accounts for advective transport,

whereby ω is the velocity. In early diagenetic models, the accumulation of the sediment column is typically described as a235

downward advective burial process, since the sediment surface stays at a zero vertical coordinate.

The terms R1 and R2 represent formation and consumption reactions, respectively. The third term in equation 33b accounts

for aging (∂(Cµ)/∂t|A = C∂µ/∂t= C). New material produced byR1 has
:::
The

::::
term

::
P

::::::
denotes

:::
the

:::::::::
production

::
of

::::
new

:::::::
material

::::
with an age of zero. Since R1 increases the concentration and does not affect the total age (Cµ), it decreases the mean age.

Consumption is assumed not to ,
:::
Pq::::::::

accounts
:::
for

:::
the

:::::
effect

:::
of

:::::::::
production

:::
on

::::::
higher

:::::::::
centralized

:::::::::
moments,

::
R

:::::::::
represents

::
a240

::::::::::
consumption

:::::::
reaction

::::
that

::::
does

:::
not

:
discriminate with respect to the age of reactants. Therefore, the last term in equation 33b

affects only the total and not the mean age.

The effect of reactions on higher moments
:::
age (e.g., Rφq1 in equation 33c)can be derived from the definition in equation 8,

to which the binomial theorem is applied,

Cφq =

q∑
j=0

[(
q

j

)
(−µ)j

n∑
i=1

(τ q−ji )

]
245

Taking the derivative with respect to time yields in continuous form

∂(Cφq)

∂t
=

q∑
j=0

{
(−1)j

(
q

j

)[
µj
∂(Cµq−j)

∂t
+
∂µj

∂t
Cµq−j

]}

whereby µx = C−1
∫
τxCτ dτ is identified as the x-th non-central moment. When no subscript is given, µ= µ1 denotes the

mean. Centralized moments (φk) are transformed to non-central moments (µx) by

µx = C

x∑
k=0

(
x

k

)
φkµ

x−k250

The temporal derivative of µj can be expressed as

∂µj

∂t
= jµj−1 ∂µ

∂t

Considering the product rule ∂µ/∂t= [∂(µC)/∂t−µ∂C/∂t]/C, the effect of the reaction on the mean is ∂µ/∂t=−µR1/C.

For the production of new material, the temporal derivatives of Cµx are zero. Inserting these termsinto equation 26 yieldsRφq1 .

The expression for R2 in equation 33c can be more readily obtained by verifying that consumption should not affect the higher255

centralized moments
:::::::::
R=−kC),

:::
and

:::
the

:::::
third

::::
term

::
in

::::::::
equation

:::
33b

::::::::
accounts

::
for

::::::
aging.

:::::
Refer

::
to

::::::
section

:::
3.2

:::
for

:::
the

:::::::::
derivation

::
of

::::
these

:::::
terms.

An example of a simulation involving diffusion without aging, advection, and reactions is shown in Figure 1. Here fixed con-

centrations and moments were imposed for the last and first cells in the domain as boundary conditions. The initial conditions

for the domain were set to the left boundary condition, which has a lower concentration and different moments compared to the260

right boundary. Over time, there is net chemical diffusion in the leftward direction throughout the domain, eventually leading

11
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Figure 1. Profiles of moments evolving over time due to diffusion. Solution of numerical integration of partial differential equations (solid

lines) is compared to a particle tracking simulation (circles). Domain contains 50 cells. The spacing and time steps are set equal to the

jumping distance and the inverse jumping frequency of particles, respectively.

to a new steady state. The Eulerian simulation is based on a finite differences scheme, implemented in R (R Core Team, 2022)

and run with the CVODE solver (Brown et al., 1989; Soetaert et al., 2010). The computed concentration and the first seven

moments match well with those computed by a particle-based simulation. There is a small but noticeable mismatch at the peak

for the skewness and higher moments, which is potentially due to the finite step size in the Lagrangian simulation.265

:::
The

::::::::
Eulerian

:::::::::
simulation

::
is

:::::
based

:::
on

::
a
:::::
finite

::::::::::
differences

:::::::
scheme,

:::::::::::
implemented

:::
in

::
R

::::::::::::::::::
(R Core Team, 2022)

:::
and

:::
run

:::::
with

::
the

::::::::
CVODE

::::::
solver

::::::::::::::::::::::::::::::::::
(Brown et al., 1989; Soetaert et al., 2010).

::::
The

::::::::::
Lagrangian

::::::
model

::::::::
employed

:::
for

:::::::::
validating

:::
the

::::::::
Eulerian

::::::::
simulation

::
is
:::::::::
described

::
in

:::
the

:::::::::
supplement

:::::
sect.

:::
1.1.

:
The script to run these simulations is relatively simple and publicly avail-

able online. Therein, it is possible to add reactions for production and consumption.

4.2 Simulating organic matter mineralization with a reactivity continuum model in turbated sediments270

In this application, C denotes organic carbon concentration, τ = k is a
:
χ
::

is
:::
the

:
reactivity (degradation rate coefficient) with

dimensions T−1, and there is no explicit aging term
::::::
process

::
is

::::::::
involved. As an example, we will consider

:::
the

:::::::::
deposition

::
of

::::::
organic

:::::::
carbon

::::
with

:
an initially uniform distribution for k ∈ [0,m]

::::::::
χ ∈ [0,m], which is described by the state variables

concentration, mean reactivity, and variance of the reactivity.
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Considering all reactive particle, the rate can be expressed as R=
∑
kiCi = k̄C. Then

:::
The

::::
rate

:::::::::
expression

::::
from

::::::::
equation275

::
32

::
is

::::::
applied

::::
with

::::::::::
f(χ) =−χ

::
so

::::
that

:::::::::
R=−µC.

:::
By

:::::::
working

:::
out

:::
eq.

:::
26

::::
with

::::
these

::::::::::
definitions,

:::
the

::::::::
following

::::::::
equations

∂C

∂t

∣∣∣∣
R

=−µ
::
C (34a)

∂(Cµ)

∂t

∣∣∣∣
R

=−
:

m∫
0

(kχ
:

2C)dkdχ
::

(34b)

∂(Cσ2)

∂t

∣∣∣∣
R

=−
:

m∫
0

(kχ
:

3C)dk−dχ+
:::

2µ
:

m∫
0

(kχ
:

2C)dk+dχ−µ
:::::

3C (34c)

become the equations describing the effect of the reactions on the moments
:::
can

::
be

::::::::
obtained.280

The integrals will be evaluated numerically, meaning that the full distribution needs to be constructed from the moments.

Based on a finite number of moments, it can only be estimated, and we chose the function

g(kχ
:
,w) = C0e

w0

√
k+w1kw0

√
χ+w1χ

::::::::
+w2kχ

:
ekχ

:
(35)

to represent the reactivity distribution. It is motivated as follows: The concentration of unreactive organic matter at the intercept

does not change (g(0,w) = C0). For the diffusion-reaction equation ∂C/∂t=D∂2C/∂x2− kC
::::::::::::::::::::::
∂C/∂t=D∂2C/∂x2−χC,285

the general solution isAe±
√
k/Dx

::::::::::
Ae±
√
χ/Dx. The solution for ∂C/∂t=−kC isC(t) =Ae−kt

:::::::::::::
∂C/∂t=−χC

::
is

::::::::::::
C(t) =Ae−χt.

The first term can capture both these dynamics. The last term is linearly independent and introduces a third fitting parameter

to match the number of equations. These terms have the desirable properties that they cannot fluctuate or become negative and

can be evaluated at k = 0. To fit the parameter vectors w, the
:::::
χ= 0.

::::
The

:
equations

C −
m∫

0

g(kχ
:
,w)dkdχ

::
= 0 (36a)290

µ−
m∫

0

g(kχ
:
,w)kχ

:
dkdχ

::
= 0 (36b)

σ2−
m∫

0

(kχ
:
−µ

:
)2g(kχ

:
,w)dkdχ

::
= 0 (36c)

are solved with a multidimensional root-finding procedure (Soetaert, 2009)
:
to

::
fit

:::
the

:::::::::
parameter

:::::
vector

::
w.

In the example shown in Figure 2, transport involves bioturbation and advection. The burial velocity was set to 1 mm y−1.

The bioturbation coefficient had a maximum value of 10−10 m2 s−1 at the sediment-water interface and decreased exponen-295

tially over depth with an e-folding distance set to 2 cm. Using finite differences (Soetaert and Meysman, 2012), the domain

consisting of
:::
The

:::::::
uniform

:::::::::
distribution

:::::::::::
implemented

::
as

:::::::
Dirichlet

:::::
upper

::::::::
boundary

:::::::::
conditions

::::
was

::::::
defined

::
by

:::
the

::::::::
moments

::::::
C = 1,

::::::::::::
µ= 2.5 · 10−2 y−1

:
,
:::
and

:::::::::::::
σ = 1.44 · 10−2

:
y−1,

::::::
which

::::
were

::::
also

::::
used

::
as

:::::
initial

:::::::::
conditions

:::::::::
throughout

:::
the

:::::::
domain.

::
A

::::::::::
no-gradient

::::::::
condition

:::
was

:::
set

::
as

:::::
lower

::::::::
boundary

:::::::::
condition.

::
In

:::::
total, 50 evenly spaced cells and having a total

::::::::
discretized

::
a domain length

13
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Figure 2. A simulated reactivity continuum (black line) from a simulation
:::::
model run to

:
a steady state

:::::
(black

::::
line),

:
validated with

:::::
against

:
a

discrete 30-G model
::::
using

::
30

::::
bins

::
to

::::::::
encompass

:::
the

:::::::
reactivity

:::::
range (dashed red

:::
light

::::
blue line). Panels A, B, and C show the total organic

carbon (TOC) concentration
:::::::::::
Concentration, the mean reactivity, and standard deviation

::
are

:::::
shown

::
in

:::::
panels

::
A,

:::
B,

:::
and

:
C, respectively; panel

D shows
:::::
depicts

:
the distribution function for reactivities at the top

::::
upper

:
(green

:::
line) and bottom

::::
lower (red

:::::
brown

:::
line)

::::::::
boundaries of the

model domain
:
in
:::::::::
comparison

::
to

:::
the

:::::::
validation

::::::::
simulation

::::::
(points).

of 50 cmwas discretized, and the simulation.
::::
The

:::::::::
simulation,

:::::
using

:::::
finite

:::::::::
differences

:::::::::::::::::::::::::
(Soetaert and Meysman, 2012)

:
, was run300

with the VODE solver (Brown et al., 1989).

The TOC
::::::
organic

:::::
matter

:
concentration imposed to a fixed value at the upper boundary condition decreases due to degradation

over depth (Figure 2A). The
:::
Due

::
to

:::::::
mixing,

:::
the

:
mean reactivity of organic matter remains relatively constant in the top due

to mixing, but decreases strongly over depth below the bioturbated zone
:::::::::
bioturbated

:::::
zone

:::
but

:::::::::
decreases

:::::
below

::
it
:
(Figure

2B) , as the more reactive TOC
::::::
organic

::::::
matter is degraded. The variance is also kept relatively stable within the bioturbated305

zone , and decreases strongly below (Figure 2C), as the removal of more reactive material decreases the spreading of the

reactivity distribution. The distributions at the top and bottom are shown as well (Figure 2D). In this simulation, a no-gradient

condition was imposed as the lower boundary condition. The results closely match the results of a discrete
:::
The

:::::::
obtained

::::::
results

::::::
closely

:::::::
resemble

:::::
those

:::
of

:
a
:
30-G model. The script for these simulations is made publicly available online,

::::::
which

::::::::
partitions

::
the

:::::::::
reactivity

:::::
range

::::::
defined

::
at
::::

the
:::::
upper

::::::::
boundary

::::
into

:::
30

::::::
equally

::::::
spaced

:::::::
distinct

::::::::
reactivity

::::::
values,

:::::::
treating

:::::
each

:::
bin

::
as

:::
an310

::::::::::
independent

::::
state

:::::::
variable

::::
(see

::
for

:::::
more

::::::
details

::::::
section

:::
1.2

::
of

:::
the

::::::::::::
supplementary

:::::::::
materials).

4.3 Apparent organic matter reactivity as a function of age

In this application, the age distribution is modeled and
::::::::
determines

:
the reactivity of organic carbondepends on the age property.

The transport equations are the same as in the previous applications, and aging is turned on
:::::::
included

:
(see eq. 33b). Considering

k = f(τ), one can write in continuous form315

dC

dt
=R=

b∫
a

f(τ)Cdτ
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The temporal derivative of the total age due to the removal of material is

∂(Cµ)

∂t
|R =

b∫
a

τf(τ)Cdτ

To derive the temporal derivative of higher centralized moments, the same approach is followed as for the production reaction

in the first application. Starting from equation 26, the term320

∂(Cµq−j)

∂t
|R =

b∫
a

τ q−jf(τ)Cdτ

is non-zero here. The other term in equation 26 (corresponding to eq. 29) can be found by solving ∂µ/∂t from equations ??

and ??.

The age-dependent reaction rate
::::::::
reactivity

:::
(eq.

:::
32)

:
is specified as

f(τχ
:

) =
v

α+ τ
− v

α+χ
::::::

(37)325

whereby α is set to a small value (10−3) to prevent
:::::::
prevents

:
division by zero

:::
and

::::
may

::::
also

::
be

:::::
used

::
as

:
a
::::::

fitting
::::::::
parameter. It

resembles the
:::::::::::::
long-established

:
expression for the mean reactivity, k̄ = v/(α+ τ)q , used by Middelburg (1989)

:::::::::::::
k̄ = v/(α+µ)β

::::::::::::::::
(Middelburg, 1989). Conceptually it may be the most simple expression to model the effect of aging on reactivity.

The distributionfunction to fit the moments is defined as
::::
Here

:::
we

:::::::
consider

:::
the

::::::::::
application

::
of

::::
four

::::::::
moments:

::::::::::::
concentration

:::
(C),

:::::
mean

:::
age

::::
(µ),

:::::::
variance

:::::::::
(σ2 = φ2),

:::
and

::::::::
skewness

::::::::
(S = φ3).

:::
For

::::
this,

:::::::::::::
three-parameter

::::::::::
distributions

:::::::
describe

:::
the

:::::::::::
distribution’s330

:::::
shape

:::
and

:::::
mean,

::::
and

:
a
:::::
fourth

:::::::::
parameter

:::::
serves

:::
as

:
a
::::::::
multiplier

::
to
::::::
adjust

:::
the

::::::::::::
concentration.

:::
We

::::::
present

:::
our

:::::::
analysis

:::::
using

:::
two

:::::::
distinct

::::::::::
distributions

::
to
::::::::

represent
::::
age

::::::::
continua,

:::::
which

::::
will

::
be

::::::::
compared

:::::
later

::
to

:::::::
evaluate

::
the

::::::::::
distribution

:::::::
shape’s

::::
role.

:::
The

::::
first

:::
one

::
is

:::
the

::::::::
triangular

::::::::::
distribution,

:

g(τχ
:
,w) =

w2e
−w1q

(1 + e−w1q)2
θ(−q) +

w2e
−w2q

(1 + e−w2q)2
θ(q)

w1
2(χ−w2)

(w3−w2)(w4−w2) if w2 ≤ χ≤ w4

w1
2(w3−χ)

(w3−w2)(w3−w4) if w4 < χ≤ w3

(38)

whereby q = x−w3 ::
w1::

is
:::
the

:::::::::
multiplier,

:::
w2 :::

and
:::
w3::::::

denote
:::
the

:::::
lower

:::
and

:::::
upper

:::::
limit

::
of

:::
the

:::::::::
distribution

:::::::
(outside

::::
this

:::::::
interval,335

::
the

::::::::
function

:::::::
evaluates

::
to
:::::
zero),

::::
and

:::
w4 ::::::::::

corresponds
::
to

:::
the

:::::
mode.

:::::
Given

:::
the

::::::::::
closed-form

::::::::::
expressions

:::
for

:::
the

::::::
central

::::::::
moments

::
of

::
the

:::::::::
triangular

:::::::::
distribution

:::::::::::::::::
(Forbes et al., 2010)

:
,
::
the

::::::::::
distribution

:::::::::
parameters

:::
for

:::::
given

::::::::
moments

:::
are

:::::
found

:::
by

:::
first

::::::::::
determining

::
b

and θ is the Heaviside step function. It has a single maximum at q = 0 and asymmetric slopes at both sides defined by w1 and
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w2 (see, for example, the dashed curves in Figure ??A). The parameter vector is found by calculating c
::
in
:::
the

:::::::::
equations

µ−
b∫
a

kg(τ,)dτ = ε1σ
2−

b∫
a

(τ −µ)b2g(τ,+c2− bc
:::::::

)dτ/18
:::

= ε20
:

(39a)340

S−
b∫
a

+
:

(τ −µb− 2c
::::

)3g (τ,c− 2b
::::

)dτ(b+ c)/270
:::::::::

= ε30
:

(39b)

and minimizing
:::
with

::
a
:::::::::
root-solver,

::::::
which

:::::
allows

:::
the

:::::::::
distribution

::::::::::
parameters

::
to

::
be

::::::::
calculated

::
as

:::::::
follows:

:::::::
w1 = C,

::::::::::::::::::
w2 = (3µ− b− c)/3,

:::::::::::
w3 = w2 + b,

:::
and

:::::::::::
w4 = w2 + c.

:

:::
The

:::::
other

:::::::::::
demonstrated

::::::::::
distribution

::
is

::
the

:::::::::
translated

::::::
Weibull

:::::::::::
distribution,

:::::::::
formulated

::
as

:

εT g(χ,
:::

w) =
ε1√
µ

+
ε2
σ2

+
ε3
S3/2

w1w2

w3
:::::

χ−w4

w3
::::::

w2−1e
−
(
χ−w4
w3

)w2

::::::::::::::
(40)345

as a weighted fitting cost function. This minimization was used instead of a Jacobian root-finding procedure (see previous

application, section 4.2), because the gradient search in the latter procedure failed. After the moments are fitted, the concentration

of the distribution is corrected by a multiplication factor.
:::::::
whereby

:::
w1:::::

serves
:::

as
:
a
:::::::::
multiplier

::
to

:::::
adjust

:::
the

::::::::::::
concentration,

:::
w2 ::

is

::
the

::::::
shape

:::::::::
parameter,

::
w3::

is
:::
the

:::::::
scaling

:::::::::
parameter,

:::
and

:::
w4::

is
:::
the

:::::::
location

:::::::::
parameter

::::::::::::::::
(Forbes et al., 2010)

:
.
:::
All

:::::::::
parameters

:::::
were

:::::::
obtained

::
by

:::::::
solving

:
a
:::
set

::
of

::::::::
equations

::
as

::::::
shown

::
in

::::::::
equations

:::
36,

:::::
along

::::
with

:::
an

::::::::
additional

::::::::
equation

::
to

::::::
account

:::
for

:::::::::
skewness.350

:::
The

:::::::::
numerical

:::::
model

:::::::::
calculates

::::
first

:::
the

:::::::
reaction

::::
rates

:::
for

:::
all

::::::::
moments,

:::
as

::::::::
described

::
in

::::::
section

::::
3.2.

::::
The

:::::
PDEs

:::
are

::::::
solved

::::
with

::
an

:::::::
implicit

::::
finite

:::::::
volume

::::::
scheme

::::
with

::::::
hybrid

:::::::::
differences

::
to

:::::::
account

::
for

:::::::::
advection

:::
and

::::::::
diffusion,

:::::
using

:::
the

:::::::::::::
implementation

::::
from

:::::::
JurRTM

:::::::::::::::::::::::::::::::::
(Rooze et al., 2020; Zindorf et al., 2021).

::::
For

::
the

:::::
state

::::::
variable

::::
Cµ,

:::
the

:::::
aging

::::
term

::
is

:::::
added

::
to

:::
the

:::::::
reaction

:::::
term.

::::
Also,

:::
the

:::
last

::::
term

::
in
:::
the

::::::::
diffusion

::::::::
equations

:::
for

:::::::
variance

:::
and

::::::::
skewness

::::::
(Table

::
2)

:
is
:::::::::
accounted

:::
for

::
by

:::::::::
calculating

::::
first

:::
the

::::::
∂µ/∂x

:::::::
gradient

:::
and

::::::
adding

:::
the

:::::::
resulting

::::
term

:::
as

:
a
:::::::
reaction

::::
rate.355

:::
The

::::::
model

::::::
divides

::
a
:::::::
domain

:::::
length

:::
of

:::
10 cm

:::
into

::
50

::::::
evenly

:::::::
spaced

::::
cells.

::::
The

::::::
upper

::::::::
boundary

::::::::
condition

::
is
::::::
added

::
as

::
a

:::::::
Dirichlet

::::::::
boundary

::::::::
condition

::::
with

::
a
:::::::::
prescribed

::::::::::
distribution. The cumulative distributionfunction for integrating concentration

and equation ?? are analytically solved. The other integrals are numerically evaluated. These require bounds corresponding to

the age interval wherein concentrations are significant (the threshold was set to 10−9 of the function maximum), and this was

also numerically determined
:::::
initial

:::::
values

:::
are

:::
set

::
to

:::
the

::::::
values

::
of

:::
the

::::::
upper

::::::::
boundary

::::::::
condition.

::
A
::::::::::::
zero-gradient

::::::::
condition

::
is360

:::::::
imposed

::
at

:::
the

:::::
lower

::::::::
boundary

::
of

:::
the

:::::::
domain.

:::
The

::::::::
reactivity

::::::::::
parameters

:::
(eq.

:::
37)

:::::
were

:::
set

::
to

::::::
v = 0.8

::::
and

:::::
α= 1 y

:
.

:::
The

::::::::::
simulations

::::
were

::::
run

::
for

:::
53

:::::
years

::::
with

:
a
:::::::::
maximum

::::
time

::::
step

::
of

::
1

::::
year.

:::
For

:::::::::::
root-solving

:::
the

:::::::
‘nleqslv’

::::
and

::::::::::
‘numDeriv’

:::::::
packages

::
in

::
R

::::
were

:::::::
utilized

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hasselman, 2023; Gilbert and Varadhan, 2016; R Core Team, 2022)

:
.
:::::::::
Numerical

:::::::::
integrations

:::::
were

::::::
carried

:::
out

::::
over

::
the

:::::::
domain

::::::::::
χ ∈ [0,150].

:::
To

::::::
validate

:::
the

::::::::::
simulation,

:
a
:::::::::::::
complementary

:::::
model

::::::::
capturing

::::::::::::
concentration

::::::::
evolution

:::::
across

::::::
binned

:::::
ages

::::
was

:::::::::
employed.

::::
This

:::::::::
validation

::::::
model

::::::
adopts

::::::::
matching

::::::::
boundary

::::
and

::::::
initial

:::::::::
conditions,

::::::
along

::::
with

::
a365

::::::::
congruent

:::::::::
simulation

::::::
setup.

:::::::
Detailed

:::::::::
technical

::::::::::::
documentation

:::
for

::::
the

::::::::
validation

::::::
model

:::
is

:::::::
provided

:::
in

:::
the

:::::::::::::
supplementary

:::::::
material

::::
(sect.

::::
1.3).
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Figure 3. A simulation (black line) with reactivities
:::::
Results

::
of

:::::::::
simulations based on age distributions.

::::
The

:::
left

:::
and

:::
right

:::::
halves

::
of
:::
the

:::::
figure

::::
depict

:::::::::
simulations

::::::
utilizing

:::
the

:::::::
triangular

:::
and

::::::::
translated

::::::
Weibull

::::::::::
distributions,

:::::::::
respectively.

:::::::
Presented

:::
are

:::::
results

::::
after

:::
both

::
15

:::
and

:::
50

::::
years

::
of

::::::::
simulation.

:::
The

::::::::::::
moments-based

::::::::
simulation

::
is compared to discrete

:
a

::::::::
simulation

::::
using

:::
age

::::
bins.

:::
The

:::::::::::
moment-based

:::
and

:::
age

:::
bin simulations

with 500 (
:::
are

::::::::::
distinguished

::
by

::::
solid

:::
and dashed red lines

::
in

:::
the

::::
upper

:::
two

::::
rows

::::
(see

:::::
legend) and 50 (dashed green

:
by

:
lines

::
and

:::::
points

::
in

:::
the

::::
lower

:::
two

:::::
rows,

::::
which

::::::
display

:::::::::
distribution

:::::::
functions

::
(df)age bins. Panels A to D show

:::
For

::::::::
additional

:::::
details

::
on the simulated concentration,

mean age, age variance, and age skewness
:::::::::
simulations, respectively

::::
refer

:
to
::::::

section
:::
4.3.

For the simulation
:::::::::
simulations

:
shown in Figure 3, the burial velocity was set to 1

:
2 mm y−1. The bioturbation coefficient had

a maximum value of 10−11 m2 s−1 at the topand
:
.
:
It
:
decreased exponentially with depth, having an e-folding distance set to 2 .
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Using a finite differences scheme, the simulation was run with the VODE solver (Brown et al., 1989; Soetaert and Meysman, 2012)370

. A grid consisting of 25 cells represented a domain length of 5
:
3 cm,

::::::::
implying

:::
that

:::
the

:::::::::
diffusivity

::
at

:::
the

::::::
bottom

::
of

:::
the

:::::::
domain

:
is
:::::::::

effectively
:::::

zero
:::
and

::::
that

:::
the

:::::::::::
zero-gradient

:::::::::
condition

:::
has

::
a

::::::::
negligible

:::::
effect

:::
on

:::
the

:::::::
results.

::::
The

::::::::::
distributions

:::
set

::
as
::::::

upper

::::::::
boundary

:::
and

:::::
initial

:::::::::
conditions

:::
had

::::::::
moments

:::
set

::
to

::::::
C = 1,

::::::
µ= 15

:
y,

:::::::
σ2 = 13

:
y2,

::::::
S = 0 y3.

The simulated continuous age distribution (solid black line, Figure 3) is compared to discrete simulations with 500 and 50

discrete age bins (dashed red and green lines, respectively), covering ages between 0 and 60 years. The simulation with 500375

discrete classes, validates the simulated mean, variance, and skewness (Figure 3B,C,D). There is a discernible mismatch in

the simulated concentration (Figure 3A). This is possibly due to round-off errors in the simulation with 500 age bins, as the

simulation with
::::::
results

::::
(Fig.

:::
3)

::::::::::
demonstrate

:::::::
accurate

::::::::::::
concentration

:::
and

::::::
mean

:::
age

:::::::::::
computation

:::::::::
throughout

:::
the

:::::::::::
simulations.

::::::::
However,

:
a
:::::::::
noticeable

::::::::
mismatch

:::::::
appears

::
in

:::
the

::::::::
simulated

:::::::
variance

::::
and

::::::::
skewness

::::
after

:
50 age bins validates the concentration

profile from the continuous simulation. As age distributions could not be perfectly reconstructed from the moments (see380

discussion), the match between
::::
years

::
in

:::
the

:::::::::
triangular

::::::::::
distribution

::::::::::
simulation,

:::::::
whereas

:::
the

:::::::::
translated

:::::::
Weibull

::::::::::
distribution

::::::::
simulation

::::::::::
reproduces

:::
the

:::::::
moments

::::::::::
accurately.

::
In

:::
the

:::
two

:::::
lower

::::
rows

:::
of

:::::
Figure

::
3,
:::::::::::
distributions

:::
are

::::::::
presented

::
as

:::::::
resolved

::::::
during

::::::::::
simulations

:::
for

:::::::::
integration.

:::::
After

::
15

::::::
years,

::
the

:::::::::::::
moment-based

:::::::::
simulation

::::::::::
distributions

:::::::
closely

:::::
match

:::
the

:::::::::
validation

:::::::::
simulation,

::::::
except

::
at

:::
2.5

:
cm

::::
depth

:::
for

:::
the

:::::::::
triangular

::::::::::
distribution.

::::::
Mixing

::
of

:::::::
younger

:::
and

:::::
older

::::::::
materials

::::
from

:::
the

:::::
upper

::::::::
boundary

::::::
results

::
in

:
a
:::::::
positive

::::
skew

::::
near

:::
the

:::::
upper

::::::::
boundary385

:::
and

:
a
:::::::
negative

:::::
skew

::
at

::::::
greater

::::::
depths.

:

::::
Over

:::::
time,

:::
the

::::::::
influence

::
of

:::
the

::::::
initial

:::::::::
conditions

::::::::::
diminishes.

::::::::::
Considering

::::
only

:::::::::
advection,

:::
the

:::::
time

::
to

::::::::
transport

::
all

::::::
initial

:::::::
material

:::
out

::
of

::::
the

:::::
model

:::::::
domain

::
is
:::
50

:::::
years.

:::::::::
However,

:::::::
upward

::::::::
diffusion,

::::::
despite

::::
net

:::::::::
downward

::::::::
chemical

::::::::
diffusion,

::::
can

:::::::
increase

:::
the

::::::::
residence

::::
time

::
of

:::::
some

:::::::
particles.

::::
The

::::::::
triangular

::::::::::
distribution

::::::::
struggles

::
to

:::::::::
accurately

:::::
depict

:::
the

:::::::
resulting

:::::::::
positively

::::::
skewed

:::::::::::
distributions,

::
as

::
it

::::::::::
degenerates

:::
into

::::::
nearly

::::
right

:::::::
triangles

::
at
::::
and

:::::
below

:::
2.5

:
cm

::::
depth

:::::
(Fig.

::
3).

::::
The

:::::
much

::::
more

::::::::
versatile390

::::::
Weibull

::::::::::
distribution

:::::::
provides

:
a
:::::
better

::::::::::::
representation

::
of

:::
the

:::
age

::::::::::
distribution,

:::
but

:::
the

::::::::::
distribution

:
is
::::::
clearly

:::
off

::
in

:::
the

::::
most

:::::::
actively

:::::::
turbated

::::
zone

::::
(Fig.

:::
3),

::::::
which,

:::::::
however,

:::::
does

:::
not

:::::
appear

::
to
:::::
affect

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
simulated

:::::::::
moments.

:::::
When

:::
the

:::::::::
simulation

:
is
:::
run

:::
for

::::
100

::::
years

::::
(not

:::::::
shown), the continuous and discrete simulations is surprisingly good

:::::::
moments

::::::::
maintain

::::
their

::::::::
accuracy,

:::
and

:::
the

:::::
visual

::::::::::
comparison

::
of

:::
the

::::::::::
distribution

::::
even

::::::
slightly

:::::::::
improves.

::::::::::
Interestingly,

::::
the

::::::
limited

::::::
impact

:::
of

:::
the

::::::
precise

::::::
shape

::
of

:::
the

::::::::::
distribution

::::
also

:::::::::
transpires

:::::
from

:::
the

:::::
great

::::::::
similarity

:::
of

:::
the395

::::::::::
distributions

::::
that

::::::
evolve

::
at

:::::
depth

::::
over

::::
time

:::
in

:::
the

::::::::
validation

:::::::::::
simulations,

::::::::
regardless

:::
of

:::
the

:::::::
imposed

::::::::::
distribution

::::
type

:::
at

:::
the

:::::
upper

::::::::
boundary

::::::::
condition

::::::::
(compare

:::::::::::
distributions

:::::
below

::::
2.5 cm

::::
depth

::::
after

:::
50

:::::
years

::::::::
emerging

:::::
from

::::::::
triangular

::::
and

:::::::
Weibull

::::::::::
distributions

::
in

::::
Fig.

::
3).

::::::
Similar

:::::::::::
distributions

::::
also

::::::
formed

:::::
when

::
the

:::::::
reaction

::::
was

:::::
turned

:::
off

::::
(not

::::::
shown).

:::::::::
Therefore,

:::
the

::::::::
interplay

:::::::
between

::::::::::
bioturbation

:::
and

:::::
aging

::::::::
appeared

::
to

:::
be

::
of

::::::
greater

:::::::::::
consequence

::
for

:::
the

::::::::
evolution

:::
of

:::
the

:::::::
moments

::::
than

:::
the

:::::::
reaction

::::
and

:::::
choice

::
of

::::::::::
distribution

::
at

:::
the

:::::
upper

::::::::
boundary.400
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5 Discussion

5.1
:::::::::

Evaluation
::
of

:::
the

:::::::::::
applications

The theory outlined in this paper gives modelers a free hand to simulate properties associated with particles described as

a concentration. Modelers can use different reaction kinetics and simulate the effect on a continuous distribution. The first

application shows that it is possible to reliably simulate numerous moments of an age distribution. In this type of application,405

it is unnecessary to reconstruct the distribution function from its moments during the simulation. In principle, any distribution

is uniquely defined by a large or infinite number of moments. However, in practice, there does not exist a universal solution

to retrieve distributions from their moments. Numerical methods have been developed for this purpose (e.g., John et al., 2007;

Arbel et al., 2016) but do not always succeed.

In the two other applications, the shape of the distribution affected the reaction rates and, therefore, needed to be resolved in410

the simulations. For
::
In

:
the reactivity continuum model, the shape could be well predicted, i.e.,

:
the chosen class of distribution

function was a good approximation of the exact solutions. The bounds of the initial distribution of deposited material also

provided bounds for the numerical integration of deeper (older) material , since the domain only becomes smaller as the

more reactive materials are consumed,
:

and the refractory organics remain. These simulations were stable and ran relatively

fast, despite the requirement to determine the parameters of the distribution in run-time, which involves several numerical415

integrations. This approach could be attractive to replace
:
as

:::
an

:::::::::
alternative

::
to
:

the multi-G approach, as it does not require

the somewhat arbitrary definition of various reactivity classes (Jørgensen, 1978)
:::
and

::::
can

:::::
better

::::::::
represent

:::::
slight

::::::::::
differences

::
in

::::::::
reactivity

:::::::
naturally

::::::::::
developing

::::
over

:::::
depth. However, the multi-G simulation will still run faster

:::
run

:::::
faster,

:::::
even

::::::
though

:::
the

::::::::
numerical

::::::
scheme

:::::::
adopted

::::
here

:::::
could

:::
be

::::::::::
significantly

::::::::
improved

::::
(see

::::::::::
suggestions

::::::
below). The initial uniform distribution used

in the simulation may not be realistic for organic matter in marine sediment (Boudreau and Ruddick, 1991), but instead.
::::::
Instead,420

distributions similar to discrete multi-G or continuous distributions found in the literature (Arndt et al., 2013) can be imposed

for freshly deposited organics.

The third application was the most challenging
::::
posed

:::
the

:::::::
greatest

:::::::::
challenge, as the shape of the age distribution strongly

changed . The bounds of the distribution function needed to be numerically evaluated during run time. Since the age distributions

are strongly asymmetric, it was necessary to add
:::::
during

:::
the

:::::::::
simulation

::::
and

:::
was

::::
hard

::
to
:::::::
predict.

::::
The

:::::::::
emergence

::
of

::::::::::
pronounced425

:::::::::
asymmetry

::::::::
motivated

:::
the

:::::::
addition

::
of
:

skewness as a state variable. The simulations were rather time-consuming, and therefore

critical parts were coded in C. The multidimensional root-finding procedure failed. Finding a satisfying fitting cost function

(e.g., eq. ??) for a minimization procedure proved to be difficult
::::::::
translated

:::::::
Weibull

::::::::::
distribution

:::::::::
performed

::::
best

::::
due

::
to

:::
its

::::::::
versatility,

:::
as

:
it
:::
can

::::::::
represent

:::
the

::::::::::
exponential,

:::::::::
Rayleigh,

::::::
normal,

::::
and

::::
other

::::::::::::
two-parameter

:::::::::::
distributions.

During testing, refitting known distributions based on their moments occasionally gave unsatisfactory results. For example,430

two fits are shown for a known distribution in Figure ??. The curve that was directly fitted to the actual distribution by

minimizing the summed residual errors may appear to reproduce the distribution better than the fit obtained from a reconstruction

of the moments. However, the moments of this directly fitted curve are more off than those of the moments-based fit. The

cumulative distribution function of the moments-based fit appears to be better, which is important, as the evaluations of the
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distribution for error minimization involve integrations
:::::::::
Occasional

:::::::::
substantial

:::::::::
deviations

::::
were

::::::::
observed

:::::::
between

:::::::::::
distributions435

:::::::::::
reconstructed

::::
from

::::
their

::::::::
moments

:::
and

:::
the

:::::
actual

:::::::::::
distributions.

:::
An

:::::::::
illustration

::
of

:::::
such

:::::::::::
discrepancies

::
is

::::::
evident

::
in

:::
the

:::
left

::::
tails

::
of

::
the

:::::::::::
distributions

::::
after

:::
50

::::
years

::
at
::
a
:::::
depth

::
of

:::
2.5

:
cm

::::::
(Figure

::
3),

::::
even

:::::::
though

:::
the

:::::::
moments

:::
of

::::
both

:::
the

::::::::
triangular

:::
and

:::::::::
translated

::::::
Weibull

:::::::::::
distributions

::::
were

:::::
nearly

:::
or

::::::
entirely

:::::::
accurate. A fundamental problem of reconstructing distributions from moments is

the unequal weights
:::::::
pertains

::
to

::
the

:::::::
unequal

:::::::::
weighting for concentration differences at different locations on

::::
along

:
the age/reac-

tivity axis. For central moments , the weight of the fit at τ = µ will be zero (see
::::::
Central

::::::::
moments

::::::
exhibit

:::
zero

::::::
weight

::
at
::::::
χ= µ440

:
(eq. 8), and the weights are highest at the extremes of the distribution. When the fits are imperfect, this will likely introduce

biases
::::
while

:::::::
weights

:::
are

:::::::::
maximized

::
at

:::
the

:::::::::::
distribution’s

::::::::
extremes.

::::::::::::
Consequently,

:::
the

::::::::::::
reconstruction

::::::
process

:::::
tends

::
to

::
fit

:::
the

::::
tails

:::::
better

:::
than

:::
the

::::::
central

::::::
region

:::::::::::
encompassing

:::
the

:::::
mean

:::
and

::::::
mode.

::::
This

:::::::
tendency

:::::
could

::::::::
introduce

::::::
biases,

::::::::::
particularly

::
in

::::::::
scenarios

:::::
where

:::
the

:::::::
extremes

::::::::
influence

:::
the

::::::::
dynamics

::::
less;

:::
for

::::::::
instance,

:::::
when

::
the

:::::::
precise

:::
age

::
of

::::
very

:::
old

:::::::
material

:::
has

:::::::
minimal

::::::
impact

:::
on

:::::
overall

:::::::::
reactivity.

:::
The

:::::
bias,

:::::::::
depending

::
on

:
q
:::
in

::
eq.

::
8,
::::
will

::
be

:::::::
stronger

:::
for

:::::::::::
higher-order

::::::::
moments.445

Numerous optimizations can be considered to improve the numerical scheme. Better minimization procedures may be

developed
:::::::
schemes.

:::
In

:::
the

::::
third

::::::::::
simulation,

::
a

::::::::
transition

::::
from

:::
the

:::::::
method

::
of

:::::
lines

:::::::::::::::::::::::
(Sarmin and Chudov, 1963),

::::::::::::
characterized

::
by

:::::::::
continuous

:::::
time

:::
and

:::::::
discrete

::::::
space,

::
to

:::
the

::::::::
classical

::::
finite

:::::::::::::::::
differences/volumes

:::::::::
approach,

:::::::::::
characterized

:::
by

:::::::
discrete

:::::
space

:::
and

:::::
time,

::::::
yielded

::::::::::
substantial

::::::::::::
improvements

::
in

:::::::::
simulation

:::::
time

:::
and

::::::::
stability.

::::
This

:::::::::
approach,

::::::::
affording

::::::
greater

::::::
control

:::::
over

::::
time

:::::::
stepping

::::
and

:::
the

::::::::
execution

:::::::::
frequency

::
of

:::::::::::
root-solving

:::::::::
procedures

::::
and

::::::::
numerical

:::::::::::
integrations,

:::::
could

:::::
likely

::::
also

:::::::
shorten450

::::::::::
computation

:::::
times

::
in

:::
the

:::::
other

::::::::::
applications. Other polynomial type or spline expressions could be tried to describe the distri-

butions. Finally, pre-calculated search tables for distribution functions could be designed to look up parameters corresponding

to a combination of moments. Then numerical integrations during run-time would become obsolete, making simulations faster

and potentially more stable
:::::
letting

::::::::::
simulations

:::
run

:::::
faster.

A hypothetical age distribution (black line) is refitted by a reconstruction based on the moments (red dashed line) and a455

direct fit (green dashed line). The distribution function (df, eq. ??) and cumulative distribution (cdf) functions are shown in

panels A and B, respectively. The relative errors in the mean, variance, and skewness of the moments-based fit are 0.0%, 21%,

50%, and those for the direct fit are 16%, 58%, and 80%, respectively.

5.2
:::

The
::::::::::
application

::
of

:::::::
central

:::::::::::::
moments-based

:::::::
models

::
in

:::::::::::
comparison

::
to

:::::::::
alternative

:::::::::::
approaches

::::::
Instead

::
of

::::::::
utilizing

::::::
central

:::::::::
moments,

::
an

:::::::::
alternative

::::::::::::
consideration

:::::::
involves

::::::
using

:::
raw

:::::::::
moments.

::::::
When

:::::::
focusing

::::::
solely

:::
on460

:::::::::
production

::::::::
processes

:::
and

:::
age

:::::::::::
distributions

:::
are

:::::::::
simulated,

:::
raw

::::::::
moments

:::::
could

:::::
prove

::::
more

::::::::
practical,

::
as

::::
they

:::
are

:::
not

:::::::
affected

:::
by

::
the

::::::::::
production

::
of

::::
new

:::::::
material,

:::
but

:::
the

:::::::::::
disadvantage

::::
will

::
be

:::
that

:::::
aging

::::
will

::::
still

:::::
affect

:::::
them.

::
In

::::::::
scenarios

::::::::
involving

::::::::::
consumption

::::::::
reactions,

:::
the

:::
use

:::
of

:::
raw

::::::::
moments

::::::::
generally

::::
leads

::
to

:::
the

:::::::::
evaluation

::
of

:::
the

:::::
fewest

:::::::
number

::
of

:::::
terms.

::::
For

::::::::
example,

:::::::
consider

:::
the

::::
rate

:::::::::
expression

::
in
::::::::

equation
:::
30

::::::::
compared

:::
to

::::
those

:::
in

:::::::
equation

:::
34

:::
for

::::::
central

:::::::::
moments.

::::::::
However,

:::
the

::::
steps

:::::::
outlined

:::
in

::::::
section

:::
3.1

:::
can

:::
be

:::::::::
automated

::
to

::::::
obtain

::
all

::::::::
necessary

::::::
terms.

:::
For

:::
the

::::::::
complete

:::
set

::
of

:::::::::
equations465

:::::::::::
encompassing

:::
all

:::::::::
moments,

:::
the

:::::
same

::::::::::
integrations

:::::
must

::
be

:::::::
carried

:::
out,

:::::::::
regardless

:::
of

:::::::
whether

::::
raw

::
or

::::::
central

:::::::::
moments

:::
are

::::::::
employed.

::::::
Hence,

:::
the

::::::
choice

:::::::
between

::::
raw

:::
and

::::::
central

::::::::
moments

:::
may

:::::
have

::::::
limited

:::::::
practical

::::::::::
significance

:::::
when

::::::::::
considering

::::
only

::
the

:::::::::::
consumption

::::::::
reactions

::
in

:::::::::
numerical

::::::
models.

:
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::::::
Central

::::::::
moments

:::
can

:::
be

::::::::
converted

::::
into

:::
raw

::::::::
moments

:::
(as

::
in

:::
eq.

:::
28)

::
or

::::
any

::::
other

::::::::::
non-central

::::::::
moment.

::::
This

::::::
implies

::::
that

:::
the

:::::
choice

:::
of

:::::::
moment

::::
type

:::
for

:::
the

:::::
PDEs

::
is

:::
not

:::::::
critical

:::
for

::::::::
additional

:::::
steps,

:::::
such

::
as

:::
the

::::::::::::
reconstruction

::
of
:::::::::::

distributions
:::::
from

:::
the470

:::::::
moments

::::
(see

:::::::
previous

::::::::
section).

::::::
Central

::::::::
moments

::::
have

::::::::::
advantages

::
in

:::::::::
simulating

:::
age

:::
or

:::::
transit

::::
time

:::::::::::
distributions,

:::
as

:
it
::::

lets
:::::
aging

::::
only

:::::
affect

:::
the

:::::
mean

::::
and

:::
not

:::::
higher

::::::::
moments

::::
like

:::::::
variance

::::
and

:::::::::
skewness.

::
In

:::::::
contrast,

::::::
PDEs

:::
for

:::::::::
non-central

::::::::
moments

::::::::::
necessitate

::::::::
additional

::::::
terms

::
to

::::::
account

:::
for

:::::
aging

::::::::::::::::::::::::::::
(Delhez and Deleersnijder, 2002).

::::::
While

:::::::::::::
moments-based

::::::::::
distributions

:::::
have

::::
been

:::::::::
employed

:::
for

:::::::::
simulating

:::
age

::::::
tracers

:::
and

:::::::::
radioactive

::::::
decay,

::::
their

::::::::::
application

::
in

::::
more

::::::::
complex

::::::::
dynamics

:::::::
remains

::::::::::
unexplored.

::::::::::
Determining

:::
the

::::::::
practical475

::::::
benefits

::
of

::::::
central

::::::
versus

::::::::::
non-central

:::::::
moments

::::::
would

::::::
require

::::::
further

::::::
testing.

:

:::
For

::::
each

:::::::::
application

::::::
within

:::
this

:::::
study,

:::::::::
alternative

::::::::
numerical

:::::::::
approaches

:::::
were

::::::::
presented.

::::
One

::::
such

::::::::
approach

:::::::
involves

:::::::
utilizing

:::::::::
Lagrangian

:::::::::
simulation,

::::::
which

:::::::
typically

::::::::
demands

::::
more

:::::::::::
computation

::::
time

:::
and

::::
may

::
be

::::
less

::::::
suitable

:::
for

::::::::
boundary

:::::
value

::::::::
problems

::::::::
involving

::::::::
extended

:::::::::
simulation

::::::::
durations

:::::::
needed

::
to

:::::
reach

::
a
::::::
steady

:::::
state.

::
In

:::
the

:::::::
second

::::
and

::::
third

:::::::::::
applications,

::::::::::
continuous

::::::::::
distributions

:::::
were

:::::::::
discretized

:::
by

::::::::
multiple

::::
state

:::::::::
variables.

:::::
While

:::::::
multi-G

:::::::
models

::::
run

:::::
faster

::::
and

:::
are

:::::
easier

:::
to

::::::::::
implement,480

:::::::::
continuous

:::::::::
approaches

:::::::
become

:::::::::
particularly

:::::::
relevant

:::::
when

:::
the

::::
goal

:
is
::
to
::::::::
examine

::::
aging

:::::::::
processes.

::::::::::
Discretizing

:::
age

:::::::::::
distributions

:::::::
presents

:::::::::
challenges,

::
as

:::::
aging

:::::::
involves

:::::::::
exchanges

:::::::
between

::::::::
different

:::
age

::::
bins.

:::::::
Similar

::
to

::::::::
numerical

::::::::
advection

::::::::
schemes,

:::
this

::::
can

:::
lead

:::
to

::::::::
numerical

:::::::::
diffusion,

::::::::
distorting

::::
the

:::::::
variance

::::
and

::::::::
skewness

:::::::::::::::::::
(Klingbeil et al., 2014)

:
.
::
To

::::::::::
circumvent

::::
this

:::::::
concern,

::::
the

::::::::
validation

:::::::::
simulation

::
in

:::
the

::::
third

::::::::::
application

::::::
utilized

:
a
:::::::
moving

::::
grid

:::
for

:::
age

::::
bins

::::::::::
(supplement

::::
sect.

::::
1.3).

::::
This

::::::::
approach

:::::::
reaches

::::
high

::::::::
accuracy.

::::::::
However,

::
it

:::
has

:::
the

:::::::::::
disadvantage

::
of

::::::::
requiring

:::::
many

:::::
state

:::::::
variables

:::
to

::::::::
represent

:::
age

::::::
classes

:::
for

:::
the

:::::::::
simulated485

::::::
period,

:::::
which

:::::
could

:::::::
become

:::::::::::
problematic,

::::::::::
particularly

::
in

::::::::::
simulations

::::
with

:::::
larger

:::::
grids.

::::::::::::::
Moments-based

::::::::::
simulations

::::
offer

:::
an

::::::
elegant

:::
and

:::::::
efficient

::::::::
solution,

:::::
while

:::
the

::::::::
versatile

::::::::::
applicability

::
of
::::::

PDEs
:::::
makes

:::::
their

:::::::::::::
implementation

::
in

:::::::
various

::::::
models

:::::
more

:::::::::
convenient.

:

6 Conclusions

:::
The

:::::::
derived

:::::::::::::::::::::::
diffusion-advection-reaction

:::::
PDEs

:::
for

::::::
central

:::::::
moments

::::
can

::
be

:::::::
valuable

:::::
tools

:::
for

:::::::
assessing

:::
the

:::::
effect

:::
of

::::::::
processes490

::
on

:::::::::::
distributions,

:::::::::
computing

:::::
transit

:::::::
time/age

:::::::::::
distributions,

::::
and

::::::::
simulating

::::::::
reactivity

:::::::::::
distributions.

::::::
Central

::::::::
moments

::::
hold

:::::::::
advantages

:::
over

::::
raw

::::::::
moments,

:::::
being

:::::::::
intuitively

::::::::::
interpretable

::::
and

:::::::::
unaffected

::
by

::::::
aging.

:::
The

::::::
central

::::::::
moments

::
of

::::::
transit

::::::::
time/age

::::::::::
distributions

::::
can

::
be

::::::::
simulated

::::
first

::
to
:::::
allow

:::
the

::::::
actual

::::::::::
distribution

::::::::::::
reconstruction

::::::::
afterward.

:::::
When

:::
the

:::::::::
reactivity

:::::::
depends

::
on

:::
the

::::::::::
distribution,

:::
the

::::::::::
distribution

:::::
must

::
be

:::::::::::
reconstructed

::::
and

::::::::
integrated

::
at
:::::
each

::::
time

::::
step.

:::
An

::::::::
adequate

:::::::
function

:::::
could

:::
be

::::::
defined

:::
to

:::::
carry

:::
out

:::
the

::::::::::::
reconstruction

:::::
from

:::
the

:::::
mean

::::
and

:::::::
variance

:::
for

:::
the

:::::::::
simulated495

::::::::::
distributions

::::::::::
representing

::::
the

::::::::
reactivity

:::::::
continua

::
in
:::

the
:::::::

second
::::::::::
application.

::::::::
However,

::::::::
resolving

:::
age

:::::::::::
distributions

::
in

:::
the

:::::
third

:::::::::
application

::
to

::::::::
compute

:::::::::
reactivities

:::::
based

:::
on

::::
ages

:::::::::::
encountered

::::::::::::::::::::::
distribution-choice-related

:::::::
accuracy

::::::::::
challenges,

:::::::::
suggesting

::
a

::::
need

:::
for

::::::::
additional

:::::::::
validation,

::::::::::
particularly

:::::
when

:::
the

:::::::::
distribution

::
is

:::::
more

:::::::
sensitive

::
to

:::
the

:::::::
reaction

::::
term

::::
and

:::
vice

::::::
versa.

:::
The

::::::
second

:::
and

::::
third

:::::::::::
applications

::::::::::
underscored

:::::::::::
bioturbation’s

:::::::::::
considerable

:::::::
influence

:::
on

:::::::::
chemicals’

::::::::
reactivity

:::
and

:::
age

::::::::::
distributions

::
in

::::::
surficial

:::::::::
sediments,

:::::::::::
highlighting

:::::::
potential

:::::::::::
inaccuracies

::
in

::::
prior

::::::::
reactivity

:::::::::
continuum

:::::::::
approaches

::::
that

:::::
ignore

:::::::
mixing.

:::::::
Despite500

:::::::::
employing

:::::::
realistic

::::::::
transport

::::::::::
parameters,

:::::::
applying

::::
the

::::::
models

::
to
:::::

field
::::
data

:::::::
remains

::::::::
essential,

::::::::::
particularly

:::
for

:::::
more

::::::
robust
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::::::::
validation

::
of

:::
the

::::::
chosen

:::::::
reaction

::::::::
dynamics.

:::::
Also,

:
a
:::::
more

:::::::
thorough

:::::::
analysis

::
is

:::::::
required

::
to

:::::
assess

:::
the

::::::::::
significance

::
of

:::::::::::
age/reactivity

:::::::::
distribution

::::::
shapes

:::
for

::::::::::::
mineralization

:::::
rates

:::::
within

::::::
mixed

:::::
zones.

::::
The

:::::::::
framework

:::::::::
developed

::::::
within

:::
this

:::::
study

::
is

::::::::::
well-suited

::
to

::::::
address

:::::
these

::::::
aspects

::
in

:::::
future

::::::::
research.

Code availability. During the review process, the scripts for the applications are available at505

https://drive.google.com/drive/folders/1UdQuAaxXq-VTA1JKyMD_7DDIy5HRJCal?usp=sharing.

Appendix A: Derivation of diffusion PDEs for higher centralized moments

Continuing the derivation of the PDE for the diffusion of higher moments from equation 24, one can write

1

V

〈∑
λkφjkjk

〉
=−fl

2
[φC(µC)CC −φL(µC)CL] +

fr
2

[φR(µC)CR−φC(µC)CC ] (A1)

when the same assumptions are made with regard to the fluxes as in the derivation for the PDE of the variance. The fluxes j1510

and j4, transporting material into the control volume, can be written as functions of the mean age at the source location,

φL(µL) = φL(µC) +φ′ · (µL−µC) + 0.5φ′′ · (µL−µC)2 + . . . (A2a)

φR(µR) = φR(µC) +φ′ · (µR−µC) + 0.5φ′′ · (µR−µC)2 + . . . (A2b)

Inserting these equations into equation A1, the part not accounting for the derivatives of the Taylor series is isolated

1

V

〈∑
λkφjkjk

〉∗
=

∂

∂x

(
D
∂(Cφ)

∂x

)
(A3)515

whereby ∂(Cφ)/∂x has been linearized. The terms for the derivatives can be written as

1

V

〈∑
λkφjkjk

〉∗∗
= −flCL

2

(
∂φ

∂µL
(µL−µC) +

1

2

∂2φ

∂µ2
L

(µL−µC)2 + . . .

)
−

frCR
2

(
∂φ

∂µR
(µR−µC) +

1

2

∂2φ

∂µ2
R

(µR−µC)2 + . . .

)
(A4)

Substituting this and f/2 =D/δ2
x into the last equation yields

1

V

〈∑
λkφjkjk

〉∗∗
=
DlCL
δx

(
∂φ

∂µL

∆µ

δx l

− 1

2

∂2φ

∂µ2
L

(∆µ)2

δx l

+ . . .

)
− DrCR

δx

(
∂φ

∂µR

∆µ

δx r

+
1

2

∂2φ

∂µ2
R

(∆µ)2

δx r

+ . . .

)
(A5)520

whereby µC−µL = ∆µl and µR−µC = ∆µr. Taking the limit of ∆x to zero, the second-order Taylor series terms will drop.

Linearizing ∂µ/∂x yields

1

V

〈∑
λkφjkjk

〉∗∗
=
DlCL
δx

∂φ

∂µL

∂µ

∂x l
− DrCR

δx

∂φ

∂µR

∂µ

∂x r
(A6)

Inserting the linearizations

∂φ

∂µL
=
∂φ

∂µC
− ∂2φ

∂µ∂xC
δx (A7a)525

∂φ

∂µR
=
∂φ

∂µC
+

∂2φ

∂µ∂xC
δx (A7b)
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into equation A6 gives

1

V

〈∑
λkφjkjk

〉∗∗
=
∂φ

∂µ

(
DlCL
δx

∂µ

∂x l
− DrCR

δx

∂µ

∂x r

)
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A8)

The concentration gradient is also linearized

CL = Cl−
1

2

∂C

∂x
δx (A9a)530

CR = Cr +
1

2

∂C

∂x
δx (A9b)

When these expressions are inserted and the divergence theorem is applied, the following partial differential equation

1

V

〈∑
λkφjkjk

〉∗∗
=−∂φ

∂µ

[
∂

∂x

(
DC

∂µ

∂x

)
+D

∂C

∂x

∂µ

∂x

]
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A10)

is obtained.

Finally, it can
:
In

:::
the

:::::::::
remaining

:::::
steps,

::
it

:::
will

:
be shown that the second term on the left-hand side of equation 24 will cancel535

out with the first term on the right-hand side of equation A10. The time-derivative in equation 24 can be expanded
::::::::
Applying

::
the

:::::::
product

::::
rule

::
to

:::::::::
∂(Cµ)/∂t

:::
and

::::::::::
substituting

::::::
∂C/∂t

:::
and

:::::::::
∂(Cµ)/∂t

::::
with

::::::::
equations

::
4
:::
and

::
7
::::::
results

::
in

C
∂µ

∂t
=

∂

∂x

(
D
∂(Cµ)

∂x

)
−µ ∂

∂x

(
D
∂C

∂x

)
(A11)

Since the concentration gradient was linearized, it can be taken outside the spatial derivative. By applying the product rules

several times, the expression
::::::
product

:::::
rule,

::::::
applied

:::::
twice,

::::
also

::::::
implies

:
540

∂

∂x

(
D
∂(Cµ)

∂x

)
:::::::::::::

=
:

∂

∂x

(
DC

∂µ

∂x

)
+µ

∂

∂x

(
D
∂C

∂x

)
+D

∂C

∂x

∂µ

∂x
::::::::::::::::::::::::::::::::::::

(A12)

:::::::
equation

::::
A11

:::
can

::
be

::::::
recast

:::
into

:

C
∂µ

∂t
=

∂

∂x

(
DC

∂µ

∂x

)
+D

∂µ

∂x

∂C

∂x
(A13)

can be obtained. The last equation will cancel out with
:::::
which

:::::::
matches

:
the part between square brackets in equation A10when

it is inserted into equation 24. Inserting the sum of
:
.
:::::
These

:::::
terms

::::
will

:::::
cancel

:::::
each

::::
other

:::
out

:::::
when

:::
the

::::
last

:::::::
equation

::
is

:::::::
inserted545

::
on

:::
the

::::::::
left-hand

:::
side

::::
and equations A3 and A10 in

::
on the right-hand side of equation 24will yield

:
,
::::::
leaving

:

∂(Cφ)

∂t
=

∂

∂x

(
D
∂(Cφ)

∂x

)
− 2DC

∂

∂x

(
∂φ

∂µ

)
∂µ

∂x
(A14)

Finally, by substituting

∂φq
∂µ

=−qφq−1 (A15)

the final result shown in Table 2 is derived.550
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