# 1 Supplement of

## 2 High-time-resolution chemical composition and source apportionment of PM<sub>2.5</sub> in northern Chinese cities:

## 3 implications for policy

- 4 Yong Zhang<sup>1,2,3</sup>, Jie Tian<sup>1,2,4</sup>, Qiyuan Wang<sup>1,2,3,4\*</sup>, Lu Qi<sup>5</sup>, Manousos Ioannis Manousakas<sup>5</sup>, Yuemei Han<sup>1,4</sup>, Weikang
- Ran<sup>1,2</sup>, Yele Sun<sup>6</sup>, Huikun Liu<sup>1,2,4</sup>, Renjian Zhang<sup>6</sup>, Yunfei Wu<sup>6</sup>, Tianqu Cui<sup>5</sup>, Kaspar Rudolf Daellenbach<sup>5</sup>, Jay Gates
  Slowik<sup>5</sup>, André S. H. Prévôt<sup>5</sup>, Junji Cao<sup>6\*</sup>
- <sup>7</sup> State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy
- 8 of Sciences, Xi'an 710061, China
- 9 <sup>2</sup> National Observation and Research Station of Regional Ecological Environment Change and
- 10 Comprehensive Management in the Guanzhong Plain, Shaanxi, Xi'an 710061, China
- <sup>3</sup> University of Chinese Academy of Sciences, Beijing 100049, China
- <sup>4</sup> Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
- <sup>13</sup> <sup>5</sup> Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- <sup>6</sup> Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- 15 Correspondence: wangqy@ieecas.cn (Qiyuan Wang), jjcao@mail.iap.ac.cn (Junji Cao).

#### 16 Text S1. Selcation of inputted HERM chemical species and its uncertainty calculation

Considering the validity and credibility of monitoring data, chemical species including OA, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NH<sub>4</sub><sup>+</sup>,
Cl<sup>-</sup>, and BC were all selected to input HERM model for three pilot cities. For inorganic elements, Si, K, Ca, Cr, Mn,
Fe, Ni, Cu, Zn, As, Se, Ba, and Pb in Xi'an and Beijing, and Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Ba, and
Pb in Shijiazhuang were selected for source apportionment, respectively.

The uncertainty data of chemical species inputting HERM was calculated according to the recommendation in the PMF5.0 user guideline. If the measured chemical species concentration is greater than the minimum detection limit (MDL) provided, the uncertainty (Unc) calculation is based following equation:

24 
$$Unc_i = \sqrt{(C_i \times E_i)^2 + (0.5 \times MDL_i)^2}$$
 (1)

where  $C_i$  represents measured concertation for species *i*,  $E_i$  represents error fraction of species *i*. For online measured data, the error fraction was recommended to use 10% (Rai et al., 2020). If the measured concentration is less than or equal to the MDL provided, the Unc is calculated as the following equation:

$$28 \quad Unc = \frac{5}{6} \times MDL \tag{2}$$

29

#### 30 Text S2 Diagnostics of HERM solutions

31 In this study, factors numbering from two to ten were selected and run in the HERM software. Each factor 32 solution was run thirty times with completely unconstrained profiles to explore the possible sources. The optimal factor number solution was determined by examining the ratio of Q and expected Q (Qexp). The Qexp in HERM was 33 34 equal to (samples  $\times$  species – factors  $\times$  (samples + species) + the number of constrained source profiles). As shown in Fig. S5, the value of Q/Qexp decreased with the increase of the factor number, which suggests increasing the factor 35 36 number could lead to a better explanation of the variance by HERM. However, the utility of increasing factors declined with the number of factors. Too many factors could cause splitting profiles, although the Q/Qexp may be 37 38 desirable (Liu et al., 2021; Salameh et al., 2018, 2016). Thus, the drops of Q/Qexp ( $\Delta Q/Qexp$ ) were subsequently 39 evaluated to choose the optimal solution factor number. As shown in Table S2, when the number of factors increases 40 to more than six in Xi'an, the value of  $\Delta Q/Q_{exp}$  shows a relatively stable change trend. A six-factor solution is 41 preferable because  $\Delta Q/Q_{exp}$  between the five-solution and six-solution is smaller than that between the six-solution 42 and seven-solution (Liu et al., 2021). In addition, secondary nitrate plus sulfate and biomass burning were mixed 43 when the factor number was five, and vehicle emission was split into two profiles when the factor number was seven

- 44 (Table S3). Therefore, the six-factor solution was determined as the optimal HERM solution for Xi'an. Similar
- 45 criterias were used for Shijiazhuang and Beijing, six-factor and eight-factor solutions were determined as optimal
- 46 HERM solutions, respectively.





Figure S1. Annual average concentration of PM<sub>2.5</sub> from 2013 to 2021 in Xi'an, Shijiazhuang, and Beijing. (The data are from the website of the local Ecological Environment Bureau, Xi'an: <u>http://xaepb.xa.gov.cn/</u>, Shijiazhuang:
 <u>https://sthij.sjz.gov.cn/</u>, Beijing: <u>http://sthij.beijing.gov.cn/</u>). The red dotted line represents the second level of the National Ambient Air Quality Standard (GB3095-2012, 35 µg m<sup>-3</sup>)



Figure S2. Correction of chemical components measured by Q-ACSM in different cities. During the campaigns, offline filter samples were simultaneously sampled for the correction. In summary, 29 offline samples in Xi'an, 83 offline samples in Shijiazhuang, and 10 offline samples in Beijing were sampled respectively.



Figure S3. Concentration of the internal standard element (Pd) of Xact625 during sampling periods in (a) Xi'an,
(b) Shijiazhuang, and (c) Beijing.



Figure S4. Correlation of online and reconstructed PM<sub>2.5</sub> concentration in (a) Xi'an, (b) Shijiazhuang, and (c) Beijing
 during the campaigns. The online PM<sub>2.5</sub> mass data in the X axis from national monitor stations near sampling sites.



Figure S5. Values of Q/Q<sub>exp</sub> for the unconstrained profile solutions with two to ten factors based on thirty runs in (a)
 Xi'an, (b) Shijiazhuang, and (c) Beijing, respectively.



Figure S6. (a) Sources profiles obtained from HERM with a six-factor solution in Xi'an, the columns in each factor are the profile that displays the relative relation of the absolute values of variables. The red dot represents the explained variation (EV) in species for different factors. (b) Time series plots of sources concentration, including biomass burning, fugitive dust, industrial emission, coal combustion, vehicle emission, and secondary nitrate plus

sulfate. The corresponding time trends of chemical tracers are also shown.

66



72

Figure S7. (a) Sources profiles obtained from HERM with a six-factor solution in Shijiazhuang, the columns in each factor are the profile that displays the relative relation of the absolute values of variables. The red dot represents the explained variation (EV) in species for different factors. (b) Time series plots of sources concentration, including biomass burning, fugitive dust, industrial emission, coal combustion, vehicle emission, and secondary nitrate plus

sulfate. The corresponding time trends of chemical tracers are also shown.



78

**Figure S8.** (a) Sources profiles obtained from HERM with an eight-factor solution in Beijing, the columns in each factor are the profile that displays the relative relation of the absolute values of variables. The red dot represents the explained variation (EV) in species for different factors. (b) Time series plots of sources concentration, including biomass burning, fugitive dust, industrial emission, coal combustion, vehicle emission, secondary nitrate, secondary sulfate, and firework. The corresponding time trends of chemical tracers are also shown.





Figure S9. Correlation between reconstructed PM<sub>2.5</sub> and modeled PM<sub>2.5</sub> mass concentrations derived by HERM in
 Xi'an, Shijiahuznag, and Beijing with optimal solutions



**Figure S10.** Source contribution of  $PM_{2.5}$  during Chinese Spring Festival (from New Year's Eve to January 3<sup>rd</sup> of

91 the Lunar Calendar) in Beijing



Figure S11. Time series plots of secondary nitrate plus sulfate/ΔCO in (a) Xi'an, (b) Shijiazhuang, and (c) Beijing.
 The red and black lines represent daytime (08:00-17:00 LST) and nighttime (18:00 - 07:00 the next day LST),
 respectively.



**Figure S12.** Source contribution of PM<sub>2.5</sub> in three pilot cities during daytime and nighttime, respectively.



99

Figure S13. The pollution episodes selection according to temporal variation of  $PM_{2.5}$  chemical components (a-c) and source contribution (d-f) during the campaigns in Xi'an, Shijiazhuang, and Beijing, respectively. The gray shape parts were lack of MD values due to the out-of-order Xact625, and missing values in the time series owing to the out-

<sup>103</sup> of-order ACSM, AE33, and Xact625 at the same time.



Figure S14. Time series of T and RH (a), WS and WD (b),  $O_x$  and ALWC (c), NO<sub>2</sub> and SO<sub>2</sub> (d), chemical components

106 (e,f), and source contribution (g, h) of  $PM_{2.5}$  during EP4 in Shijiazhuang.





109 Figure S15. Time series of T and RH (a), WS and WD (b), O<sub>x</sub> and ALWC (c), NO<sub>2</sub> and SO<sub>2</sub> (d), chemical components

110 (e, f), and source contribution (g, h) of PM<sub>2.5</sub> during EP7 in Beijing



113 Figure S16. Time series of T and RH (a), WS and WD (b), O<sub>x</sub> and ALWC (c), NO<sub>2</sub> and SO<sub>2</sub> (d), chemical components

114 (e, f), and source contribution (g, h) of  $PM_{2.5}$  during EP2 in Xi'an.

#### Table S1. Detailed information on complementary data for sampling sites

| Sampling site                                                                    | National Air Quality Monitoring    | National Meteorological Station  | complementary data                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                  | Station                            | National Meteorological Station  |                                                                                      |  |  |  |  |  |
| Xi'an                                                                            | Gaoxinxiqu station, 1.1km from the | Haidian station, 7.6 km from the | hourly PM <sub>2.5</sub> , NO <sub>x</sub> , NO <sub>2</sub> , CO, SO <sub>2</sub> , |  |  |  |  |  |
|                                                                                  | sampling site                      | sampling site                    | O3, WS, WD, T, RH                                                                    |  |  |  |  |  |
| Shijiazhuang                                                                     | Gaoxinqu station, 4.2 km from the  | Shijiazhuang station, 23.8 km    | hourly PM <sub>2.5</sub> , NO <sub>2</sub> , CO, SO <sub>2</sub> , O <sub>3</sub> ,  |  |  |  |  |  |
|                                                                                  | sampling site                      | from the sampling site           | WS, WD, T, RH                                                                        |  |  |  |  |  |
| Beijing                                                                          | ChaoyangAotizhongxin station, 1.2  | Jinghe station, 21.2 km from the | hourly PM <sub>2.5</sub> , NO <sub>2</sub> , CO, SO <sub>2</sub> , O <sub>3</sub> ,  |  |  |  |  |  |
|                                                                                  | km from the sampling site          | sampling site                    | WS, WD, T, RH                                                                        |  |  |  |  |  |
| Note: WS: wind speed, WD: wind direction, T: temperature, RH: relative humidity. |                                    |                                  |                                                                                      |  |  |  |  |  |

**Table S2.** The  $\Delta Q/Q_{exp}^{a}$  value with increasing factor number from two to ten of the runs in Xi'an, Shijiazhuang, and 

Beijing.

| Davamatarb               |       | $\Delta \mathbf{Q}/\mathbf{Q}_{exp}$ |         |  |  |  |  |  |
|--------------------------|-------|--------------------------------------|---------|--|--|--|--|--|
| Parameter <sup>®</sup> - | Xi'an | Shijiazhuang                         | Beijing |  |  |  |  |  |
| F2-F3                    | 1.3   | 1.8                                  | 5.7     |  |  |  |  |  |
| F3-F4                    | 0.9   | 2.2                                  | 2.3     |  |  |  |  |  |
| F4-F5                    | 1.1   | 1.2                                  | 1.9     |  |  |  |  |  |
| F5-F6                    | 0.4   | 0.3                                  | 1.5     |  |  |  |  |  |
| F6-F7                    | 0.3   | 0.3                                  | 1.5     |  |  |  |  |  |
| F7-F8                    | 0.2   | 0.2                                  | 0.3     |  |  |  |  |  |
| F8-F9                    |       |                                      | 0.4     |  |  |  |  |  |
| F9-F10                   |       |                                      | 0.3     |  |  |  |  |  |

 $^{a}\,\Delta\,Q/Q_{exp}$  means the difference of  $Q/Q_{exp}$  of two sequent factor numbers. 

<sup>b</sup> Parameters represent the factor numbers (F) - (F+1).

**Table S3.** Sources diagnostics with increasing factor numbers from four to ten of the runs in Xi'an, Shijiazhuang,and Beijing.

| Factor | Sources identification                |                                              |                                                  |  |  |  |  |  |  |
|--------|---------------------------------------|----------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|
| number | Xi'an                                 | Shijiazhuang                                 | Beijing                                          |  |  |  |  |  |  |
| 4      | Secondary nitrate plus sulfate mixed  | i) Secondary nitrate plus sulfate mixed with | i) Secondary sources mixed with primary sources  |  |  |  |  |  |  |
|        | with biomass burning and coal         | primary sources including biomass burning    | including biomass burning, coal combustion, and  |  |  |  |  |  |  |
|        | burning mixed with industrial         | and coal combustion                          | vehicle emission                                 |  |  |  |  |  |  |
|        | emission                              | ii) Biomass burning, coal combustion, and    | ii) Biomass burning and coal combustion was      |  |  |  |  |  |  |
|        |                                       | vehicle emission was also mixed              | mixed                                            |  |  |  |  |  |  |
| 5      | Secondary nitrate plus sulfate mixed  | Biomass burning, coal combustion, and        | Secondary sulfate mixed with coal combustion     |  |  |  |  |  |  |
|        | with biomass burning                  | vehicle emissions were mixed                 | and industrial emission; secondary nitrate mixed |  |  |  |  |  |  |
|        |                                       |                                              | with biomass burning                             |  |  |  |  |  |  |
| 6      | Six individual sources were           | Six individual sources were identified       | Secondary sulfate mixed with coal combustion     |  |  |  |  |  |  |
|        | identified                            |                                              | and secondary nitrate mixed with industrial      |  |  |  |  |  |  |
|        |                                       |                                              | emission                                         |  |  |  |  |  |  |
| 7      | Vehicle emission was split into two   | Coal combustion was split into two profiles  | Secondary sulfate mixed with coal combustion     |  |  |  |  |  |  |
|        | profiles                              |                                              |                                                  |  |  |  |  |  |  |
|        | Vehicle emission and industrial       | Vahiela amission and coal combustion         |                                                  |  |  |  |  |  |  |
| 8      | emission was split into two profiles, | were split into two profiles respectively    | Eight individual sources were identified         |  |  |  |  |  |  |
|        | respectively.                         | were spirt into two promes, respectively.    |                                                  |  |  |  |  |  |  |
| 9      |                                       |                                              | Coal combustion was split into two profiles      |  |  |  |  |  |  |
| 10     |                                       |                                              | Coal combustion and biomass burning were split   |  |  |  |  |  |  |
| 10     |                                       |                                              | into two profiles, respectively.                 |  |  |  |  |  |  |

126 **Table S4.** Average concentrations of reconstructed PM<sub>2.5</sub> and its chemical species in Xi'an, Shijiazhuang, and Beijing

127 during the campaign\* ( $\mu g m^{-3}$ )

| <b>Chemical Species</b>         | Xi'an          | Shijiazhuang    | Beijing         |  |  |
|---------------------------------|----------------|-----------------|-----------------|--|--|
| Reconstructed PM <sub>2.5</sub> | $77 \pm 47$    | $60 \pm 39$     | $64 \pm 57$     |  |  |
| OA                              | $25.9\pm18.0$  | $16.0 \pm 9.7$  | $22.1 \pm 18.1$ |  |  |
| SO4 <sup>2-</sup>               | $5.2 \pm 3.4$  | $7.0 \pm 7.6$   | 9.6 ± 11.3      |  |  |
| NO <sub>3</sub> -               | $18.5\pm14.5$  | $15.8 \pm 12.5$ | $15.2 \pm 16.7$ |  |  |
| $\mathrm{NH4}^+$                | $6.2\pm4.5$    | $7.0 \pm 5.5$   | $9.2 \pm 10.3$  |  |  |
| Cl <sup>-</sup>                 | $1.9 \pm 1.5$  | $2.8 \pm 2.2$   | $0.7 \pm 0.8$   |  |  |
| BC                              | $4.5\pm3.2$    | $3.9 \pm 2.5$   | $1.9 \pm 1.8$   |  |  |
| MD <sup>a</sup>                 | $13.2 \pm 7.0$ | $6.0 \pm 4.0$   | $4.8\pm3.8$     |  |  |
| TE <sup>b</sup>                 | $1.1 \pm 0.7$  | $1.0 \pm 0.6$   | $0.9 \pm 1.5$   |  |  |

128 \* Data during Xact625 failure shown in Figure S2 was excluded to calculate average concentration of campaign

<sup>a</sup> MD means mineral dust, which is equal to 2.20Al + 2.49Si + 1.63Ca + 2.42Fe + 1.94Ti

 $130 \qquad {}^{b} \text{ TE means trace elements which is equal to } K + Cr + Mn + Ni + Cu + Zn + As + Se + Ba + Pb$ 

### 131

132 Table S5. The nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) in Xi'an, Beijing, and Shijiazhuang

133 during the campaigns<sup>a</sup>

| Parameters | Xi'an         | Shijiazhuang    | Beijing       |  |  |
|------------|---------------|-----------------|---------------|--|--|
| NOR        | $0.15\pm0.08$ | $0.20 \pm 0.11$ | $0.16\pm0.12$ |  |  |
| SOR        | $0.18\pm0.08$ | $0.36\pm0.25$   | $0.48\pm0.23$ |  |  |

134 a NOR =  $n(NO_3^-)/(n(NO_3^-) + n(NO_2))$ ; SOR =  $n(SO_4^{2-})/(n(SO_4^{2-}) + n(SO_2))$ . where  $n(NO_3^-)$ ,  $n(NO_2)$ ,  $n(SO_4^{2-})$ , and  $n(SO_2)$  are the molar

 $135 \qquad \text{concentrations of NO}_3^-, \text{NO}_2, \text{SO}_4^{2\text{-}}, \text{and SO}_2, \text{respectively}.$ 

137 Table S6. The concentration of PM2.5 and its main chemical components during wintertime in Xi'an, Shijiazhuang, and Beijing in the last decades.

| City         | Year  | PM <sub>2.5</sub>  | OA <sup>a</sup>    | EC                 | SO4 <sup>2-</sup>  | NO <sub>3</sub> -  | $\mathbf{NH_4^+}$  | Others             | D - 6              |
|--------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| City         |       | μg m <sup>-3</sup> | References         |
|              | 2003  | 356                | 153.3              | 21.5               | 53.8               | 29.2               | 29.6               | 68.9               | Cao et al., 2012   |
|              | 2006  | 230                | 57.4               | 11.4               | 45.9               | 20.6               | 14.2               | 80.0               | Xu et al., 2016    |
|              | 2008  | 199                | 48.3               | 9.9                | 42.5               | 20.8               | 11.0               | 66.9               | Xu et al., 2016    |
|              | 2010  | 233                | 60.0               | 14.7               | 30.6               | 22.9               | 12.3               | 92.8               | Xu et al., 2016    |
| Xi'an        | 2012  | 196                | 56.3               | 8.2                | 27.0               | 19.2               | 13.3               | 71.9               | Zhang et al., 2015 |
|              | 2013  | 263                | 45.8               | 7.1                | 31.7               | 29.2               | 17.1               | 132.5              | Niu et al., 2016   |
|              | 2014  | 156                | 57.4               | 2.5                | 16.2               | 20.6               | 9.4                | 49.7               | Dai et al., 2018   |
|              | 2018  | 189                | 42.1               | 4.9                | 9.7                | 14.5               | 6.6                | 111.0              | Wang et al., 2022  |
|              | 2020* | 77                 | 25.9               | 4.5                | 5.2                | 18.5               | 6.2                | 16.2               | This study         |
|              | 2010  | 227                | 75.6               | 12.2               | 33.2               | 25.3               | 10.5               | 70.2               | Zhao et al., 2013  |
|              | 2015  | 232                | 82.0               | 16.3               | 26.6               | 27.4               | 19.8               | 59.7               | Huang et al., 2017 |
| CL:::        | 2016  | 193                | 63.2               | 13.5               | 29.5               | 24.0               | 17.0               | 45.8               | Liu et al., 2019   |
| Snijiaznuang | 2017  | 97                 | 31.2               | 6.5                | 12.5               | 16.5               | 12.5               | 17.8               | Liu et al., 2019   |
|              | 2018  | 96                 | 35.8               | 10.1               | 10.5               | 15.3               | 6.3                | 18.0               | Zhang et al., 2020 |
|              | 2022* | 60                 | 16.0               | 3.9                | 7.0                | 15.8               | 7.0                | 9.8                | This study         |
|              | 2001  | 122                | 51.5               | 11.3               | 9.9                | 10.7               | 7.1                | 31.5               | Duan et al., 2006  |
|              | 2003  | 116                | 38.2               | 6.2                | 20.0               | 13.1               | 9.4                | 29.1               | Cao et al., 2012   |
|              | 2004  | 107                | 53.8               | 8.3                | 12.7               | 8.3                | 6.0                | 17.9               | Song et al., 2007  |
| D -::::      | 2010  | 127                | 42.9               | 7.1                | 14.2               | 17.1               | 5.2                | 40.5               | Zhao et al., 2013  |
| Deijing      | 2013  | 132                | 38.5               | 6.4                | 21.9               | 18.5               | 15.1               | 31.6               | Tao et al., 2015   |
|              | 2014  | 138                | 46.4               | 5.2                | 21.0               | 26.0               | 14.1               | 25.3               | Ma et al., 2017    |
|              | 2016  | 130                | 75.7               | 20.2               | 12.3               | 5.5                | 10.5               | 5.3                | Xu et al., 2018    |
|              | 2021* | 64                 | 22.1               | 1.9                | 9.6                | 15.2               | 9.2                | 6.4                | This study         |

\* study was conducted on online monitoring equipment, and the rest studies were researched on filter sampling experiments. 139

<sup>a</sup> Assumption of  $OA = 1.6 \times OC$  for the filter-based sampling experiments 140

141 **Table S7.** The concentration of PM<sub>2.5</sub> and its source contribution during wintertime in Xi'an, Shijiazhuang, and

## 142 Beijing in the last decades.

| City         |       | PM <sub>2.5</sub>  | Vehicle            | Coal               | Secondary          | Fugitive           | Industrial         | Biomass            | Othors           | Doforoncos         |
|--------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|--------------------|
|              | Year  |                    | emission           | combustion         | source             | dust               | emission           | burning            | Others           | Kelerences         |
|              |       | μg m <sup>-3</sup> | $\mu g \ m^{-3}$ |                    |
|              | 2006  | 392                | 74.5               | 121.5              | 82.3               | 51.0               | 39.2               | 23.5               |                  | Xu et al., 2016    |
|              | 2008  | 199                | 41.8               | 55.7               | 45.8               | 23.9               | 21.9               | 10.0               |                  | Xu et al., 2016    |
| Vil          | 2010  | 233                | 48.9               | 55.9               | 41.9               | 44.3               | 30.3               | 11.7               |                  | Xu et al., 2016    |
| Alan         | 2014  | 169                | 20.3               | 47.3               | 71.0               | 8.5                | 6.8                | 15.2               |                  | Dai et al., 2020   |
|              | 2018  | 189                | 26.5               | 28.4               |                    | 15.1               | 22.7               | 58.6               | 37.8             | Wang et al., 2022  |
|              | 2020* | 77                 | 10.0               | 11.6               | 24.6               | 6.2                | 6.2                | 19.3               |                  | This study         |
|              | 2015  | 232                | 46.4               | 62.6               | 30.2               | 20.9               | 16.2               | 7.0                | 48.7             | Huang et al., 2017 |
| 01           | 2016  | 181                | 23.5               | 54.3               | 54.3               | 30.8               | 9.1                |                    | 7.2              | Liu et al., 2018   |
| Shijiazhuang | 2019  | 119                | 21.4               | 21.4               | 42.8               | 21.4               | 6.0                | 6.0                |                  | Diao et al., 2021  |
|              | 2022* | 60                 | 7.2                | 9.6                | 22.8               | 2.4                | 3.0                | 14.4               |                  | This study         |
| Beijing      | 2004  | 107                | 8.6                | 40.7               | 19.3               | 7.5                |                    | 16.1               | 15.0             | Song et al., 2007  |
|              | 2010  | 139                |                    | 79.2               | 8.3                | 22.2               | 16.7               | 9.7                | 2.8              | Zhang et al., 2013 |
|              | 2013  | 159                | 9.5                | 41.3               | 79.5               | 15.9               |                    | 9.5                | 3.2              | Huang et al., 2014 |
|              | 2015  | 125                | 48.8               | 15.0               | 23.8               | 8.8                | 2.5                | 6.3                | 18.8             | Huang et al., 2017 |
|              | 2021* | 64                 | 7.0                | 5.8                | 33.3               | 2.6                | 2.6                | 11.5               | 1.3              | This study         |

143 \* study was conducted on online monitoring equipment, and the rest studies were researched on filter sampling experiments.

#### 145 **References:**

- Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., Ho, K.-F., Wang, G.-H., and Han, Y.-M.: Winter
  and summer PM<sub>2.5</sub> chemical compositions in fourteen Chinese cities, J. Air Waste Manage., 62, 1214–1226, https://doi.org/10.1080/10962247.2012.701193, 2012.
- Dai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., Bi, S., Schulze, B. C., Song, C., Wu, J., Zhang, Y., Feng, Y., and Hopke,
  P. K.: Chemical nature of PM<sub>2.5</sub> and PM<sub>10</sub> in Xi'an, China: Insights into primary emissions and secondary particle
  formation, Environ. Pollut., 240, 155–166, https://doi.org/10.1016/j.envpol.2018.04.111, 2018.
- Dai, Q., Hopke, P. K., Bi, X., and Feng, Y.: Improving apportionment of PM<sub>2.5</sub> using multisite PMF by constraining G values with a prioriinformation, Sci. Total Environ., 736, 139657, https://doi.org/10.1016/j.scitotenv.2020.139657,
   2020.
- Diao, L., Zhang, H., Liu, B., Dai, C., Zhang, Y., Dai, Q., Bi, X., Zhang, L., Song, C., and Feng, Y.: Health risks of inhaled
   selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources, Environ.
   Pollut., 276, 116664, https://doi.org/10.1016/j.envpol.2021.116664, 2021.
- 158 Duan, F., He, K., Ma, Y., Yang, F., Yu, X., Cadle, S., Chan, T., and Mulawa, P.: Concentration and chemical characteristics 159 Sci. of PM<sub>25</sub> in Beijing, China: 2001 - 2002, Total Environ., 355, 264-275, 160 https://doi.org/10.1016/j.scitotenv.2005.03.001, 2006.
- Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco,
  F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M.,
  Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt,
  A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–
  222, https://doi.org/10.1038/nature13774, 2014.
- Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., and Wang, Y.: Chemical
  characterization and source identification of PM<sub>2.5</sub> at multiple sites in the Beijing–Tianjin–Hebei region, China, Atmos.
  Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, 2017.
- Liu, B., Cheng, Y., Zhou, M., Liang, D., Dai, Q., Wang, L., Jin, W., Zhang, L., Ren, Y., Zhou, J., Dai, C., Xu, J., Wang, J.,
  Feng, Y., and Zhang, Y.: Effectiveness evaluation of temporary emission control action in 2016 in winter in
  Shijiazhuang, China, Atmos. Chem. Phys., 18, 7019–7039, https://doi.org/10.5194/acp-18-7019-2018, 2018.
- Liu, G., Xin, J., Wang, X., Si, R., Ma, Y., Wen, T., Zhao, L., Zhao, D., Wang, Y., and Gao, W.: Impact of the coal banning
  zone on visibility in the Beijing-Tianjin-Hebei region, Sci. Total Environ., 692, 402–410,
  https://doi.org/10.1016/j.scitotenv.2019.07.006, 2019.
- Liu, H., Wang, Q., Ye, J., Su, X. li, Zhang, T., Zhang, Y., Tian, J., Dong, Y., Chen, Y., Zhu, C., Han, Y., and Cao, J.: Changes
  in Source-Specific Black Carbon Aerosol and the Induced Radiative Effects Due to the COVID-19 Lockdown,
  Geophys. Res. Lett., 48, https://doi.org/10.1029/2021GL092987, 2021.

- Ma, Q., Wu, Y., Tao, J., Xia, Y., Liu, X., Zhang, D., Han, Z., Zhang, X., and Zhang, R.: Variations of Chemical Composition
   and Source Apportionment of PM<sub>2.5</sub> during Winter Haze Episodes in Beijing, Aerosol Air Qual. Res., 17, 2791–2803,
   https://doi.org/10.4209/aaqr.2017.10.0366, 2017.
- Niu, X., Cao, J., Shen, Z., Ho, S. S. H., Tie, X., Zhao, S., Xu, H., Zhang, T., and Huang, R.: PM<sub>2.5</sub> from the Guanzhong
   Plain: Chemical composition and implications for emission reductions, Atmos. Environ., 147, 458–469,
   https://doi.org/10.1016/j.atmosenv.2016.10.029, 2016.
- Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger,
  U., and Prévôt, A. S. H.: Source apportionment of highly time-resolved elements during a firework episode from a
  rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020,
  2020.
- Salameh, D., Pey, J., Bozzetti, C., El Haddad, I., Detournay, A., Sylvestre, A., Canonaco, F., Armengaud, A., Piga, D.,
  Robin, D., Prevot, A. S. H., Jaffrezo, J.-L., Wortham, H., and Marchand, N.: Sources of PM<sub>2.5</sub> at an urban-industrial
  Mediterranean city, Marseille (France): Application of the ME-2 solver to inorganic and organic markers, Atmos. Res.,
  214, 263–274, https://doi.org/10.1016/j.atmosres.2018.08.005, 2018.
- Salameh, T., Sauvage, S., Afif, C., Borbon, A., and Locoge, N.: Source apportionment vs. emission inventories of non methane hydrocarbons (NMHC) in an urban area of the Middle East: local and global perspectives, Atmos. Chem.
   Phys., 16, 3595–3607, https://doi.org/10.5194/acp-16-3595-2016, 2016.
- Song, Y., Tang, X., Xie, S., Zhang, Y., Wei, Y., Zhang, M., Zeng, L., and Lu, S.: Source apportionment of PM<sub>2.5</sub> in Beijing
   in 2004, J. Hazard. Mater., 146, 124–130, https://doi.org/10.1016/j.jhazmat.2006.11.058, 2007.
- Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., and Wang, S.: Aerosol chemical composition and light scattering during a
   winter season in Beijing, Atmos. Environ., 110, 36–44, https://doi.org/10.1016/j.atmosenv.2015.03.037, 2015.
- Wang, Z., Wang, R., Wang, J., Wang, Y., McPherson Donahue, N., Tang, R., Dong, Z., Li, X., Wang, L., Han, Y., and Cao,
   J.: The seasonal variation, characteristics and secondary generation of PM<sub>2.5</sub> in Xi'an, China, especially during
   pollution events, Environ. Res., 212, 113388, https://doi.org/10.1016/j.envres.2022.113388, 2022.
- Xu, H., Cao, J., Chow, J. C., Huang, R.-J., Shen, Z., Chen, L. W. A., Ho, K. F., and Watson, J. G.: Inter-annual variability
   of wintertime PM<sub>2.5</sub> chemical composition in Xi'an, China: Evidences of changing source emissions, Sci. Total
   Environ., 545–546, 546–555, https://doi.org/10.1016/j.scitotenv.2015.12.070, 2016.
- Xu, X., Zhang, H., Chen, J., Li, Q., Wang, X., Wang, W., Zhang, Q., Xue, L., Ding, A., and Mellouki, A.: Six sources
   mainly contributing to the haze episodes and health risk assessment of PM<sub>2.5</sub> at Beijing suburb in winter 2016,
   Ecotoxicol. Environ. Saf., 166, 146–156, https://doi.org/10.1016/j.ecoenv.2018.09.069, 2018.
- Zhang, Q., Shen, Z., Cao, J., Zhang, R., Zhang, L., Huang, R.-J., Zheng, C., Wang, L., Liu, S., Xu, H., Zheng, C., and Liu,
  P.: Variations in PM<sub>2.5</sub>, TSP, BC, and trace gases (NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>) between haze and non-haze episodes in winter
  over Xi'an, China, Atmos. Environ., 112, 64–71, https://doi.org/10.1016/j.atmosenv.2015.04.033, 2015.

- Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical
   characterization and source apportionment of PM<sub>2.5</sub> in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–
   7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
- 214 Zhang, W., Liu, B., Zhang, Y., Li, Y., Sun, X., Gu, Y., Dai, C., Li, N., Song, C., Dai, Q., Han, Y., and Feng, Y.: A refined 215 source apportionment study of atmospheric PM2.5 during winter heating period in Shijiazhuang, China, using a Environ., 216 receptor model coupled with а source-oriented model. Atmos. 222, 117157, 217 https://doi.org/10.1016/j.atmosenv.2019.117157, 2020.
- Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, H. Y.: Characteristics of
  concentrations and chemical compositions for PM<sub>2.5</sub> in the region of Beijing, Tianjin, and Hebei, China, Atmos. Chem.
  Phys., 13, 4631–4644, https://doi.org/10.5194/acp-13-4631-2013, 2013.