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Abstract 12 

A dominant term in the surface energy balance and central to global warming is downwelling longwave 13 

radiation (Rld). It is influenced by radiative properties of the atmospheric column, in particular by 14 

greenhouse gases, water vapour, clouds and differences in atmospheric heat storage. We use the semi-15 

empirical equation derived by Brutsaert (1975) to identify the leading terms responsible for the spatio-16 

temporal climatological variations in Rld. This equation requires only near-surface observations of air 17 

temperature and humidity. We first evaluated this equation and its extension by Crawford and Duchon 18 

(1999) with observations from FLUXNET, the NASA-CERES dataset , and the ERA5 reanalysis. We found 19 

a strong agreement with r2 ranging from 0.87 to 0.99 across the datasets for clear-sky and all-sky conditions. 20 

We then used the equations to show that diurnal and seasonal variations in Rld are predominantly controlled 21 

by changes in atmospheric heat storage. Variations in the emissivity of the atmosphere form a secondary 22 

contribution to the variation in Rld, and are mainly controlled by anomalies in cloud cover. We also found 23 

that as aridity increases, the contributions from changes in emissivity and atmospheric heat storage tend to 24 

offset each other (-40 W m-2 and 20-30 W m-2, respectively), explaining the relatively small decrease in Rld 25 

with aridity (-(10-20) W/m-2).  These equations thus provide a solid physical basis for understanding the 26 

spatio-temporal variability of surface downwelling longwave radiation. This should help to better 27 

understand and interpret climatological changes, such as those associated with extreme events and global 28 

warming. 29 

 30 

  31 
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1 Introduction 32 

In the global mean surface energy budget, downward longwave radiation (Rld) is the dominant term (333 33 

W/m2), contributing more than twice as much energy as absorbed solar radiation (161 W/m2) (Trenberth et 34 

al. 2009). This dominance holds over all regions in the climatological mean, although there are some clear 35 

variations in space and time (Figure 1). It is central to global warming, reflecting the greenhouse effect of 36 

the atmosphere (Held and Soden 2000), and its variations have been suggested to be the main contributor 37 

to some regional warming amplifications, such as in the Arctic (Lee et al. 2017) and the Tibetan Plateau 38 

(Su et al. 2017). Therefore, it is important to understand the main sources of variations in this surface energy 39 

balance term, which can be seen in Figure 1. 40 

The flux of downwelling longwave radiation is influenced by the radiative properties of the entire 41 

atmospheric column, i.e., water vapour, clouds and greenhouse gases, but also by the heat stored in the 42 

atmosphere, i.e., the temperature at which radiation is emitted back to the surface. To obtain an estimate of 43 

this flux, Brutsaert (1975) used functional expressions for the typical temperature and humidity profiles of 44 

the lower troposphere together with radiative transfer equations and semiempirical relationships of the 45 

absorptivity by water vapor, integrated these vertically, and expressed the resulting flux Rld in terms of near-46 

surface air temperature and water vapour pressure for clear-sky conditions.  He thereby derived a semi-47 

empirical equation for Rld for an effective clear sky emissivity ( 𝜀𝑐𝑠 ) and the corresponding flux of 48 

downwelling longwave radiation (𝑅𝑙𝑑,𝑐𝑠): 49 

𝜀𝑐𝑠 = 1.24(𝑒𝑎/𝑇𝑎)1/7, (1) 

𝑅𝑙𝑑,𝑐𝑠 = 𝜀𝑐𝑠𝜎𝑇𝑎
4. (2) 

where 𝜎 is Stefan–Boltzmann constant (𝜎 = 5.67 10-8 W m-2 K-4), 𝑒𝑎 is the water vapor pressure and 𝑇𝑎  is the 50 

2m air temperature. The latter two meteorological variables can easily be obtained or inferred from weather 51 

stations, so that the downwelling flux of longwave radiation can be estimated from weather station 52 

observations. 53 

This equation was later extended to all-sky conditions that include the effects of cloud cover, among which 54 

Crawford and Duchon (1999) is a common extension (Alados et al. 2012; Duarte et al. 2006; Flerchinger 55 

et al. 2009). This extension diagnoses cloud cover fraction (𝑓𝑐) as the fraction of incoming solar radiation 56 

at the surface (𝑅𝑠) in relation to the potential solar radiation (𝑅𝑠,𝑝𝑜𝑡), that is, the incoming flux at the top of 57 

the atmosphere. The emissivity for all-sky conditions, 𝜀, is then calculated as the mix of the emissivities of 58 

clear-sky conditions (Eqn. (1), weighted by the cloud-free proportion, 1 − 𝑓𝑐) and clouds with an emissivity 59 

of 𝜀𝑐 =  1  (weighted by the cloud fraction 𝑓𝑐 ). Using this emissivity, the estimation of downwelling 60 

longwave radiation is then done by  61 

𝑓𝑐 = 1 − 𝑅𝑠/𝑅𝑠,𝑝𝑜𝑡 , (3) 

𝜀 = 𝑓𝑐 + (1 − 𝑓𝑐)𝜀𝑐𝑠, (4) 

𝑅𝑙𝑑 = 𝜀𝜎𝑇𝑎
4 (5) 

Previous studies have already verified this estimate to have a very good agreement with site measurements 62 

(Duarte et al. 2006; Hatfield et al. 1983), especially when the temperature is higher than 0℃ (Aase and Idso 63 

1978; Satterlund 1979). Other studies have worked to calibrate and modify this estimate further to different 64 

regions (Malek 1997; Sridhar and Elliott 2002).  65 

This expression for downwelling longwave radiation Rld given by Eqn. (5) allows us to quantify the different 66 

contributions by cloud cover, fc, water vapor concentrations, ea (as a measure of the total water vapor content 67 

of the atmospheric column), and air temperature, Ta (as a proxy for the total atmospheric heat storage within 68 

the column).  With this, we can then attribute variations in Rld to their physical causes.   69 
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Here, our aim is to first evaluate this estimate for downwelling longwave radiation with current global 70 

datasets at the continental scale. These variations are illustrated using the NASA-CERES (EBAF 4.1) 71 

dataset (Loeb et al., 2018; Kato et al., 2018, NASA/LARC/SD/ASDC 2017) and the NASA-CERES 72 

Syn1deg dataset (Doelling et al., 2013, 2016) in Figure 1 and are compared to variations in solar radiation. 73 

It can be seen that the climatological distribution of Rld is mostly associated with latitudes, while also 74 

presenting some zonal variations, e.g., across western and eastern North America. In comparison, the 75 

seasonal cycle of Rld is less determined by latitudes (Fig. 1b). It has a larger magnitude over land than over 76 

oceans, over arid regions than humid regions, and over cold regions more than over warm ones. Although 77 

studies have revealed a close correlation between the variation of Rld and other factors like air temperature, 78 

water vapor, and CO2 concentration (Wang and Liang 2009; Wei et al. 2021), here we go beyond 79 

correlations and rather attribute these variations to the different terms in Eqns. (1)-(5) that represent 80 

different radiative properties affecting Rld. 81 

To figure out the dominant driver for these spatiotemporal variations, we decompose changes in Rld into its 82 

components: cloud cover, 𝑓𝑐, heat storage changes of atmosphere as reflected by 2m air temperature, 𝑇𝑎, 83 

and air humidity, 𝑒𝑎 , by performing the differentiation of these equations. We show that heat storage 84 

changes predominantly shape the diurnal range and seasonal cycle of Rld, while cloud cover variations play 85 

a second role in most cases. In addition, the temporal variations of Rld are less over the ocean than over 86 

land, and less during winter than summer. On the other hand, the spatial variations of Rld from arid to humid 87 

regions is relatively small, which we will show is due to a compensating effect of corresponding changes 88 

in atmospheric emissivity and heat storage. 89 

Our paper is organized as follows: After briefly describing the datasets used in our evaluation in Section 2, 90 

we first the estimate of Rld from these equations at the global scale, using multiple datasets in Section 3.1. 91 

After showing that the annual-mean and large-scale variations are well captured, we then use the equations 92 

to decompose the temporal variations of Rld in terms of its mean spatial and temporal variations and relate 93 

these to their causes in Section 3.2. The spatial variations of Rld are then further discussed in Section 3.3 in 94 

terms of its relationship with aridity. We then close with a brief summary and broader implications. 95 

2 Datasets  96 

To test Rld estimates, we use FLUXNET observations (Pastorello et al. 2020, half-hourly values, 189 sites, 97 

see Table S1 for details), the NASA CERES satellite-based radiation dataset (Doelling et al., 2013, 2016, 98 

monthly means, covering years 2001 to 2018), and the ERA5 reanalysis dataset (Hersbach et al. 2018, 99 

monthly means, covering years 1979 to 2021).   100 

For each dataset, 𝑇𝑎 , 𝑒𝑎 , and 𝑓𝑐  are needed as inputs for Eqs. (1)-(5), while 𝑅𝑙𝑑  data is used for the 101 

comparison. For FLUXNET and ERA5, water vapor pressure, 𝑒𝑎, is not directly given.  It is calculated 102 

from the water vapor deficit (VPD, FLUXNET) or dewpoint temperature (Tdew, ERA5) using Monteith and 103 

Unsworth (2008): 104 

𝑒𝑎 = 6.1079 × exp (17.269𝑇𝑑𝑒𝑤/(237.3 + 𝑇𝑑𝑒𝑤)), (6) 

𝑒𝑎 = 6.1079 × exp (17.269𝑇𝑎/(237.3 + 𝑇𝑎)) − 𝑉𝑃𝐷, (7) 

Since the NASA-CERES dataset includes cloud cover, 𝑓𝑐 , this is used directly in the estimation instead of 105 

using Eq. (3),  together with 𝑒𝑎 from ERA5 and 𝑇𝑎 from the CPC Global Unified Temperature dataset (CPC 106 

Global Unified Temperature). 107 

For the analysis of the spatial variations of Rld along water availability, we use the aridity index (AI =
𝑅

𝐿𝑃
) 108 

(Budyko 1958; UNCOD 1977).  This index is calculated using the mean annual net radiation (R) taken from 109 

the NASA-CERES dataset, the mean annual net precipitation (P) taken from the CPC Global Unified 110 

Gauge-Based Analysis of Daily Precipitation data (Chen et al. 2008 and Xie et al. 2007, CPC Global Unified 111 
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Gauge-Based Analysis of Daily Precipitation), and a latent heat of vaporization for water of 𝐿 =112 

2260 kJ/kg.  A larger value of AI indicates stronger aridity. 113 

3 Results and discussion 114 

3.1 Comparison to observed, satellite, and reanalysis data 115 

We first compared the estimates of Rld at a point-by-point basis separately for clear-sky and all-sky 116 

conditions using Eqns. (2) and (5), respectively.  This comparison is shown in Figure 2 using FLUXNET, 117 

CERES, and ERA5 data.  The estimates correlate very well with r2 of 0.92 and 0.87 for clear-sky and all-118 

sky conditions, respectively, and RMSE values of 18.2 and 24.6 W m-2.  The slope of the linear regressions 119 

between the estimated and observed Rld for FLUXNET are 1.03 and 1.02, with most data points being 120 

concentrated around the 1:1 line (Figs. 2a and 2b).  Note that for all-sky conditions, the agreement is slighty 121 

less good, with a lower correlation coefficient and a larger RSME.  The agreement with the NASA-CERES 122 

and ERA5 datasets are even better, with higher correlation coefficients and lower RSME. 123 

Despite this high level of agreement of the estimates, we can see some systematic biases in the estimates 124 

for Rld.  These can be seen in Figure 3, which shows the spatial distribution of these biases for the NASA-125 

CERES and ERA5 comparison.  For clear-sky conditions, there appears to be a general underestimation in 126 

the high latitudes and, to some extent, in arid regions (Figs. 3a and 3c). This bias can be attributed to biases 127 

in the equations used here.  Brutsaert (1975) already described that for very low temperatures and in arid 128 

conditions, there are better parameter values than those used in Eq. 1, with a larger coefficient than 1.24 129 

and a different exponent.  The biases seen in Figure 3 are nevertheless notably smaller than the seasonal 130 

variations shown in Figure 1. 131 

The biases for all-sky conditions are typically larger and generally positive, implying an overestimate 132 

except for the extremely cold and dry regions (Figs. 3b and 3d).  This indicates that the effect of cloud cover 133 

is probably more complex than the simple accounting expressed in Eqns. (4) and (5).  However, the biases 134 

are also small compared to the seasonal variations. 135 

Overall, this evaluation shows that the expressions given by Eqns. (1) - (5) are very well suited to describe 136 

the spatiotemporal variations of Rld for current climatological conditions. 137 

 138 

3.2 Attribution of diurnal and seasonal variations 139 

We next use Eqns. (1) - (5) to attribute temporal variations of Rld to their physical causes.  To do so, we can 140 

express changes ∆Rld as a function of changes in water vapor, ∆ea, cloud cover, ∆fc, and air temperature, 141 

∆Ta.  The functional dependence is derived from the equations by differentiation and applying the chain 142 

rule.  In a first step, we express a change ∆Rld by the partial contributions ∆𝑅𝑙𝑑,𝜀 and ∆𝑅𝑙𝑑,𝑇, that are due to 143 

changes in emissivity, ∆𝜀, and due to changes in atmospheric heat storage that are associated with a change 144 

in air temperature ∆Ta: 145 

∆𝑅𝑙𝑑 = ∆𝑅𝑙𝑑,𝜀  + ∆𝑅𝑙𝑑,𝑇 =
𝜕𝑅𝑙,𝑑

𝜕𝜀
∆𝜀 +

𝜕𝑅𝑙,𝑑

𝜕𝑇𝑎
∆𝑇𝑎 = 𝜎𝑇𝑎

̅̅ ̅4
∆𝜀 + 4𝜎𝜀𝑇̅𝑎

̅̅ ̅3
∆𝑇𝑎. (8) 

The contribution ∆𝑅𝑙𝑑,𝜀 is further decomposed into contributions ∆𝑅𝑙𝑑,𝑓𝑐
 and ∆𝑅𝑙𝑑,𝑒𝑎

 due to variations in 146 

clouds, ∆𝑓𝑐 , and air humidity, ∆𝑒𝑎 .  Note that the contribution of a change ∆𝑇𝑎 to ∆𝑅𝑙𝑑,𝜀 is relatively small 147 

and is thus neglected here.  We obtain: 148 
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∆𝑅𝑙𝑑,𝜀 = 𝜎 𝑇𝑎
̅̅ ̅4

∆𝜀 ≈
𝜕𝜀

𝜕𝑓𝑐
∆𝑓𝑐  +

𝜕𝜀

𝜕𝑒𝑎
∆𝑒𝑎  

=  𝜎𝑇𝑎
̅̅ ̅4

× (1 − 1.24 (
𝑒𝑎

𝑇𝑎
)

1
7

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) ∆𝑓𝑐 + 𝜎𝑇𝑎
̅̅ ̅4

×
1.24

7

(1 − 𝑓𝑐̅)

(𝑒𝑎̅̅ ̅)
6
7(𝑇𝑎

̅̅ ̅)
1
7

∆𝑒𝑎 , 

(9) 

 149 

We next applied this approach to the diurnal deviations ∆𝑅𝑙𝑑  from the daily mean using the FLUXNET 150 

dataset.  This decomposition is shown in Figure 4 in aggregated form across the FLUXNET sites for whole 151 

year (Fig. 4a), the Northern hemisphere summer (Fig. 4b) and winter seasons (Fig. 4c).  The diurnal 152 

variations of about ± 20 W m-2 are primarily caused by diurnal changes in air temperature, while variations 153 

in emissivity play practically no role.  Diurnal changes in air temperature reflect variations in heat storage 154 

of the atmospheric boundary layer.  This is consistent with the notion that diurnal variations in solar 155 

radiation over land are buffered primarily by the lower atmosphere, rather than below the surface as it is 156 

the case for open water bodies and the ocean (Kleidon and Renner 2017).  Since most of the stations in the 157 

FLUXNET dataset are located in the midlatitudes of the Northern hemisphere, the variations are 158 

consistently larger in summer due to the greater solar input (Fig. 4b) than in winter (Fig. 4c). 159 

Figure 5 shows the same kind of decomposition, but for seasonal variations in Rld in the NASA CERES 160 

dataset.  The aggregation to the global scale across land and ocean is also shown in Fig. 5e-h.  For the 161 

decomposition in Fig. 5e-h, the deviations are calculated as the difference of the monthly means to the 162 

annual mean.  Generally, areas with relatively low annual-mean Rld, e.g. the high latitude regions of North 163 

America and northeastern Eurasia, have the largest seasonal cycle (Fig. 1).  The decomposition shows that 164 

this variation is mostly due to the seasonal variation in atmospheric heat storage (∆𝑅𝑙𝑑,𝑇), although it is to 165 

some extent amplified by the contribution due to emissivity changes (∆𝑅𝑙𝑑,𝜀 ).  Seasonal variations in 166 

emissivity play a greater role in changing Rld in tropical areas, and this is predominantly due to cloud cover 167 

changes (Fig. 5c).  The contribution by changes in water vapor is generally much smaller and does not vary 168 

much across regions (Fig. 5d).   169 

Figs. 5e - h show that the seasonal variations of Rld is generally less over the ocean than on the land, an 170 

effect that can also be seen in Fig. 1.  The decomposition shows that these variations are mostly caused by 171 

changes in atmospheric heat storage, with a slight modulation by emissivity changes.  This can, again, be 172 

largely explained by the effect described above for the diurnal variations (Kleidon and Renner 2017).  173 

Because solar radiation penetrates the transparent water bodies over marine areas, its variations are buffered 174 

below the surface, and not within the atmosphere. These variations are then reflected in seasonal changes 175 

in sea surface temperature.  On land, however, seasonal heat storage changes below the surface are generally 176 

quite small, so that most variations take place in the lower atmosphere, which then alter Rld. 177 

These results show very similar patterns in the ERA5 dataset (Fig. S2). 178 

In summary, what our decomposition shows is that most temporal variations in Rld in current, climatological 179 

conditions are explained by heat storage changes within the lower atmosphere. 180 

 181 

3.3 Attribution of geographic variations with aridity 182 

Last, we applied the decomposition to the climatological variations in Rld along differences in mean water 183 

availability.  Water availability was characterized by Budyko’s aridity index (AI), with values AI < 1 184 

representing humid regions, and larger values reflecting increased ariditiy.  Here, the deviations ∆𝑅𝑙𝑑  are 185 

calculated with respect to the global annual mean.  The different contributions to the deviations are shown 186 

in Fig. 6, as well as the delineation along the aridity index (Figs. 6e - h). 187 
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The decomposition of the spatial distribution of the climatological means shows that the variations are 188 

largely caused by differences in atmospheric heat storage as well (Fig. 6a). The contribution due to 189 

variations in emissivity has a much smaller magnitude (Fig. 6b), and is dominated by changes in cloud 190 

cover (Fig. 6c).  Changes in water vapor appear to influence Rld mostly in the humid tropics (Fig. 6d). The 191 

results for the ERA5 reanalysis dataset show the same patterns (Fig. S1). 192 

These variations are evaluated with respect to the aridity index in Figs. 6e - h.  While there is a large spread, 193 

as seen in the quantiles, there is a small, but consistent trend towards lower values of Rld in more arid 194 

regions, with a magnitude of about 20 W m-2 (black dashed line in Figs. 6e and 6g).  We also notice a shift 195 

in the contributions, with emissivity contributing less and atmospheric heat storage contributing more with 196 

increased values of AI.  The changes in emissivity is mostly caused by reductions in cloud cover, as shown 197 

by the orange lines in Figs. 6f and h, and amounts to around -40 W m-2 over the range shown in the Figure.  198 

This decrease in cloud cover can be attributed to the common presence of high-pressure systems in 199 

subtropical areas (Zampieri et al. 2009).  The decreasing contribution by lower cloud cover is compensated 200 

for by an increased contribution of about +20 W m-2 by atmospheric heat storage that is caused by the 201 

generally warmer mean temperatures in arid regions.  This compensation is also seen in the ERA5 data 202 

(Figs. 6g and 6h), with magnitudes of -40 W m-2 and +30 W m-2 respectively. 203 

Taken together, these trends imply that, again, the climatological variations in Rld are also dominated by 204 

differences in atmospheric heat storage.  A small, but consistent change can be seen in the contributions 205 

along the aridity index, with the contribution by emissivity due to cloud cover becoming lower while the 206 

contribution by atmospheric heat storage increases as regions become drier. 207 

4.Summary and Conclusions 208 

We found that the semiempirical equations of Brutsaert (1975) and Crawford and Duchon (1999) work very 209 

well to estimate the downwelling flux of longwave radiation by comparing these to estimates from 210 

observation, satellite, and reanalysis datasets.  We then showed that one can use these equations to 211 

decompose this flux into different components, and relate changes to differences in cloud cover, water 212 

vapor, and atmospheric heat storage.  We found that most changes in downwelling longwave radiation are 213 

caused by differences in atmospheric heat storage that are reflected in differences in air temperature.  214 

These equations can then be applied to different aspects of climate research.  For instance, the values of 215 

downwelling longwave radiation are often missing in FLUXNET data (Table S2), and these equations can 216 

be used to fill the gaps with air temperature and humidity observations.  We can also use these equations to 217 

better understand the physical mechanisms for temperature change due to extreme events.  For instance, 218 

Park et al. (2015) and Alekseev et al. (2019) found that an enhancement of downwelling longwave radiation 219 

in the Arctic is found to be preceded by the advection of moisture and heat.  The equations by Brutsaert 220 

(1975) and Crawford and Duchon (1999) can then be used to quantify the individual contributions by the 221 

advection of heat and moisture (Tian et al. 2022).  Another example is the attribution of differences in 222 

global warming magnitudes across humid and arid regions.  Du et al. (2020) used these equations to explain 223 

why global warming was stronger during clear-sky conditions in observations in China due to the greater 224 

sensitivity of clear-sky emissivity to a change in water vapor.  This was then used to explain the observed, 225 

stronger global warming in the arid regions of China, which have less clouds and a higher frequency of 226 

clear-sky conditions than the humid regions.  While the empirical coefficient of 1.24 in Eq. (1) may change 227 

due to emissivity changes from greenhouse gases other than water vapor, this formulation can nevertheless 228 

provide a useful basis.   229 

We conclude that the equations by Brutsaert (1975) and Crawford and Duchon (1999) are still very useful 230 

to advance our understanding of surface temperature changes.  Our evaluation has shown how well these 231 

equations estimate this flux, and our application to the decomposition of different contributions has shown 232 

its utility to understand the causes for its variation.  These equations should help us to better understand 233 

aspects of climate variability, extreme events, and global warming, linking these to the mechanistic 234 

contributions by downwelling longwave radiation. 235 
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 370 

 371 

Figure 1. Spatial distribution of (a, c) the climatological mean and (b, d) the seasonal amplitude of 372 

downward longwave radiation and absorbed solar radiation at the surface respectively from the NASA-373 

CERES dataset. The seasonal amplitude is calculated as the difference between the maximum and minimum 374 

monthly mean. 375 
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 376 

Figure 2. Comparison of Rld estimated (a, c, e) by Brutsaert (1975) for clear-sky conditions and (b, d, f) by 377 

Crawford and Duchon (1999) for all-sky conditions using FLUXNET (a, b), NASA-CERES (c, d) and 378 

ERA5 (e, f).  Colors indicate the density of the data points and is scaled to values between 0 - 1. 379 
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 380 

Figure 3. Biases in the estimates for Rld for (a, b) NASA-CERES and (c, d) ERA reanalysis for (a, c) clear-381 

sky and (b, d) all-sky conditions over land. Grey shading indicate missing values. 382 
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 384 
Figure 4. Diurnal variations in Rld (black dashed line) and its decomposition into contributions by changes 385 

in emissivity (blue, ∆𝑅𝑙𝑑,𝜀) and atmospheric heat storage (red, ∆𝑅𝑙𝑑,𝑇) in the FLUXNET dataset aggregated 386 

over 189 sites for (a) the whole year, (b) June-August, and (c) December - February.  The upper and lower 387 

whisker indicate 95th and 5th percentiles, upper boundary, median line, and lower boundary of the box 388 

indicate the 75th, 50th, 25th quantiles, respectively. Regression lines are based on site-mean or grid-mean 389 

value using LOESS regression. 390 

 391 
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Figure 5. Decompositions of the mean seasonal variation of Rld (difference between the maximum and 393 

minimum monthly means) in the NASA-CERES dataset into contributions by (a) atmospheric heat storage 394 

(∆𝑅𝑙𝑑,𝑇) and (b) emissivity (∆𝑅𝑙𝑑,𝜀). The variations in ∆𝑅𝑙𝑑,𝜀 are further decomposed in contributions by 395 

variations in (c) cloud cover (∆𝑅𝑙𝑑,𝑓𝑐
) and (d) humidity (∆𝑅𝑙𝑑,𝑒𝑎

).  Panels (e) - (h) show the mean seasonal 396 

variation of Rld averaged over land or ocean and its decomposition into variations in atmospheric heat 397 

storage (∆𝑅𝑙𝑑,𝑇 ) and emissivity (∆𝑅𝑙𝑑,𝜀) using FLUXNET, NASA-CERES, and ERA5. The box plot 398 

indicates percentiles and quantiles as in Figure 4. Grey shading indicates missing values. 399 
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Figure 6. As Figure 5, but for the decomposition of the spatial variations of the annual mean (a - d) and the 401 

variations with the aridity index (e - h). 402 

 403 

 404 

 405 

Plain Language: 406 

 407 

Downward longwave radiation (Rld) plays an important role in surface energy balance and is critical for 408 

global warming. However, its spatiotemporal climatological variation on a global scale has not been 409 

explained well with a solid physical basis. To fill this gap, we here use a semi-empirical equation derived 410 

by Brutsaert (1975, “B75”) and its extension by Crawford and Duchon (1999, "C&D99") to identify the 411 

leading terms responsible for the diurnal range, seasonal cycle, and geographical variations in Rld. We show 412 

that B75 and C&D99 work very well when evaluated against global observations from satellites and 413 

FLUXNET sites. We then used these physics-based equations to show that diurnal and seasonal variations 414 

in Rld are predominantly controlled by changes in atmospheric heat storage. When moving from humid to 415 

arid regions, while the contribution of atmospheric heat storage increases, the ones from clouds decreases, 416 

which together explains the relatively small decrease in Rld with aridity. Our work provides a clue to better 417 

understand aspects of climate variability, extreme events, and global warming, by linking these to the 418 

mechanistic contributions by downwelling longwave radiation. 419 

 420 
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