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Abstract 12 

A dominant term in the surface energy balance and central to global warming is downwelling longwave 13 

radiation (Rld). It is influenced by radiative properties of the atmospheric column, in particular by 14 

greenhouse gases, water vapour, clouds and differences in atmospheric heat storage. We use the semi-15 

empirical equation derived by Brutsaert (1975) to identify the leading terms responsible for the spatial-16 

temporal climatological variations in Rld. This equation requires only near-surface observations of air 17 

temperature and humidity. We first evaluated this equation and its extension by Crawford and Duchon 18 

(1999) with observations from FLUXNET, the NASA-CERES dataset, and the ERA5 reanalysis. We found 19 

a strong spatiotemporal correlation between estimated Rld and the datasets above, with r2 ranging from 0.87 20 

to 0.98 across the datasets for clear-sky and all-sky conditions. We then used the equations to show that 21 

changes in lower atmospheric heat storage explain more than 95% and around 73% of diurnal range and 22 

seasonal variations in Rld., respectively, with the regional contribution decreasing with latitude. Seasonal 23 

changes in the emissivity of the atmosphere play a second role, which is controlled by anomalies in cloud 24 

cover at high latitudes but dominated by water vapor changes at mid-latitudes and subtropics, especially 25 

over monsoon regions. We also found that as aridity increases over the region, the contributions from 26 

changes in emissivity and lower atmospheric heat storage tend to offset each other (-40 W m-2 and 20-30 27 

W m-2, respectively), explaining the relatively small decrease in Rld with aridity (-(10-20) W/m-2). These 28 

equations thus provide a solid physical basis for understanding the spatiotemporal variability of surface 29 

downwelling longwave radiation. This should help to better understand and interpret climatological 30 

changes, such as those associated with extreme events and global warming. 31 

 32 
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1 Introduction 34 

In the global mean surface energy budget, downward longwave radiation (Rld) is dominant surface energy 35 

input (333 W/m2 in global mean and 306 W2/m over land), contributing around twice as much energy as 36 

absorbed solar radiation (161 W/m2 in global mean and 184 W2/m over land) (Trenberth et al. 2009, Wild 37 

et al. 2015). This dominance holds over all regions in the climatological mean, although there are some 38 

clear variations in space and time (Figs. 1 and S1). It is central to global warming, reflecting the greenhouse 39 

effect of the atmosphere (Held and Soden 2000), and its variations have been suggested to be the main 40 

contributor to some regional warming amplifications, such as in the Arctic (Lee et al. 2017) and the Tibetan 41 

Plateau (Su et al. 2017). Therefore, it is important to understand the main sources of variations in this 42 

surface energy balance term, which can be seen in Figure 1. 43 

The flux of downwelling longwave radiation is influenced by the radiative properties of the entire 44 

atmospheric column, i.e., water vapour, clouds, and greenhouse gases, but also by the heat stored in the 45 

atmosphere, i.e., the temperature at which radiation is emitted back to the surface. To obtain an estimate of 46 

this flux, Brutsaert (1975) used functional expressions for the typical temperature and humidity profiles of 47 

the lower troposphere together with radiative transfer equations and semiempirical relationships of the 48 

absorptivity by water vapor, integrated these vertically, and expressed the resulting flux Rld in terms of near-49 

surface air temperature and water vapour pressure for clear-sky conditions. He thereby derived a semi-50 

empirical equation for Rld for an effective clear sky emissivity ( 𝜀𝑐𝑠 ) and the corresponding flux of 51 

downwelling longwave radiation (𝑅𝑙𝑑,𝑐𝑠): 52 

𝜀𝑐𝑠 = 1.24(𝑒𝑎/𝑇𝑎)1/7, (1) 

𝑅𝑙𝑑,𝑐𝑠 = 𝜀𝑐𝑠𝜎𝑇𝑎
4. (2) 

where 𝜎 is Stefan–Boltzmann constant (𝜎 = 5.67 10-8 W m-2 K-4), 𝑒𝑎 is the 2m water vapor pressure (unit: 53 

millibars) and 𝑇𝑎 is the 2m air temperature (unit: K). The latter two meteorological variables can easily be 54 

obtained or inferred from weather stations, so that the downwelling flux of longwave radiation can be 55 

estimated from weather station observations. Note that the 𝜀𝑐𝑠 shown in equation 1 is largely insensitive to 56 

changes in 𝑇𝑎 . As a result, emissivity does not have a direct dependence on Ta, except that higher 57 

temperature may also lead to higher values in ea. 58 

This equation was later extended to all-sky conditions that include the effects of cloud cover, among which 59 

Crawford and Duchon (1999) is a common extension (Alados et al. 2012; Duarte et al. 2006; Flerchinger 60 

et al. 2009). This extension diagnoses cloud cover fraction (𝑓𝑐) as the fraction of incoming solar radiation 61 

at the surface (𝑅𝑠) in relation to the potential solar radiation (𝑅𝑠,𝑝𝑜𝑡), that is, the incoming flux at the top of 62 

the atmosphere. The emissivity for all-sky conditions, 𝜀, is then calculated as the mix of the emissivities of 63 

clear-sky conditions (Eqn. (1), weighted by the cloud-free proportion, ( 1 − 𝑓𝑐 ) and clouds with an 64 

emissivity of 𝜀𝑐 =  1  (weighted by the cloud fraction 𝑓𝑐 ). Using this emissivity, the estimation of 65 

downwelling longwave radiation is then done by  66 

𝑓𝑐 = 1 − 𝑅𝑠/𝑅𝑠,𝑝𝑜𝑡 , (3) 

𝜀 = 𝑓𝑐 + (1 − 𝑓𝑐)𝜀𝑐𝑠, (4) 

𝑅𝑙𝑑 = 𝜀𝜎𝑇𝑎
4. (5) 

Previous studies have already verified Equations 4-5 to have a very good agreement with site measurements 67 

with the r2 of 0.883 and RMSE of 15.367 W/m2 (Duarte et al. 2006; Hatfield et al. 1983), especially when the 68 

temperature is higher than 0℃  (Aase and Idso 1978; Satterlund 1979). Other studies have worked to 69 

calibrate and modify this estimate further to different regions (Malek 1997; Sridhar and Elliott 2002).  70 

This expression for downwelling longwave radiation Rld given by Eqn. (5) allows us to quantify the different 71 

contributions by cloud cover, fc, water vapor concentrations, ea (as a measure of the total water vapor content 72 
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of the atmospheric column), and air temperature, Ta (as a proxy for the heat storage within the lower 73 

atmosphere, Panwar et al. 2022).  With this, we can then attribute variations in Rld to their physical causes.   74 

Here, our aim is to first evaluate this estimate for downwelling longwave radiation with current global 75 

datasets at the continental scale. These variations are illustrated using the NASA-CERES (EBAF 4.1) 76 

dataset (Loeb et al., 2018; Kato et al., 2018, NASA/LARC/SD/ASDC 2017) and the NASA-CERES 77 

Syn1deg dataset (Doelling et al., 2013, 2016) in Figure 1 and are compared to variations in solar radiation. 78 

It can be seen that the climatological distribution of Rld is mostly associated with latitudes, while also 79 

presenting some zonal variations, e.g., across western and eastern North America. In comparison, the 80 

seasonal cycle of Rld is less determined by latitudes (Fig. 1b). It has a larger magnitude over land than over 81 

oceans, over arid regions than humid regions, and over cold regions more than over warm ones. Although 82 

studies have revealed a close correlation between the variation of Rld and other factors like air temperature, 83 

water vapor, and CO2 concentration (Wang and Liang 2009; Wei et al. 2021), here we go beyond 84 

correlations and rather attribute these variations to the different terms in Eqns. (1)-(5) that represent 85 

different radiative properties affecting Rld. 86 

To figure out the dominant driver for these spatiotemporal variations, we decompose changes in Rld into its 87 

components: cloud cover, 𝑓𝑐, heat storage changes of atmosphere as reflected by 2m air temperature, 𝑇𝑎, 88 

and air humidity, 𝑒𝑎 , by performing the differentiation of these equations. We show that heat storage 89 

changes predominantly shape the diurnal range and seasonal cycle of Rld, while cloud cover variations play 90 

a second role in most cases. In addition, the temporal variations of Rld are less over the ocean than over 91 

land, and less during winter than summer. On the other hand, the spatial variations of Rld from arid to humid 92 

regions is relatively small, which we will show is due to a compensating effect of corresponding changes 93 

in atmospheric emissivity and heat storage. 94 

Our paper is organized as follows: After briefly describing the datasets used in our evaluation in Section 2, 95 

we first the estimate of Rld from these equations at the global scale, using multiple datasets in Section 3.1. 96 

After showing that the annual-mean and large-scale variations are well captured, we then use the equations 97 

to decompose the temporal variations of Rld in terms of its mean spatial and temporal variations and relate 98 

these to their causes in Section 3.2. The spatial variations of Rld are then further discussed in Section 3.3 in 99 

terms of its relationship with aridity. We then close with a brief summary and broader implications. 100 

2 Datasets  101 

To test Rld estimates, we use FLUXNET half-hour observations (Pastorello et al. 2020, half-hourly values, 102 

189 sites, see Table S1 and Figure S2 for details), the NASA-CERES monthly satellite-based radiation 103 

dataset (Doelling et al., 2013, 2016, monthly means, covering years 2001 to 2018), and the ERA5 monthly 104 

reanalysis dataset (Hersbach et al. 2018, monthly means, covering years 1979 to 2021).   105 

For each dataset, 𝑇𝑎 , 𝑒𝑎 , and 𝑓𝑐  are needed as inputs for Eqs. (1)-(5), while 𝑅𝑙𝑑  data is used for the 106 

comparison. Cloud cover 𝑓𝑐  is calculated using Eq. (3) for all three datasets with incoming solar radiation 107 

at the surface (𝑅𝑠) and the potential solar radiation (𝑅𝑠,𝑝𝑜𝑡). For NASA-CERES estimation, 𝑇𝑎 from the 108 

CPC Global Unified Temperature dataset (CPC Global Unified Temperature) is used as temperature 109 

observation.  110 

For all three datasets, water vapor pressure, 𝑒𝑎, is not directly given. It is calculated from the water vapor 111 

deficit (VPD, FLUXNET) or dewpoint temperature (Tdew, ERA5) using Monteith and Unsworth (2008): 112 

𝑒𝑎 = 6.1079 × exp (17.269𝑇𝑑𝑒𝑤/(237.3 + 𝑇𝑑𝑒𝑤)), (6) 

𝑒𝑎 = 6.1079 × exp (17.269𝑇𝑎/(237.3 + 𝑇𝑎)) − 𝑉𝑃𝐷, (7) 

And the calculated 𝑒𝑎 from ERA5 is also used in NASA-CERES estimation. 113 
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For the analysis of the spatial variations of Rld along water availability, we use the aridity index (AI =
𝑅

𝐿𝑃
) 114 

(Budyko 1958; UNCOD 1977).  This index is calculated using the mean annual net radiation (R) taken from 115 

the NASA-CERES dataset, the mean annual net precipitation (P) taken from the CPC Global Unified 116 

Gauge-Based Analysis of Daily Precipitation data (Chen et al. 2008 and Xie et al. 2007, CPC Global Unified 117 

Gauge-Based Analysis of Daily Precipitation), and a latent heat of vaporization for water of 𝐿 =118 

2260 kJ/kg.  A larger value of AI indicates stronger aridity. 119 

3 Results and discussion 120 

3.1 Comparison to observed, satellite, and reanalysis data 121 

We first compared the estimates of Rld at a point-by-point basis separately for clear-sky and all-sky 122 

conditions using Eqns. (2) and (5), respectively.  This comparison is shown in Figure 2 using FLUXNET, 123 

CERES, and ERA5 data.  The estimates correlate very well with r2 of 0.92 and 0.87 for clear-sky and all-124 

sky conditions, respectively, and RMSE values of 18.24 and 24.56 W m-2.  The slope of the linear 125 

regressions between the estimated and observed Rld for FLUXNET are 1.03 and 1.02, with most data points 126 

being concentrated around the 1:1 line (Figs. 2a and 2b).  Note that for all-sky conditions, the agreement is 127 

slighty less good, with a lower correlation coefficient and a larger RSME.  The agreement with the NASA-128 

CERES and ERA5 datasets are even better, with higher correlation coefficients and lower RSME. 129 

Despite this high level of agreement of the estimates, we can see some systematic biases in the estimates 130 

for Rld.  These can be seen in Figure 3 and Figure S3, which show the spatial distribution of these biases 131 

and their variations against temperature and humidity. For clear-sky conditions, there appears to be a 132 

general underestimation in the high latitudes and, to some extent, in arid regions (Figs. 3c and 3e). Brutsaert 133 

(1975) already described that for very low temperatures and in arid conditions, there are better parameter 134 

values than those used in Eq. 1, with a larger coefficient than 1.24 and a different exponent. This can then 135 

lead to an underestimation of Rld under low humidity (Figs. 3a, S3a, S3c). Moreover, B75 has not 136 

considered the gradual increase in emissivity as temperature decreases below freezing (Aase and Idso 137 

1978), thus explaining the underestimation under low temperature (Figs. 3b, S3b, S3b). The biases seen in 138 

Figure 3 are nevertheless notably smaller than the spatial-temporal variations shown in Figure 1. This means 139 

that these biases do not prevent us from using Brutsaert to attribute the causes for the seasonal variation 140 

and the spatial range of Rld. 141 

The biases for all-sky conditions generally share the distribution with that of clear-sky conditions, with a 142 

smaller magnitude (Figs. 3b, 3d and 3f), which are also small compared to the spatial-temporal variations. 143 

Overall, this evaluation shows that the expressions given by Eqns. (1) - (5) are very well suited to describe 144 

the spatiotemporal variations of Rld for current climatological conditions. 145 

 146 

3.2 Attribution of diurnal and seasonal variations 147 

We next use Eqns. (1) - (5) to attribute temporal variations of Rld to their physical causes.  To do so, we can 148 

express changes ∆Rld as a function of changes in water vapor, ∆ea, cloud cover, ∆fc, and air temperature, 149 

∆Ta.  The functional dependence is derived from the equations by differentiation and applying the chain 150 

rule.  In a first step, we express a change ∆Rld by the partial contributions ∆𝑅𝑙𝑑,𝜀 and ∆𝑅𝑙𝑑,𝑇, that are due to 151 

changes in emissivity, ∆𝜀, and due to changes in atmospheric heat storage that are associated with a change 152 

in air temperature ∆Ta: 153 

∆𝑅𝑙𝑑 = ∆𝑅𝑙𝑑,𝜀  + ∆𝑅𝑙𝑑,𝑇 =
𝜕𝑅𝑙,𝑑

𝜕𝜀
∆𝜀 +

𝜕𝑅𝑙,𝑑

𝜕𝑇𝑎
∆𝑇𝑎 = 𝜎𝑇𝑎

̅̅ ̅4
∆𝜀 + 4𝜎𝜀�̅�𝑎

̅̅ ̅3
∆𝑇𝑎. (8) 

The 2 terms at the right side of Eq. 8 are ∆𝑅𝑙𝑑,𝜀 and ∆𝑅𝑙𝑑,𝑇, respectively. 154 
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The contribution ∆𝑅𝑙𝑑,𝜀  is further decomposed into contributions ∆𝑅𝑙𝑑,𝑓𝑐
, ∆𝑅𝑙𝑑,𝑒𝑎

, and ∆𝑅𝑙𝑑,𝑇𝑎
′  due to 155 

variations in clouds, ∆𝑓𝑐 , air humidity, ∆𝑒𝑎, and surface temperature, ∆𝑇𝑎. We obtain: 156 

∆𝑅𝑙𝑑,𝜀 = 𝜎 𝑇𝑎
̅̅ ̅4

∆𝜀 ≈ 𝜎𝑇𝑎
̅̅ ̅4

×
𝜕𝜀

𝜕𝑓𝑐
∆𝑓𝑐  + 𝜎𝑇𝑎

̅̅ ̅4
×

𝜕𝜀

𝜕𝑒𝑎
∆𝑒𝑎 + 𝜎𝑇𝑎

̅̅ ̅4
×

𝜕𝜀

𝜕𝑇𝑎
∆𝑇𝑎

=  𝜎𝑇𝑎
̅̅ ̅4

× (1 − 1.24 (
𝑒𝑎̅̅ ̅

𝑇𝑎
̅̅ ̅

)

1
7

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

) ∆𝑓𝑐 + 𝜎𝑇𝑎
̅̅ ̅4

×
1.24

7

(1 − 𝑓�̅�)

(𝑒𝑎̅̅ ̅)
6
7(𝑇𝑎

̅̅ ̅)
1
7

∆𝑒𝑎

+ 𝜎𝑇𝑎
̅̅ ̅4

× (−
1.24

7
) ×

(1 − 𝑓�̅�)(𝑒𝑎̅̅ ̅)
1
7

(𝑇𝑎
̅̅ ̅)

8
7

× ∆𝑇𝑎) . 

(9) 

The 3 terms at the right side of Eq. 9 are ∆𝑅𝑙𝑑,𝑓𝑐
, ∆𝑅𝑙𝑑,𝑒𝑎

, and ∆𝑅𝑙𝑑,𝑇𝑎
′, respectively. 157 

Note that the third term is of less magnitude compared with the other two terms (e.g. in terms of the seasonal 158 

range as shown in Fig. 5f), which is hence not focused in this work. 159 

We next applied this approach to the diurnal deviations ∆𝑅𝑙𝑑  from the daily mean using the FLUXNET 160 

dataset.  This decomposition is shown in Figure 4 in aggregated form across the FLUXNET sites for whole 161 

year (Fig. 4a), the Northern hemisphere summer (Fig. 4b) and winter seasons (Fig. 4c). More than 95% of 162 

the diurnal variations (of about ± 20 W m-2) are caused by diurnal changes in air temperature, while 163 

variations in emissivity play practically no role (Fig. S4). Diurnal changes in air temperature reflect 164 

variations in heat storage of the atmospheric boundary layer. This is consistent with the notion that diurnal 165 

variations in solar radiation over land are buffered primarily by the lower atmosphere, rather than below 166 

the surface as it is the case for open water bodies and the ocean (Kleidon and Renner 2017).  Since most of 167 

the stations in the FLUXNET dataset are located in the midlatitudes of the Northern hemisphere, the 168 

variations are consistently larger in summer due to the greater solar input (Fig. 4b) than in winter (Fig. 4c). 169 

Figure 5 shows the same kind of decomposition, but for seasonal variations in Rld in the NASA-CERES 170 

dataset, which is the difference between the maximum and minimum of monthly Rld data.  Generally, areas 171 

with relatively low annual-mean Rld, e.g. the high latitude regions of North America and northeastern 172 

Eurasia, have the largest seasonal cycle (Fig. 1). The decomposition shows that this variation is mostly due 173 

to the seasonal variation in atmospheric heat storage (∆𝑅𝑙𝑑,𝑇), with a portion of around 73% on a global 174 

scale, and the rest are attributed to the seasonal changes in water vapor (24%) and cloud cover (12%). 175 

Notably, seasonal variations in emissivity play a greater role than atmospheric heat storage in changing Rld 176 

in tropical areas, especially over the monsoon region. This is predominantly due to the strong seasonal 177 

fluctuations in water vapor levels and cloud-cover (Figs. 5d-5f).  178 

The aggregation to the global scale across land and ocean is shown in Fig. S5, where the deviations are 179 

calculated as the difference of the monthly means to the annual mean. Figs. S5 show that the seasonal 180 

variations of Rld is generally less over the ocean than on the land, an effect that can also be seen in Fig. 1.  181 

The decomposition shows that these variations are mostly caused by changes in lower atmospheric heat 182 

storage, with a slight modulation by emissivity changes.  This can, again, be largely explained by the effect 183 

described above for the diurnal variations (Kleidon and Renner 2017). Over the land, the changes in 184 

radiation are majorly buffered by the heat storage in the lower atmosphere by the variations in convective 185 

boundary layer height. However, over marine areas, solar radiation penetrates the transparent water bodies, 186 

the heat storage of which hence buffers the season cycle of the radiation over the ocean. Since the heat 187 

storage of the water body is larger than that of the lower atmospheric boundary layer, the buffering effect 188 

is consequently larger, which leads to the less seasonal cycle of the surface temperature and Rld over the 189 

ocean. 190 

In summary, what our decomposition shows is that most temporal variations in Rld in current, climatological 191 

conditions are explained by heat storage changes within the lower atmosphere. 192 
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3.3 Attribution of geographic variations with aridity 193 

Last, we applied the decomposition to the climatological variations in Rld along with differences in mean 194 

water availability. Water availability was characterized by Budyko’s aridity index (AI), with values AI < 1 195 

representing humid regions, and larger values reflecting increased aridity. The spatial distribution of AI is 196 

shown in Fig. S6. Here, the deviations ∆𝑅𝑙𝑑 are calculated with respect to the annual mean over land. The 197 

different contributions to the deviations are shown in Fig. 6, as well as the delineation along the aridity 198 

index (Figs. 6e - f). 199 

The decomposition of the spatial distribution of the climatological means shows that the variations are 200 

largely caused by differences in lower atmospheric heat storage as well (Fig. 6a). The contribution due to 201 

variations in emissivity has a smaller magnitude (Fig. 6b), and is dominated by changes in cloud cover (Fig. 202 

6c) and changes in water vapor (Fig. 6d) at high- and mid- latitudes respectively. 203 

These variations are evaluated with respect to the aridity index in Figs. 6e, 6f and S7.  While there is a large 204 

spread, as seen in the quantiles, there is a small, but consistent trend towards lower values of Rld in more 205 

arid regions, with a magnitude of about −10~20 W m-2 across the entire aridity index spectrum (black 206 

dashed line in Figs. 6e and 6f).  We also notice a shift in the contributions, with emissivity contributing less 207 

and lower atmospheric heat storage contributing more with increased values of AI.  The decreasing 208 

contributions in emissivity of about −20~40 W m-2 is caused by reductions in cloud cover and water vapor  209 

(Figs. 6f), which can be attributed to the common presence of high-pressure systems in subtropical arid 210 

areas (Zampieri et al. 2009) and less monsoon there. The decreasing contribution by lower atmospheric 211 

emissivity is compensated for by an increased contribution of about +10~20 W m-2 by atmospheric heat 212 

storage that is caused by the generally warmer mean temperatures in arid regions. 213 

4. Discussion and Conclusions 214 

We found that the semiempirical equations of Brutsaert (1975) and Crawford and Duchon (1999) work very 215 

well to estimate the downwelling flux of longwave radiation by comparing these to estimates from 216 

observation, satellite, and reanalysis datasets, with r2 ranging from 0.87 to 0.98 across the datasets for clear-217 

sky and all-sky conditions.  We then showed that one can use these equations to decompose this flux into 218 

different components, and relate changes to differences in cloud cover, water vapor, and lower atmospheric 219 

heat storage. We found that most diurnal changes in downwelling longwave radiation are caused by 220 

differences in lower atmospheric heat storage that are reflected in differences in surface air temperature, 221 

with the changes in atmospheric emissivity playing the secondary role. The dominance of surface air 222 

temperature can be also observed in the seasonal ranges of Rld, except in tropical monsoon regions due to 223 

large variations in water vapor and cloud-cover. As for the spatial variation, from arid to humid region, the 224 

increasing lower atmospheric heat storage and decreasing atmospheric emissivity have an offsetting effect 225 

on the Rld variation, thus leading to relatively subtle changes in Rld along with aridity index.  226 

Relating our decomposition to radiative kernel helps to gain a more comprehensive understanding of 227 

variations in Rld. Referring to the sensitivity in the downwelling longwave radiation for an incremental 228 

change in an atmospheric property (e.g., Ta, fc, and ea), radiative kernel has been used to attribute Rld 229 

changes, based on numerically calculation with radiative transfer code (Previdi 2010 and Vargas Zeppetello 230 

et al. 2019) or partial differentiating with explicit formula for Rld (Shakespeare and Roderick, 2022). 231 

Following Shakespeare and Roderick (2022), the approximate radiative kernel of Ta, fc, and ea are calculated 232 

based on Eqs. 8-9 ( i.e., 
𝜕𝑅𝑙𝑑

𝜕𝑇
= 4𝜎�̅�𝑇𝑎

̅̅̅̅ 3
, 

𝜕𝑅𝑙𝑑

𝜕𝑓𝑐
= 𝜎𝑇𝑎

̅̅̅̅ 4
× (1 − 1.24 (

𝑒𝑎̅̅̅̅

𝑇𝑎
̅̅ ̅̅ )

1
7

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

), and 
𝜕𝑅𝑙𝑑

𝜕𝑒𝑎
= 𝜎𝑇𝑎

̅̅̅̅ 4
×

1.24

7

(1−𝑓𝑐
̅̅̅̅ )

(𝑒𝑎̅̅̅̅ )
6
7(𝑇𝑎

̅̅ ̅̅ )
1
7

) 233 

and shown in the left panel of Fig. S8. As shown in Fig S8a, the sensitivity of Rld to Ta peaks in the tropics 234 

with a maximum of around 5 W/m2/K and decreases at higher latitudes, which is generally consistent with 235 

Shakespeare & Roderick (2022). Moreover, the seasonal cycle of the atmospheric properties themselves 236 

are shown in the right panel of Figure S8, which reveals that the spatial distribution of the contribution of 237 
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Ta, ea, and fc to the seasonal variations in Rld (Figure 5) is dominated by the seasonal changes of the air 238 

properties (Figs. S8b, S8d, and S8f) instead of the sensitivity of Rld to them (Figs. S8a, S8c, and S8e). 239 

These equations can then be applied to different aspects of climate research. For instance, the values of 240 

downwelling longwave radiation are often missing in FLUXNET data (Table S2), and these equations can 241 

be used to fill the gaps with air temperature and humidity observations.  We can also use these equations to 242 

better understand the physical mechanisms for temperature change due to extreme events.  For instance, 243 

Park et al. (2015) and Alekseev et al. (2019) found that an enhancement of downwelling longwave radiation 244 

in the Arctic is found to be preceded by the advection of moisture and heat. The equations by Brutsaert 245 

(1975) and Crawford and Duchon (1999) can then be used to quantify the individual contributions by the 246 

advection of heat and moisture (Tian et al. 2022). Another example is the attribution of differences in 247 

temperature magnitudes across humid and arid regions (Ghausi et al., 2023).  Du et al. (2020) used these 248 

equations to explain why global warming was stronger during clear-sky conditions in observations in China 249 

due to the greater sensitivity of clear-sky emissivity to a change in water vapor.  This was then used to 250 

explain the observed, stronger global warming in the arid regions of China, which have less clouds and a 251 

higher frequency of clear-sky conditions than the humid regions. Furthermore, while the empirical 252 

coefficient of 1.24 in Eq. (1) may change due to emissivity changes from greenhouse gases, this formulation 253 

can nevertheless provide a useful basis in terms of the interannual changes of Rld, which is shown in Fig. 254 

S9. As shown in Fig. S9a, Rld increases in most of the land regions, at an average rate of 0.64 W/m2/decade, 255 

with the contribution of increased temperature, increased water vapor, and decreased cloud cover 256 

contributing 0.46, 0.28, -0.10 W/m2/decade, respectively. Furthermore, it can be observed in Figs. S9d-S9i 257 

that the temperature effect is generally around 0.5 W/m2/decade, while the influence of emissivity is 258 

significantly dominant in the monsoon region, which is majorly due to the interannual changes in water 259 

vapor. 260 

It is worth noting that several effects on Rld variations are not included in B75 and C&D99, e.g., the well-261 

mixed greenhouse gas concentrations (Shakespeare and Roderick, 2022), large aerosol particles (Zhou and 262 

Savijärvi. 2013), and cloud base (Viúdez-Mora et al. 2015). Although rarely influencing the diurnal change, 263 

seasonal cycles, and spatial distribution, these terms needs attention when the interannual trend of Rld is 264 

investigated under global warming, which can be implied by the difference between Figs. S9a and S9b. In 265 

addition, B75 in conjunction with C&D99 is adopted in this work to decompose the Rld variations in 266 

different spatial-temporal scales, considering its solid physical foundations and the relatively less 267 

computation consumption. Further analysis can be performed based on other estimations, e.g. Prata 1996, 268 

which shows consistency with reanalysis data (Allan et al. 2004). The cloud effect can be also detected 269 

using the difference between all-sky and clear-sky Rld (Allan 2011; Ghausi et al., 2022). Moreover, datasets 270 

that are more focused on radiation and energy budget can be used to test the robust of the results, e.g., 271 

BSRN (Driemel et al. 2018) and GEBA (Wild et al. 2017). 272 

We conclude that the equations by Brutsaert (1975) and Crawford and Duchon (1999) are still very useful 273 

in advancing our understanding of surface temperature changes. Our evaluation has shown how well these 274 

equations estimate this flux, and our application to the decomposition of different contributions has shown 275 

its utility in understanding the causes of its variation. These equations should help us to better understand 276 

aspects of climate variability, extreme events, and global warming, linking these to the mechanistic 277 

contributions by downwelling longwave radiation. 278 
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Figures 460 

 461 

Figure 1. Spatial distribution of (a, c) the climatological mean and (b, d) the seasonal amplitude of 462 

downward longwave radiation and absorbed solar radiation at the surface respectively from the NASA-463 

CERES dataset. The seasonal amplitude is calculated as the difference between the maximum and minimum 464 

monthly data. 465 

(a) (b)

(c) (d)
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 466 

Figure 2. Comparison of Rld estimated by Brutsaert (1975) (a, c, e) for clear-sky conditions and by 467 

Crawford and Duchon (1999) (b, d, f) for all-sky conditions using (a, b) FLUXNET hourly data of 189 468 

sites, (c, d) NASA-CERES monthly data of 1°×1° from 2001 to 2018 and (e, f) ERA5 monthly data of 469 

resolution of 1°×1° from 1979 to 2021. Colors indicate the density of the data points and is scaled to values 470 

between 0 - 1. 471 
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 472 

Figure 3. Biases in the estimates for multi-year mean Rld for FLUXNET data of 189 sites against (a) air 473 

temperature and (b) water vapor pressure. Distribution of biases in the estimates for multi-year mean Rld 474 

for (c, d) NASA-CERES data from 2001 to 2018 and (e, f) ERA reanalysis from 1979 to 2021 for (c, e) 475 

clear-sky and (d, f) all-sky conditions over land. Grey shading indicates missing values. 476 

  477 

(c) (d)

(e) (f)

(a) (b)
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 478 
Figure 4. The multi-year average diurnal variations in Rld (black dashed line) and its decomposition into 479 

contributions by changes in emissivity (blue, ∆𝑅𝑙𝑑,𝜀) and lower atmospheric heat storage (red, ∆𝑅𝑙𝑑,𝑇) in 480 

the FLUXNET dataset aggregated over 189 sites for (a) the whole year, (b) June-August, and (c) December 481 

– February. The box shows the variation among the 189 sites. The upper and lower whiskers indicate 95th 482 

and 5th percentiles, upper boundary, median line, and lower boundary of the box indicate the 75th, 50th, and 483 

25th quantiles, respectively. For each site and each day, the daily mean value is removed, with the deviations 484 

shown. Regression lines are based on site-mean or grid-mean value using LOESS regression. 485 

 486 

 487 
Figure 5. Decompositions of the mean seasonal variation (∆ , difference between the maximum and 488 

minimum monthly data at each grid) of Rld in the NASA-CERES dataset into contributions by (a) lower 489 

atmospheric heat storage ( ∆𝑅𝑙𝑑,𝑇 ) and (b) emissivity (∆𝑅𝑙𝑑,𝜀),  and (c) their latitudinal variations. 490 

Decomposed of ∆𝑅𝑙𝑑,𝜀  into contributions by variations in (d) cloud cover (∆𝑅𝑙𝑑,𝑓𝑐
) and (e) humidity 491 
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(∆𝑅𝑙𝑑,𝑒𝑎
), (f) their latitudinal variations. In Figs. a, b, d, e, grey shading indicates missing values. In Figs. c 492 

and f, the box shows the variation among the land grids at the same latitude, while the solid line is their 493 

mean. The upper and lower whisker indicate 95th and 5th percentiles, upper boundary, median line, and 494 

lower boundary of the box indicate the 75th, 50th, 25th quantiles, respectively. 495 

 496 

 497 
Figure 6. Decompositions of the multiyear-mean spatial variation of Rld (deviations of the multiyear-mean 498 

value for each grid from the land-mean value) in the NASA-CERES dataset into contributions by (a) lower 499 

atmospheric heat storage (∆𝑅𝑙𝑑,𝑇) and (𝑏) emissivity (∆𝑅𝑙𝑑,𝜀).  Decomposition of ∆𝑅𝑙𝑑,𝜀 into contributions 500 

by (c) variations in cloud cover (∆𝑅𝑙𝑑,𝑓𝑐
) and (d) humidity (∆𝑅𝑙𝑑,𝑒𝑎

). Ins Figs. a-d, grey shading indicates 501 

missing values. In Figs. e and f, the box shows the variation among the land grids with the same aridity. 502 

The upper and lower whisker indicate 95th and 5th percentiles, upper boundary, median line, and lower 503 

boundary of the box indicate the 75th, 50th, 25th quantiles, respectively.  504 

 505 

 506 

 507 

 508 
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