
This is a clear manuscript that cleanly demonstrates the utility of Brutsaert’s equation for 
calculating DLR from two easily observable state variables (two meter air temperature and 
vapor pressure).  I had never heard of Brutsaert’s empirical equation before reading this 
paper, and the manuscript gave some nice physical insights on DLR variations across time and 
space.  

We thank the reviewer for his appreciation of our work and constructive comments. The reviewer 
suggested some important points that need more clarity. We have now accordingly revised the 
manuscript with the point-by-point response mentioned in this document. The reviewer 
comments are shown in bold blue and our responses are shown in black. And the italic text in 
Times New Roman style is what we revised in the text.  

One major question I have is, how does Brutsaert’s equation compare to radiative kernels, 
which have been used by a few recent studies (e.g. Shakespeare & Roderick 2022 and Vargas 
Zeppetello et al. 2019) to attribute changes in DLR to changes in near-surface state variables? 
This might help give Brustaert’s equation a more interpretable physical intuition, because the 
kernels are calculated via climate models and their radiative transfer schemes.  

[Reply] Thank the reviewer for the constructive comment. As suggested, we have now used 
radiative kernels as described in Vargas Zeppetello et al. (2019) and Shakespeare & Roderick 
(2022) to understand the sensitivity in the estimated downwelling longwave radiation for the 

seasonal change in the atmospheric property (Ta, ea, and fc), i.e., 
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. The results are shown in Figure R1, 

together with the seasonal cycle of the atmospheric properties themselves. For a clearer 
interpretation, we also plot the contribution of Ta, fc, and ea to the seasonal change of Rld in this 
reply as Fig. R2.  

As shown in Fig R1a, the sensitivity of Rld to Ta peaks in the tropics with a maximum of around 5 
W/m2/K and decreases at higher latitudes, which is generally consistent with Shakespeare & 
Roderick (2022). Moreover, the seasonal cycle of the atmospheric properties themselves is 
shown in the right panel of Figure R1, which reveals that the spatial distribution of the 
contribution of Ta, ea, and fc to the seasonal variations in Rld (Figure R2) is dominated by the 
seasonal changes of the air properties (Figs. R1b, R1d, and R1f) instead of the sensitivity of Rld 
to them (Figs. R1a, R1c, and R1e).” 
 

[Action] We add Fig. R1 to the supplementary information as Fig.S8, put Fig.R2 in the main text 
as Fig. 5, and add the related analysis to the discussion:  



 

Fig. R1 Distribution of the sensitivity of the seasonal cycle of Rld to surface air temperature (
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their latitudinal variations. Distribution of the seasonal cycle of surface air temperature (b), cloud cover (d), and 
water vapor pressure (f), and their latitudinal variations. Seasonal cycle (Δ) indicates the difference between the 

maximum and minimum montly data. In maps, grey shading indicate missing values. In boxplots, the box shows the 
variation among the land grids at the same latitude, while the solid line is their mean. The upper and lower whisker 
indicate 95th and 5th percentiles, upper boundary, median line, and lower boundary of the box indicate the 75th, 
50th, 25th quantiles, respectively. Data are from the NASA-CERES dataset. 



 

Fig. R2 Decompositions of the mean seasonal variation of Rld (Δ, difference between the maximum and minimum 

monthly data at each grid) in the NASA-CERES dataset into contributions by lower-level atmospheric heat storage 
(∆𝑅𝑙𝑑,𝑇) (a) and emissivity (∆𝑅𝑙𝑑,𝜀) (𝑏), and their latitudinal variations (c). Decomposed of ∆𝑅𝑙𝑑,𝜀  into contributions 
by variations in cloud cover (∆𝑅𝑙𝑑,𝑓𝑐

) (d) and humidity (∆𝑅𝑙𝑑,𝑒𝑎
) (e), their latitudinal variations (f). In Figs. a, b, d, e, 

grey shading indicates missing values. In Figs. c and f, the box shows the variation among the land grids at the same 
latitude, while the solid line is their mean. The upper and lower whisker indicate 95th and 5th percentiles, upper 
boundary, median line, and lower boundary of the box indicate the 75th, 50th, 25th quantiles, respectively. 

 

Comments: 

1. Figs 1 and 5: This is totally a personal preference, but I don’t like diverging colorbars when all 
the values are positive. I would use a sequential color bar for these figures to contrast them 
with the bias/difference maps in the rest of the paper. 

[Reply] Thank the reviewer for the useful comment. We agree that diverging colorbar may give 
a wrong interpretation of the figure. 

[Action] Using sequential colorbar in Figs. R3 and R2, which are Figs. 1 and 5 in the revised text, 
respectively. 



 
Figure R3. Spatial distribution of the climatological mean (a, c) and the seasonal amplitude (b, d) of downward 
longwave radiation and absorbed solar radiation at the surface respectively from the NASA-CERES dataset. The 
seasonal amplitude is calculated as the difference between the maximum and minimum monthly data. 

 

2. Line 33: Check if it’s the dominant term (isn’t surface OLR bigger?) 

[Reply] Although the surface Outgoing Longwave Radiation (OLR) is the largest term in the 
surface energy balance (averaging 396 W/m² globally), we have deliberately chosen not to 
emphasize it in our discussion. Our focus is on highlighting the energy input in the surface 
energy balance, primarily comprising downward longwave radiation and absorbed solar 
radiation. 

[Action] Revise the sentence as “In the global mean surface energy budget, downward longwave 

radiation (Rld) is the dominant surface energy input (333 W/m2), contributing more than twice as 

much energy as absorbed solar radiation (161 W/m2) (Trenberth et al. 2009)”. 

3. Line 44: This is a nice description of the development of Brutsaert’s Equation, but I’d love for 
a bit more physical intuition of why we should expect the 1/T_a dependence of the emissivity 
on temperature. 

[Reply] Thank you for the comment. The 1/Ta dependence of the emissivity on the temperature 
in equation 1 largely arises from the way Brutsaert 1975 derives the equation following the 
assumption of a standard atmosphere. Brutsaert derived the emissivity by integrating 

(a) (b)

(c) (d)



Schwarzschild’s equation (equation 2 in B75: ( 𝐹𝐿𝑈 , 𝐹𝐿𝐷) = ∫ 𝜋𝐵(𝑇)
𝜕𝜖0(1.66𝑎,𝑇)
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According to that equation, the emissivity will depend on the scaled amount of water matter 
(𝑎) for a clear sky. The scaled amount of water vapor (𝑎) then in turn depends on humidity 

profiles (equations 3 and 8 in B75:  𝑑𝑎 = 𝜌𝜔(𝑝/𝑝𝑠)1/2𝑑𝑧 and 𝜌𝜔 = 0.622 (
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) is introduced into the Equation, which essentially represents 

water vapor amount (𝑒𝑎) considering the air volume increases (𝑇𝑎) with temperature (𝑑𝑧). As 
we mentioned, Brutsaert then assumed a standard atmosphere and derived simple expressions 
for humidity profiles that solely depend on surface temperature (𝑇𝑎) and surface water pressure 
(𝑒𝑎) (equations 5, 7, and 8 in B75), while the integrated terms related to air volume (𝑑𝑧) is 
replaced by the empirical parameters "1.24" and "1/7". 

However, we would like to point out that emissivity is largely insensitive to changes in 
1

𝑇𝑎
 (as 

demonstrated in the yellow line in Fig. R2f), which has also been acknowledged by B75. In fact, 
B75 provides another expression of emissivity that solely relies on water-vapor pressure at the 

surface (Equation 11’ in B75: 𝜖𝑎0 = 0.553 𝑒𝑎
1/7). Moreover, we note that the dependence of 

1

𝑇𝑎
 

on emissivity is also hidden in equation 1 due to changes in saturation vapor pressure with 

temperature. Therefore, it is hard to give a physical description of 
1

𝑇𝑎
 in Eq. 1 directly. 

On the other hand, another dependence on emissivity on 𝑇𝑎 with physical explanations has 
been discussed in the current work. Under the freezing point, the emissivity will increase along 
with decreased temperature (Aase and Idso, 1978), which was not taken into account in B75 
and partially contributes to the negative bias observed at low temperatures (Fig. R4a, which is 
Figure 3 in the revised manuscript). 

[Actions]  

(1) Following Eq.1, we add a sentence to make the point clear as “Note that the dependence of 𝜀𝑐𝑠 

on 1/𝑇𝑎 shown in Eq.1 should not be overinterpreted considering the derivation of the formula and also 

the correlation between 𝑇𝑎 and 𝑒𝑎.” 

(2) In Figure R2f, we have directly demonstrated the contribution of temperature anomalies to 
variations in emissivity. However, this contribution is of a smaller magnitude compared to that 
of cloud and water vapor, and therefore it has received less focus in our work. 

(3) We have discussed to effect of temperature on emissivity under the freezing temperature to 
understand the underestimation of B75 at low temperatures (Fig. R4a) as follows. 

 



 

Fig. R4 Biases in the estimates for multi-year mean Rld for FLUXNET data of 189 sites against air 
temperature (a) and water vapor pressure (b). Distribution of biases in the estimates for multi-year mean 
Rld for (c, d) NASA-CERES data from 2001 to 2018 and (e, f) ERA reanalysis from 1979 to 2021 for (c, e) 
clear-sky and (d, f) all-sky conditions over land. Grey shading indicates missing values. 

4. Lines 50-51: I understand this equation is empirical, so the units don’t have to make sense, 
but I think you should name the correct units for this equation in your description so readers 
who want to use this formula immediately know how to apply it. I also assume e_a corresponds 
to the 2m vapor pressure, but it’s not stated explicitly. 

[Reply] Thank you for pointing this out.  

[Action] We have specified the unit of 𝑒𝑎 (millibars) and 𝑇𝑎  (K), as well as the definition of 𝑒𝑎. 

5. Line 62: Can you be specific about what “this” estimate refers to, Is it Eq. 4, or 5? 

(c) (d)

(e) (f)

(a) (b)



[Reply] Thanks for pointing out a potential unclarity. “This” refers to Eqs. 4, and 5.  

[Action] The sentence is rewritten for better clarity. 

6. Lines 105-107: Is the cloud cover fraction from CERES used for all the calculations? If so, 
what’s the relationship between cloud cover calculated from CERES and the very specific way it 
is defined in Eq. 3? 

[Reply] We sincerely appreciate the reviewer for providing insightful and critical feedback. As 
shown in Fig. R5, the value derived from Equation 3 generally yields smaller cloud cover 
fractions compared to those obtained from both the CERES and ERA5 datasets. As a result, 
when estimating Rld based on Equation 3 under all sky conditions, the error distribution closely 
resembles that of clear sky conditions (Figures R4c-R4f). Moreover, this discrepancy affects the 
decomposition of seasonal variations, highlighting a higher contribution of water vapor 
anomalies to emissivity in tropical regions, particularly the Intertropical Convergence Zone, 
while cloud cover variations exert a greater influence over high latitudes (Figs. R2). 

[Action] We have conducted all our analyses using fc calculated from Equation 3 instead of the 
cloud cover fraction. 

 

Fig. R5 The scatter plot using the calculated cloud cover fraction (fc’=1-R/Rpot) and cloud cover from CERES 
datasets (fc). The dashed orange line is the linear regression while the solid blue line delicates the slope of 1. 

 

7. Lines 127-131: Similar to my question about line 44, there’s not much physical explanation 
for these biases, the authors merely note that Brutsaert also discussed how the equation was 



biased for places with big temperature departures away from the global mean. I’m also not 
sure why the fact that the biases are less than the seasonal cycle is relevant. 

[Reply] As mentioned in our response to comment #3, the underestimation observed at low 
temperatures, particularly near and below the freezing point, in Brutsaert's equation is 
attributed to its failure to account for the increase in Rld with decreasing temperatures below 

0 ℃, as discussed in Aase and Idso (1978). It is worth noting that the biases identified, despite 

their presence, are smaller in magnitude compared to seasonal variations. Consequently, these 
biases do not hinder our utilization of the Brutsaert equation to attribute the causes behind 
seasonal variations. 

[Action] In order to further enhance our understanding of the errors in B75, we have included 
this physical explanation in our work as follows: “Moreover, B75 has not considered the gradual 

increase in emissivity as temperature decreases below freezing (Aase and Idso 1978), thus 

explaining the underestimation under low temperature (Figs. 3b, S3b, S3b). The biases seen in 

Figure 3 are nevertheless notably smaller than the spatial-temporal variations shown in Figure 

1, this means that these biases do not prevent us from using Brutsaert to attribute the causes for 

the seasonal variation and the spatial range of Rld.” 

 
8. Lines 132-135: Could the consistent positive bias in the all-sky calculation be driven by the 
cloud fraction definition related to my comment on lines 105-107? I think the definition of 
cloud fraction in these equations is pretty important to potential biases. 

[Reply] Yes, the consistent positive bias in the all-sky calculation was driven by the way cloud 
fraction was defined from CERES. After repeating the analysis using a new metric of cloud-
fraction as described in C&D 99, we found that the consistent positive bias in the all-sky 
calculation cannot be detected anymore (as shown in Fig. R4). We thank the reviewer for 
pointing this out.  

9. Fig 3: Can you also show the biases from the AMERIFLUX dataset? Do those biases line up 
with the expectations from the global datasets? 

[Reply] Thank you for this comment, which helps to justify our related statement. 

[Action] Since the FLUXNET stations are primarily located in America and Europe, interpreting 
errors on the map figure becomes challenging. To address this, we have directly showcased the 
biases derived from the FLUXNET dataset alongside temperature and water vapor pressure 
(Figs. R4a-R4b), which demonstrates consistent patterns with the CERES and ERA5 datasets (Fig. 
R6, which is Fig. S3 in the supplementary material). 



 

 
Figure R6. The same as Figs. R4a and R4b but with data from ERA5 (a and c) and CERES data (b and d) 

10. Line 147: Is it small compared to  or just small compared to  from the Stephan 
Boltzman law? Are the water vapor and temperature components from the the emissivity 
equation of the same order of magnitude? If so, I think both temperature terms should be 
included. 

[Reply] Although the pictures of the two equations in the comment are not available from our 
side, most likely due to a website issue, we assume that the reviewer is interested in 
understanding to which extent temperature variation contributes to the change in emissivity 
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[Action] in the revision, we have substantiated this statement with Fig. R2f. 

11. Lines 166-169: The monsoonal regions really stick out as having a sizable water vapor 
control on DLR. Even though the cloud cover causes changes in seasonal cycle strength, the 

(a) (b)

(c) (d)



ultimate cause is changing water vapor or monsoonal circulation patterns, and I think this 
should be noted. 

[Reply] Considering the substitution of the cloud cover fraction with the value calculated from 
Eq.3, the decomposition analysis has been impacted. 

[Action] Consequently, we have conducted a reanalysis of the relevant data, revealing a 
noteworthy influence of water vapor on downward longwave radiation (DLR) over the 
Intertropical Convergence Zone (ITCZ) and monsoon regions (Fig. R2). 

12. Lines 183-187: I’m confused about what’s being plotted in Fig. 6a-d. Are these departures 
from the global mean that includes the ocean or just the terrestrial global mean? 

[Reply] We apologize for not making it clear. It is the departure from the terrestrial global 
mean. 

[Action] It has been made clearer in the caption as “Figure 6. The decomposition of the annual-

mean spatial variations (Δ, departure from the terrestrial global mean) of in the NASA-CERES dataset 

into contributions by (a) atmospheric heat storage (∆𝑅𝑙𝑑,𝑇) and (b) emissivity (∆𝑅𝑙𝑑,𝜀). The variations in 

∆𝑅𝑙𝑑,𝜀 are further decomposed in contributions by variations in (c) cloud cover (∆𝑅𝑙𝑑,𝑓𝑐
) and (d) humidity 

(∆𝑅𝑙𝑑,𝑒𝑎
).” 

13. Line 195: 20W/m2 across the entire aridity index spectrum.  

[Reply] Thank you for this detailed comment. 

[Action] We have incorporated it into the text. 
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