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Abstract. Water vapour isotopes reflect the history of moist atmospheric processes encountered by the vapour since evaporation

from the ocean. This study focuses on water isotope variability in the winter trades near Barbados at cloud base, which has

been identified as an important level for understanding the net radiative effects of shallow cumuli. The analyses are based on

nested convection resolving COSMOiso simulations during the EUREC4A field campaign. The two main findings are that (i)

the contrasting isotope and humidity characteristics in clear-sky versus cloudy cloud base environments emerge due to vertical5

transport on time scales of 12 hours associated with local, convective circulations and show a clear diel cycle; and (ii) the

cloud base isotopes are, in addition, sensitive to variations in the large-scale circulation on time scales of several days, which

shows on average a Hadley-type subsidence but occasionally much stronger descent related to extratropical dry intrusions.

This investigation, based on high-resolution isotope-enabled simulations in combination with trajectory analyses, reveals how

dynamical processes at different scales act in concert to produce the observed humidity variations at the base of trade-wind10

cumuli.

1 Introduction

The response of shallow trade-wind clouds to climate change is uncertain and known to contribute substantially to the spread

of climate projections (e.g., Bony et al., 2015; Zelinka et al., 2017). To shed light on the mechanisms controlling cloud fraction

in the trades, the field campaign EUREC4A (Stevens et al., 2021) was conducted in early 2020 near Barbados. The collected15

observations highlight the role of shallow mesoscale overturning circulations (George et al., 2022) in driving the variability of

vertical velocities at cloud base, which is an important control of cloud fraction at this level (Vogel et al., 2022). It remains to

be investigated how these overturning circulations, which have recently gained attention from the scientific community, shape

the environment, particularly the distribution of humidity (Albright et al., 2022) and eventually cloud fraction.

Here, we are interested in using the abundance of heavy stable water vapour isotopologues as tracers of cloud microphysical20

processes, as well as turbulent and convective mixing. Heavy stable water vapour isotopologues (hereafter isotopes) are water

molecules containing a heavy hydrogen (1H2H16O) or oxygen atom (1H2
18O). Compared to their light counterpart (1H2

16O),

they have lower saturation vapour pressures and lower diffusive velocities. This results in a change in the relative abundance
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of heavy-to-light isotopes during phase transitions. The isotopic composition of a water sample is typically assessed with the

δ-value for 2H and 18O, respectively:25

δ2H [‰] =
(

2Rsample

2RVSMOW
− 1

)
· 1000 (1)

δ18O [‰] =
(

18Rsample

18RVSMOW
− 1

)
· 1000 (2)

The R in the equations above stands for the atomic ratio of the concentration of the heavy to the light isotope, namely 2R =
[2H]
[1H] and 18R = [18O]

[16O] , in the water sample and the internationally accepted Vienna Mean Ocean Standard Water 2 (VSMOW;30

International Atomic Energy Agency, 2017). The relative variations of δ2H and δ18O is assessed with the deuterium excess:

d-excess = δ2H− 8× δ18O (3)

which is a measure of the thermodynamic disequilibrium of the environment during phase transitions (e.g., Pfahl and Wernli,

2008). Due to these mechanisms, the abundance of heavy isotopes reflects the integral of all phase changes that occur along

the flow. While the first-order isotope parameter δ2H is sensitive to microphysical processes and mixing (Gat, 1996; Galewsky35

et al., 2016), the second-order isotope parameter d-excess is sensitive to the thermodynamic conditions at the moisture source

(Pfahl and Wernli, 2008; Aemisegger et al., 2021). Part 1 of this paper showed that the horizontal variability of humidity and

δ2H of vapour at the cloud base emerges due to the cloud-relative circulation (Fig. 1a). Cloudy cloud base patches (representing

the ascending branch) are moister and more enriched than the background conditions. In contrast, clear-sky, dry-warm cloud

base patches (hereafter dry-warm patches; representing the descending branch) are drier and more depleted than the background40

conditions. This suggests, against the above-formulated expectations, that the isotopic characteristics of the two cloud base

features mainly reflect vertical transport and are not primarily controlled by local microphysical or turbulent mixing processes.

In part 2 of this study, we establish a link between isotopes in the trade-wind region and characteristics of atmospheric

circulations. For this, we use three nested convection resolving COSMOiso simulations with different resolutions and air parcel

backward trajectories from the cloud base environment. This data set and the applied methods are described in detail in Sect. 2.45

First, we look at processes on the mesoscale (Sect. 3). We investigate how convection drives the variability of humidity and

isotopes in different cloud base environments (cloudy vs. dry-warm). Since convection in the trades has a clear diel cycle

(Vial et al., 2019; Vogel et al., 2020; Vial et al., 2021), we use it as a framework to answer the question: Does the diel cycle

of humidity and δ2H in different cloud base environments reflect the growth and decay of convection? Second, we test the

hypothesis that the large-scale circulation transporting air into the trade-wind region leaves a distinct isotope signal in the50

cloud base vapour (Sect. 4). We thus address the question: Which of the three variables, specific humidity, δ2H, and d-excess

is most strongly influenced by the large-scale circulation? In the conclusion, we combine the findings from the two research

questions (Sect. 5).
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Figure 1. Idealised schematic of the processes affecting (a) the δ2H in vapour within the overturning circulation associated with clouds,

and (b) the d-excess in vapour during large-scale transport. Shown are three atmospheric layers, the subcloud layer, the cloud layer, and the

free troposphere. They are separated by the cloud base level (dotted grey) and the trade inversion (dashed brown). It is assumed that the two

boundaries have an uneven topography in reality. However, in the simulations cloud base is identified at a constant height. Therefore, the

cloudy (thick green line in a) and the dry-warm (thick red line in a) cloud base environments are defined at the flat cloud base. (a) Within the

cloud-relative circulation, air parcels (E) take up freshly evaporated and, therefore, isotopically heavy vapour from near the ocean surface;

(B) may encounter below-cloud processes such as partial or full evaporation of hydrometeors and equilibration between vapour and liquid

droplets, which can have a depleting or an enriching effect on the vapour; (C) will continuously lose heavy isotopes as soon as they reach

the lifting condensation level and cloud and rain droplets are formed. Note that the temperature effect makes the fractionation stronger with

increasing altitude. At any height, the now isotopically light air parcels may be detrained from the cloud into the surrounding clear-sky

environment. Here, (D) the air parcels’ vapour can get further depleted by mixing with vapour from above the trade inversion. (b) Within

the large-scale circulation, air parcels can (E) take up moisture that is freshly evaporated from the ocean surface under non-equilibrium

conditions and therefore has a relatively high d-excess (Pfahl and Wernli, 2008); (D) get moistened through the detrainment of cloudy air

from precipitating clouds and have a comparatively low d-excess (Noone, 2012).

2 Data and methods

2.1 Applied datasets55

The data from three convection-resolving COSMOiso simulations, described and evaluated in Villiger et al. (2023), are used.

The simulations differ in terms of domain and horizontal grid spacing. They are referred to as COSMOiso,1km, COSMOiso,5km,

and COSMOiso,10km. COSMOiso,1km and COSMOiso,5km are used to characterise the cloud-relative circulation (Sect. 3), and

COSMOiso,10km to assess the large-scale circulation (Sect. 4). For this, air parcel backward trajectories are calculated with data

from COSMOiso,5km and COSMOiso,10km using the Lagrangian analysis tool Lagranto (Wernli and Davies, 1997; Sprenger60

and Wernli, 2015). Lagranto trajectories are based on the three-dimensional wind fields of the applied dataset, which do not

resolve sub-grid scale boundary layer processes. To alleviate this limitation, we compute a large set of trajectories. Note also

that the COSMOiso,10km trajectories spend comparably little of their lifetime near the boundary layer, and the COSMOiso,5km
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trajectory are explicitly started from features that are dominated by subsidence and expected to evolve at a speed resolved by

the grid-scale winds.65

2.2 Definition of cloud base

Cloud base is identified using the same procedure as in Villiger et al. (2023), i.e., with the following steps:

1. Every vertical profile in the domain 54.5-61◦W and 11-16◦N is checked for cloud water content exceeding 10 mg kg−1

(threshold for the detection of clouds used in Vial et al., 2019) at any model level below 1.3 km. The lowest model level

meeting this criterion is taken as the cloud base of the respective vertical profile. If the profile does not contain any clouds70

(i.e., does not meet the criteria), it is ignored in the subsequent step.

2. In order to extract cloud base conditions we determine one cloud base model level for the domain 54.5-61◦W and

11-16◦N by calculating the median over the cloud base model levels identified for cloudy profiles in the previous step.

3. Steps 1 and 2 are repeated for every hourly time step of the simulated time period. The resulting time series of cloud

base model levels can then be used to extract cloud base variables from the COSMOiso simulations.75

The hourly cloud base levels alternate between 783 and 970 m for COSMOiso,10km and 761, 914, and 1082 m for COSMOiso,5km

and COSMOiso,1km.

2.3 Definition of cloud base features

The COSMOiso,1km and COSMOiso,5km grid points at cloud base in the domain 54.5-61◦W and 11-16◦N are assigned to

three categories representing features from the overturning circulation associated with clouds, clear-sky regions with dry-80

warm anomalies, and clear-sky regions of no particular interest (see details in Villiger et al., 2023, note that here we do not

differentiate between precipitating and non-precipitating clouds and only take the vertical distribution of cloud water into

account). The following definitions are applied to assign the data points:

– Cloudy grid points are identified through liquid cloud water content exceeding 10 mg kg−1. They are further stratified

into shallow, middle, and deep clouds (size of categories in Fig. 5a) depending on their cloud top pressure (pcloudtop)85

identified as the lowest pressure level in the vertical profile with liquid water exceeding 0 mg kg−1 (we relax the cloud

criteria for cloud tops compared to cloud bases because we want to identify decaying clouds as well). More precisely:

– shallow clouds have a pcloudtop larger than 800 hPa,

– middle clouds have a pcloudtop between 800 and 750 hPa,

– and deep clouds have a pcloudtop between 750 and 500 hPa.90

There are negligible (< 1%) of the clouds that remain unclassified (i.e., have a pcloudtop above 500 hPa).
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Figure 2. Hourly time series of fraction of cloud base grid points in the domain 54.5-61◦W and 11-16◦N with cloud liquid water exceeding

10 mgkg−1 in COSMOiso,5km and COSMOiso,1km (red dashed). The total number of cloud base grid points in the considered domain are 12632

for COSMOiso,5km, and 316028 for COSMOiso,1km.

– Dry-warm grid points are identified by a positive anomaly in potential temperature (θ) and a negative anomaly in specific

humidity (q). The anomalies are defined grid-point-wise by removing the daily cycle. For each grid point, the hour-of-

the-day mean and standard deviation are calculated over the whole simulated period (20 January to 13 February 2020).

Dry-warm grid points are then selected using the following criteria: qi,t < qi,h(t)−σ(qi,h(t)) and θi,t < θi,h(t)+σ(θi,h(t))95

(i standing for the grid points inside the evaluation domain, t for the hourly time steps of the simulated period, h(t) for

the hour of the day corresponding to the time step t). We checked that these criteria exclusively select clear-sky grid

points (i.e., liquid cloud water content below 10 mg kg−1) without using an additional criterion for the liquid cloud

water content. An overview of the number of identified dry-warm grid points per time step is given in Fig. 2 and an

exemplary time step illustrating their spatial distribution in Fig. 3.100

– The remaining clear-sky grid points (i.e., liquid cloud water content below 10 mg kg−1, but no positive anomaly in θ and

no negative anomaly in q) belong to the clear-sky regions of no particular interest.

2.4 Subsidence in the cloud-relative circulation

To assess the subsidence rate of the mesoscale features that form the dry-warm patches at cloud base, we calculate 48 h-

backward trajectories starting from the dry-warm cloud base grid points identified in COSMOiso,5km (e.g., the red dots shown105

in Fig. 3d). The backward trajectories are started every hour from 22 January to 13 February 2020. The mean 1-h change of

altitude (∆z; Fig. 4b) for different time windows for each trajectory is used as a measure of the air parcel’s vertical velocity.

The mean vertical velocity of all air parcels arriving at cloud base at a given time step is, in most cases, negative. Therefore,

we refer to it as the subsidence rate.
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Figure 3. Spatial distribution of (a,d) cloud base grid points identified as dry-warm and cloud liquid water (QC), (b,e) specific humidity

(QV), and (c,f) potential temperature (θ) at cloud base at 15 UTC on 2 February 2020. Shown is the data from (a-c) COSMOiso,1km and (d-f)

COSMOiso,1km in the domain 54.5-61◦W and 11-16◦N. The fraction of grid points in the domain identified as dry-warm is (a) 3.27 % and

(b) 4.32 %.

2.5 Subsidence in the large-scale circulation110

We calculate trajectories based on COSMOiso,10km data to evaluate the role of the large-scale circulation for the isotopic com-

position of vapour around cloud base in Sect. 4. A total of 138 Lagranto trajectories, reaching 6 d backwards in time, are started

every hour from 22 January to 13 February 2020, which is sufficient to capture the influence of a large-scale signal. The starting

points are distributed over three vertical levels and horizontally spaced with a distance of 100 km in the domain 54.5-61◦W and

11-16◦N. The three vertical levels at 940, 920, and 900 hPa are chosen such that they bracket cloud base to take into account115

some variability in the cloud base level in the coarse resolution dataset. Hereafter, the air parcels’ arrival level is referred to as

cloud base. Furthermore, we do not distinguish between different cloud base mesoscale features (as in Sect. 2.3), because we

expect the large-scale circulation to modulate isotope signals at the large-scale. Similarly to the trajectories calculated with the

COSMOiso,5km data, we calculate the hourly net altitude change over different time windows for each trajectory (∆z; Fig. 4b)

and refer to the mean of this altitude change over all air parcels arriving at a given time step as subsidence rate.120
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Figure 4. Schematic illustrating an individual backward trajectory in COSMOiso,5km or COSMOiso,10km started from cloud base and the

procedure to obtain the mean altitude change (∆z), which is used in the text as a measure for the subsidence rate.

3 Cloud base isotopes and the cloud-relative circulation

This section discusses how the cloud-relative circulation drives the diel cycle of isotopes in different cloud base environments

(Fig. 5). For this, we select the cloud base data points from COSMOiso,1km which classify as cloudy or dry-warm (Sect. 2.3)

and assume that the two categories represent mesoscale aggregations of clouds (Stevens et al., 2020; Bony et al., 2020) and

the clear-sky environments in-between. In addition, we use COSMOiso,5km trajectories to derive an estimate of the vertical125

motion in the subsiding branch of the cloud-relative circulation (Sect. 2.4). We use COSMOiso,5km for these trajectories because

COSMOiso,1km has too small a domain to trace air parcels over several hours.

The cloud fraction at the cloud base is maximal at night, followed by a continuous decrease until reaching a minimum

shortly after noon (Fig. 5a). The reduction of clouds at low levels is associated with a deepening of the clouds leading to

a slight increase in higher-reaching clouds (Fig. 5a). The strongest convection is found from ∼3 a.m. to ∼10 a.m. local time130

(LT), when updrafts at cloud base are strongest (Fig. 5b) and precipitation is most intense (Fig. 5a). Similarly to the updrafts, the

subsiding branch of the cloud-relative circulation (∆z; Fig. 5b) also accelerates (becomes more negative) during the night and

is most pronounced in the early morning. The driver of this nighttime convective strengthening is assumed to be the horizontal

inhomogeneity in the longwave cooling (Gray and Jacobson, 1977; Randall et al., 1991; Vial et al., 2019).

The diel cycles of δ2H and specific humidity at cloud base (Fig. 5c,d; d-e) are more pronounced for the dry-warm patches135

(amplitudes of ∼4 ‰ and 1.6 g kg−1) than for the cloudy patches (amplitudes of ∼0.9 ‰ and 0.5 g kg−1). While the cloudy

gird points are largely unaffected by the diel cycle of convection (Fig. 5c), the dry-warm grid points reach their most depleted

and driest state (Fig. 5d) shortly after noon when cloud base cloudiness is minimal, representing the end of a period with

enhanced up- and downward motions.
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Figure 5. Diel cycle of (a) cloud fractions at the altitude of cloud base (continuous green), the fraction of the three cloud categories

shallow/middle/deep (green/grey/blue shading; right black y-axis), and domain-averaged precipitation (dotted blue; right blue y-axis); (b)

strength of updrafts at cloud base (mean of positive vertical velocities in cloudy grid points; wup; continuous green) and subsidence of the air

parcels arriving at cloud base in dry-warm patches (mean altitude change of COSMOiso,5km trajectories over the last 1 h [orange continuous]

or 12 h [orange dashed] before arrival); (c,d) δ2H in vapour with the median shown as a thick line and the 25-75-percentile range as shad-

ing/thin lines (continuous; left y-axis) and specific humidity (dashed; right y-axis) of (c) cloudy (green) and (d) dry-warm (orange) cloud

base grid points. The hour-of-the-day mean values in the domain 54.5-61◦W and 11-16◦N during the period 20 January to 13 February

2020 are shown. Data: (a-c) COSMOiso,1km and (b, orange) COSMOiso,5km trajectories.
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Assuming an approximately closed overturning circulation, the depletion and drying of the dry-warm patches must be linked140

to the strengthening of convection. Two mechanisms likely contribute to the drying and depletion: (1) As an immediate effect,

the decreasing cloud fraction reduces the moistening and enrichment of the dry-warm patches through lateral detrainment from

surrounding clouds. (2) As a temporally delayed effect, the vertical growth of clouds has the consequence that the detrainment

from clouds happens at increasing altitudes and, therefore, the amount of vapour that returns to the cloud base is less, and its

isotope signal more depleted (due to continuous condensation and rainout in the convective updrafts). Evidence for the latter145

mechanism is the change in the subsidence rate. Since cloud base altitude is approximately constant (Villiger et al., 2023),

more negative ∆z indicates that the air parcels originate from higher altitudes (cf. analysis of Risi et al., 2019). But at which

altitude does the detrainment happen?

The time interval between the minimum and maximum of the dry-warm patch characteristics (Fig. 5d) is 12 h. The 12-h

subsidence (Fig. 5b) matches the diel cycle of the dry-warm patch characteristics: it is weakest (−8 mms−1) around 0 h LT150

when dry-warm patches are the moistest and most enriched and strongest (−13 mms−1) around 14 h LT when dry-warm

patches are the driest and most depleted. The corresponding detrainment altitudes 12 h earlier are about 350 m and 560 m

above cloud base, respectively.

In this section, we showed that at the hourly time scale, humidity and δ2H at cloud base vary little inside clouds, while their

variation in the dry-warm patches reflects the deepening of convection over the day, which (with a 12 h lag) causes drying and155

vapour depletion of the dry-warm patches. The information gained from humidity and δ2H seems congruent, while the d-excess

(not shown; Villiger, 2022) contains no signal of a diel cycle in any cloud base environment. Finally, we found evidence that

the overturning circulation associated with clouds is only a few hundred meters deep.

4 Cloud base isotopes and the large-scale circulation

This section investigates which of the three variables, specific humidity, δ2H, and d-excess, at the base of trade-wind clouds160

is most strongly influenced by the large-scale circulation. For this, we use trajectories based on the COSMOiso,10km simulation

(Sect. 2.5), which arrive evenly distributed near cloud base and are not targeted at cloudy or dry-warm patches. We use the

mean subsidence rate (∆z) to distinguish between large-scale circulation patterns. For Hadley-cell-like subsidence, resulting

from the balance between radiative cooling and adiabatic warming, a rate of ∼1.5 hPa h−1 (Salathé and Hartmann, 1997) is

expected. For air parcels that go through an extratropical dry intrusion before arriving in the trades (Aemisegger et al., 2021;165

Villiger et al., 2022), the subsidence of individual air parcels exceeds ∼8 hPa h−1 (Raveh-Rubin, 2017).

The strongest links between the large-scale subsidence and the cloud base δ2H and d-excess in the trades are found if the air

parcels’ pathway during 4 d and 6 d before arrival are considered, respectively (Table 1). The correlations are weaker for shorter

or longer time scales, and the relationship is such that the vapour is more depleted and has a higher d-excess, the stronger the

subsidence of the air parcels. In comparison to the isotope parameters, humidity is not influenced by the large-scale subsidence170

(comparably low correlations with the maximum found at a short period; Table 1), illustrating the limited memory of moist

processes registered by specific humidity alone.
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Table 1. Pearson correlation coefficients between specific humidity (q), δ2H in vapour, and d-excess in vapour of the COSMOiso,10km air

parcels at their arrival near cloud base and their mean subsidence rate (∆zXd; Sect. 2.5) during the 1/2/3/4/5/6 d before arrival. The correlations

are calculated between the mean values of the 138 air parcels arriving every hour between 22 January and 13 February 2020. The strongest

correlation for each variable is highlighted in italics. Data: COSMOiso,10km.

∆zXd

1d 2d 3d 4d 5d 6d

q 0.29 0.33 0.19 0.05 0.07 0.13

δ2H 0.3 0.54 0.63 0.71 0.57 0.43

d-excess -0.16 -0.25 -0.37 -0.54 -0.72 -0.75

The physical link between the subsidence and δ2H is straightforward: the stronger the subsidence, the isotopically lighter

the vapour because it originates from higher altitudes. The link between the subsidence and the d-excess can be explained by

the contrasting conditions at the site where the vapour is evaporated and picked up by the air parcels embedded in the large-175

scale circulation. Air parcels descending within an extratropical dry intrusion are expected to be drier and to create a stronger

humidity gradient (increasing the d-excess) than air parcels crossing the North Atlantic at low levels within the comparably

moist trade winds where frequent detrainment of cloudy air (lowering the d-excess; Fig. 1b) occurs.

The maximum correlation shown in Table 1 is slightly higher for the d-excess than for the δ2H and negligible for humidity.

Moreover, the period leading to the highest correlation extends further back for the d-excess than for δ2H or humidity. Both180

findings suggest that of the three variables, the d-excess is most strongly influenced by the large-scale circulation. This meets

expectations, as the d-excess is sensitive to the conditions at the moisture source (Pfahl and Wernli, 2008; Aemisegger et al.,

2021) and less to subsequent cloud processes, which often happen under conditions close to equilibrium. Contrastingly, δ2H is

sensitive to equilibrium and non-equilibrium processes, meaning the source signal is more quickly overwritten than the one of

d-excess.185

The mean subsidence over all arrival time steps is 1.5 hPa h−1 (Fig. 6), which corresponds to a Hadley-cell-like descent.

However, the subsidence can be substantially stronger or weaker for individual time steps. To illustrate the variability in

the large-scale circulation, four time steps with contrasting 6-d subsidence are selected (Fig. 7). The two cases with weaker

subsidence (Fig. 7a,b) are associated with the typical zonal flow of the trades. In the two cases with stronger subsidence

(Fig. 7c,d), the trades are interrupted by Rossby-wave breaking events over the central North Atlantic, which steer the air190

parcels from the extratropics towards low latitudes and cause a rapid descent along the slanted isentropes from the upper into

the lower troposphere.
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Figure 6. Relation between (a) specific humidity, (b) δ2H in vapour, and (c) d-excess in vapour of the COSMOiso,10km air parcels at their

arrival near cloud base and their mean subsidence rate (∆zXd) over the period (Xd), which yielded the highest correlation (Table 1), i.e.,

1, 4, and 6 d. The data points are coloured according to the arrival time step of the air parcels. Shown are the mean values over the 138

COSMOiso,10km air parcels arriving simultaneously (every hour from 22 January to 13 February 2020) at the three cloud base trajectory starting

levels (940, 920, and 900 hPa) in the domain 54.5-61◦W and 11-16◦N. See Sect. 2 for details about how the subsidence is calculated. The

dashed black lines indicate the mean values of the respective x- and y-variable over all arrival time steps. The data points with black borders

represent arrival at 12 UTC on 22 January 2020, 15 UTC on 31 January 2020, 18 UTC on 8 February 2020, and 18 UTC on 12 February

2020. Data: COSMOiso,10km.
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(a) (b)

(c) (d)

Figure 7. Exemplary time steps shown as black bordered markers in Fig. 6 illustrating the trajectories arriving at 940, 920, and 900 hPa

in the domain 54.5-61◦W and 11-16◦N together with each air parcel’s position (black dots), sea level pressure (grey contours), and

the dynamical tropopause (2 pvu at 320 K; red contours) 3.5 d (date indicated in grey) before arrival. Shown is the domain 0-85◦W

and 5◦ S-55◦N and the air parcels arriving (a) at 15 UTC on 31 January (q = 11.3 g kg−1, δ2H =−77.1 ‰, d = 15.5 ‰, 6-d sub-

sidence =−2.8mms−1 or 1.1 hPa h−1); (b) at 18 UTC on 12 February (q = 11.0 g kg−1, δ2H =−79.0 ‰, d = 16.5 ‰, 6-d subsi-

dence =−3.6mms−1 or 1.5 hPa h−1), (c) at 18 UTC on 8 February (q = 11.1 g kg−1, δ2H =−80.2 ‰, d = 17.9 ‰, 6-d subsidence

=−4.9mms−1 or 2 hPa h−1), and (d) at 12 UTC on 22 January 2020 (q = 11.4 g kg−1, δ2H =−84.4 ‰, d = 18.3 ‰, 6-d subsidence

=−6.3mms−1 or 2.6 hPa h−1). The dates are sorted according to the strength of the subsidence over 6 d, starting with the case with the

weakest subsidence in (a). Data: COSMOiso,10km.
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5 Summary and conclusion

In this final section, we combine the insights from relating isotope signals at cloud base to the circulation at different scales.

First, we analysed the imprint of the cloud-relative circulation on cloud base water vapour isotopes in the trade-wind region.195

We showed that the humidity and δ2H in the vapour of cloudy cloud base patches remain largely unaffected by the vertical

growth of convection over the day. The dry-warm clear-sky cloud base patches, which are always drier and more depleted

than the cloudy patches, have a weak diel cycle linked to the cloud fraction at the cloud base and the cloud depth (i.e., the

detrainment altitude of the vapour from the clouds). The vertical growth of the clouds during the day lifts the detrainment

altitude. Correspondingly, the subsidence of the air parcels arriving in dry-warm patches at the cloud base is stronger for mass200

conservation reasons. Specifically, the 12-h subsidence of the air parcels arriving in the dry-warm patches was identified as the

main control of the degree of drying and depletion. The information gained from humidity and δ2H of the dry-warm patches

was largely congruent. However, by combining the two variables, we find a group of data points (Fig. 8a) that is shifted towards

lower δ2H but shows no peculiarities in humidity or the 12-h subsidence. The stronger depletion of these data points signals

the influence of a large-scale process (Fig. 8b or extratropical intrusion discussed in Villiger et al., 2022).205

Second, we showed that δ2H and d-excess of the vapour near the cloud base (independently of the cloud base environment,

cloudy and dry-warm), but not humidity, vary on the synoptic scale following changes in the large-scale circulation in a

physically meaningful way. Namely, the vapour in the trade-wind region is more depleted and has a higher d-excess for

stronger subsidence rates during the preceding 4 to 6 d. The δ2H in cloud base vapour was found to be most strongly linked to

the 4-d subsidence (Pearson correlation of 0.71), which also explains the more depleted data points in Fig. 8. Contrastingly, the210

d-excess is most strongly linked to the 6-d subsidence (Pearson correlation of −0.75). The strong link between the d-excess

and the large-scale circulation found here is in agreement with Aemisegger et al. (2021, their Fig. 16), who found a clear link

(Pearson correlation of −0.73) between the d-excess in vapour measured on Barbados in the subcloud layer and the distance

to the moisture source, during a field experiment in early 2018. The analysis also showed that the identified pathways of air

parcels arriving in the lower troposphere qualitatively agree with the ones identified in Villiger et al. (2022).215

To deepen our understanding of the hydrological cycle associated with shallow trade-wind cumulus clouds, the role of

mixing and liquid-vapour interaction processes embedded in the cloud-relative circulation should be examined in more detail.

Furthermore, a tagging experiment with numerical tracers distinguishing subcloud-layer and free-tropospheric moisture would

help to disentangle the contribution of the circulations associated with clouds of varying depths and the large-scale circulation.

Our analysis demonstrated that isotopes represent the integral signal of past moist atmospheric processes encountered along220

the flow. Particularly novel was the finding that isotopes serve as indicators for changes in atmospheric circulations on various

scales. By investigating the isotope signal at cloud base in the trade-wind region, we could identify the imprint of different

large-scale circulation patterns and the overturning circulation associated with clouds that, in concert, determine the formation

of clouds and precipitation.
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Figure 8. Relation between hourly median values of specific humidity (q) and δ2H in the vapour of the cloud base grid points identified

as dry-warm in the domain 54.5-61◦W and 11-16◦N from COSMOiso,1km. They are coloured according to (a) ∆z over 12 h from the

COSMOiso,5km trajectories, and (b) ∆z over 4 d from the COSMOiso,10km trajectories. The lines of two second-order polynomials are shown

(dashed black) that were fitted to the data points with large-scale subsidence (b) stronger or weaker than−4.5mms−1, respectively. See text

in Sect. 3 and Sect. 4 for reasoning of the chosen time windows for ∆z.

14

https://doi.org/10.5194/egusphere-2023-450
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Data availability. The COSMOiso simulations are published in the ETH research collection (Villiger and Aemisegger, 2022).225

Author contributions. FA designed the project and acquired the funding. LV with the support of FA carried out the COSMOiso simulations,

performed the data analysis, and wrote the paper. LV and FA discussed the results and the structure of the paper in detail.

Competing interests. The authors have no competing interests to declare.

Acknowledgements. We thank Heini Wernli (ETH Zürich) for the scientific advice and support in this project. We appreciate the technical

support from Urs Beyerle (ETH Zürich) regarding the cluster on which the model calculations were performed and the help from Fabienne230

Dahinden with the installation of the model on the cluster.

Financial support. LV received funding from the Swiss National Science Foundation (grant no. 188731).

15

https://doi.org/10.5194/egusphere-2023-450
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Aemisegger, F., Vogel, R., Graf, P., Dahinden, F., Villiger, L., Jansen, F., Bony, S., Stevens, B., and Wernli, H.: How Rossby wave breaking

modulates the water cycle in the North Atlantic trade wind region, Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-235

281-2021, 2021.

Albright, A. L., Bony, S., Stevens, B., and Vogel, R.: Observed subcloud layer moisture and heat budgets in the trades, J. Atmos. Sci., 79,

2363–2385, https://doi.org/10.1175/JAS-D-21-0337.1, 2022.

Bony, S., Stevens, B., Frierson, D. M., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H.,

Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398,240

2015.

Bony, S., Schulz, H., Vial, J., and Stevens, B.: Sugar, gravel, fish, and flowers: Dependence of mesoscale patterns of trade-wind clouds on

environmental conditions, Geophys. Res. Lett., 47, 1–9, https://doi.org/10.1029/2019GL085988, 2020.

Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and Schneider, M.: Stable isotopes in atmospheric water vapor and

applications to the hydrologic cycle, Rev. Geophys., 54, 809–865, https://doi.org/10.1002/2015RG000512, 2016.245

Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262,

https://doi.org/10.1146/annurev.earth.24.1.225, 1996.

George, G., Stevens, B., Bony, S., Vogel, R., and Naumann, A. K.: Ubiquity of shallow mesoscale circulations in the trades and their influence

on moisture variance, Nat. Geosci. [preprint], https://doi.org/10.1002/essoar.10512427.1, 2022.

Gray, W. M. and Jacobson, R. W.: Diurnal-variation of deep cumulus convection, Mon. Weather Rev., 105, 1171–1188,250

https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2, 1977.

International Atomic Energy Agency: Reference Sheet for VSMOW2 and SLAP2 international measurement standards., IAEA, Vienna,

2017.

Noone, D.: Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the

tropical midtroposphere, J. Climate, 25, 4476–4494, https://doi.org/10.1175/JCLI-D-11-00582.1, 2012.255

Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean, J. Geophys. Res.-

Atmos., 113, 1–16, https://doi.org/10.1029/2008JD009839, 2008.

Randall, D. A., Harshvardhan, and Dazlich, D. A.: Diurnal variability of the hydrologic-cycle in a general-circulation model, J. Atmos. Sci.,

48, 40–62, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2, 1991.

Raveh-Rubin, S.: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer, J. Climate, 30, 6661–6682,260

https://doi.org/10.1175/JCLI-D-16-0782.1, 2017.

Risi, C., Galewsky, J., Reverdin, G., and Brient, F.: Controls on the water vapor isotopic composition near the surface of tropical oceans and

role of boundary layer mixing processes, Atmos. Chem. Phys., 19, 12 235–12 260, https://doi.org/10.5194/acp-19-12235-2019, 2019.

Salathé, E. P. and Hartmann, D. L.: A trajectory analysis of tropical upper-tropospheric moisture and convection, J. Climate, 10, 2533–2547,

https://doi.org/10.1175/1520-0442(1997)010<2533:ATAOTU>2.0.CO;2, 1997.265

Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool - Version 2.0, Geosci. Model Dev., 8, 2569–2586,

https://doi.org/10.5194/gmd-8-2569-2015, 2015.

16

https://doi.org/10.5194/egusphere-2023-450
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Stevens, B., Bony, S., Brogniez, H., Hentgen, L., Hohenegger, C., Kiemle, C., L’Ecuyer, T. S., Naumann, A. K., Schulz, H., Siebesma, P. A.,

Vial, J., Winker, D. M., and Zuidema, P.: Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade winds, Q. J. Roy. Meteor.

Soc., 146, 141–152, https://doi.org/10.1002/qj.3662, 2020.270

Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P., Speich, S., Aemisegger, F., Albright, A.,

Bodenschatz, E., Chewitt-Lucas, R., Delanoë, J., Ewald, F., Forde, M., George, G., Hausold, A., Hagen, M., Hirsch, L., Jansen, F., Kinne,

S., Klocke, D., Kölling, T., Konow, H., Mohr, W., Naumann, A., Nuijens, L., Pincus, R., Reverdin, G., Roberts, G., Schnitt, S., Sullivan,

P., Touzé-Peiffer, L., Vial, J., Vogel, R., Acquistapace, C., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Bailey, A.,

Baranowski, D., Baron, A., Barrau, S., Barrett, P., Behrendt, A., Bellenger, H., Bendinger, A., Beucher, F., Bigorre, S., Blossey, P., Bock,275

O., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branger, H., Brennek, M., Brewer, A., Brügmann, B., Buehler, S., Burke, E.,

Burton, R., Böing, S., Calmer, R., Carton, X., Cato, G., Charles, J., Chazette, P., Chen, Y., Choularton, T., Chuang, P., Clarke, S., Coe,

H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G., Dauhut, T., Denby, L.,

Deneke, H., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne-Leblanc, S., Faure, G., Feingold,

G., Ferrero, L., Fildier, B., Fix, A., Flamant, C., Flatau, P., Foltz, G., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C.,280

Gentemann, C., Geyskens, N., Giez, A., Gourbeyre, C., Gross, S., Grosz, R., Gutleben, M., Güttler, J., Hall, K., Harris, G., Helfer, K.,

Henze, D., Herbert, C., Heywood, K., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Jacob, M., Julien, F., Kalesse, H., Kazil, J.,

Kellman, A., Kirchner, U., Klingebiel, M., Kremper, L., Kretzschmar, J., Krüger, O., Kurz, A., Körner, M., Lachlan-Cope, T., Laing, A.,

Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Laxenaire, R., Leandro, M., Lefevre, N., Lenschow, D., Li, Q., Lloyd, G.,

Los, S., Losi, N., Lothon, M., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Matthieu, L.,285

Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., Mcgeary, W., Mcwilliams, J., Mech, M., Mehlmann, M., Meroni, A., Mieslinger, T.,

Minikin, A., Muller, C., Musat, I., Möller, G., Napoli, A., Neuberger, A., Noone, D., Nordsiek, F., Nowak, J., Olivier, L., Oswald, L.,

Parker, D., Peck, C., Person, R., Plueddemann, A., Pologne, L., Posyniak, M., Prange, M., Pöhlker, M., Pöhlker, C., Pörtge, V., Pöschl,

U., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C., Rochetin, N.,

Rollo, C., Röttenbacher, J., Saffin, L., Sandiford, S., Sandu, I., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder,290

M., Schulz, H., Schwarzenboeck, A., Schäfer, M., Sealy, A., Serikov, I., Shohan, S., Siddle, E., Siebesma, A., Späth, F., Stephan, C.,

Stolla, M., Szkółka, W., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Villiger, L., Walther, A., Webber,

B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V.,

Young, S., Zhang, D., Zhang, C., Ziemen, F., Zinner, T., Zuidema, P., and Zöger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067–4119,

https://doi.org/10.5194/essd-13-4067-2021, 2021.295

Vial, J., Vogel, R., Bony, S., Stevens, B., Winker, D. M., Cai, X., Hohenegger, C., Naumann, A. K., and Brogniez, H.: A new look at the daily

cycle of tradewind cumuli, J. Adv. Model. Earth Sy., 11, 3148–3166, https://doi.org/10.1029/2019ms001746, 2019.

Vial, J., Vogel, R., and Schulz, H.: On the daily cycle of mesoscale cloud organization in the winter trades, Q. J. Roy. Meteor. Soc., 147,

2850–2873, https://doi.org/10.1002/qj.4103, 2021.

Villiger, L.: Large-scale circulation drivers and stable water isotope characteristics of shallow clouds over the tropical North Atlantic, Ph.D.300

thesis, ETH Zürich, https://doi.org/10.3929/ethz-b-000586270, 2022.

Villiger, L. and Aemisegger, F.: Numerical weather simulation using COSMOiso over the tropical North Atlantic in January and February

2020 in the context of EUREC4A, ETH Research Collection, https://doi.org/10.3929/ethz-b-000584213, 2022.

17

https://doi.org/10.5194/egusphere-2023-450
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Villiger, L., Wernli, H., Boettcher, M., Hagen, M., and Aemisegger, F.: Lagrangian formation pathways of moist anomalies in the trade-wind

region during the dry season: two case studies from EUREC4A, Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022,305

2022.

Villiger, L., Dütsch, M., Bony, S., Lothon, M., Pfahl, S., Wernli, H., Brilouet, P.-E., Chazette, P., Coutris, P., Delanoë, J., Flamant, C.,

Schwarzenboek, A., Werner, M., and Aemisegger, F.: Water isotopic characterisation of the cloud-circulation interaction in the North

Atlantic trades. Part 1: A process-oriented evaluation of COSMOiso simulations with EUREC4A observations, In preparation for Atmos.

Chem. Phys., 2023.310

Vogel, R., Bony, S., and Stevens, B.: Estimating the shallow convective mass flux from the subcloud-layer mass budget, J. Atmos. Sci., 77,

1559–1574, https://doi.org/10.1175/JAS-D-19-0135.1, 2020.

Vogel, R., Albright, A. L., Vial, J., George, G., Stevens, B., and Bony, S.: Strong cloud-circulation coupling explains weak trade cumulus

feedback, Nature, 612, 696–700, https://doi.org/10.1038/s41586-022-05364-y, 2022.

Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications, Q. J. Roy. Meteor.315

Soc., 123, 467–489, https://doi.org/10.1256/smsqj.53810, 1997.

Zelinka, M. D., Randall, D. A., Webb, M. J., and Klein, S. A.: Clearing clouds of uncertainty, Nat. Clim. Change, 7, 674–678,

https://doi.org/10.1038/nclimate3402, 2017.

18

https://doi.org/10.5194/egusphere-2023-450
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.


