Supporting Information for

The impact of seismic noise produced by wind turbines on seismic borehole measurements

F. Limberger¹,², G. Rümpker¹,³, M. Lindenfeld¹, and H. Deckert²

¹Institute of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
²Institute for Geothermal Resource Management (igem), 55411 Bingen, Germany
³Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main, Germany

Correspondence to: Fabian Limberger (limberger@igem-energie.de)
Figure S1: Comparison between the simulation of 3.7 Hz signals in two and three dimensions. The difference is not significant, hence, simulations in two dimensions are suitable to estimate the amplitudes in dependency on the depth.
Figure S2: Model of the subsurface in the Landau Region (Rhineland-Palatinate, Germany) provided by Spies et al. (2017). The red line shows the velocity model used for the real data validation in this study. The seismic velocities are provided by the MAGS2 project. The figure is taken from Spies et al. (2017). The red lines are added and indicate the velocity model used in our study.
The PSD amplitudes provided by Zieger and Ritter (2018) in Fig. S3 are transformed into amplitudes at the surface (\(AMP_{SF}\)) and in the borehole (\(AMP_{BH}\)) by calculating the square root. A scaling with frequency is not necessary in this case, since we compare PSD amplitudes at an identical frequency. The amplitude in the borehole is then divided by the amplitude at the surface to derive the factor \(F\) of noise amplitude reduction.

\[
F_{ROTT, \; 1 \, Hz} = \frac{AMP_{BH}}{AMP_{SF}} = \sqrt{\frac{PSD_{BH}}{PSD_{SF}}} = \sqrt{\frac{1.0 \times 10^4}{1.3 \times 10^5}} = 0.27 \; (\equiv 73\% \; reduction)
\]

\[
F_{LDE, \; 1 \, Hz} = \sqrt{\frac{4.0 \times 10^4}{9.0 \times 10^4}} = 0.66 \; (\equiv 34\% \; reduction)
\]

\[
F_{LDE, \; 3.7 \, Hz} = \sqrt{\frac{7.0 \times 10^3}{8.0 \times 10^4}} = 0.29 \; (\equiv 71\% \; reduction)
\]

Figure S3: The figure by Zieger and Ritter (pers. comm., 2018) is modified by adding markers, arrows and numbers. PSD values by Zieger and Ritter (2018) show a reduction of amplitudes for 1 Hz (at ROTT and LDE) and 3.7 Hz (at LDE) signals due to boreholes. We transformed the PSD values in relative amplitudes by applying the root square. The comparison between the amplitude at the surface station and borehole station yields the reduction factors and percentages of 73\% (ROTT, 1 Hz), 71\% (LDE, 1 Hz) and 34\% (LDE, 3.7 Hz).