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Abstract. In cloudy situations, infrared and microwave observations are complementary, with infrared observations being sen-

sitive to the small cloud droplets and ice particles and microwave observations sensitive to precipitation. This complementarity

can lead to fruitful synergies in precipitation science (e.g. Kidd and Levizzani, 2022). However, several sources of errors do ex-

ist in the treatment of infrared and microwave data that could prevent such synergy. This paper studies several of these sources

to estimate their impact on retrievals. To do so, simulations from the radiative transfer model RTTOV v13 are used to build5

simulated observations. Indeed, we make use of a fully simulated framework to explain the impacts of the identified errors. A

combination of infrared and microwave frequencies is built within a Bayesian inversion framework. Synergy is studied using

different experiments: (i) with several sources of errors eliminated; (ii) with only one source of errors considered at a time;

(iii) with all sources of errors together. The derived retrievals of frozen hydrometeors for each experiment are examined in

a statistical study of fifteen days in summer and fifteen days in winter over the Atlantic ocean. One of the main outcomes10

of the study is that the combination of infrared and microwave frequencies takes advantage of the strengths of both spectral

rangesboth spectral range strengthsR1 leading to accurate retrievals. Each source of error has more or less impact depending

on the type of hydrometeor. Another outcome of the study is that even though the radiative transfer and numerical modelling
R1errors may decrease the magnitude of benefits generated by the combination of infrared and microwave frequencies, in all

cases explored, the compromise created their combinationR1 remains positive beneficialR1.15

Copyright statement. TEXT

1 Introduction

Satellite observations significantly contribute to the quality of numerical weather prediction (NWP). In particular, data in the

infrared (IR) and microwave (MW) spectral ranges are widely used to improve weather forecasts (Geer et al., 2017; Chambon

et al., 2022). Both spectral ranges are sensitive to water vapor and temperature. In addition, IR frequencies are sensitive to ice20

crystals and water droplets of the clouds, whereas MW frequencies are also sensitive to solid and liquid precipitation.

1



All together, this wide range of frequencies is are R1 characterised by a large diversity of informationa significant information

contentR1 on all hydrometeor phases along the vertical. Therefore, the synergistic use of these frequencies theoretically permits

a better description of clouds and precipitation in NWP models through the assimilation process.25

All-sky observations, in contrast to clear-sky observations, gather all meteorological situations, whether it is cloudy or not.
R1Assimilating all-sky observations usually leads to improvements of resulting weather forecasts of humidity, temperature and

also winds thanks to the tracing effect of four dimensional assimilation which infers information on dynamical fields from

information on mass fields and conservative quantities. However, this synergistic use within clouds and precipitation has not30

been achieved yet operationally in any NWP center. While a number of NWP centres operationally assimilate cloudy and rainy

microwave radiances (Geer et al., 2018), this has not been accomplished yet for infrared data although research is definitely

ongoing (e.g. Martinet et al., 2013; Geer et al., 2019; Okamoto et al., 2021; Li et al., 2022).

Several studies had already highlighted that a synergistic use of microwave or sub-millimetric radiometers and radar data35

was beneficial to retrieve ice hydrometeors (Pfreundschuh et al., 2020, 2022). R1This paper aims to exploreat discussingR1 the

is Asynergy of infrared, microwave and sub-millimetric frequenciesR1 by performing sensitivity studies on some error sources

that could prevent from obtaining positive effects of IR and MW data combination. On the observation modelling side, an im-

portant source of uncertainty lies in radiative transfer properties which are not yet consistent across the spectrum (Baran et al.,

2014; Eriksson et al., 2018). Indeed, these properties often consider different assumptions for either IR or MW frequencies40

(e.g. ice crystal shapes, particle size distributions, cloud overlap assumptions, numerical methods to compute the scattering

effects). Several studies have probed the impact of different particle shapes or particle size distribution (PSD) on ice hydrom-

eteors retrievals (e.g. Ekelund et al., 2020; Pfreundschuh et al., 2020; Geer, 2021) showing that the retrievals are sensitive to

microphysical schemes. R1In this study, we will quantify the importance of several R1of this ese R1sensitivity inconsistencies R1

and compare them to other uncertainties that exist regarding the cloud representation within NWP models. Indeed, microphys-45

ical parameteArizations and convection schemes make a number of assumptions which can for instance influence the balance

between cloud ice and precipitating frozen particles (e.g. auto-conversion rate from ice to snow) or the balance between cloud

liquid water and rain (e.g. auto-conversion rate from droplets to rain). As mentioned above, since IR data are mainly sensitive

to cloud ice and MW data to precipitation, an imbalance between the two species in the model compared to observations could

lead to spurious effects as well on the synergy. In this study, the impact of these two kinds of inconsistencies on the synergy’s50

ability to retrieve consistent hydrometeor profiles will be studied, within a one dimensional framework further detailed below.

Satellites from future EUMETSAT missions, the EUMETSAT Polar System (EPS) MetOp Second Generation (EPS-SG)

(EUMETSAT, 2013) and Meteosat Third Generation (MTG) (EUMETSAT, 2020) will gather instruments that span IR and

MW frequencies: the MTG-Flexible Combined Imager (FCI), an IR instrument, which will provide a high temporal cover-55

age thanks to its geostationary orbit, the EPS-SG-Ice Cloud Imager (ICI) with sub-Amillimetric frequencies (> 300183 GHz)

which will provide observations never acquired before by spaceborne instrumentsR1 in addition to microwave frequencies
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(> 183 GHz) which gives new information on ice cloudsR1 and the MetOp-SG-MicroWave Imager (MWI) with MW frequen-

cies (< 183 GHz) inherited from previous instruments. Simulated radiances from these three instruments are considered in this

study.60

At Météo-France, the current operational method to assimilate MW satellite cloudy and rainy observations in the global

NWP model ARPÈGE (Action de Recherche Petite Échelle Grande Échelle) (Courtier et al., 1991; Bouyssel et al., 2022) is

called "1D-Bayesian+4D-Var" (Wattrelot et al., 2014; Guerbette et al., 2016; Duruisseau et al., 2017). It consists of a two-step

process: (i) a Bayesian inversion that retrieves profiles of hydrometeors and relative humidity, (ii) the assimilation of relative65

humidity profiles in the model using a four-dimensional variational (4D-Var) system.

This paper focuses on setting up an experimental framework to use the data of the future instruments mentioned above and

to compare the Bayesian retrievals obtained by using either a single-instrument or the three combined.

70

This study focuses on frozen hydrometeor retrievals since they are associated with larger uncertainties, in terms of radiative

and microphysical properties, than liquid hydrometeors. It aims to quantitatively evaluate the relative importance of some

specific radiative transfer (RT) modelling errors across the IR/MW spectrum, with respect to uncertainties within microphysical

parameterizations in the NWP model. In section 2, the selected data and methods are presented with details on the inversion

algorithm. In section 3, the simulation framework is presented and a number of simulation assumptions are validated. Results75

are presented in section 4 where errors from either inconsistencies in the RT model or in the NWP model are isolated. Finally,

a discussion is given in section 5.

2 Data and Methods

Figure 1 presents the general functioning of the simulated framework defined for conducting the experiments in this study. This

framework requires forecasts for both the simulation of observations and the first guess of the inversion ; section 2.1 describes80

how they are defined. The framework also requires a forward model for the simulation of observations and the inversion

algorithm, described section 2.2. The inversion algorithm is then described in section 2.3 ; the sources of errors introduced

both in the forecast model and the forward model are detailed in section 2.4. Finally the validation method for evaluating the

quality of the derived retrievals is explained in section 2.5.

2.1 Forecast model85

The forecast model used in this paper is the Météo-France’s global model ARPÈGE. The spatial horizontal grid is a stretched

and tilted grid leading to a variable resolution of 5 km over France and 24 km for the antipodes (South-Western Pacific).

The vertical grid is composed of 105 levels from the surface to 0.1 hPa. Regarding the modelling of clouds and precipitation,

ARPÈGE makes use of the Lopez (2002) microphysical scheme as well as the Tiedtke/Bechtold convection scheme (Tiedtke,
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Figure 1. Diagram describing the functioning of the methodology employed for the simulated framework

1989; Bechtold et al., 2008, 2014). Further details on this model configuration, dynamics and physics can be found in Bouyssel90

et al. (2022).

First guess (FG) and observations (OBS) are both simulated (see subsection 2.2) from lagged forecasts valid at the same

time (run initialised at 18h UTC with +6h of forecast range for the FG and run initialised at 06h UTC with +18h of forecast

range for the OBS). Both forecasts are initialised with the ARPÈGE operational analyses. Using lagged forecasts introduce95

errors in the localisation and the intensity of clouds and precipitation for the FG with respect to the OBS. In order to validate

this framework, a comparison between our simulations and real observations will be performed in section 3 to see if these

introduced errors appears to be realistic.

The geographical area of study is located between -60°N and 60°S for latitudes and between -60°E and 60°E for longitudes100

corresponding to the Meteosat field of view. The full model grid has been thinned by a factor of 4 to prevent the use of too

much correlated profiles in terms of error statistics and also to save computing time. FG and OBS are calculated once a day

over a 30-day period from 01 to 15 January 2020 and from 01 to 15 June 2020. This period spans both summer and winter

seasons to include contrasted meteorological situations without any predominance of seasonal effects in each hemisphere. As

a first approach, we have restricted our study to grid points located over sea.105

Each profile (OBS and FG) is categorised according to its hydrometeor total column content. Three categories are considered:

CLEAR, CLOUDY and PRECIP, built according to their cloud content (ice and water) and their precipitation content (rain and

snow) (see Table 1). The selected thresholds correspond to a compromise in order to balance the number of samples in each

category. In this study, all cases are taken into account except those where the OBS forecast is CLEAR to avoid retrieving110

clear-sky values (see table 2, selected cases in italic).
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CLEAR CLOUDY PRECIP

cloud < 1 cloud > 1 cloud > 1

precip < 5 precip < 5 precip > 5

Table 1. Hydrometeor’s integrated content (g/m2) criteria for each category (clear sky, clouds and precipitation). Cloud content (cloud) stands

for the sum of ice and liquid water; Precipitation content (precip) stands for the sum of rain, graupel and snow.

OBS ↓ \\ FG → CLEAR CLOUDY PRECIP

CLEAR 251428 (10.88 %) 114337 (4.95 %) 22238 (0.96 %)

CLOUDY 107257 (4.64 %) 953574 (41.25 %) 194793 (8.43 %)

PRECIP 15612 (0.68 %) 169481 (7.33 %) 482870 (20.89 %)

Table 2. Number of points corresponding to each category (clear, cloudy and precipitation) for observations (OBS) and first-guess (FG) over

a 30-day period (with the percentage of total cases)

2.2 Simulation of future observations

Satellite observations are simulated with the version 13 of the fast radiative transfer (RT) for TIROS Operational Vertical

Sounder (RTTOV v13) (Saunders et al., 2020). The settings available in this software allow us to create controlled incon-

sistencies, by changing parameteR1rizations of crystals shapes and particle size distributions. Compared to RTTOV v12, this115

version has the specificity to separate the specification of snow and graupel bulk hydrometeors optical properties. In order

to generate the observations, the hydrometeor radiative properties used are the latest settings (Geer et al., 2021; Baran et al.,

2014; Vidot et al., 2015) that are supposed to best represent the reality. They are implemented for both IR and MW data, as

they are assumed to be characterised by the smallest errors with respect to real observations. A Gaussian noise is then added

on brightness temperatures (BT) using the Noise Equivalent delta Temperature (NEdT) specifications of each channel of each120

instrument (see Table 3) to simulate the instrumental noise. In the section below describing the sources of errors introduced,

additional details are given for the hydrometeor radiative properties used for the FG.

2.3 Bayesian inversion

In this study, an inversion algorithm is used to perform retrievals of frozen hydrometeors. This inversion method is taken as

the same Bayesian algorithm which is used to assimilate microwave cloudy and rainy observations operationally within the125

ARPÈGE model using retrievals of relative humidity profiles (Guerbette et al., 2016; Duruisseau et al., 2019; Barreyat et al.,

2021). Within this framework, each observation is collocated with a First Guess and a surrounding neighborhood (210 km in

diameter). From this neighborhood, atmospheric profiles are taken to create an inversion database. A weight is computed for
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FCI ICI MWI

Wavelength (µm) NEdT (K) Wavelength (GHz) NEdT (K) Wavelength (GHz) NEdT (K)

3.8 µm 0.2 K 183.31±7.0 GHz 0.6 18.70 GHz 0.7

6.3 µm 0.3 K 183.31±3.4 GHz 0.7 23.80 GHz 0.6

7.3 µm 0.3 K 183.31±2.0 GHz 0.7 31.40 GHz 0.8

8.7 µm 0.1 K 243.20 GHz 0.6 50.30 GHz 0.7

9.7 µm 0.3 K 325.15±9.5 GHz 1.1 52.61 GHz 0.7

10.5 µm 0.1 K 325.15±3.5 GHz 1.2 53.24 GHz 0.7

12.3 µm 0.2 K 325.15±1.5 GHz 1.4 53.75 GHz 0.7

13.3 µm 0.2 K 448.00±7.2 GHz 1.3 89.00 GHz 0.8

448.00±3.0 GHz 1.5 118.75±3.2 GHz 1.2

448.00±1.4 GHz 1.9 118.75±2.1 GHz 1.2

664.00 GHz 1.5 118.75±1.4 GHz 1.2

118.75±1.2 GHz 1.2

166.90 GHz 1.1

183.31±7.0 GHz 1.0

183.31±6.1 GHz 1.1

183.31±4.9 GHz 1.1

183.31±3.4 GHz 1.1

183.31±2.0 GHz 1.2

Table 3. Noise Equivalent (NEdT, in K) used as the amplitude of the Gaussian noise applied to simulated observations for each channel and

for instrument FCI (EUMETSAT, 2022) (left), ICI (middle) and MWI (EUMETSAT, 2013) (right).R1

each member of the database. It is calculated from the difference of brightness temperatures BT between OBS and a given FG

member, and taking into account observation errors:130

normneighbor =

∑
channels

(
BTobs−BTneighbor

obs_error

)2

nchannels
(1)

weight = exp(−1

2
normneighbor) (2)

for each neighbor profile.

A retrieved profile, hereafter named RET, is then defined as a weighted mean of the inversion database. The corresponding

brightness temperature BTRET is also derived from the weighted mean of the inversion database.135
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This method allows to select channels both in the IR and MW, either separately or together to constrain the inversions. As a

first approach, only vertically polarised channels are used for the microwave instruments. Therefore, several channel selections

have been made: FCI will refer to the selection of each of its infrared channels; ICI will refer to the selection of each of its ver-

tically polarised channels; MWI will also refer to the selection of each of its vertically polarised channels; COMB (combined)140

will refer to the selection of all vertically polarised channels of ICI and MWI plus the FCI selection.

To determine the observation error that will be used in the Bayesian inversion, a posteriori diagnostics (Desroziers et al.,

2005) have been used. This diagnostic allows to estimate optimal observation errors. It is computed with the following equation.

D =
√
(BTOBS −BTFG)× (BTOBS −BTRET ) (3)145

with BT the brightness temperature, OBS the observation, FG the first guess used in the inversion framework and RET the

retrieval from Bayesian inversion.

As recommended in Desroziers et al. (2005), several iterations of D calculation have been performed in order to ensure that

the a posteriori diagnostic converges towards optimal values. The first iteration was set to NEdT value (see Table 3). After150

three iterations over the full set of profiles, the derived values only vary marginally (O(10−2K)), therefore the values derived

from this third iteration are taken as the final values which will be used in the rest of the study, they are listed in Table 4.

2.4 Source of errors

Several experiments have been conducted in order to document the impacts of possible sources of errors. Two of them are

considered in this study: inconsistencies in RT model (and more specifically hydrometeor radiative properties) and errors in the155

forecast model’s microphysical parameterizations. Note that other sources of errors, related to the geometry of observation of

the different instruments, which include their spatial resolution, are not taken into account in this study but could be considered

in a future framework.

The control experiment, hereafter named noERR (no error), refers to the use of an operational forecast without any pertur-160

bation as well as without any RT errors. This experiment serves as a baseline, presumably providing the best retrievals, to be

compared to the others to identify which difference leads to the predominant errors in the retrievals. In the following experi-

mental settings, OBS is kept unchanged from the noERR experiment and perturbations are only introduced to the FG used for

the Bayesian inversion and to the RT for the BT simulations with the FG. Information on the perturbations introduced in FG

is given hereafter.165
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FCI ICI MWI

Wavelength (µm) D (K) Wavelength (GHz) D (K) Wavelength (GHz) D (K)

3.8 1.64 183.31±7.0 1.15 18.70 1.09

6.3 1.09 183.31±3.4 1.17 23.80 1.44

7.3 1.24 183.31±2.0 1.2 31.40 1.41

8.7 1.81 243.20 1.43 50.30 0.85

9.7 1.28 325.15±9.5 1.67 52.61 0.61

10.5 2.03 325.15±3.5 1.62 53.24 0.59

12.3 1.98 325.15±1.5 1.66 53.75 0.58

13.3 1.57 448.00±7.2 1.69 89.00 1.57

448.00±3.0 1.7 118.75±3.2 1.06

448.00±1.4 1.81 118.75±2.1 1.03

664.00 2.29 118.75±1.4 1.01

118.75±1.2 0.99

166.90 1.53

183.31±7.0 1.46

183.31±6.1 1.5

183.31±4.9 1.49

183.31±3.4 1.49

183.31±2.0 1.55

Table 4. Desroziers diagnostic D used as the inversion’s observation error of each channel and for instrument FCI (left), ICI (middle) and

MWI (right).R1

2.4.1 Introduction of differences in radiative transfer.

Parameters in RTTOV v13 for the frozen hydrometers are modified in this experiment named mRT (modified RT). Differences

in parameterization and scheme used between noERR and mRT are given in Tables 5 and 6. In the RT for MW, a different

particle shape is used between noERR and mRT, respectively following settings from Geer et al. (2021) and Saunders et al.170

(2018), for each hydrometeor. The modified configuration corresponds to the previous default settings of RTTOV-SCATT V12,

defined by Geer and Baordo (2014). The Table 5 shows the modification in terms of particle shape. The PSD is also modified

between these two versions, using different values for the parameters of the modified gamma distribution.R2 In the RT for IR,

a different scheme for radiative properties is used for the ice phase, the one from Vidot et al. (2015) for noERR and the one

from Baum et al. (2011) and Wyser and Yang (1998) for mRT, as suggested in the previous version of RTTOV V12 (Saunders175

et al., 2018). Here, PSD are indirectly modified as the change between Baran and Baum scheme involve modifications of

the mass-dimension relation of hydrometeors.R2 The use of previously operationnal R2settings for mRT allows a reasonable

representation of hydrometeors but should also bring significant differences from the ones chosen for noERR.
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Ice water Liquid water Graupel Snow Rain

noERR

(Geer et al.,

2021)

Large column

aggregate

(ARTS)

Sphere

(Mie)

Column

(ARTS)

Large plate

aggregate

(ARTS)

Sphere

(Mie)

mRT
Sphere

(Mie)

Sphere

(Mie)

Sector

snowflake

(ARTS)

Sector

snowflake

(ARTS)

Sphere

(Mie)

Table 5. Modification introduced in the radiative transfer model settings for microwave instruments in terms of particle shape (Scattering

type) from database ARTS (Eriksson et al., 2018).

Ice water Liquid water

noERR Baran (Vidot et al., 2015)
Optical Properties of Aerosols and Clouds (OPAC)

(Hess et al., 1998)

mRT

Space Science and Engineering Center (SSEC) (Baum

et al., 2011) (Wyser and Yang (1998) for effective diam-

eter)

Optical Properties of Aerosols and Clouds (OPAC)

Table 6. Modification introduced in the radiative transfer model settings for infrared instrument in terms of particle size distribution schemes.

Other choices would have been possible using recent studies such as Ekelund et al. (2020) or Gong et al. (2021), that suggest

other particles for frozen hydrometeors for MW and sub-mm frequencies.R2180

2.4.2 Introduction of differences in the forecast model.

In the forecast model, a number of sub-grid scale processes are parameterized. In particular, those governing the representation

of clouds and precipitation (microphysics of the large-scale precipitation scheme, deep moist convection scheme) both require

the specification of a significant number of tunable parameters. For this study, these parameters are perturbed, based on the

settings used in the ensemble prediction system (EPS) of the ARPÈGE global model of Météo-France (Descamps et al., 2014).185

The experiment will be named mMOD (modified model). The use of these specific settings provide a realistic scheme as

they were chosen for their ability to reproduce model errors. With the ARPÈGE EPS, the Random Perturbed Parameter (RPP)

method is used. It consists of perturbing several parameters replacing the default values used in noERR by a random one

selected within a specific range (uniform distribution). Any value between the minimum (XMIN ) and the maximum (XMAX)

values could be chosen to replace the default (noERR) value.R2 The list of perturbed parameters and the default values for the190

noERR experiment together with the range of perturbations used in the mMOD experiment are given in TablesA 7 and 8A. For

generating the perturbed model FG, the forecast model was rerun everyday from the operational analysis, with a new set of

perturbations. The same value is used for all grid points for each date.
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parameter - hydrometeor noERR mMOD

sedimentation velocity - cloud ice 0.08 [0.01, 0.2]

sedimentation velocity - cloud water 0.02 [0.005, 0.15]

sedimentation velocity - snow 1.5 [0.8, 2.2]

sedimentation velocity - rain 5 [3, 7]

auto-conversion - cloud ice - snow coefficient 0.0035 [0.0005, 0.006]

auto-conversion - cloud water - rain coefficient 0.001 [0.0005, 0.006]

auto-conversion - minimum ice content (stratiform ice) 2E-7 [1E-8, 3E-7]

auto-conversion - maximum ice content (stratiform ice) 3E-5 [1E-5, 5E-5]

auto-conversion - critical water content (stratiform water) 2E-4 [5E-5, 1E-3]

coefficients - accretion 1.0 [0.5, 1.5]

coefficients - stratification and ice aggregation 1.0 [0.5, 2.0]

coefficients - aggregation 0.2 [0.1, 1.5]

coefficients - calculation of water/ice partitioning 0.5 [0.4, 1.0]

coefficients - calculation of relative humidity for Smith scheme 0.5 [0.5, 0.9]

coefficients - calculation of critical relative humidity 0.3 [0.3, 1.0]

coefficients - calculation of cloud liquid water into rain conversion 0.004 [0.002, 0.006]

coefficients - maximum evaporation rate for stratiform precipitation 0.2E-6 [0, 1E-6]

Table 7. noERR’s default value and mMOD range of perturbation (random value between [X_MIN , X_MAX]) for each perturbed

parameter in microphysics parameAterization.

parameter - hydrometeor noERR mMOD

convection - downdraft mass flux 0.15 [0.14, 0.2]

convection - entrainment rate 0.00175 [0.0016, 0.0019]

convection - detrainment rate 0.000075 [0.00005, 0.0001]

Table 8. noERR’s default value and mMOD range of perturbation (random value between [X_MIN , X_MAX]) for each perturbed

parameter in the convection parameterization. The perturbation equations are available in Descamps et al. (2014).

2.4.3 Introduction of perturbations in both RT model and forecast model.

A third experiment, named mALL, gathers both differences introduced above. The radiative transfer model used in the inversion195

framework is perturbed as in mRT and the microphysical schemes is also perturbed in the forecast model as in mMOD. This

experiment will help to understand what kind of inconsistency predominates over the others when both are present, which is

likely to be the case with real observations.
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Experiments noERR mRT mMOD mALL

Characteristics

- Control experiment with

the most realistic settings.

- Settings for OBS are the

same as for FG.

- Differences introduced

in RT model for shapes

and ice scheme (see Tables

5 and 6).

- Microphysics pa-

rameterization settings

unchanged.

- RT model settings un-

changed.

- Differences introduced in

NWP model (see Table 7).

- Differences introduced in

RT model for shapes and

ice scheme (see Tables 5

and 6A).

- Differences introduced in

NWP model (see Table 7).

Table 9. Characteristics of the First Guess (FG) used to simulate BT in the inversion framework for each experiment. Note that OBS uses

the settings of noERR for all experiments.

2.5 Metrics

One strength of a fully simulated framework is that the errors of retrievals can be accurately quantified because the truth is200

known, without the need of specific validation data.

2.5.1 Standard deviation.

Errors on retrievals are quantified using standard deviation (std) in the model space. The bias will not be shown as it is overall

smaller than the std values in most of the experiments. Moreover, in a data assimilation system, a potential bias could be

corrected a posteriori.R2 The std of the inversion error using the simulated observation as reference (OBS−RET ) (STD) for205

each instrument and the combined one allows to know if the combination of all frequencies provides a better retrieval than a

retrieval from a single-instrument’s inversion.

2.5.2 Significance test.

In order to quantify if differences between std from two experiments are significant, a Levene’s test (Levene, 1960) is applied

with a 95% confidence level (see Appendix A). If the p-value of the two data sets is below 95%, the differences of std are210

considered as significant.

2.5.3 Quantifying error related to perturbations.

The impact of the perturbations introduced in RT and NWP models on the retrievals is quantified with the difference

DIFFmEXP
A between the standard deviation of errors the combined retrievals (superscript c for combined) with respect

to the standard deviation of errors of the single-instrument retrievals (superscript i).215

DIFFmEXP = STDc
mEXP −STDi

mEXP (4)
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with STD the standard deviation of the inversion error, mEXP the experiment with perturbations in a model (either mRT,

mMOD or mALL).

A negative value means that the retrievals with single-instruments are less accurate than the retrievals with combined-220

instruments and the more negative the value is, the better the improvement brought by the combined inversion is. A positive

value means that the single-instrument provides better results than the combined inversion. The more positive the value is, the

larger the degradation due to the combination is.

3 Simulated framework validation

(i) As the study is based on simulations both for observations and first guess, a validation metric is needed to verify the225

accuracy of the chosen settings of the simulationsR1. Data assimilation metrics are used tR2TR2o validate the framework. Both

FG and OBS have sources of errors, in the simulation of hydrometeors, in the representation of clouds in the forecast model

(microphysical and convection parameterizations) and also the chosen assumption for the simulated OBS and FG that is a

lagged forecast. A, including the lagged forecast assumption, as well as the modifications introduced in the forecast and RT

models, aR2n analysis of the FG departure (OBS-FG) distributions has been performed. In order to document the characteristics230

of these distributions within clouds and precipitation, the std of first guess departure has been computed as a function of a

symmetric cloud amount, as originally suggested by Geer and Bauer (2011) for all-sky MW radiance assimilation. The idea

is to use a proxy in observation space, which can be computed both for the simulated observations and the first guess. The

average of the two, or so called symmetric cloud predictor is then used to categorise the first guess departures.

(ii) For the IR data, we use as cloud predictor the symmetric Cloud Amount (CA) defined as (Okamoto et al., 2021):235

CA=
|BTFG −BT clr

FG|+ |BTOBS −BT clr
FG|

2
(5)

with BTFG FG’s brightness temperature, BT clr
FG FG’s brightness temperature in clear sky, BTOBS OBS’s brightness temper-

ature. We will compare CA from FCI onboard MTG (future radiometer) data against the resulting CA of Advanced Himawari

Imager on Himawari-8 (HIMAWARI-8/AHI) (current radiometer) that can be found in Okamoto et al. (2021) to validate the

hypothesis chosen for simulations.240

(iii) For the MW data, we use as cloud predictor the Symmetric Cloud Predictor (SCP ) (Geer and Bauer, 2010). It is defined

as:


P37FG =

BT v
FG −BTh

FG

BT vclr
FG −BThclr

FG

P37OBS =
BT v

OBS −BTh
OBS

BT vclr
OBS −BThclr

OBS

(6)
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with BT the brightness temperature, FG the first guess, OBS the observation at 37 GHz vertically v or horizontally h

polarized. P37 is the predictor for this window channel.245  C37FG = 1−P37FG

C37OBS = 1−P37OBS

(7)

SCP =
C37FG +C37OBS

2
(8)

Here, we consider the closest channel from 37 GHz available for MWI, which is 31.4 GHz. In this study, this metric is used to

compare the perturbations introduced in MWI (future radiometer) simulations against GMI (current radiometer) data in order250

to verify the chosen settings of simulations.

Figures 2 and 3 showsA the results in terms of STD FG departures for one IR channel (10.5 µm) and one MW channel

(89 GHz).
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Figure 2. Standard deviation (solid line) and average (dashed line) of first guess departures categorised by cloud predictor amount (CA) for

10.5 µm channel of FCI for the different experiments (in color) calculated over the 30-day period, including 15 days in summer and 15 in

winter. Histogram represents the number of observations in each category of the cloud parameters.

(iv) For the 10.5 µm band of the IR instrument FCI (Figure 2), the STD of FG departures increases with the symmetric255

cloud amount up to 20 K, with only little variations between experiments. On the other hand, the bias from the experiment with
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Figure 3. Standard deviation (solid line) and average (dashed line) of first guess departures categorised by Symmetric Cloud Parameter

(SCP ) for the 89GHz channel of MWI (b) for the different experiments (in color) calculated over the 30-day period, including 15 days in

summer and 15 in winter. Histogram represents the number of observations in each category of the cloud parameters.

modifications from the model shows significant changes compared to the experiments with no errors or only radiative transfer

errors. The modifications introduced in the model appear to have more impact on the bias than on the STD. In the following

sections, STD will be studied and the relative impact of mRT and mMOD experiments will be highlighted.R2 For CA> 30K,

the number of cases decreases and more fluctuation on STD and bias appear. Okamoto (2017) highlighted that this decreasing260

is due to the number of cases that is too small to be significant. On the Figure 5 (c)R2 Comparing those results to the onesR2 of

Okamoto (2017) (see their Figure 5 (c)R2 R2 for R2an equivalent band for HIMAWARI-8/AHI channel 13), the simulated frame-

work provides very comparable results in terms of magnitude and error evolution as function of the symmetric cloud predictor.

A quality control is added in the study of Okamoto et al. (2021) (Figure 9 (d)) that flatten the magnitude of STD. Further explo-

ration on a quality control for data assimilation in ARPEGE model could be done in a future study to investigate these results. R2265

(v) For the window channel at 89 GHz of MWI (Figure 3), the STD of FG departures also increases with the symmetric cloud

amount up to 20 K. Comparing those results to the ones of Lean et al. (2017) (see their Figure 6h for an equivalent channel

of the Global Precipitation Measurement (GPM) Microwave Imager (GMI) instrument), the simulated framework provides as

well very comparable results in terms of magnitude and error growth as function of the symmetric cloud predictor.270
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4 Results

In this section, the results for each experiment are shown for the following variables: Cloud Ice Water refers to the frozen

cloud particles, whereas graupel stands for convective frozen precipitation and snow stands for stratiform frozen precipitation

as defined in Geer et al. (2021). For each species, the effect of combining instruments will be analysed first, then error sources

will be added and the effect of the combination reassessed. In order to obtain such information, we consider the standard275

deviation, the difference of standard deviations and its area as defined in 2.5.R1

4.1 Impact of combination and perturbations on CIW.

CIW is an input variable of the RT model for both infrared and microwave spectra. Infrared sensors are expected to perform

well for the retrieval of CIW, in particular for thin and non-precipitating clouds as these wavelengths provide accurate cloud

top information (Martinet et al., 2014).280

4.1.1 Impact of infrared and microwave combination

The Figure 4 shows the distribution of CIW contents as function of the pressure that were simulated by the forecast considered

as the truth. R2

Results of standard deviation of single-instrument and combined-instrument inversion error are provided in Figure 5. This285

provides information on which instrument retrieves the best CIW with the information content from the simulated observation.

On Figure 5, we can observe that the maximum value of STD is about 1.5.10−5 kg/kg. It represents 10 to 100% of the CIW

content at the same altitude (Figure 4).

290

FCI leads to the best retrieval in the upper layers (200 - 500 hPa) whereas the MW instruments perform better at lower layers

(500 - 800hPa) (Figure 5). The combination of all instruments leads to a significant decrease of the std compared to std of

single instruments, except for the FCI above 500 hPa which remains the best retrieval. Below 500 hPa, IR is performing less

well due to the opacity of clouds and the combined inversion significantly improves all single-instrument inversions down to

800 hPa. The combined inversion gathers the strengths of each spectral domain by taking advantages of IR in the upper layers295

of clouds and getting advantages of MW in the lower layers of clouds where the IR-based retrieval weakens in accuracy.

4.1.2 Impact of perturbations on synergy

On Figure 6, different information are reported in order to analyse the impacts of perturbations on the synergy of the instru-

mentsinstrumental synergyR1. First of all, the full lines correspond to the differences between the STD of combined retrieval300

and the STD of single instrument retrieval shown above on Figure 5. This difference is in blue for FCI, red for ICI and green

15



Figure 4. Distribution of CIW content as function of pressure (hPa).R2

for MWI. On each of the subfigures of Figure 6, the full lines are the same. Then on the top of this, the dashed lines depict the

same statistics but with the perturbations introduced. The left figure shows the impact of mRT perturbations, the middle figure

the impact of mMOD perturbations, and the right figure the impact of mALL perturbations. The colored areas highlight the

overlaying of the curves: the baseline colors are cyan for noERR, yellow for mRT, magenta for mMOD and grey for mALL,305

then color mixing appear with the overlaying, e.g. green when cyan for noERR and yellow for mRT overlay. When the dashed

lines are overlayed with the full lines, only the mixed color areas appear and this means that the perturbations have almost

no impact on the synergy. Whereas when the dashed lines are overlayed with the full lines, and baseline color areas appear, it

means there is an impact of the perturbation on the synergy.

310

One can see on the left side of the Figure 6 that a majority of areas tends to be green for cloud ice which indicates that the

modifications of the RT model have rather small impacts on the synergy except for CIW retrieval with ICI. In some cases, a

few counter-intuitive results are found, the differences of STD if more negative for the mRT experiment than for the noERR

experiment, which means that the synergy is more efficient in the presence of radiative transfer error. This is likely due to an

error compensation effect which will need to be further explored.315
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Figure 5. On the left, standard deviation of inversion error for CIW as function of pressure (hPa). On the right, Levene’s significance

test of differences between std of combined and each single instrument.A The cyan curve corresponds to the retrieval with FCI only, the

magenta curve with ICI only, the grey curve with MWI only, the black curve is the combined retrieval. On the right, Levene’s significance

test of differences between std of combined and each single instrument.A Blue (resp. Red) arrows indicate a significant improvement (resp.

degradation) due to the combination of the three instruments. Grey crosses indicate a non-significant difference.

mMOD leads to a negative contribution to the combined retrievals. Indeed, it can be seen for CIW that the blue area does

not overlay with the cyan area: this means that the improvements from the IR-MW combination are reduced. The shape of the

mALL curves on the right panel being similar to the mMOD ones, this confirms that the model perturbations therefore lead to

more differences in CIW retrievals than the ones in RT model.320

4.2 Impact of combination and perturbations on snow.

The Figure 7 shows the distribution of Snow contents as function of the pressure that were simulated by the forecast considered

as the truth. R2

Results for snowfall are shown in Figures 8 and 9.

4.2.1 Impact of infrared and microwave combination325

On Figure 8, we can observe that the maximum value of STD is about 2.10−5 kg/kg. It represents 1 to 10% of the CIW content

at the same altitude (Figure 7).

The statistics reveal that snowfall is best retrieved by MWI below 700 hPa as expected (Figure 8). The combined inversion

provides significantly better results than the three single instrument inversions with the noERR experiments.330
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Figure 6. Differences of STD between the combined retrievals and the single instrument retrievals are displayed, blue for FCI, red for ICI and

green for MWI. The full lines correspond to the noERR experiments and are the same on the three panels. Then in addition, the mEXP curves

are displayed as discontinuous lines: dashed line for mRT (left panel), dotted line for mMOD (middle panel) and dash-dotted line for mALL

(right panel). The few large dots represent non-significant differences and can be found in lower layers. The left panel displays together

noERR and mRT, the middle panel displays together noERR and mMOD, and the right panel displays together noERR and mALL. Colored

areas highlight the differences between full and discontinuous curves. When they are not overlayed, only baseline colors appear (cyan for

noERR, yellow for mRT, magenta for mMOD) and this means the perturbation has an impact on the synergy. When they are overlayed, only

mixed colors appear (green, blue, dark blue) and this means the perturbation has little impact on the synergy.

4.2.2 Impact of perturbations on synergy

As for snowfall, the conclusions which can be drawn are consistent with the ones for CIW: (i) the mRT perturbations have

rather small impact on the synergy, with green areas dominating the left panel, (ii) the mMOD perturbations lead to a negative

contribution to the synergistic retrievals, with blue areas not overlaying the cyan areas again, (iii) when the sources of perturba-

tions are combined, the mMOD ones remain dominant. On mRT panel, we can notice that mRT modifications seem to improve335

snow retrievals above 500 hPa. Further exploration could allow to elucidate that comment, by testing more particle shapes or

identifying in which situations this improvement occurs. R2Note that on Figure 9, the green curves for FCI are not displayed

because this instrument is not expected to well retrieve precipitation and therefore the synergy with microwave data is always

very beneficial whatever error sources are introduced.

340

In order to obtain such information, we consider the standard deviation, the difference of standard deviations and its area as

defined in 2.5.R1
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Figure 7. Same as figure 4, butA for snow.R2

Figure 8. Same as figure 5, butA for snow retrievals.

4.3 Impact of combination and perturbations on graupel
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Figure 9. Same as figure 6, butA for snow retrievals.

The Figure 10 shows the distribution of Graupel contents as function of the pressure that were simulated by the forecast

considered as the truth. R2345

Results for graupel retrievals are shown in Figures 11 and 12.

4.3.1 Impact of infrared and microwave combination

On Figure 11, we can observe that the maximum value of STD is about 4.10−5 kg/kg. It represents 1 to 10% of the CIW

content at the same altitude (Figure 10).

The best retrievals of graupel profiles are derived from the MWI instrument, followed by ICI. FCI retrieves graupels with an350

error two times larger than the one with MW instruments which it is expected. Compared to the snow inversion (see Figure 8),

the FCI inversion is of much worse quality and this affects much more the combined inversion. A possible explanation would

be that graupels occur in convective situations with clouds even more opaque to the IR spectrum than stratiform situations.

Graupel retrievals from combined instruments are close to retrievals obtained using ICI frequencies. As we can see on Figure

11, MWI is the instrument that has the least error on Graupel retrievals. Indeed, low frequencies of MWI are the most able to355

retrieve this hydrometeor as higher frequencies are more sensitive to smaller particles. R2Overall, the combined inversion has

larger errors than each MW instrument because of the negative influence of FCI. However, we have chosen to keep FCI into

account in the combined inversion to remain consistent between all hydrometeors and to study the synergy between IR and

MW.
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Figure 10. Same as figure 4, but for graupel.R2

Figure 11. Same as figure 5; but for graupel retrievals.
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Figure 12. Same as figure 6 for graupel retrievals

4.3.2 Impact of perturbations on synergy360

For graupel retrievals, the RT modifications appear to have a non negligible impact as only a small fraction of the figure 12 is

green. As for Snow retrievals, the curves for FCI are not displayed because this instrument is not expected to well retrieve this

variable.R1 Compared to the impacts obtained with mRT for snowfall retrieval, it can be explained by the choice of the particle

shape used for RT perturbation. As it can be seen in Figure 9.a of Geer et al. (2021) showing the obtained BT of a simulated

ice or snow cloud using different hydrometeor shapes, the perturbations introduced in particle shape (see Table 5) for graupels365

seem to lead to more differences for all frequencies than the ones introduced for snow.

As for CIW and snowfall, mMOD leads to a negative contribution to the synergistic retrievals for graupel with the magenta

coloured areas exceeding the blue one.

370

When perturbations are combined in the mALL experiment, the statistics look similar to the mRT experiment, which indicate

that in this case the radiative transfer perturbations tend to dominate the impact. One interpretation of the smaller impact of the

model perturbations on graupel is that the perturbations related to convective hydrometeors in our experiments are linked to the

downdraft and entrainment/detrainment rate. TheseisA quantities are less directly related to the specific content of hydrometeors

than the other perturbations applied to snow and CIW such as auto-conversion rates.375
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5 Discussion

To understand the impact of the synergy between IR and MW data and the uncertainties existing in NWP and RT models, we

defined a step by step approach, beginning with an error free framework in order to estimate the best possible retrieval, then

progressively introducing errors, in the radiative transfer both in the IR and MW simulations, and in the model as well. This

process allowed to compare the impacts of those two sources of errors.380

5.1 IR/MW synergy

In most of the experiments performed, a synergy was obtained for the three frozen hydrometeors type, thanks to the inversion

algorithm which is able to find a compromise between IR and MW channels along pressure levels, using the strength of each

sensor for each hydrometeor type. Even though perturbations have some impacts on retrievals, the combination of IR and MW

observations remains more beneficial for the retrievals quality than using them separately in cloudy situations. Even if the385

FCI instrument seems to provide the best CIW retrievals and the MWI instrument the best precipitation retrievals, the new

sub-millimetric frequencies from ICI were found to well perform for both retrievals.

5.2 Relative importance of RT versus NWP uncertainties

Perturbations introduced in the RT model (mRT) were shown to have less impact on the retrievals than perturbations introduced

in NWP model (mMOD) for CIW and snow (solid stratiform precipitation). This predominance of one type of perturbation390

is independent of the spectral range. For the specific case of graupel (solid convective precipitation), the opposite result was

found. However, it is likely that the smaller effect of model perturbations for graupel retrievals is related to the perturbations

of the convection scheme which do not affect directly the specific content of hydrometeors like other model perturbations do

for cloud ice and snowfall.

5.3 Framework limitations395

Realistic settings were used to introduce perturbations covering several sources of uncertainties in the inversions. The general

framework was validated by computing first guess departure statistics as function of symmetric cloud predictors both in the IR

and the MW and their magnitudes were found to be compatible with the ones found in the literature with real observations.

However, the applied perturbations may cover only partially the uncertainties and inconsistencies that can be encountered in

the treatment of real observations:400

1. Regarding perturbations of the RT model in the IR, the use of the two schemes of Baran (Baran et al., 2014) and Baum

(Baum et al., 2011) certainly do not encompass the complex variability of ice crystals in nature. A similar comment

can be made regarding the perturbations in the MW simulations for which single particle shapes have been used in each

simulation (Barreyat et al., 2021).

23



2. Regarding model perturbations, the Météo-France operational framework of perturbations, known as RPP, was used.405

Compared to other perturbation methods (e.g. Stochastically Perturbed Parameter Tendency (SPPT) method used at

ECMWF) to describe uncertainties in the model, the RPP method is known to lead to a rather small spread of forecasts.

3. Regarding the subgrid cloud variability representation, no modifications to the RT nor the NWP model were performed,

however this source of error is of equal importance in the model and in the radiative transfer.

4. Barlakas and Eriksson (2020) focused on sub-grid variability of sub-mm frequencies and highlighted that the instru-410

ment’s footprint has impact on the model’s uncertainties. R2As mentioned above, the observation’s geometry and reso-

lution of each instrument was not taken into account in the framework. For future studies, the instruments’ footprints

could be taken into account to investigate the model error induced by the sub-grid cloud representation. AR2 and can be

an important source of uncertainty as wellR2 lthough mitigation strategies such as superobbing to a common resolution

exist to overcome part of the inconsistencies between IR and MW data.415

5.4 Perspectives

The above mentioned limitations could be overcome by exploring larger perturbations on both RT simulations and NWP model

forecasts. However, this first set of experiments indicates that the fine tuning of RT properties between IR and MW spectral

ranges does not seem critical compared to the model parameterization uncertainties. The methodology used in this paper can be

adapted to other shapes to evaluate their impact on the results. Ekelund et al. (2020) and Gong et al. (2021) showed that different420

shapes could be more efficient to simulate microwave frozen precipitation. R2It has been shown that a synergy between the two

types of datasets can still be obtained. Therefore, the next step will be to explore the use of cloudy IR data within the 4D-Var

assimilation system of Météo-France which already make use of MW cloudy and precipitating data. As a first step, imagers

onboard geostationary satellites will be studied and the work will then be further extended to hyperspectral instruments.

Code and data availability. The radiative transfer model RTTOV v13 used in this paper is available for free from https://nwp-saf.eumetsat.int/425

(last access: 30 November 2022) to registered users. The numerical weather prediction model ARPÈGE is developed at Météo-France.

Datasets produced during the course of this study (ARPÈGE analyses and forecasts) are too large to be publicly archived. All model and

experiment data have been archived on the Météo-France mass storage system and can be obtained from the first author upon request.

Appendix A: Levene’s significance test

The purpose of the Levene test is to determine rather a number of sample has an equal variance. It has been published in Levene430

(1960) and extended in Brown and Forsythe (1974) to use the median. It is mathematically defined as:
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W =
(N − k)

(k− 1)

k∑
i=1

Ni(Zi. −Z ..)
2

k∑
i=1

Ni∑
j=1

(Zij −Zi.)2
(A1)

where Zij = |Yij − Ỹi| with Ỹi the median of the i sample, Zi. are the means of the Zij and Z .. is the overall mean of the Zij .

The aim of this test is to know if the variance of several samples is equal or not.435

The significance level is noted α. It is usual equal to α= 0.05. The variances is considered non equal if:

W >Fα,k−1,N−k (A2)

where Fα,k−1,N−k is the upper critical value of the F distribution with k− 1 and N − k degrees of freedom at a significance

level of α.
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