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The following is a joint statement from current and former members of the Tropospheric Ozone 
Assessment Report (TOAR) Steering Committee.  The submitted manuscript proposes a science-into-
policy process that would mis-interpret the findings from TOAR, and therefore we feel compelled to 
state our concerns regarding the scientific structure of the proposal. 
 
- The submitted manuscript makes no mention of IPCC’s well-known assessment of the co-benefits of 
greenhouse gas mitigation for air quality improvements, a concept that has been widely discussed by 
the atmospheric sciences community and by policy-makers for at least 10 years (e.g. see West et al., 
2013; 391 citations according to Web of Science).  As summarized by the recent Synthesis Report of IPCC 
AR6 (https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf), existing and new policies to 
reduce greenhouse gas emissions will have the co-benefit of reducing ozone at the surface and in the 
free troposphere, especially due to methane mitigation (see also IPCC AR6 WG-III).  This omission of 
IPCC findings is profound, and seriously undermines the suggested science to policy process. The 
authors also fail to discuss the inclusion of tropospheric ozone as a risk factor in recent Global Burden of 
Disease reports, which have brought tropospheric ozone into the public health community discourse 
(Murray et al. Lancet. 2020; 396: 1223-1249). 
 
- The submitted manuscript calls for the development of a single ozone policy metric, “with full buy-in 
from the atmospheric science community”.  TOAR is a grassroots organization sustained by the 
atmospheric science community, and TOAR’s great success is due to its popular and necessary use of 
multiple ozone metrics (for climate, health and vegetation impacts).  Tropospheric ozone chemistry is 
extremely complicated, concentrations of ozone vary in space and on hourly timescales, and no single 
ozone metric can adequately gauge its impacts on diverse biological systems, or climate.  The suggestion 
for a single ozone policy metric would not provide protection for the different receptors damaged by 
ozone which have very different exposure patterns, dose-response curves, and ozone damage 
thresholds.  Rather than a new metric which would necessitate the development of a new set of 
exposure-response curves, ozone policy could be guided by the more consistent use of existing response 
curves to convert exposure or dose to easily understood impacts such as years of life lost (YLLs), years of 
life lived with disability (YLDs), and disability-adjusted life-years (DALYs), crop production losses (CPL) 
and economic cost losses (ECL).  

 
- A foundation of this proposal is the authors’ repeated claim that mid-latitude baseline ozone doubled 
from the 1950s to the early 2000s, but has since been steadily decreasing.  This claim runs contrary to 
the findings of IPCC AR6 and other recent assessments of tropospheric ozone trends, including the 
analyses from TOAR (collectively cited over 1300 times), which do not support a steady decrease in 
tropospheric ozone across the mid-latitudes in recent decades (further details are provided below).  This 
basic scientific error prevents us from having any confidence in the scientific structure of the proposed 
science-into-policy process. 
 
- These authors call for the development of a simple, conceptual ‘model’ that would be used to 
understand the output of atmospheric chemistry models, guide research efforts and inform policy. They 
describe the attributes of the “model”, which exactly match the attributes of a conceptual model that 



these same authors have proposed in a recent paper (Mims et al. 2022). While the authors do not cite 
their own work, we briefly discuss the weaknesses of the Mims et al. model below.  In our expert 
opinion, output from modern atmospheric chemistry models can be effectively summarized for policy-
makers, and there is no reasonable application for a simple, conceptual model that lacks basic 
atmospheric dynamics and is therefore unable to capture the temporal and spatial variability in column 
and ground level ozone, let alone allow for any attribution of ozone changes to driving forces.  There 
may be important roles for simple models, but new models must be vetted among the community of 
scientists and demonstrate their value before they are used in a science-to-policy process.  
 
While we agree that science must inform policy, we have no confidence in this particular proposal for a 
science-into-policy process, which seems to oversimplify the science and relevant metrics, while 
misinterpreting the science.  TOAR follows the lead of other influential scientific processes like IPCC 
(which focuses on the science and summarizing that science for policymakers), to inform choices 
without prescribing policy.  TOAR does so in part by including studies of impacts on health, crops, 
vegetation, and climate.  TOAR will continue to work with IPCC, the Climate and Clean Air Coalition 
(CCAC, www.ccacoalition.org) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) 
under the UNECE, as well as established regional organizations (for example, EMEP in Europe), to advise 
policy-makers to develop more effective approaches.  
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Supporting information: 
 

Simple conceptual ‘model’ 
As stated above, the submitted manuscript calls for the development of a simple, conceptual ‘model’ 
that would be used to understand the output of atmospheric chemistry models, guide research efforts 
and inform policy. They describe the attributes of the “model”, which exactly match the attributes of a 
conceptual model that these same authors have proposed in a recent paper (Mims et al. 2022). Even 
though the authors do not cite their own work, we briefly comment on this paper in order to point out 
the substantial shortcomings of a simple conceptual model.  This particular conceptual model is similar 
to a simple 1970s box model that scientists had to build in the days before adequate computing power 
was available to run more complex models (e.g. Oeschger et al., 1975; Thompson and Schneider, 
1979).  It has no atmospheric dynamics and it assumes the mid-latitudes are isolated from the polar 
regions and the tropics; this is contrary to recent work, which shows that tropospheric ozone in the mid-
latitudes is impacted by emissions and transport from the tropics, and this influence cannot be ignored 
(Zhang et al., 2016,2021; Gaudel et al., 2020).  In contrast, modern atmospheric chemistry models can 
handle global and regional atmospheric dynamics, in addition to emissions and photochemistry.  These 
models correctly reproduce the observed increase of the tropospheric ozone burden, and as shown by 
IPCC AR6 the output from these models can be effectively summarized to provide the answers to the 
questions from policy makers (see Chapters 6 and 7, and Box TS.7 in the Technical summary of AR6).  
 
Baseline ozone trends: 
As assessed by IPCC AR6 WG-I (Chapters 2 and 6), the annual State of the Climate Reports, the 
Tropospheric Ozone Assessment Report (Tarasick and Galbally et al., 2019), CMIP6 and the UNEP 
Scientific Assessment of Ozone Depletion 2022 (Chapter 3.3) the tropospheric ozone burden has 
continued to increase since the 1990s including at mid-latitudes; these same assessments found no 
convincing evidence that mid-latitude baseline ozone doubled from the 1950s to the early 2000s.  These 
findings are corroborated by very recent studies published since the release of IPCC AR6 (Miyazaki et al., 
2020; Christensen et al., 2022; Wang et al., 2022; Fiore et al., 2022; Chang et al., 2022).  Contrary to the 
evidence, the authors of the submitted manuscript have claimed (since at least 2017) that baseline 
ozone has been consistently decreasing across northern mid-latitudes over the past two decades.   
No independent study has been able to corroborate their claims, and these claims were not accepted by 
the assessment reports listed above. 
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