Internal tides off the Amazon shelf Part I: importance for the structuring of ocean temperature during two contrasted seasons

Fernand Assene,1, Ariane Koch-Larrouy,2, Isabelle Dadou,2, Michel Tchilibou,3, Guillaume Morvan,3, Jérôme Chanut,4, Alex Costa da Silva,5, Vincent Vantrepotte,2, Damien Allain,2, Trung-Kien Tran1

1 Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS/CNESUT3), Toulouse, France
2 Mercator Ocean International, 31400, Toulouse, France
3 Collecte Localisation Satellites (CLS), 31500, Ramonville Saint-Agne, France
4 Departamento de Oceanografia da Universidade Federal de Pernambuco, Recife, Brazil
5 Laboratoire d’Océanologie et de Géosciences (LOG), 62930, Wimérex, France

Correspondence to: Fernand Assene (fassene@mercator-ocean.fr)

Abstract

The impact of the tides (internal and external)–barotropic tides on the vertical and horizontal structure of temperature investigated during two highly contrasted seasons (AMJ: April-May-June and ASO: August-September-October) over a three-year period from 2013 to 2015. Twin regional simulations, with and without tides are used to highlight the general effect of tides. The findings reveal that tides tend to cool down and have a cooling effect on the ocean from the surface (~0.3 °C) to above the thermocline (~1.2 °C), and to warm while warming it up below the thermocline (~1.2 °C). The heat budget analysis leads to indicates that the conclusion that vertical mixing representis the dominant process that drives the driving temperature variations within the mixed layer, while it is associated with both horizontal and vertical advection below to explain temperature variations below. The intensified mixing in the simulations including tides is attributed to the breaking of internal tides (IT) on their generation sites over the shelf break and offshore along their propagation pathways. While over the shelf, the mixing is driven by the dissipation of the external barotropic tides. In addition, the vertical terms of the heat budget equation exhibit wavelength patterns typical of mode-1 IT. The study highlights the key role of tides and particularly how IT-related vertical mixing shapes the ocean temperature off the Amazon. Furthermore, we found that tides impact the interactions between the upper ocean interface and the overlying atmosphere. They contribute significantly to increasing the net heat flux between the atmosphere and the ocean, with a notable seasonal variation from 33.2% in
AMJ to 7.4% in ASO seasons. This emphasizes the critical role of tidal dynamics in understanding regional-scale climate.

Moreover, we found that the tides can impact the interactions between the upper ocean interface and the overlying atmosphere. They account for a significant proportion of the net heat flux between the atmosphere and the ocean, with a marked seasonal variation of 33.2% in AMJ to 7.4% in ASO seasons. Tidal dynamics is therefore critical to understand the climate at regional scale. This study highlights the key role of tides and particularly how IT-related vertical mixing helps to shape ocean temperature off the Amazon.

Keywords: Amazon shelf break, modeling, internal tides, mixing, temperature cooling, heat flux, modeling, satellite data.

I. Introduction

Temperature and its spatial structure play a crucial role in ocean, including In the ocean, many processes depend on temperature. These processes include water mass formation (Swift and Aagaard, 1981; Lascaratos, 1993; Speer et al., 1995), the transport and mixing of other tracers in the ocean and exchanges with other biosphere compartments (Archer et al., 2004, Rosenthal et al., 1997), and most importantly, surface heat exchange at the interface with the atmosphere (Clayson and Bogdanoff, 2013; Mei et al., 2015) – and can thus, which significantly influence the climate (Li et al., 2006; Collins et al., 2010). This oceanic thermal structure can be modified at various spatial and temporal scales, through different external processes external to the ocean like solar radiation, heat exchanges with the atmosphere, winds, precipitation, and freshwater inputs from rivers, and by its as well as internal processes such as including mass transport by currents and eddies (e.g., Aguedjou et al., 2021), mixing by turbulent diffusion (Kunze et al., 2012), and the dissipation of internal waves (Barton et al., 2001; Smith et al., 2004; Salamena et al., 2021). Finally, additionally, bottom friction of the barotropic tidal currents may also produce can lead to intensified mixing, especially for, particularly in shallow water conditions (e.g., over a shelf, see Lambeck and Runcorn, 1977; Le Provost and Lyard, 1997), and significantly modify ocean temperature in surface layers (Li et al., 2020).

The barotropic tides, also called external tides, reserve as the primary source for generating internal waves. The external When barotropic tides, when interacting interact with sharp topography (e.g., ridge, sea mounts, shelf break) in a stratified ocean, they generate internal waves (IT) that propagate and dissipate in the ocean interior causing
A number of several observational and modelling studies have demonstrated that this dissipation occurs at the generation sites, at the through reflection at the ocean bottom, or close to near the surface when the energy rays interact with the thermocline and pycnocline (among others: Laurent and Garrett, 2002; Sharples et al., 2007, 2009; Koch-Larrouy et al., 2015; Nugroho et al., 2018; Whalen et al., 2012). IT also dissipate or lose energy by through wave-wave interactions or when they interact with mesoscale or fine-scale structures (Vlasenko and Stashchuk, 2006; Dunphy and Lamb, 2014).

The role of internal tides on IT in shaping the ocean's thermal structure has been the subject of growing interest and has been the focus of numerous studies in recent years. In the Hawaii shallow shelf surface waters of Hawaii, Smith et al. (2016) reported that IT can induce surface cooling ranging from 1 °C to −5 °C. For Similarly, in the Indonesian region, IT induce an annual mean surface cooling of 0.5 °C (studies by Koch-Larrouy et al., 2007, 2008; Nagai and Hibiya, 2015) and Nugroho et al. (2018) found that decreases IT lead to an average surface cooling of 0.5 °C, which subsequently reduces local atmospheric convection, which and results in turn reduces a 20% decrease in precipitation by 20%. They can therefore fulfill a relevant, Therefore, IT play a significant role in the regional climate dynamics (Koch-Larrouy et al., 2010; Sprintall et al., 2014, 2019). Furthermore, in the Andaman Sea, Jithin and Francis (2020) showed that internal tides in the Andaman Sea, IT can affect the temperature of deep waters (> 1600 m), leading to a warming effect of about 1–2 °C. But However, the impact of IT on temperature off the Amazon plateau, their impact on the thermal structure of the ocean is still poorly understood.

Our study focuses on the oceanic region of northern Brazil off the Amazon River. This region experiences variations in the wind position patterns and hence the position of the Intertropical Convergence Zone (ITCZ) throughout the year. These variations directly influence the discharge of the Amazon River, oceanic circulation, eddy kinetic energy (EKE) and the stratification (Muller-Karger et al., 1988; Johns et al., 1990; Xie and Carton, 2004). Hence, consequently, two very contrasting seasons form: April-May-June (AMJ) and August-September-October (ASO). The AMJ (vs. ASO) is characterized by season features an increasing (vs. decreasing) river discharge, there is a stronger (vs. smaller) and shallower (vs. deeper) pycnocline. The, while the North Brazilian Current (NBC) and eddy kinetic energy (EKE) are weaker (vs. stronger) (Aguedjou et al., 2019, Tchilibou et al., 2022). During AMJ season, NBC forms a weak equatorial
Internal tides. In this region, IT are generated on the sharp shelf break featured by a, where the depth decreases from 200–2000 m over some tens of kilometers (Fig.1). Six main sites (A to F) have been identified, with the most intense sites, A and B, located in the southern part of the region (Fig.1; Magalhaes et al., 2016, Tchilibou et al., 2022). Previous studies have shown that the propagation of IT in this region is modulated by the seasonal variation of the currents (Magalhaes et al., 2016; Lentini et al., 2016; Tchilibou et al., 2022). In addition, seasonal variations in stratification induce changes in throughout different seasons affect the activity of internal tide’s conversion and a stronger (vs. smaller) local dissipation of IT energy (Barbot et al., 2021, Tchilibou et al., 2022). The interaction between the weaker (vs. stronger) background circulation and IT leads to less results in fewer (vs. more) incoherent or non-stationary internal tides (Tchilibou et al., 2022).

During the ASO season, cold water (with temperature below 27.6 °C), associated with the western extension of the Atlantic Cold-water Tongue (ACT), flows into the region from the south and runs along the edge of the continental shelf up to about 3°N, establishing a cold cell often referred to as seasonal upwelling (Lentz and Limeburner, 1995; Neto and da Silva, 2014). Modelling studies, with and without tides, have shown that this upwelling is affected by the tides. Cooling is more realistic when tides are included (vertical advection triggered by the NBC. Alternatively, Ruault et al. (2020). However, these analyses cannot determine what processes are at work. For example, it is not yet explicit whether the tidal-induced cooling is due to mixing on the shelf produced by barotropic tides, or to the mixing produced by baroclinic tides at their generation sites and propagation pathways. Based on in
situ observations, Neto and da Silva (2014) suggest instead that it is the vertical advection triggered by the NBC that can explain the cooling observed at the surface. They conducted a modeling study, comparing simulations with and without tides, and demonstrated that the inclusion of tides resulted in a more realistic cooling effect on this upwelling. However, it remains unclear whether the cooling is a result of mixing on the shelf caused by barotropic tides or mixing caused by baroclinic tides at their generation sites and propagation pathways.

To answer the previous questions, we use a high-resolution model (1/36°) with and without explicit tidal forcing and a satellite SST product. Our aim is to examine the impact of tides on the temperature structure and quantify the associated processes. We distinguish the analysis for the two contrasted seasons (AMJ and ASO) described above. The Section II provides a description of the SST product, our model, and the methods used are described in section II. The validation of certain tidal characteristics of the barotropic and baroclinic tides and of the temperature is presented in section III. The Section IV focuses on the analysis of the impacts of tides on the temperature structure, and the associated processes, as well as the influence of tides on heat exchange at the atmosphere-ocean interface, and the processes involved, are analyzed in section IV. The discussion and the summary of the obtained results are presented in sections V and VI, respectively.

II. Data and Methods

II.1. Satellite Data: TMI SST

This dataset is derived from Tropical Rainfall Measurement Mission (TRMM), which performs measurements using onboard TRMM Microwave Imager (TMI). The microwaves can penetrate clouds and are therefore crucially important for data acquisition in low latitude regions, cloudy covered during long periods of raining seasons. We use TMI data products v7.1, which represents the most recent version of TMI SST. It contains a daily mean of SST with a 0.25°×0.25° grid resolution (~25 km). This SST is obtained by through inter-calibration of TMI data with other microwave radiometers. The TMI SST full description and inter-calibration algorithm are detailed in Wentz (2015).

II.2. The NEMO Model: AMAZON36 configuration

The numerical model used in this study is the Nucleus for European Modelling of the Ocean (NEMO v4, Madec et al., 2019). The specific configuration designed for our purpose is called AMAZON36 and covers the western tropical Atlantic region from the Amazon River mouth to the open ocean. Other configurations exist in this region, but either...
they have a coarse grid (¼°, Hernandez et al., 2016) or, when the grid is fine (1/36°)
they (1/36°), do not extend very far enough eastwards and therefore exclude most of the site B
(Ruault et al., 2020). The current AMAZON36 configuration avoids overcomes these two
limitations. The grid resolution is 1/36° and the domain lies spans between 54.7°W–
35.3°W and 5.5°S–10°N (Fig.1). In this way, we capture the internal tides radiating from all the
generating sites on the Brazilian shelf break. The vertical grid comprises consists of 75 vertically
fixed z-coordinates levels, with a narrower grid refinement near the surface, with comprising
23 levels in the first 100 m. Cell, whereas cell thickness reaches 160 m when approaching near
the bottom. The horizontal and vertical resolutions of the grid are therefore fine enough to
resolve low-mode internal tides. This grid resolution has already been previously used for
this similar purpose in this region (e.g., Tchilibou et al., 2022).

A third order upstream biased scheme (UP3) with built-in diffusion is used for
momentum advection, while tracer advection relies on a 2nd order Flux Corrected Transport
(FCT) scheme (Zalesak, 1979). A Laplacian isopycnal diffusion with a constant coefficient of
20 m².s⁻¹ is used for tracers. The temporal integration is achieved thanks to a
leapfrog scheme combined with an Asselin filter to damp numerical modes, with a baroclinic
time step of 150 s. The k=εk-ε turbulent closure scheme is used for vertical diffusion. Bottom
friction is quadratic with a bottom drag coefficient of 2.5×10⁻³, while lateral wall
free-slip boundary conditions are prescribed. A time splitting technique is used to resolve the
free surface, with the barotropic part of the dynamical equations integrated explicitly.

We use the 2020’s release of the General Bathymetric Chart of the Oceans, which
has been interpolated onto the model’s horizontal grid, with the minimal depth set to 12.8
m. The model is forced at the surface by the ERA-5 atmospheric reanalysis (Hersbach et al.,
2020). The river discharges River runoff are based on monthly means from hydrology
simulation of the Interaction Sol-Biosphère-Atmosphère model (see details in ISBA,
https://www.umr-cnrm.fr/spip.php?article146&lang=en) and are prescribed as surface mass
sources with null salinity, and we use a multiplicative factor of 90% of ISBA runoff based
on a comparison with the HYBAM interannual runoff timeseries (see details in http://www.ore-
hybam.org). The model is forced at its open boundaries by the fifteen major tidal constituents
(M2, S2, N2, K2, 2N2, MU2, NU2, L2, T2, K1, O1, Q1, P1, S1, and M4) and barotropic currents,
derived from FES2014 atlas (Lyard et al., 2021). In addition, we prescribe to the open
boundaries, the temperature, salinity, sea level, current velocity and derived
baroclinic velocity from the recent MERCATOR-GLORYS12 v1 assimilation data (Lellouche
et al., 2018) for temperature, salinity, sea level, current velocity and derived baroclinic velocity.

The simulation was initialized on the 1st of January, 2005, and ran for 11 years until December 2015. It was found that the model achieved a seasonal cycle equilibrium after two years. However, for this study, we use our focus lies on a three-year model output period from January 2013 to December 2015. Indeed, the model has reached an equilibrium in terms of seasonal cycle after 2 years. A twin model configuration without tides is used to highlight the influence of tides on the temperature structure—, we use a twin model configuration without tidal forcing.

II.3. Methods

II.3.1. Tide energy budget

We follow Kelly et al. (2010) to separate barotropic and baroclinic tide constituents. There is no separation following vertical modes, then we analyze the total energy for all the resolved propagation modes for a given tidal frequency. Note that the barotropic/baroclinic tide separation is performed directly by the model for better accuracy. We have only analyzed the M$_2$ harmonic which is the major tidal constituent in this region (Prestes et al., 2018; Fassoni-Andrade et al., 2023), representing ~70% of the tidal energy (Beardsley et al., 1995; Gabioux et al., 2005).

The energy budget equations of barotropic and baroclinic tide energy budget equations are obtained assuming that the energy tendency, the nonlinear advection and the forcing terms are small (Wang et al., 2016). Then, the remaining equations are reduced to the balance between the energy dissipation, the divergence of the energy flux, and the energy conversion from barotropic to baroclinic (e.g., Buijsman et al., 2017; Tchilibou et al., 2018, 2020; Jithin and Francis, 2020; Peng et al., 2021):

\[
\begin{align*}
D_{bt} + \nabla h \cdot F_{bt} + C & \approx 0 \\
D_{bc} + \nabla h \cdot F_{bc} - C & \approx 0
\end{align*}
\]

where bt and bc indicate the barotropic and baroclinic terms, respectively, D is the depth-integrated energy dissipation, which can be understood as a proxy of the real dissipation since D may encompass the energy loss of non-linear terms and/or numerical dissipation (see Nugroho et al., 2018), $\nabla h \cdot F$ represents the divergence of the depth-integrated energy flux, whilst C is
the depth-integrated barotropic-to-baroclinic energy conversion, i.e., the amount of incoming barotropic energy converted into internal tides energy over the steep topography, with:

\[
C = \langle PH \cdot U_{bt} P_{bc} \rangle \tag{3}
\]

\[
F_{bt} = \langle U_{bt} P_{bc} \rangle \langle U_{bt} P_{bt} \rangle \tag{4}
\]

\[
F_{bc} = \int_H^H \langle U_{bc} P_{bc} \rangle d_z \int_H^H \langle U_{bc} P_{bc} \rangle d_z \tag{5}
\]

where the angle bracket \(\langle \rangle \) denotes the average over a tidal period, \(\nabla \) is the slope of the bathymetry, \(U \) is the current velocity, \(P_{bc}^* \) is the baroclinic pressure perturbation at the bottom, \(H \) is the bottom depth, \(\eta \) the surface elevation, \(P \) is the pressure, then \(F \) is the energy flux and \(C \) emphasizes indicates the path of the tides.

II.3.2. 3-D heat budget equation for temperature

The three-dimensional temperature budget was computed online and further analyzed. It is the balance between the total temperature trend and the sum of the temperature advection, diffusion and solar radiative and non-solar radiative fluxes (e.g., Jouanno et al., 2011; Hernandez et al., 2017). The three-dimensional heat budget equation for temperature is expressed as follows:

\[
\partial_t T = -u \partial_x T - v \partial_y T - w \partial_z T + LDF - \frac{\partial_z (K_z \partial_z T)}{ZDF} - \frac{\partial_z (K_z \partial_z T)}{ZDF} + Forcing + Asselin \tag{6}
\]

Here, \(T \) is the model potential temperature, \((u, v, w) \) are the velocity components in the \((x, y, z)\) [respectively eastward, northward and upward] directions, \(ADV \) is the 3-D tendency term from the advection routine of the NEMO code (from the left to right: zonal, meridional and vertical terms). Note that in our model, \(ADV \) includes non-linear effect between the temperature and the currents and leads to some diffusivity of the temperature due to numerical dissipation of the FCT advection scheme (Zalesak, 1979) in contrast to some non-diffusive advection scheme like in Leclair and Madec (2009). In previous studies, for lower resolution \((1/4^\circ)\), this mixing has been quantified to be responsible for 30% of the dissipation as part of the high-frequency \textit{work effect} of the diffusion (Koch-Larrouy et al., 2008). We expect here at \(1/36^\circ\) resolution that this effect will be smaller but still non negligible. This will be discussed in the last section. Note that explicit separation of this effect is beyond the scope of our study. Furthermore, tides are primarily linear in surface water, however, non-linear effects intensify due to bottom friction for barotropic tides or as a result of IT breaking. Consequently, we
anticipate a corresponding increase in $\text{ADV}_z \times \text{ZF}$ represents denotes the vertical diffusion, LDF is the lateral diffusion, Forcing is the sum of tendency of temperature due to penetrative solar radiation, which includes a vertical decaying structure, and the non-solar heat flux (sum of the latent, sensible, and net infrared fluxes) at the surface layer, and Asselin corresponds to the numerical diffusion for the temperature.

III. Model validation

In this subsection, we assess the quality of our simulations by verifying whether they are in good agreement with the observations and other reference data. Firstly, for the barotropic and baroclinic characteristics of the M_2 tides for the year 2015, and finally for the temperature from 2013 to 2015.

III.1. M_2 Tides in the model

We initially examined the barotropic SSH and there is a good agreement in both amplitude (color shading) and phase (solid contours) between FES2014 and the model, Fig.2a and Fig.2b, respectively. Nevertheless, near the coast, some differences in amplitude are observed. The model’s SSH amplitude of the M_2 tidal is lower (~50 cm) north of the mouth of the Amazon. However, shoreward and on the southern part of the mouth, the model overestimates the amplitude by ~20 cm and ~40 cm, respectively, shoreward and on the southern part of the mouth. These biases are of the same order of magnitude as those reported in Ruault et al. (2020). The flux of the barotropic tidal energy flowing inshore is represented by the black arrows depicted in Fig.2c and Fig.2d for FES2014 and the model, respectively. A fraction of this energy is converted into baroclinic tidal energy over the steep slope of the bathymetry. We compared the depth-integrated barotropic-to-baroclinic energy conversion rate (C) between FES2014 and the model, color shading in Fig.2c and Fig.2d, respectively. The model does reproduce successfully reproduces the same conversion patterns of FES2014 over the slope, but hardly less offshore between 42°W–35°W and 7°N–10°N. This leads to an estimate of C of about 30% by our model, approximately 30%. Niwa and Hibiya (2011) demonstrate that C increases with higher bathymetry resolution, meaning that there is more conversion with the FES2014 grid (~1.5 km) compared to our grid (~3 km). In addition, FES2014 (vs. our model) is a barotropic (vs. baroclinic) model, which may be a source of some differences since it solves different set of equations.
Another proportion of the barotropic energy is dissipated on the shelf by through bottom friction and induces, leading to mixing from the bottom (Beardsley et al., 1995; Gabioux et al., 2005; Bessières, 2007; Fontes et al. 2008). Most of the dissipation of barotropic energy (D_{bt}) occurs in the middle and inner shelf between 3°S–4°N (Fig.2e) in good agreement with a mean value of about 0.25 W.m$^{-2}$ (Fig.2e). The location of this dissipation aligns well with previous studies of Beardsley et al. (1995) and Bessières (2007). The remaining barotropic energy propagates over hundreds of kilometers into the estuarine systems of this region (Kosuth et al., 2009; Fassoni and Andre et al., 2023).

For the internal tides, their energy flux of IT (F_{bc}, black arrows in Fig.2f) shows indicates that they propagate from the slope towards the open ocean. (Fig.2f). F_{bc} highlights the existence of six main sites of IT generation on the slope. Two of these are more important, with sites A and B, regarding being particularly significant in terms of their higher and far extended energy flux, in good agreement with previous studies (Magalhaes et al., 2016; Barbot et al., 2021) and Tchilibou et al. (2022). From these two main sites, internal tides of IT spread over nearly 1000 km, and dissipate their energy. Color shading in Figure 2f shows the model’s depth-integrated internal tides energy dissipation (D_{bc}). We found that about is at least two times weaker than barotropic energy dissipation, with a mean value of 0.1 W.m$^{-2}$ (Fig.2f). Approximately 30% of the IT energy is dissipated locally over generation sites (not shown), in good agreement consistent with the findings of Tchilibou et al. (2022). The remaining proportion is dissipated offshore along the propagation path. This offshore dissipation is more extended along path A, ~300 km from the slope, with two patterns spaced approximately by an average wavelength of 120–150 km corresponding to mode-1 propagation. While wavelength. On the other hand, there is less offshore dissipation along path B, occurring around 100–200 km from the slope (Fig.2f).

Another critical important feature of IT is their SSH imprints along the propagation pathway. We compared an estimate of this signature deduced from the altimeter tracks (Fig.2g) produced by Zaron (2019) is compared with our model (Fig.2h), with the shelf masked over 150 m depth. Our model is in shows good agreement with this product, albeit with a slight overestimation of the order of about ~1.5 cm on the SSH maxima. It is relevant to note that the model’s baroclinic SSH of our model is an average over the year 2015, whilst the satellite estimate is an average over a longer period of about 20 years. This means that The longer period of the satellite estimate may introduce greater
variability of the altimeter tracks is greater due to the longer period, which may reduce potentially reducing the amplitude of the estimates and explaining the small slight differences with the model in the positioning and amplitude of the maxima.

III.2. Temperature validation

Figure 3 shows the mean SST over the entire 2013–2015 period for TMI SST (Fig.3a), the tidal simulations (Fig.3b) and the non-tidal simulations (Fig.3c). We obtain the bias between TMI SST and the two simulations is obtained by linear interpolation of the simulations data on the observation grid. The simulations with tides accurately reproduce the spatial distribution of the observations both for, as indicated by the weak bias (< ±0.1°C) with TMI SST. This is particularly evident for the cooling on the shelf around 47.5°W and to the southeast between 40°W–35°W and 2°S–2°N, as shown by the weak bias, < ±0.1°C, with TMI (Fig.3d). This cooling is inaccurately reproduced by the tidal simulation which exhibits a warm bias of about 0.3°C in this cooling region (Fig.3d). To the northeast, between 50°W–54°W and 3°N–8°N in the Amazon plume, the SST of the non-tidal simulations is in better agreement with the observations, while the SST of the tidal simulations is about > 0.6 °C cooler than TMI SST (Fig.3d). The same bias is obtained consistent with other models that include tides in this northern zone by other models including tides (e.g., Hernandez et al., 2016, 2017; Gévaudan et al. (2022). Far offshore, between 50°W–40°W and 6°N–10°N, both simulations reveal a negative bias of about 0.2–0.3 °C (Fig.3d–e). We averaged the observations and the interpolated simulation data within the dashed box (see Fig.3a–c), with a depth < of less than 200 m masked. This location is around of the boxes comprises IT generation sites and on part of their pathways. Then, we compute the seasonal cycle of the three products (Fig.3f). The tidal and non-tidal simulations of the model accurately reproduce both the seasonal cycle and the standard deviation of the observations, with a low RMSE (root mean square errors) of ~2.10⁻²°C approximately 2 × 10⁻²°C and ~4.10⁻³°C, between TMI SST and tidal and non-tidal simulation 4 × 10⁻²°C, respectively, indicating when compared to the TMI SST. This indicates the robustness of our model's simulations. Over the seasonal cycle, it appears that the tidal simulations are closer to the observations from January to March, July to September, and November to December, while during the rest of the year, either both simulations are equally close to the observations, or the non-tidal simulation simulations are closer.
To gain an insight into our model performance along the depth, we used the mean WOA2018 climatology (2005–2017) and simulation data (salinity and temperature) for the three years 2013–2015, averaged in the same region as in Fig.3f. Figure 3g shows the Temperature-Salinity (T-S) diagram for WOA2018 and the two simulations. The data are averaged in the box as before, and we use $\sigma_\theta [\rho - 1000] \sigma_\theta [\rho - 1000]$ to represent the density contours, with ρ the water density. Both simulations exhibit similar patterns with WOA2018 for deeper waters, i.e., $T < 17^\circ C$ and $\sigma_\theta > 25.6$ kg m$^{-3}$ for $T < 17^\circ C$ and $\sigma_\theta > 25.6$ kg m$^{-3}$. However, there exist minor discrepancies for the surface layer waters, i.e., $T > 17^\circ C$ and $22.4 > \sigma_\theta > 25.6$ kg m$^{-3}$. At that level, the tidal simulations better reproduce the T-S profile of the observations. These small differences between WOA2018 observations and the two simulations, especially with the tidal simulations, further demonstrate the ability of our model to reproduce the observed water mass properties.

IV. Results

In this section, we present the influence of tides on the temperature, the associated processes, and the impact on the atmosphere-ocean net heat exchange. The analyses were performed on a seasonal scale between April-May-June (AMJ) and August-September-October (ASO) for the three years 2013–2015.

IV.1. Tide-enhanced surface cooling

During the first season, warm waters, which are defined as $> 27.6^\circ C$, dominate near the coast, especially in the middle shelf and in the south-east, and cold waters are present offshore north of 6°N (Fig.4a–c). Off the mouth of the Amazon River, water colder than 28.2 °C spreads between 43°W–51°W for TMI SST (Fig.4a) and the tidal simulations (Fig.4b), while warmer waters are present in the same area for the simulations without the tides (Fig.4c). Figures 4d–f show the SST, averaged over the ASO season. The TMI SST observations (Fig.4d) shows an upwelling cell represented by the extension of the 27.2 °C isotherm (white dashed contour) along the slope to about 49°W–3°N towards the north-east of the region, which forms the extension of the ACT. This extension also exists in the tidal simulations (Fig.4e), whereas ≤ 27.2 °C waters are not crossing 45.5°W and remain in the southern hemisphere in the simulations without the tides (Fig.4f). This means that waters colder than 27.2°C can only extend further into the northeast because of tides. In addition, we can note that the mean SST shows a very contrasting distribution between the two
seasons. There are warm waters along the shelf and cold waters offshore during the AMJ season (Fig.4a-c). This is followed by warming along the Amazon plume and offshore, and an upwelling cell in the south-east (Fig.4d-f).

The general impact of the tides, illustrated by the SST anomaly between the tidal and the non-tidal simulations, is a cooling over a large part of the study area with maxima up to 0.3 °C (Fig. 5a–b). For ASO, tides induce a warming (> 0.3 °C) on the shelf at the mouth of the Amazon River (Fig.5b), while for AMJ it is a cooling of the same intensity (Fig.5a). That difference will be further discussed. Out of the shelf, the structure of temperature anomaly for each varies depending on the season has different spatial structures. This is, probably due to a different because of seasonal mesoscale variability between the two seasons.

IV.2. Impact of the tides in the atmosphere-to-ocean net heat flux

The atmosphere–ocean net heat flux (Qt) reflects the balance of incoming and outgoing heat fluxes across the atmosphere-ocean interface (see details on Moisan and Niiler, 1998; Jayakrishnan and Babu, 2013). During AMJ, the tides mainly induce positive Qt anomalies over the whole domain. The average values are around 25 W.m⁻² in the plume and the Amazon retroflection to the northeast and along A and B (Fig.5c). Negative SST anomalies (~0.3°C) occur throughout the domain in the same location. During the ASO season, at the mouth of the Amazon, there are negative Qt anomalies but of the same magnitude as during the previous season (Fig.5d). At this location, positive temperature anomalies (~0.3°C) are observed (Fig.5b). Elsewhere, there are positive Qt anomalies and negative SST anomalies. It therefore appears that negative SST anomalies induce positive Qt anomalies and vice versa. Hence, the spatial structures of Qt anomalies and SST anomalies fit almost perfectly together for the two seasons. There is a strong negative correlation of 0.97 with a significance of R² = 0.95 for the AMJ season. And roughly, and almost the same intensity and sign for the in ASO season with 0.98 and 0.96, respectively for the correlation and its significance (Fig.5e). This is consistent with the fact that the atmosphere and the underlying ocean are balanced. Then, the SST cooling induced by upwelled cold water will try upset this balance. As a result of this, an equivalent variation in the net heat flux from the atmosphere to the ocean will attempt to restore it.

The Figure 5f the integral over the entire domain of the net heat flux for each season and for each simulation is shown in Figure 5f. During the AMJ season, Qt increases from 23.85 TW (1 TW = 10¹² W) for the non-tidal simulations to 35.7 TW for the tidal simulations, i.e., an increase of 33.2 %. That is, the tides are responsible for a third
of Qt variation. This is very large compared to what is observed elsewhere in other IT hotspots (e.g., 15% in Solomon Sea, Tchilibou et al., 2020). During the second season, there is a smaller increase in Qt of about 7.4% between the two simulations, i.e., from 73.03 TW to 78.83 TW for the non-tidal and tidal simulations respectively (Fig. 5f).

It is also worth noting the significant difference in integrated Qt between the two seasons. The values are less than 36 TW during the AMJ season, whereas they are around twice as high, > 73 TW, during the ASO season. Given that colder SST induce a stronger Qt, these higher values are likely related to the arrival of cold waters from ACT, which forms upwelling cells (Fig. 4d–f) with a secondary tidal effect.

IV.3. Vertical structure of Temperature along internal tides pathway

To further analyze the temperature changes between both the two simulations, we made vertical sections following the path of IT radiating from sites A and B (respectively black and red line in Fig.2f). Hereunder, only the transects following the pathway A will be shown, since the vertical structure is similar following pathway B especially for AMJ season and because some processes tend to be null along pathway B during the ASO season. The mixed layer refers to a quasi-homogenous surface layer of temperature-dependent density that interacts with the atmosphere (Kara et al., 2003). Its maximum depth, also known as mixed-layer depth (MLD), is defined as the depth where the density increases from the surface value, due to temperature change of $|\Delta T| = 0.2$ °C with constant salinity (e.g., Dong et al., 2008; Varona et al., 2019).

Figure 6 shows the vertical sections of temperature for the two seasons following A. For the AMJ season, over the slope and near the coast, cold waters (< 27.6 °C) remain below the surface at ~20 m for the tidal simulations (Fig.6a) and deeper at ~60 m for the non-tidal simulations (not shown). Then, the cold waters rise to the surface more than 400 km offshore for both simulations. At the surface layers (< 40 m), the SST temperature anomaly is relatively small (< 0.3 °C, Fig.5a), because the SST anomalies are likely damped by the heat fluxes, further 8°C at the shelf break and less than -0.2°C elsewhere (Fig.6b). Further down (< 60 m) the water column, this anomaly becomes much larger (Fig.6b) along the transect. Above that thermocline (< 120 m), the simulations with the tides are colder by 1.2 °C from the slope, where IT are generated to the open ocean and following their propagation path. Conversely, below the thermocline, the tidal simulations are warmer by approximately the same intensity (1.2 °C) up to ~300 m depth and along the propagation path and down to ~300 m depth (Fig.6b). During this AMJ season, the
thermocline depth is ~about 100 m ± 15 m deep and the MLD is ~about 40 m ± 20 m deep (dashed white line, Fig. 6a). They both have a very weak slope between the coast and the open ocean. Over the whole domain, the thermocline is deeper by about 15 m on average in the non-tidal simulations, following the propagation paths of internal tides, on the Amazon shelf and plume (Fig. 6c). Whilst Similarly, the MLD in the non-tidal simulations is deeper by an average of approximately 10 m over the shelf, ~4 m on average along IT propagation paths and close to zero in the Amazon plume (Fig. 6d).

During the ASO season, cold waters previously confined below the surface during the previous season (AMJ) rise to the surface. These cold waters extend over the slope and up to about 150 km offshore in the non-tidal simulations (not shown) and up to 250 km offshore in the tidal simulations (Fig. 7a). The 27.2 °C isotherm only reaches the surface above the slope in the tidal simulations and remains below the surface (~30 m) in the non-tidal simulations (not shown). This aligns with the missing absence of that isotherm at this location in the corresponding SST map (Fig. 4f). For the tidal simulations, the temperature anomaly in the ASO season is smaller (~<~0.4 °C, Fig. 7b) in the surface layers (< 40 m) near the coast compared to the AMJ season (Fig. 6b). In contrast, during the ASO season, this cooling can drive more SST anomalies along A (~0.3 °C, Fig. 5b–c). A stronger cooling of ~about 1.2 °C occurs deeper between 60 and 140 m depth, and a warming of about 1.2 °C below, which extends less offshore than during AMJ season, 650 km vs. ~1000 km. During this ASO season, the coastward slope of the thermocline and MLD becomes somewhat steeper compared to the other AMJ season. In both simulations, there is a dip of ~80 m, i.e., ~60 m offshore and ~140 m inshore, for the thermocline (dashed black line, Fig. 7a). And a dip of ~40 m, i.e., ~30 m offshore and ~70 m inshore, for MLD (dashed white line, Fig. 7a). Over the entire domain, the tides reduce the thermocline depth by ~6 m on the shelf and ~12 m at the plume and far offshore along the propagation path of A (Fig. 7c). They reduce the MLD in the tidal run, and they MLD by about 10 m along the shelf and ~4 m along the propagation path of A (Fig. 7d).

Between the two seasons, there is also a change in the vertical density gradient between the coast and the open sea. In the tidal simulations, during the AMJ season, the isopycnals layers are tight thin near the coast and thicken towards the open sea (Fig. 6a). This means that a strong stratification is present near the coast and decreases towards the open sea. In contrast, during the second ASO season, the isopycnals layers are thicker near the coast and tight offshore (Fig. 7a). As the result of this, the stratification is weaker inshore than offshore.
This clearly highlights a seasonality in the vertical density gradient profile in agreement with Tchilibou et al. (2022). Note that this behavior also appears in the simulations without the tides (not shown). The transects of the temperature anomaly, Fig. 6b and 7b, show that the tides influence the temperature in the ocean from the surface to the deep layers, with a greater effect on the first three hundred meters. One question we address in this paper is to better understand what processes are at work that explain these temperature changes.

IV.4. What are the processes involved?

To explain the observed surface and water column temperature changes, we computed and analyzed the terms of the heat balance equation (see Section II.3.2, Equation 6) for both seasons (AMJ and ASO).

IV.4.1. Vertical diffusion of Temperature

Figure 8 shows the vertical temperature diffusion tendency (ZDF). ZDF is averaged between 2–20 m, i.e., within the mixed-layer. For the AMJ season, ZDF in the tidal simulations (Fig. 8a) shows a negative trend (i.e., cooling) in the whole domain. The maximum values ($>0.4 °C \cdot day^{-1}$) are located along the slope where IT are generated and on their propagation path. There is a larger horizontal extent along A of ~700 km from the coasts compared to B, where it is ~300 km from the coasts. Elsewhere, it remains very low, $>0.1 °C \cdot day^{-1}$. For the non-tidal simulations (Fig. 8b), the ZDF is very weak over the entire domain ($>0.1 °C \cdot day^{-1}$). For the ASO season, the tidal simulations (Fig. 8c) show a decrease of the ZDF near the coast (< 100 km) and a strengthening offshore along A compared to the previous season, but with the same cooling trend ($<0.4 °C \cdot day^{-1}$). Along B, it tends to be null, both at the coast and offshore (Fig. 8c). In addition, the mesoscale circulation and eddy activity intensify during this season. To the northeast, approximately between 4°N–8°N, and 47°W–53°W, there is a cooling on the shelf of $0.3 °C \cdot day^{-1}$ with eddy-like patterns in the tidal simulations (Fig. 8c). The processes by which these features might arise will be discussed in more details in Section V. Unsurprisingly, ZDF is very weak elsewhere for the non-tidal simulations (Fig. 8d). Internal tides are the dominant driver of vertical diffusion of temperature along the shelf break and offshore, while the mixing induced by barotropic tides could prevail on the shelf.
On the vertical following A, there are opposite sign ZDF values, with mean magnitude of $\pm 0.4 \degree C \cdot day^{-1}$. These values are centered around the thermocline for the simulations with tides in the two seasons AMJ and ASO (respectively Fig. 8e and 8f).

There is a cooling trend above the thermocline and a warming trend below. The average vertical extent is up to ~350 m depth for the maximum values but exceeds 500 m depth for the low values ($< 0.1 \degree C \cdot day^{-1}$). As for the horizontal averages (Fig. 9a and 9c), from one season to another there is a weakening of ZDF above the slope and a strengthening offshore, Fig. 8e and 8f, for AMJ and ASO respectively. Furthermore, offshore ZDF maxima seem to bear discontinuous and spaced of about 140–160 km during the AMJ season (Fig. 8e) but are more continuous for the ASO season (Fig. 8f). For the non-tidal simulations, the mean ZDF tends to be null in the ocean interior but remains quite large ($> -0.2 \degree C \cdot day^{-1}$) in the thin surface layer during the two seasons (Fig. 8g–h).

Furthermore, it is worth noting that along IT propagation’s pathway, the maximum of the ZDF follows the maxima of the baroclinic tidal energy dissipation (color shading in Fig. 2f). This proves that the dissipation of IT causes vertical mixing that enhances the SST cooling of the sea surface. In addition, this temperature diffusion contributes to greater subsurface cooling within the mixed-layer and warming in the deeper layers beneath the thermocline.

The seasonality of the stratification, highlighted above, could explain why the ZDF is stronger along the slope and the near-coastal pathway B during the AMJ season (Fig. 8a and 8e), and why in ASO season ZDF is weaker along the slope, close to zero following B, and reinforce offshore of A during the ASO season (Fig. 8c and 8f). Previous studies have shown that stratification influences the generation of internal tides and controls their modal distribution. Here we show that stratification also plays a role on the fate of these internal tides, in this case on their dissipation. The stratification could determine where IT dissipate their energy in the water column, as mentioned by de Lavergne et al. (2020).

IV.4.2. Advection of temperature

The vertical (z–ADV) and the horizontal (h–ADV) terms of the temperature advection tendency are averaged in the same depth-range as above for the two seasons.

IV.4.2.a Vertical advection of Temperature

Tides fail to generate vertical temperature advection within surface layers. As expected, z–ADV is almost null in these surface layers throughout the region in that depth-range (Fig. 9a-
Nevertheless, for both seasons, some weak extreme values are relocated in the northwest on the plateau between 54°W–50°W and 3°N–36°N and are for the same intensity between the two simulations with and without tides. This result suggests that overall, the tides fail to generate vertical temperature advection within these surface layers, but (<0.3 °C.day⁻¹). But deeper, z–ADV become higher. Vertical sections (Fig.9a–h) show an intensification of z–ADV of about ±0.8 °C.day⁻¹ located below the MLD and seems to be centered around the thermocline, with a vertical extension from 20–200 m depth. z–ADV is stronger in tidal simulations during both seasons (Fig.9e–f) and mainly presents sparse extrema offshore (~300 km) for the non-tidal simulations (Fig.9g–h). For the simulations with the tides, z–ADV appears to be rather dominated by a cooling trend, with a marked hotspot on the slope followed by other hotspots offshore. These extreme values are spaced about 120–150 km apart, i.e., a mode-1 wavelength as for the baroclinic tidal energy dissipation (Fig.2f). Note that for both simulations (Fig.10e–h), the extreme values are located within the narrow density (σθ) contours [23.8–26.2 kg.m⁻³], i.e., within the pycnocline. The location of the extreme values of z–ADV at the shelf break and along IT propagation’s pathways suggests that the diffusive part of the advection scheme might be the dominant process compared to nonlinear effects, may account significantly in z–ADV.

IV.4.2.b Horizontal advection of temperature

Horizontal advection of temperature (h–ADV) is defined as the sum of the zonal (x–ADV) and meridional (y–ADV) terms of temperature advection tendency. As for z–ADV, the mean of h–ADV tends to be null over the entire domain in the surface layers for both seasons in both simulations (Fig.10a–d). Nevertheless, some weak extreme values are located in the northwest on the plateau between 54°W–50°W and 3°N–37°N, that. These intensify during the ASO season in both simulations, ±0.2 °C.day⁻¹, Fig.~ ±0.2 °C.day⁻¹, Figure 10c and 10d for the tidal and non-tidal simulations, respectively. During the AMJ season, h–ADV is slightly stronger, ~0.1 °C.day⁻¹, around sites A and B in the tidal simulations (Fig.10a), which appears to be related to IT generated along the slope. On the other hand, the small difference shows, suggesting that the tides hardly generate a minimal effect on h–ADV. Then, as expected. Consequently, h–ADV hardly has a negligible influence on the cold-water tongue observed in the surface SST during the ASO season (Fig.4d–f).
Along the vertical following A, h–ADV maxima remain essentially confined below the mixed-layer depth, with much intensity values in the tidal simulation (Fig. 10e–f) compared to the non-tidal simulations (Fig. 10g–h). h–ADV contributes to both warming and cooling of the temperature, with a magnitude of ±0.4 °C day⁻¹, extending from the slope to more than 500 km offshore. During both seasons, the average vertical extension lies between the surface and 400 m depth for the tidal simulations, and a little less extended between 20–300 m depth for the non-tidal simulation. As for simulations, similarly to z–ADV, h–ADV is also stronger within the pycnocline. For simulations, a warming effect is observed above the slope (0.4 °C day⁻¹), reaching the surface in both seasons. This vertical excursion is also observed elsewhere for ZDF and z–ADV, and it is probably a marker of local dissipation of IT at their generation site. This local dissipation clearly affects both advection and vertical diffusion of the temperature but there are very low values along the slope when averaging h–ADV or z–ADV between 2–20 m and much more strong values for the ZDF. This means that the energy dissipated by internal tides is mostly transferred to mixing. In addition, unlike ZDF and z–ADV, the (horizontal) location of h–ADV maxima mismatch IT does not coincide with the dissipation hotspots of IT, in contrast of ZDF and z–ADV.

IV.4.3. Heat budget balance

From the sections above, it is evident that IT-induced mixing within the mixed layer emerges as the primary driver among the ocean’s internal processes in explaining changes in SST. However, below MLD, advective processes play a more significant role in structuring temperature. Figure 10 presents the average of the terms of the heat balance equation averaged below the MLD within the depth range of 60–400 m. The analysis focuses on a specific region with latitude and longitude ranging between 60 and 400 m depth in a region around the IT trajectories emanating from A (0°N–6°N) and B (40°W–48°W and 0°N–6°N), respectively. This region includes the two main IT paths, as well as a portion of the along-coast upwelling region. During the AMJ season, advection (ADV) dominates as the dominant process over diffusion terms in both tidal (Fig. 11a) and non-tidal (Fig. 11b) simulations. However, in the ASO season, advection dominates only in tidal simulations (Fig. 11c–d), while ZDF dominates in non-tidal simulations (Fig. 11d). We show here that advection terms dominate under the MLD, while from the two sections above, in the tidal simulation, ZDF dominates the advection terms.
It therefore appears that ADV only have a considerable influence on temperature below MLD, contrasting with the study of Neto and da Silva (2014), which identify ADV as the primary driver causing along-coast SST cooling. However, we can assume that advection and mixing are interconnected. In other words, the water masses that are advected below MLD may undergo mixing within the surface and within the mixed-layer and is the main contributor within the layers due to the overall mixing occurring throughout the water column. Additionally, it is worth mentioning that in our simulations, Asselin has a negligible impact on temperature. Conversely, Forcing term does impact the temperature within the surface layers. However, we have not discussed this aspect in our analysis as our primary focus was on understanding the internal processes of the ocean processes to explain SST changes. That vertical profile is probably the case in the real ocean since the tidal simulation is more representative of reality.

V. Discussion

V.1. On the role of advection in coastal upwelling

To explain the cooling of the SST at the surface, Neto and da Silva (2014) indicated that the steady flow of the NBC induces northward transport of water masses. This transport is in turn offset by a vertical advection of cool water towards the surface. We demonstrate with our model that the vertical advection hardly modifies the SST. But it is rather working below the mixed layer (Fig. 9e-h). The tides-induced vertical diffusion (mixing) extends from the mixed-layer to deeper layers (Fig. 8e-f). It is possible that the vertical mixing upwells to the surface the water masses that are advected into the layers below the mixed-layer. The temperature change at the surface and within the mixed-layer can then be influenced to first order by (i) the vertical diffusion of temperature and (ii) a cross effect between the latter and the advection (vertical and horizontal) of temperature that mainly takes place below MLD.

V.2. The mode-1 wavelength in the vertical terms of the heat budget equation

Along the vertical and towards the open ocean, both ZDF and z-ADV tendencies are found to have a wave-like structure. For z-ADV, with patches that are spaced about 120–150 km and 140–160 km for the AMJ and ASO seasons respectively. Whilst for z-ADV, this 120–160 km typical of mode-1 wavelength is about 140–160 km. However, during the AMJASO season and, this pattern is not observed for ZDF. Instead, ZDF values appear more continuous patches for the ASO season. The wavelength ranges found in heat budget
terms are slightly wider (+10–20 km, for z-ADV in ASO season and for ZDF) than the purely
dynamic tidal coherent wavelength (∼120–150 km, see section III.1). The difference can be
understood as the effect of the transect, likely due to additional mixing caused by the
breaking of incoherent IT that are not captured by the harmonic analysis because they are
deviated or diffracted by the currents and eddies, and for which dissipation occurs around where
cohort IT dissipate. Hence, the total (coherent + incoherent) dissipation pattern of IT could
be wider than in Figure 2f. When integrating heat budget terms over the season, this cumulative
effect is considered and therefore leads to diffusive patterns and wider wavelength. This
diffusive effect increases intensity during the ASO season when both background circulation
and eddy activity increase.

Recently that season. Furthermore, de Macedo et al. (2023) recently provided a detailed
description of internal solitary waves (ISW) in this same region from based on remote
sensing data. These ISWISWs originate from instabilities and energy loss or dissipation of IT
radiating from the slope, mainly primarily along the pathways A and B (Magalhaes et al., 2016).
The first have shown study demonstrated that the inter-packet distance of ISWISWs corresponds
to the mode-1 wavelength. Interestingly, the positions of IT dissipation and deeper heat budget
terms hotspots, as well as z–ADV patches of our simulations are colocalized horizontally in both
seasons and ZDF patches, especially during the AMJ season, in our model align with the
observed ISW packets occurrences of ISWs (refer to Figure 2 in their study). This
means provides evidence that our model accurately reproduces the location of IT
dissipation.

V.3. Tidal impact at the mouth of the Amazon River and on the southern shelf: two main competitive processes

In the simulation without the tides, there is a strong along-coast current exiting
northwesterly the mouth of the Amazon River (e.g., Ruault et al., 2020) with an average
intensity >0.5 m.s⁻¹ lower than 0.5 m.s⁻¹ in the first 50 meters for both seasons (Fig.12a–b).
When including the tides in the model, the latter study showed that there is an increase in the
vertical mixing in the water column due to stratified-shear flow instability, which weakens and
deflects the along-coast current north-eastwards at the mouth of the Amazon River (Fig.12c–d) and favours cross-shore export of water. We can therefore establish that there are at
least two processes at work: (i) vertical mixing and (ii) horizontal transport, backed respectively
by ZDF and h–ADV. We then looked at the latter two processes along the vertical following
the cross-shore transect (C-S) defined in Figure 10b. Hereinafter, “inner mouth” refers to
the part of the transect before within 200 km from the shore, whereas “outer shelf” refers to the part beyond.

During the AMJ season, in the inner mouth, river of the region, the flow dominates and of the river becomes dominant. The tide-induced vertical mixing in the narrow water column leads to results in the warming and deepening of the thermocline (Fig. 13a–b). Conversely, on the outer shelf, this mixing occurs in the thicker water column, leading to cooling above the thermocline and warming below (Fig. 13a, which in turn). This pattern extends across the shelf and along the pathways of internal tides, as shown in section IV.4.1 (see refer to Fig. 8a and 8e). At the same time, the SST on the shelf is somewhat homogeneous (see Fig. 4a–c) and solar radiation is lower than 100 W m⁻² (not shown). In this season, the weaker circulation may result, waters of similar temperature are advected horizontally, i.e., h-ADV is low (Fig. 13b). Thus, for Therefore, during the first season, vertical mixing seems to be the dominant process explaining the average negative SST anomaly on the plateau over the shelf appears to be vertical mixing.

For the second season, there is a significant increase in solar radiation on the shelf rose sharply, with an average value of 60 W m⁻², compared with the previous season (Fig. 13c). Additionally, the average depth of the thermocline deepened further offshore (Fig. 13d and 13e). In this season, mixing processes lead to warming in the thin surface layer (<, specifically in depths less than 2m-) (Fig. 13d). The NBC is stronger and can influence, resulting in an increase of the transport over the shelf (Prestes et al., 2018) and. It is also important to consider the small mean tidal residual transport should also be considered (Bessières et al., 2008). The region is, which reinforces the stronger current transport. These factors contribute to a more dynamic region and waters of distinct temperatures are advected over the shelf an increase in h-ADV (Fig. 13e). Consequently, h-ADV is stronger and positive (Fig. 13e) and then-ADV plays a greater significant role in the fate of determining SST on the shelf. For this season, ZDF and h-ADV add to explain the combination of these two processes explains the observed positive SST anomaly on the shelf. In addition,

Additionally, from the AMJ to ASO, we noted the seasons, there is a notable deepening of the thermocline depth on the outer shelf. This observation has previously been highlighted by Silva et al. (2005) from REVIZEE (Recursos Vivos da Zona Econômica Exclusiva-) campaign data and is a further contribution to the validation of our simulations.
V.43. Mixing in the NBC retroreflection area

To the north-west of the domain [3°N–9°N and 53°W–45°W], in the surface layers (2–20 m), eddy-like or circular patterns exist in ZDF during the ASO season for the simulation including tides (Fig. 8c). NBC intensifies and retroreflects, and strong eddy activity takes place there during ASO. We can assume that this intense mesoscale activity influences the mixing and subsequent temperature diffusion. However, it is not yet clear how these mesoscale features produce mixing. Fronts exist in such region and are associated with high horizontal temperature gradient (∇T) and significant vertical mixing (see Chapman et al., 2020). We therefore examined the mean ∇T in the same depth range (2–20 m) as ZDF (Fig. 8a–d, 2–20 m). During the AMJ season, ∇T is on average equal to 4.10^{-2}°C/10 km. As expected, it does not reveal any circular fronts for the two simulations (Fig. 14a–b) since mesoscale activity is low. Then, (Fig. 14a–b), ∇T increases during the ASO season [$> 5\times10^{-2}$°C/10 km] in the north-west and exhibits circular and filamentary fronts in both the non-tide simulations (Fig. 14c) and tidal (Fig. 14d) simulations. Therefore, one would expect to see the same circular patterns in the ZDF for both simulations, this is not actually the case (see Fig. 8c and 8d). Another hypothesis is that these circular patterns could be originated from the interaction between IT and near-inertial oscillations, which can enhance mixing and vertical transport processes in the ocean. But quantifying this interaction requires further analysis and is beyond the scope of this study.

VI. Summary

In this paper, we used twin oceanic simulations (with and without tides) from a realistic model to explore the impact of internal tidal waves (IT) on temperature and associated processes. The impact on the atmosphere to ocean net heat fluxes is also covered.

The AMAZON36, through twin simulations including or excluding tidal forcing, using the NEMO model configuration called AMAZON36. Our tidal simulations accurately reproduce the generation of IT from two most energetic sites A and B, in good agreement with previous studies. The model well reproduces their local, on-shelf, and offshore and dissipation with two beams of mode-1 propagation (120–150 km). This dissipation occurs less than 300 km from IT. When comparing the slope, then, we assess the ability of the model to reproduce temperature structure. The simulations including tides to observations, there is a better
agreement with in sea surface temperature (SST observations) and better reproduce water mass properties along the vertical.

Our analyses were based on We then focus our analysis on a three-year period (2013–2015) of data averaged over and two seasons, AMJ (April-May-June) and ASO (August-September-October). That are highly contrasted in terms of which have contrasting stratification, background circulation and EKE-IT activity.

Results show demonstrate that for both seasons, the tides create SST cause a cooling effect in SST of about 0.3°C in the plume of the Amazon offshore and along the paths of internal tides. During IT in both seasons. In the ASO, the cold waters of the ACT enter our domain along the coast and are affected by the tides. This enhances that season particularly, tides enhance seasonal upwelling and leads, leading to cooler SST. Over the Amazon shelf, the tides induce the same magnitude cooling in AMJ and in turn induce an opposite anomaly (warming) in ASO. These cooling/warming are responsible in the same location for an increase/decrease in patterns over the region affect the net heat flux from between the atmosphere to and the ocean (Qt). However, As the result, there is an overall effect of the tides is an increase of Qt, which lies between [from 33.2% – 7.4%] from AMJ to 7.4% in ASO and is larger than in other regions. When increasing the atmosphere-to-ocean net heat flux, Changes in Qt in such large atmospheric convection region, marked by the ITCZ, the tides regions can reduce the cloud convection into the atmosphere (Koch-Larrouy et al., 2010). Therefore, this understanding changes in tidal effect on the climate might have a key importance for the future, taking the activity become crucial to better assess climate change into account (Yadidya and Rao, 2022).

In the subsurface, above in both seasons, the thermocline (<120 m), the findings reveal that tides induce a stronger cooling (~1.2°C) than at the surface. And an associated above the thermocline (<120m) and warming of the same below (>120–300 m), with a mean magnitude under the thermocline (>120–300 m). We analyzed the terms of about 1.2°C.

The analysis of the heat budget equation to identify to processes that modify the temperature. We found that the vertical diffusion of temperature (ZDF) is mainly caused by the dissipation of the tides. Horizontal (h-ADV) and vertical (z-ADV) advection can be driven by non-tidal processes but increase when including the tides in the model.

Over the shelf, barotropic tidal mixing increases ZDF (>1 0.4°C day−1) and explain the cooling of the water column in AMJ season. During the second season, it combines with h-ADV and to cause a warming. Off the shelf, the (baroclinic) mixing takes place from the slope
to about 700 km following the path A, and 300 km following the path B. That mixing induces
ZDF with values of about -0.4 °C.day⁻¹, which is the main process in the upper layer
above reveals that within the mixed layer but could combine with advection terms (z-ADV and
h-ADV) to explain, the temperature changes are primarily influenced by the vertical diffusion
of temperature (ZDF). This diffusion is driven by diapycnal mixing, which results from
barotropic tide bottom friction over the shallow shelf and the breaking of IT at their generation
sites and along their propagation pathways. It is noteworthy that the ZDF values are highest in
these latter two areas. In deeper layers below the mixed layer—Some, ZDF combines with
vertical and horizontal advection terms (z-ADV and h-ADV) to explain temperature changes.
Notably, ZDF and z-ADV patches are colocalized coincide with dissipation hotspots along the
trajectory of IT—energy.

This study highlights the key role importance of internal tides in creating the intensified
mixing which is important of IT for temperature structure. Other analysis we performed with We
focused hereabove on describing the impacts of tides in temperature on a seasonal scale.
However, a companion paper will then analyze the variability of temperature at tidal and
subtidal scales using our simulations show that this mixing can also impact salinity—and remote
sensing data.

Furthermore, they might be seen as a other analysis from our simulations revealed a
significant impact on salinity. In addition, IT was reported to be a source of nutrient uptake
at tidal frequency and can have anand impact on the spatial distribution of phytoplankton and
zooplankton, and therefore on the entire food chain (Sharples et al., 2007, 2009; Xu et al., 2020).
These other impacts can be studied through a combined model-in situ data approach. Long-
term PIRATA (Prediction and Research moored Array in the Tropical-Atlantic) mooring data
are available for this goal (Bourlès et al., 2019). In addition, recently in late 2021, the AMAZOn
MIXing (“AMAZOMIX”) campaign took place in this region. Among other things, this
campaign was dedicated to internal tides. It provided a huge set of data, with the aim of
understanding their impact on marine ecosystems (see details in https://en.ird.fr/amazomix-
campaign-impact-physical-processes-marine-ecosystem-mouth-amazon). In the meantime, a
coupled physical/biogeochemistry simulation (NEMO/PISCES) is being analyzed and will
begin to answer these crucial questions: Ongoing investigations is conducted to assess the
impacts of tides on marine ecosystems using a combined approach including:
Finally, we focus hereabove on describing the impacts of tides on a seasonal scale. A companion paper will then analyze the variability of temperature at tidal and subtidal scales using our model simulations and two observational data.

1- the new designed coupled physical/biogeochemistry simulations from NEMO/PISCES called AMAZON36-BIO and:
2- in situ data, consisting of long-term PIRATA mooring data (Bourles et al., 2019) and the recent Amazon mixing campaign (AMAZOMIX, Bertrand et al., 2021).

Data availability statements

The 2020's release of GEBCO bathymetry is publicly available online through: https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2020/. The TMI SST v7.1 data are publicly available online from the REMSS platform: https://www.remss.com/missions/tmi/, was accessed on last access: 27 June 2022. WOA2018 climatology is publicly available online at: https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/, was accessed on last access: 27 June 2022. The model simulations are available upon request by contacting the corresponding author.

Authors contributions: AKL: Funding acquisition; FA, AKL, and ID: Conceptualization and methodology; GM and FA, with assistance from JC and AKL: Numerical simulations; Formal analysis: FA with interactions from all co-authors; Preparation of the manuscript; FA with contributions from all co-authors.

Funding acquisition, AKL; Conceptualization and methodology, FA, AKL and ID. Numerical simulations, GM and FA. Formal analysis, FA; FA prepared the paper with contribution from all co-authors.

Competing interests

The authors declare that they have no conflict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral regarding jurisdictional claims in published maps and institutional affiliations.
Acknowledgements. The Authors would like to thank the Remote Sensing System (REMSS) for providing TMI SST datasets, and the NASA’s National Center for Environmental Information (NCEI) for providing World Ocean Atlas 2018 (WOA2018) data. The Authors would like to thank the Editorial team for their availability and are grateful to the two Reviewers Clément Vic and Nicolas Grissouard for their valuable comments, which helped to improve the quality of the present work.

Funding

This work is part of the PhD Thesis of FA, cofounded by Institut de Recherche pour le Développement (IRD) and Mercator Ocean International (MOi), under the supervision of AKL and ID. The numerical simulations were founded by CNES/CNRS/CNES/IRD via the projects A0080111357 and A0130111357 and were performed thank to “Jean-Zay”, the CNRS/GENCI/IDRIS platform for modelling and computing.

Acknowledgments

The authors would like to thank the Editorial team for their availability, Clément Vic and Nicolas Grissouard for their valuable comments, which enhanced the quality of the present work.

References

Figure 1. The horizontal gradient (∇H) of the model’s bathymetry (∇H) with different internal tides generation sites (A^*, B^*, C, D, E and F) along the high slope of the shelf break (blue color shading) of the shelf break, with the two main sites A^* and B^* (in red), as reported in Magalhaes et al. (2016) and Tchilibou et al. (2022). Solid bold lines represent a schematic view of the circulation (as described by Didden and Schott, 1993; Richardson et al., 1994; Johns et al., 1998; Bourles et al., 1999a; Schott et al., 2003; Garzoli et al., 2004) with NBC, NBCR and NECC tracks in black, and the EUC track in brown red. Tin black contours are 200 m, 2000 m, 3000 m and 4000 m isobaths from the model bathymetry.
Figure 2. Coherent (or stationary) characteristics of the M_2 coherent tides.
Barotropic sea surface height (color shading) and its phase (solid contours) for (a) FES2014 and (b) the model, barotropic energy flux (black arrows) with the energy conversion rate (color shading) for (c) FES2014 and (d) the model, (e) the model depth-integrated barotropic energy dissipation, (f) the model depth-integrated baroclinic energy flux (black arrows) and the depth-integrated baroclinic energy dissipation (color shading) with transect lines along IT trajectories A* (black) and B* (red), the baroclinic sea surface height from (g) Zaron (2019) and (h) the model. Data from the model are the mean value over the year 2015. For all panels, dashed black lines contours represent the 200 m and 2000 m isobaths of the model bathymetry.
Figure 3. Validation of the model temperature for the whole period 2013-2015. Mean SST for (a) TMI with its black coastal mask, (b) the -tidal simulation, (c) the -non-tidal simulation, the difference (bias) in SST between TMI and (d) the tidal simulations and (e) the non-tidal simulation. (f) the seasonal cycle of the SST of the three products averaged within the dashed line box in upper panels covering IT pathways with values masked below the 200 m isobath, bands indicate variability according to standard deviation. Solid black lines in panels a–c and dashed black lines in panels d–e represent the 200 m and 2000 m isobaths from the model bathymetry, while solid black lines in panels d–e represent bias contours. (g) Temperature-Salinity (T-S) diagram of the mean properties in the same area as (f) from observed WOA2018 climatology (black line), the tidal simulations (blue line) and non-tidal simulations (red line) for the water column from surface to 5500 m depth, dashed gray lines represent density (σ_θ) contours.
Figure 4. 2013–2015 seasonal SST mean. The left panels stand for the AMJ season for TMI with its black coastal mask, the tidal simulations and the non-tidal simulations, respectively for the upper-left, center-left and lower-left panel; the same in the panels on the right but for the ASO season. The dashed white and black solid lines represent the temperature contours. Dashed black lines in all panels stand for the 200 m and 2000 m isobaths from the model bathymetry.
Figure 5. Relationship between the SST and the atmosphere-ocean net heat flux (Q_t): SST anomaly [Tide - No-Tide] in AMJ (a) and ASO (b) seasons, Q_t anomaly in AMJ (c) and ASO (d) seasons, (e) correlation between Q_t anomaly and SST anomaly for each season, (f) domain integrated Q_t for both seasons of each simulation. Dashed black lines in panels a–d stand for the 200 m and 2000 m isobaths from the model bathymetry.
Figure 6. **Some water mass properties for the AMJ season:** (a) vertical section of the temperature of the tidal simulations following the transect A, the yellow dashed and the solid black lines are the temperature and density (σ_b) contours, respectively, the black and white ticker dashed lines are the thermocline and MLD, respectively. (b) The black and white ticker dashed lines are the temperature and density (σ_b) contours, respectively. (c) Thermocline depth anomaly and (d) MLD anomaly for the whole domain. The blue (vs red) color shading in the MLD or the Thermocline depth anomaly are colored in blue (vs red) it means that the tides rise (vs deepen) them. Solid black lines in lower panels stand for the 200 m and 2000 m isobaths from the model bathymetry.
Figure 7. Same as figure 6 but for the ASO season.
Figure 8. The vertical diffusion tendency of temperature (ZDF) for both seasons. The vertical mean between 2–20 m for AMJ season in tidal (a) and non-tidal (b) simulations; then for ASO season in tidal (c) and non-tidal (d) simulations. Vertical sections of ZDF following the transect A for AMJ season in the tidal (e), for ASO season in non-tidal (f) simulations for (e) AMJ and (f) ASO seasons; then for AMJ season in the non-tidal simulations for (g) AMJ and for (h) ASO season in the non-tidal (h) simulations. The black and magenta dashed lines are the thermocline depth and MLD respectively. Solid black lines in panels a–d stand for the 200 m and 2000 m isobaths from the model bathymetry, while in panels e–h, they represent the density (σ_θ) contours in panels e–h. The magenta and black dashed lines in panels e–h represent MLD and the thermocline depth, respectively.
Figure 9. Same as figure 8, but for the vertical advection tendency of temperature (z-ADV).
Figure 10. Same as figure 8 but for the horizontal advection of temperature ($h_{\text{ADV}} = x_{\text{ADV}} + y_{\text{ADV}}$). The dashed line from the Amazon River mouth toward the outer shelf in the panel (b) indicates the cross-shore transect (C-S) used further on.

Figure 11. Trends balance Three-dimensional heat budget equation terms averaged in region around IT trajectories between 48°W–40°W and 0°N–6°N, and below the MLD between 60-400 m depth. Upper panels are for the tidal simulations and lower panels for the non-tidal simulations, while left and right panels are for the AMJ and ASO seasons, respectively. ZDF is the dominant term of the heat budget equation (see section II.3.2) within the mixed layer to explain temperature changes in upper layers.
Figure 12. The seasonal mean of the mean current \((U_{u,v})\) at the shelf averaged between the surface and 50 m: the non-tidal simulations in the left panels and the tidal simulations in the right panels. The upper panels stand for the AMJ season, while the lower stand for the ASO season. The color shading is the modulus of the current and the black arrows represent its direction. Values beyond the 200 m isobath are masked.
Solar radiation (Q_s) increases in the ASO season:
> 30 W.m$^{-2}$ offshore
> 60 W.m$^{-2}$ over the shelf
Figure 13. The cross-shore transect of ZDF anomaly for (a) AMJ and (b) ASO seasons, then for h-ADV anomaly for (d) AMJ and (e) ASO seasons; (c) Difference in solar radiation between ASO and AMJ seasons. Solar radiation increases during the ASO season, with greater intensity on the shelf. The cross-shore transect of h-ADV anomaly for (d) AMJ and (e) ASO seasons.

Figure 14. The horizontal gradient of the Temperature (∇T) averaged between 2–20 m; the AMJ season in the left panels and ASO season in the right panels, the simulations without the tides in the upper panels, and with tides in the lower panels. During the ASO season, the stronger NBC retroflects in the north-west and eddy activity intensifies in the north-west. Therefore, ∇T emphasizes eddy-like fronts at the same location as eddy-like patterns in ZDF (see Fig. 9b–9c).