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Abstract. With semiconductor technology gradually approaching its physical and 17 

thermal limits, graphics processing units (GPUs) are becoming an attractive solution 18 

for many scientific applications due to their high performance. This paper presents an 19 

application of GPU accelerators in an air quality model. We demonstrate an approach 20 

that runs a PPM solver of horizontal advection (HADVPPM) for the air quality model 21 

CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new 22 

Compute Unified Device Architecture C (CUDA C) code to make it computable on the 23 

GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including 24 

reducing the CPU-GPU communication frequency, increasing the data size 25 

computation on the GPU, optimizing the GPU memory access and using thread and 26 

block indices to improve the overall computing performance of the CAMx model 27 

coupled with GPU-HADVPPM (named the CAMx-CUDA model). Finally, a 28 

heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-29 

HADVPPM on the GPU clusters with a message passing interface (MPI) and CUDA. 30 

The offline experimental results show that running GPU-HADVPPM on one NVIDIA 31 

Tesla K40m and an NVIDIA Tesla V100 GPU can achieve up to a 845.4x and 1113.6x 32 
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acceleration. By implementing a series of optimization schemes, the CAMx-CUDA 33 

model results in a 29.0x and 128.4x improvement in computational efficiency by using 34 

a GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the 35 

single-module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and 36 

18.8x speedup on an NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU, 37 

respectively. The multi-GPU acceleration algorithm enables a 4.5x speedup with 8 CPU 38 

cores and 8 GPU accelerators on a V100 cluster. 39 

1. Introduction 40 

Since the introduction of personal computers in the late 1980s, the computer and 41 

mobile device industry has created a flourishing worldwide market (Bleichrodt et al., 42 

2012). In recent years, improvements of the central processing unit (CPU) performance 43 

have been limited by its heat dissipation, and the applicability of Moore's Law has 44 

flattened. A common trend in high-performance computing today is the utilization of 45 

hardware accelerators, which execute codes rich in data parallelism, to form high-46 

performance heterogeneous systems. GPUs are widely used as accelerators due to their 47 

high peak performances. In the top ten supercomputing list released in December 2022 48 

(https://www.top500.org/lists/top500/list/2022/11/, last access: 19 December 2022), 49 

there were seven heterogeneous supercomputing platforms built with CPU processors 50 

and GPU accelerators, of which the top one, Frontier at the Oak Ridge National 51 

Laboratory, uses AMD's third-generation EPYC CPU and AMD’s Instinct MI250X 52 

GPU, and its computing performance reaches exascale levels (10�� calculations per 53 

second) for the first time (https://www.amd.com/en/press-releases/2022-05-30-world-54 

s-first-exascale-supercomputer-powered-amd-epyc-processors-and-amd, last access: 55 

19 December 2022). Such a powerful computing performance of the heterogeneous 56 

system not only injects new vitality into high-performance computing but also 57 

generates new solutions for improving the performance of geoscience numerical 58 

models. 59 
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The GPU has proven successful in weather models such as the nonhydrostatic 60 

icosahedral model (NIM; Govett et al., 2017), global/regional assimilation and 61 

prediction system (GRAPES; Xiao et al., 2022), weather research and forecasting 62 

model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et al., 2012a; 63 

Mielikainen et al., 2012b; Mielikainen et al., 2013a; Mielikainen et al., 2013b; Price et 64 

al., 2014; Huang et al., 2015), ocean models such as the LASG/IAP climate system 65 

ocean model (LICOM; Jiang et al., 2019; Wang et al., 2021a) and Princeton ocean 66 

model (POM; Xu et al., 2015) and earth system model of the Chinese Academy of 67 

Sciences (CAS-ESM; Wang et al., 2016; Wang et al., 2021b). 68 

Govett et al. (2017) used open accelerator (OpenACC) directives to port the 69 

dynamics of NIM to the GPU and achieved a 2.5x acceleration. Additionally, using 70 

OpenACC directives, Xiao et al. (2022) ported the PRM (piecewise rational method) 71 

scalar advection scheme in GRAPES to the GPU, achieving up to 3.51x faster results 72 

than 32 CPU cores. In terms of the most widely used WRF, several parameterization 73 

schemes, such as the RRTMG_LW scheme (Price et al., 2014), 5-layer thermal 74 

diffusion scheme (Huang et al., 2015), Eta Ferrier cloud microphysics scheme (Huang 75 

et al., 2012), Goddard shortwave scheme (Mielikainen et al., 2012a), Kessler cloud 76 

microphysics scheme (Mielikainen et al., 2013b), SBU-YLIN scheme (Mielikainen et 77 

al., 2012b), WMS5 scheme (Huang et al., 2011) and WMS6 scheme (Mielikainen et al., 78 

2013a), have been ported heterogeneously using CUDA C and achieved 37x~896x 79 

acceleration results. LICOM has conducted heterogeneous porting using OpenACC 80 

(Jiang et al., 2019) and used heterogeneous-compute interface for portability C (HIP C) 81 

technologies and achieved up to a 6.6x and 42x acceleration, respectively (Wang et al., 82 

2021a). For the Princeton ocean model, Xu et al. (2015) use CUDA C to conduct 83 

heterogeneous porting and optimization, and the performance of gpu-POM v1.0 on four 84 

GPUs is comparable to that on the 408 standard Intel Xeon X5670 CPU cores. In terms 85 

of climate system models, Wang et al. (2016) and Wang et al. (2021b) used CUDA 86 

Fortran and CUDA C to conduct heterogeneous porting of the RRTMG_SW and 87 

RRTMG_LW schemes of the atmospheric component model of the CAS-ESM earth 88 
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system model and achieved a 38.88x and 77.78x acceleration, respectively. 89 

Programming a GPU accelerator can be a difficult and error-prone process that 90 

requires specially designed programming methods. There are three widely used 91 

methods for porting programs to GPUs, as described above. The first method uses the 92 

OpenACC directive (https://www.openacc.org/, last access: 19 December 2022), which 93 

provides a set of high-level directives that enable C/C++ and Fortran programmers to 94 

utilize accelerators. The second method uses CUDA Fortran. CUDA Fortran is a 95 

software compiler that was codeveloped by the Portland Group (PGI) and NVIDIA, 96 

and is a tool chain for building performance-optimized GPU-accelerated Fortran 97 

applications targeting the NVIDIA GPU platform (https://developer.nvidia.com/cuda-98 

fortran, last access: 19 December 2022). Using CUDA C involves rewriting the entire 99 

program using the standard C programming language and low-level CUDA subroutines 100 

(https://developer.nvidia.com/cuda-toolkit, last access: 19 December 2022) to support 101 

the NVIDIA GPU accelerator. Compared to the other two technologies, the CUDA C 102 

porting scheme is the most complex but it has the highest computational performance 103 

(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu et al., 2015). 104 

Air quality models are critical for understanding how the chemistry and 105 

composition of the atmosphere may change throughout the 21st century, as well as for 106 

preparing adaptive responses or developing mitigation strategies. Because air quality 107 

models need to take into account the complex physicochemical processes that occur in 108 

the atmosphere of anthropogenic and natural emissions, simulations are 109 

computationally expensive. Compared to other geoscientific numerical models, few 110 

studies have conducted a heterogeneous porting of air quality models. In this study, the 111 

CUDA C scheme, implemented in this paper, conducted a hotspot module porting of 112 

CAMx to improve the computation efficiency. 113 
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2. The CAMx model and experiments 114 

2.1. Model description 115 

The CAMx model is a state-of-the air quality model developed by Ramboll 116 

Environ (https://www.camx.com/, last access: 19 December 2022). CAMx version 6.10 117 

(CAMx V6.10; ENVIRON, 2014) is chosen in this study; it simulates the emission, 118 

dispersion, chemical reaction and removal of pollutants by marching the Eulerian 119 

continuity equation forward in time for each chemical species on a system of nested 120 

three-dimensional grids. The Eulerian continuity equation is expressed mathematically 121 

in terrain-following height coordinates as Formula (1): 122 
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The first term on the right-hand side represents horizontal advection. In numerical 126 

methods, the horizontal advection equation (described in Formula (2)) is performed 127 

using the area preserving flux-form advection solver of the piecewise parabolic method 128 

(PPM) of Colella and Woodward (1984) as implemented by Odman and Ingram (1996). 129 

The PPM horizontal advection solution (HADVPPM) was incorporated into the CAMx 130 

model because it provides higher order accuracy with minimal numerical diffusion. 131 

In the Fortran code implementation of the HADVPPM scheme, the CAMx main 132 

program calls the emistrns program, which mainly performs physical processes such as 133 

emission, diffusion, advection and dry/wet deposition of pollutants. Then, the 134 

horizontal advection program is invoked by the emistrns program to solve the 135 

horizontal advection equation by using the HADVPPM scheme. 136 
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2.2. Benchmark performance experiments 137 

The first porting step is to test the performance of the CAMx benchmark version 138 

and identify the model’s hotspots. On the Intel x86 CPU platform, we launch two 139 

processes concurrently to run the CAMx, and take advantage of the Intel trace analyser 140 

collector (ITAC; https://www.intel.com/content/www/us/en/docs/trace-analyzer-141 

collector/get-started-guide/2021-4/overview.html, last access: 19 December 2022) and 142 

the Intel VTune profiler 143 

(VTune;https://www.intel.com/content/www/us/en/develop/documentation/vtune-144 

help/top.html, last access: 19 December 2022) performance analysis tools to collect 145 

performance information during the CAMx operation. 146 

The general MPI performance can be reported by the ITAC tool, and MPI load 147 

balance information, computation and communication profiling of each process is 148 

shown in Fig. 1a. During the running process of the CAMx model, Process 0 (P0) 149 

spends 99.6% of the time on the MPI_Barrier function and only 0.4% of the time on 150 

computation, while Process 1 (P1) spends 99.8% of its time computation and only 0.2% 151 

of its time receiving messages from P0. It is apparent that the parallel design of the 152 

CAMx model adopts the Master-Slave mode, and P0 is responsible for inputting and 153 

outputting the data and calling the MPI_Barrier function to synchronize the process, so 154 

there is a lot of MPI waiting time. The other processes are responsible for computation. 155 

The VTune tool detects each module's runtime and the most time-consuming 156 

functions on P1. As shown in Figure 1b, the top four time-consuming modules are 157 

chemistry, diffusion, horizontal advection and vertical advection in the CAMx model. 158 

In the above four modules, the top five most time-consuming programs are the ebirate, 159 

hadvppm, tridiag, diffus and ebisolv programs, and the total runtime of P1 is 325.1 160 

seconds. Top1 and Top2's most time-consuming programs take 49.4 and 35.6 seconds, 161 

respectively. 162 

By consideration, the hadvppm program was selected to conduct heterogeneous 163 

porting for several reasons. First, the advection module is one of the air quality model’s 164 

compulsory modules, and is mainly used to simulate the transport process of air 165 
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pollutants, additionally it is also a hotspot module detected by the Intel VTune tool. The 166 

typical air quality models, CAMx, CMAQ and NAQPMS, include advection modules 167 

and use the exact PPM advection solver. The heterogeneous version developed in this 168 

study can be directly applied to the above models. Furthermore, the weather model (e.g., 169 

WRF) also contains an advection module, so this study's heterogeneous porting method 170 

and experience can be used for reference. Therefore, a GPU acceleration version of the 171 

HADVPPM scheme, namely, GPU-HADVPPM, is built to improve the CAMx 172 

performance. 173 

 174 

Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and 175 

communication profiling of P0 and P1. (b) Overhead proportions of P1. The top four most time-176 

consuming modules are chemistry, diffusion, horizontal advection and vertical advection. 177 

 178 

2.3. Porting scheme introduction 179 

The CAMx-CUDA heterogeneous scheme is shown in Figure 2. The second time-180 

consuming hadvppm program in the CAMx model was selected to implement 181 

heterogeneous porting. To map the hadvppm program to the GPU, the Fortran code was 182 

converted to standard C code. Then, the CUDA programming language, which was 183 

tailor-made for NVIDIA, was added to convert the standard C code into CUDA C for 184 
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data-parallel execution on the GPU, as GPU-HADVPPM. It prepared the input data for 185 

GPU-HADVPPM by constructing random numbers, and tested its offline performance 186 

on the GPU platform. 187 

After coupling the GPU-HADVPPM to the CAMx model, the advection module 188 

code was optimized according to the characteristics of the GPU architecture to improve 189 

the overall computational efficiency on the CPU-GPU heterogeneous platform. Then, 190 

the multi-CPU core and multi-GPU card acceleration algorithm was adopted to improve 191 

the parallel extensibility of heterogeneous computing. Finally, the coupling 192 

performance test is implemented after verifying the different CAMx model simulation 193 

results. 194 

 195 

Figure 2. Heterogeneous porting scheme of the CAMx-CUDA model. 196 

2.4. Hardware components and software environment of the testing system 197 

The experiments are conducted on two GPU clusters, K40m and V100. The 198 

hardware components and software environment of the two clusters are listed in Table 199 

1. The K40m cluster is equipped with two 2.5 GHz 16-core Intel Xeon E5-2682 v4 200 

CPU processors and one NVIDIA Tesla K40m GPU card on each node. The NVIDIA 201 

Tesla K40m GPU has 2880 CUDA cores with 12 GB of memory. The V100 cluster 202 

contains two 2.7 GHz 24-core Intel Xeon Platinum 8168 processors and eight NVIDIA 203 

Tesla V100 GPU cards with 5120 CUDA cores and 16 GB memory on each card. 204 

Table 1. Configurations of GPU cluster. 205 

 
Hardware components 

CPU GPU 
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K40m cluster 
Intel Xeon E5-2682 v4 CPU @2.5 

GHz, 16 cores 

NVIDIA Tesla K40m, 2880 CUDA 

cores, 12GB memory 

V100 cluster 
Intel Xeon Platinum 8168 CPU @2.7 

GHz, 24 cores 

NVIDIA Tesla V100, 5120 CUDA 

cores, 16GB memory 

 
Software environment 

Compiler and MPI Programming Model 

K40m cluster Intel-2021.4.0 CUDA-10.2 

V100 cluster Intel-2019.1.144 CUDA-10.0 

For Fortran and standard C programming, Intel Toolkit (including compiler and 206 

MPI library) version 2021.4.0 and version 2019.1.144 are employed for compiling on 207 

an Intel Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU, respectively. Then, 208 

CUDA version 10.2 and version 10.0 are employed on an NVIDIA Tesla K40m GPU 209 

and NVIDIA Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of the C 210 

programming language that offers direct programming of the GPUs. In CUDA 211 

programming, a kernel is actually a subroutine that can be executed on the GPU. The 212 

underlying code in the kernel is divided into a series of threads, each with a unique "ID" 213 

number that simultaneously process different data through a single-instruction multiple-214 

thread (SIMT) parallel mode. These threads are grouped into equal-sized thread blocks, 215 

which are organized into a grid. 216 

3. Porting and optimization of the CAMx advection module on a heterogeneous 217 

platform 218 

3.1. Mapping the HADVPPM scheme to the GPU 219 

3.1.1. Manual code translation from Fortran to standard C 220 

As the CAMx V6.10 code was written in Fortran 90, we rewrote the hadvppm 221 

program from Fortran to CUDA C. As an intermediate conversion step, we refactor the 222 

original Fortran code using standard C. During the refactoring, some of the  223 

considerations are listed in Table 2: 224 

(1) The subroutine name refactored with standard C must be followed by an 225 
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underscore identifier, which can only be recognized when Fortran calls. 226 

(2) In the Fortran language, the parameters are transferred by a memory address 227 

by default. In the case of mixed programming in Fortran and standard C, the parameters 228 

transferred by Fortran are processed by the pointer in standard C. 229 

(3) Variable precision types defined in standard C must be strictly consistent with 230 

those in Fortran. 231 

(4) Some built-in functions in Fortran are not available in standard C, and need to 232 

be defined in the standard C macro definitions. 233 

(5) For multidimensional arrays, Fortran and standard C follow a column-major 234 

and row-major order, and in-memory read and write, respectively; 235 

(6) Array subscripts in Fortran and standard C are indexed from any integer and 0, 236 

respectively. 237 

Table 2. Some considerations during Fortran to C refactoring. 238 

 Fortran code C code 

Function name subroutine hadvppm() void hadvppm() 

Parameter passing 
hadvppm(nn, dt,dx, con,vel, 

area,areav, flxarr,mynn) 

hadvppm(int *nn, float *dt, 

float *dx, float *con, float 

*vel, float *area, float *areav, 

float *flxarr, int *mynn) 

Variable precision real(kind=8) x double x 

Built-in functions max 
#define Max(a, b) 

((a)>(b)?(a):(b)) 

Memory read and 

write for 

multidimensional 

array 

Column-major Row-major 

Array subscript 

index 
Starting from any integer Starting from 0 

 239 

3.1.2. Converting standard C code into CUDA C 240 

After refactoring the Fortran code of the hadvppm program with standard C, 241 
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CUDA was used to convert the C code into CUDA C to make it computable on the 242 

GPU. A standard C program using CUDA extensions distributes a large number of 243 

copies of the kernel functions into available multiprocessors and executes them 244 

simultaneously on the GPU. 245 

Figure 3 shows the GPU-HADVPPM implementation process. As mentioned in 246 

Sect. 2.1, the xyadvec program calls the hadvppm program to solve the horizontal 247 

advection function. Since the rewritten CUDA program cannot be called directly by the 248 

Fortran program (xyadvec.f), we add an intermediate subroutine (hadvppm.c) as an 249 

interface to transfer the parameters and data required for GPU computing from the 250 

xyadvec Fortran program to the hadvppm_kernel CUDA C program. 251 

A CUDA program automatically uses numerous threads on the GPU to execute 252 

kernel functions. Therefore, the hadvppm_kernel CUDA C program first calculates the 253 

number of parallel threads according to the array dimension. Then, the GPU memory 254 

is allocated, and the parameters and data are copied from the CPU to the GPU. As the 255 

CUDA program launches a large number of parallel threads to execute kernel functions 256 

simultaneously, the computation results will be copied from the GPU back to the CPU. 257 

Finally, the GPU memory is released, and the data computed on the GPU are returned 258 

to the xyadvec program via the hadvppm C program. 259 

 260 

Figure 3. The calling and computation process of the GPU-HADVPPM on the CPU-GPU 261 
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heterogeneous platform. 262 

3.2. Coupling and optimization of the GPU-HADVPPM scheme on a single GPU 263 

After the hadvppm program was rewritten with standard C and CUDA, the 264 

implementation process of the HADVPPM scheme was loaded from the CPU to the 265 

GPU. Then, we coupled the GPU-HADVPPM to the CAMx model. For ease of 266 

description, we will refer to this original heterogeneous version of CAMx as CAMx-267 

CUDA V1.0. In CAMx-CUDA V1.0, four external loops are nested when the hadvppm 268 

C program is called by the xyadvec program. This will result in widespread data 269 

transfers from the CPU to the GPU over the PCIe bus within a time step, making the 270 

computation of CAMx-CUDA V1.0 inefficient. 271 

Therefore, we optimize the xyadvec Fortran program to significantly reduce the 272 

frequency of data transmission between the CPU and GPU, increase the amount of data 273 

computation on the GPU, and improve the total computing efficiency of the CAMx on 274 

the CPU-GPU heterogeneous platforms. In the original CAMx-CUDA V1.0, four 275 

external loops outside the hadvppm C program, and several one-dimensional arrays, are 276 

computed before calling the hadvppm C program. Then, the CPU will frequently launch 277 

the GPU and transfer data to it within a time step. When the code optimization is 278 

completed, the three- or four-dimensional arrays required for a GPU computation 279 

within a time step will be sorted before calling the hadvppm C program, and then the 280 

CPU will package and transfer the arrays to the GPU in batches. An example of the 281 

xyadvec Fortran program optimization is shown in Figure S1. 282 

The details of the four different versions are shown in Table 3. In CAMx-CUDA 283 

V1.0, the Fortran code of the HADVPPM scheme was rewritten using standard C and 284 

CUDA, and the xyadvec program was not optimized. The dimensions of the c1d 285 

variable array transmitted to the GPU in the X and Y directions are 157 and 145 in this 286 

case, respectively. In CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the c1d variable 287 

transmitted from the CPU to GPU is expanded to two (approximately 23,000 numbers) 288 

and four dimensions (approximately 27.4 million numbers) by optimizing the xyadvec 289 
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Fortran program and hadvppm_kernel CUDA C program, respectively. 290 

The order in which the data are accessed in GPU memory affects the 291 

computational efficiency of the code. In CAMx-CUDA V1.3 of Table 4, we further 292 

optimized the order in which the data are accessed in GPU memory based on the order 293 

in which they are stored in memory and eliminated the unnecessary assignment loops 294 

that were added due to the difference in memory read order between Fortran and C. 295 

As described in Sect. 2.4, a thread is the basic unit of parallelism in CUDA 296 

programming. The thread structure is organized into a three-level hierarchy. The highest 297 

level is a grid, which consists of three-dimensional thread blocks. The second level is a 298 

block, which also consists of three-dimensional threads. The built-in CUDA variable 299 

threadIdx.x determines a unique thread "ID" number inside a thread block. Similarly, 300 

the built-in variables blockIdx.x and blockIdx.y determine which block to execute on, 301 

and the size of the block is determined by using the built-in variable blockdim.x. For 302 

the two-dimensional horizontal grid points, many threads and blocks can be organized 303 

so that each CUDA thread computes the results for different spatial positions 304 

simultaneously. 305 

Before CAMx-CUDA V1.4, the loops for the three-dimensional spatial grid points 306 

(i,j,k) are replaced by index computations using only the thread index (i = threadIdx.x 307 

+ blockIdx.x*blockDim.x) to use the thread indices to simultaneously compute the grid 308 

point in the x or y direction. To take full advantage of the thousands of threads in the 309 

GPU, we implement thread and block indices (i = threadIdx.x + blockIdx.x*blockDim.x; 310 

j = blockIdx.y) to simultaneously compute all the horizontal grid points (i,j) in CAMx-311 

CUDA V1.4. This is permitted because there are no interactions among the horizontal 312 

grid points. 313 

Table 3. The details of different CAMx-CUDA versions during optimization. 314 

Version Major revisions 
Amount of data 

computation on GPU 

CAMx-CUDA V1.0 

The Fortran code of the HADVPPM 

subroutine was rewritten using standard 

C and CUDA, and xyadvec.f was not 

optimized. 

157 and 145 in the x 

direction and y direction for 

the c1d variable, 

respectively. 

CAMx-CUDA V1.1 Optimize xyadec.f and 157×145, 
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hadvppm_kernel.cu to expand the 

dimension of the array transmitted to the 

GPU from 1-dimensional to 2-

dimensional. 

approximately 23,000 

numbers 

for the c2d variable. 

CAMx-CUDA V1.2 

Based on the CAMx-CUDA V1.1, the 

dimension of the array transmitted to the 

GPU is extended from 2 to 4 

dimensions. 

157×145×14×86, 

approximately 27.4 million 

numbers 

for the c4d variable. 

CAMx-CUDA V1.3 

Based on the CAMx-CUDA V1.2, the 

order of GPU memory access is 

optimized and unnecessary assignment 

loops are eliminated. 

157×145×14×86, 

approximately 27.4 million 

numbers 

for the c4d variable. 

CAMx-CUDA V1.4 

Based on the CAMx-CUDA V1.3, using 

thread and block indices (i = threadIdx.x 

+ blockIdx.x*blockDim.x; j = 

blockIdx.y). 

157×145×14×86, 

approximately 27.4 million 

numbers 

for the c4d variable. 

 315 

3.3. MPI+CUDA acceleration algorithm of CAMx-CUDA on multiple GPUs 316 

Generally, superlarge clusters have thousands of compute nodes. The current 317 

CAMx V6.10, implemented by adopting MPI communication technology, typically 318 

runs on dozens of compute nodes. Once the GPU-HADVPPM is coupled into the 319 

CAMx, it also has to run on multiple compute nodes that are equipped with one or more 320 

GPUs on each node. To make full use of multicore and multi-GPU supercomputers, and 321 

further improve the overall computational performance of CAMx-CUDA, we adopt a 322 

parallel architecture with an MPI+CUDA hybrid paradigm; that is, the collaborative 323 

computing strategy of multiple CPU cores and multiple GPU cards is adopted during 324 

the operation of the CAMx-CUDA model. Adopting this strategy, the GPU-HADVPPM 325 

can run on multiple GPUs, and the Fortran code of the other modules in the CAMx-326 

CUDA model can run on multiple CPU cores. 327 

As shown in Figure 4, after the simulated region is subdivided by MPI, a CPU 328 

core is responsible for the computation of a subregion. To improve the total 329 

computational performance of the CAMx-CUDA model, we further used the NVIDIA 330 

CUDA library to obtain the number of GPUs per node and then used the MPI process 331 

ID and remainder function to determine the GPU ID to be launched by each node. 332 
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Finally, we used the NVIDIA CUDA library, cudaSetDevice, to configure a GPU card 333 

for each CPU core. 334 

According to the benchmark performance experiments, the parallel design of 335 

CAMx adopts the master-slave mode, and P0 is responsible for inputting and outputting 336 

data. If two processes (P0 and P1) were launched, only the P1 and its configured GPU 337 

participate in integration. 338 

 339 

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple 340 

GPUs. 341 

4. Experimental results 342 

The validation and evaluation of porting the HADVPPM scheme from the CPU to 343 

the GPU platform were conducted using offline and coupling performance experiments. 344 

First, we validated the results between the different CAMx versions, and then the offline 345 

performance of the GPU-HADVPPM on a single GPU was tested by offline 346 

experiments. Finally, coupling performance experiments illustrate its potential in three 347 

dimensions with varying chemical regimes. In Sect.4.2 and Sect.4.4, the CAMx 348 

versions of the HADVPPM scheme written in Fortran, standard C and CUDA C are 349 

named F, C and CUDA C, respectively. 350 
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4.1. Experimental setup 351 

The test case is a 48 h simulation covering Beijing, Tianjin and part of the Hebei 352 

Province region. The horizontal resolution is 3 km with 145 × 157 grid boxes. The 353 

model adopted 14 vertical layers. The simulation started at 12:00 UTC on 01 November 354 

2020 and ended at 12:00 UTC on 03 November 2020. The meteorological fields driving 355 

the CAMx model were provided by the weather research and forecasting (WRF; 356 

Skamarock et al., 2008) model. The sparse matrix operator kernel emission (SMOKE; 357 

Houyoux and Vukovich, 1999) version 2.4 model is used to provide gridded emission 358 

data for the CAMx model. The emission inventories (Sun et al., 2022) include the 359 

regional emissions in East Asia that were obtained from the transport and chemical 360 

evolution over the Pacific (TRACE-P; Streets et al., 2003; Streets et al., 2006) project, 361 

30-min (approximately 55.6 km at mid-latitude) spatial resolution Intercontinental 362 

chemical transport experiment-Phase B (INTEX-B; Zhang et al., 2009) and the updated 363 

regional emission inventories in North China. The physical and chemical numerical 364 

methods selected during the CAMx model integration are listed in Table S2. 365 

4.2. Error analysis 366 

The hourly concentrations of different CAMx simulations (Fortran, C, and CUDA 367 

C versions) are compared to verify the usefulness of the CUDA C version of CAMx for 368 

numerical precision for scientific usage. Here, we chose six major species, i.e., SO2, O3, 369 

NO2, CO, H2O2 and PSO4, after 48 h of integration to verify the results. Due to the 370 

differences in programming languages and hardware, the simulation results are affected 371 

during the porting process. Figures 5~7 present the spatial distributions of SO2, O3, NO2, 372 

CO, H2O2 and PSO4, as well as the absolute errors (AEs) of their concentrations from 373 

different CAMx versions. The species' spatial patterns of the three CAMx versions are 374 

visually very similar. Between the Fortran and C versions, especially, the AEs in all the 375 

grid boxes are in the range of ±0.01 ppbV (the unit of PSO4 is �� ∙ ���). During the 376 

porting process, the primary error comes from converting standard C to CUDA C, and 377 
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the main reason is related to the hardware difference between the CPU and GPU. Due 378 

to the slight difference in data operation and accuracy between the CPU and GPU 379 

(NVIDIA,2023), the concentration variable of the hadvppm program appears to have 380 

minimal negative values (approximately −10��~−10��) when integrated on the GPU. 381 

To allow the program to continue running, we forcibly replace these negative values 382 

with 10��. It is because these negative values are replaced by positive values that the 383 

simulation results are biased. In general, for SO2, O3, NO2, H2O2 and PSO4, the AEs in 384 

the majority of the grid boxes are in the range of ±0.8 ppbV or �� ∙ ��� between the 385 

standard C and CUDA C versions; for CO, because its background concentration is 386 

higher, the AEs of the standard C and CUDA C versions are outside that range, and fall 387 

into the range of -8 and 8 ppbV in some grid boxes and shows more obvious AEs than 388 

the other species. 389 
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 390 

Figure 5. SO2 and O3 concentrations outputted by the CAMx model for the Fortran, standard C, and 391 
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CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from the 392 

standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 393 

output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the 394 

output concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the 395 

output concentration differences of the Fortran and CUDA C versions. 396 
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 397 

Figure 6. NO2 and CO concentrations outputted by the CAMx model for the Fortran, standard C, 398 
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and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from 399 

the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 400 

output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the 401 

output concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the 402 

output concentration differences of the Fortran and CUDA C versions. 403 
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Figure 7. H2O2 and PSO4 concentrations output by the CAMx model for the Fortran, standard C, 405 

and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from 406 

the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 407 

output concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 408 

concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the output 409 

concentration differences of the Fortran and CUDA C versions. 410 

Figure 8 shows the boxplot of the AEs and relative error (REs) in all the grid boxes 411 

for the six species during the porting process. As described above, the AEs and REs 412 

introduced by Fortran to the standard C code refactoring process are significantly small, 413 

and the primary error comes from converting standard C to CUDA C. Statistically, the 414 

average AEs (REs) of SO2, O3, NO2, CO, H2O2 and PSO4 were -0.0009 ppbV (-0.01%), 415 

0.0004 ppbV (-0.004%), 0.0005 ppbV (0.008%), 0.03 ppbV (0.01%), 2.1 × 10�� 416 

ppbV (-0.01%) and 0.0002 �� ∙ ���  (0.0023%), respectively, between the Fortran 417 

and CUDA C versions. In terms of the time series, the regionally averaged time series 418 

of the three versions are almost consistent (as shown in Figure S2), and the maximum 419 

AEs for the above six species are 0.001 ppbv, 0.005 ppbv, 0.002 ppbv, 0.03 ppbv, 0.0001 420 

ppbv and 0.0002 �� ∙ ���, respectively, between the Fortran and CUDA C versions. 421 

 422 

Figure 8. The distributions of absolute errors and relative errors for SO2, O3, NO2, CO, H2O2 and 423 

PSO4 in all of the grid boxes after 48 hours of integration. 424 

Figure 9 presents the regionally averaged time series and the AEs of SO2, O3, NO2, 425 

CO, H2O2 and PSO4. The time series between the different versions is almost consistent, 426 
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and the maximum AEs for the above six species are 0.001 ppbv, 0.005 ppbv, 0.002 ppbv, 427 

0.03 ppbv, 0.0001 ppbv and 0.0002 �� ∙ ���, respectively, between the Fortran and 428 

CUDA C versions. 429 

It is difficult to verify the scientific applicability of the results from the CUDA C 430 

version because the programming language and hardware are different between the 431 

Fortran and CUDA C versions. Here, we used the evaluation method of Wang et al. 432 

(2021a) to compute the root mean square errors (RMSEs) of SO2, O3, NO2, CO, H2O2 433 

and PSO4 between the Fortran and CUDA C versions, which are 0.0007 ppbV, 0.001 434 

ppbV, 0.0002 ppbV, 0.0005 ppbV, 0.00003 ppbV and 0.0004 �� ∙ ���, respectively, 435 

much smaller than the spatial variation of the whole region, which is 7.0 ppbV 436 

(approximately 0.004%), 9.7 ppbV (approximately 0.003%), 7.4 ppbV (approximately 437 

0.003%), 142.2 ppbV (approximately 0.006%), 0.2 ppbv (approximately 0.015%) and 438 

1.7 �� ∙ ��� (approximately 0.004%). The bias between CUDA C and the Fortran 439 

version of the above six species is negligible compared with their own spatial changes, 440 

and the results of the CUDA C version are generally acceptable for research purposes. 441 

 442 

4.3. Offline performance comparison of GPU-HADVPPM 443 

As described in Sect. 4.2, we validate that the CAMx model result of the CUDA 444 

C version is generally acceptable for scientific research. We tested the offline 445 

performance of the HADVPPM and GPU-HADVPPM schemes on 1 CPU core and 1 446 

GPU card. There are 7 variables input into the HADVPPM program, which are nn, dt, 447 

dx, con, vel, area and areav, and their specific meanings are shown in Table S1. 448 

First, we use the random_number function in Fortran to create random single-449 

precision floating-point numbers of different sizes for the above 7 variables, and then 450 

transmit these random numbers to the hadvppm Fortran program and hadvppm_kernel 451 

CUDA C program for computation. Finally, we test the offline performance of the 452 

HADVPPM and GPU-HADVPPM on the CPU and GPU platforms. During the offline 453 

performance experiments, we used two different CPUs and GPUs described in Sect. 454 

2.4., and the experimental results are shown in Figure 9. 455 
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On the CPU platform, the wall time of the hadvppm Fortran program does not 456 

change significantly when the data size is less than 1000. With the increase in the data 457 

size, its wall time increases linearly. When the data size reaches 10�, the wall time of 458 

the hadvppm Fortran program on the Intel Xeon E5-2682v4 and Intel Platinum 8168 459 

CPU platforms is 1737.3 ms and 1319.0 ms, respectively. On the GPU platform, the 460 

reconstructed and extended CUDA C program implements parallel computation of 461 

multiple grid points by executing a large number of kernel function copies, so the 462 

computational efficiency of the hadvppm_kernel CUDA C code on it is significantly 463 

improved. In the size of 10� random numbers, the hadvppm_kernel CUDA C program 464 

takes only 12.1 ms and 1.6 ms to complete the computation on the NVIDIA Tesla K40m 465 

and NVIDIA Tesla V100 GPU. 466 

Figure 9. (b) shows the speedup of HADVPPM and GPU-HADVPPM on the CPU 467 

platform and GPU platform under different data sizes. When mapping the HADVPPM 468 

scheme to the GPU, the computational efficiency under different data sizes is not only 469 

significantly improved, but the larger the data size is, the more obvious the acceleration 470 

effect of the GPU-HADVPPM. For example, in the size of 10� random numbers, the 471 

GPU-HADVPPM achieved a 1113.6x and 845.4x acceleration on the NVIDIA Tesla 472 

V100 GPU, respectively, compared to the two CPU platforms. Although the K40m 473 

GPU's single-card computing performance is slightly lower than that of the V100 GPU, 474 

GPU-HADVPPM can also achieve up to a 143.3x and 108.8x acceleration. 475 

As described in Sect. 3.2, the thread is the most basic GPU unit for parallel 476 

computing. Each dimension of the three-dimensional block can contain a maximum 477 

number of threads of 1024, 1024 and 64. Each dimension of the three-dimensional grid 478 

can contain a maximum number of blocks of 2�� − 1 , 65535, and 65535. It is 479 

theoretically possible to distribute a large number of copies of kernel functions into tens 480 

of billions of threads for parallel computing without exceeding the GPU memory. In 481 

the offline performance experiments, the GPU achieved up to 10 million threads of 482 

parallel computing, while the CPU can only use serial cyclic computation. Therefore, 483 

GPU-HADVPPM achieves a maximum acceleration of approximately 1100x without 484 
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I/O. In addition to this study, the GPU-based SBU-YLIN scheme in the WRF model 485 

can achieve a 896x acceleration compared to the Fortran implementation running on 486 

the CPU (Mielikainen et al., 2012b). 487 

 488 

Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM scheme on the CPU 489 

and GPU. The unit of the wall times for the offline performance experiments is in milliseconds (ms). 490 

4.4. Coupling performance comparison of GPU-HADVPPM with different GPU 491 

configurations 492 

4.4.1. CAMx-CUDA on a single GPU 493 

The offline performance results show that the larger the data size is, the more 494 

obvious the acceleration effect of the GPU-HADVPPM scheme. After coupling the 495 

GPU-HADVPPM to CAMx without changing the advection module algorithm, the 496 

overall computational efficiency of the CAMx-CUDA model is extremely low, and it 497 

takes approximately 621 minutes to complete a one-hour integration on the V100 498 

cluster. Therefore, according to the optimization scheme in Sect. 3.2, by optimizing the 499 

algorithm of the xyadvec Fortran program, we gradually increase the size of the data 500 

transmitted and reduce the data transmission frequency between the CPU and GPU. 501 

When the data transmission frequency between the CPU and GPU is reduced to 1 within 502 

one time step, we further optimize the GPU memory access order on the GPU card, 503 

eliminate unnecessary assignment loops before kernel functions are launched and use 504 
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the thread and block indices. 505 

Table 4 lists the total elapsed time for different versions of the CAMx-CUDA 506 

model during the optimization, as described in Section 3.2. Since the xyadvec program 507 

in CAMx-CUDA V1.0 is not optimized, it is extremely computationally inefficient 508 

when starting two CPU processes and configuring a GPU card for P1. On the K40m 509 

and V100 clusters, it takes 10829 seconds and 37237 seconds, respectively, to complete 510 

a 1-hour simulation. 511 

By optimizing the algorithm of the xyadvec Fortran program and hadvppm_kernel 512 

CUDA C program, the data transmission frequency between the CPU and GPU was 513 

decreased, and the overall computing efficiency was improved after GPU-HADVPPM 514 

was coupled to the CAMx-CUDA model. In CAMx-CUDA V1.2, the data transmission 515 

frequency between CPU-GPU within one time step is reduced to 1, the elapsed time on 516 

the two heterogeneous clusters is 1207 seconds and 548 seconds, respectively, and the 517 

speedup is 9.0x and 68.0x compared to CAMx-CUDA V1.0. 518 

 The GPU memory access order can directly affect the overall GPU-HAVPPM 519 

computational efficiency on the GPU. In CAMx-CUDA V1.3, we optimized the 520 

memory access order of the hadvppm_kernel CUDA C program on the GPU and 521 

eliminated the unnecessary assignment loops before the kernel functions were launched, 522 

which further improved the CAMx-CUDA model’s computational efficiency, resulting 523 

in 12.7x and 94.8x speedups. 524 

Using thread and block indices to simultaneously compute the horizontal grid 525 

points can greatly improve the computational efficiency of the GPU-HADVPPM and 526 

thus reduce the overall elapsed time of the CAMx-CUDA model. CAMx-CUDA V1.4 527 

further reduces the elapsed time by 378 seconds and 103 seconds on the K40m cluster 528 

and V100 cluster, respectively, compared with CAMx-CUDA V1.3 and achieves up to 529 

a 29.0x and 128.4x speedup compared with CAMx-CUDA V1.0. 530 

Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The 531 

unit of elapsed time for experiments is in seconds (s). 532 

Versions K40m cluster V100 cluster 
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Elapsed Time Speedup Elapsed Time Speedup 

CAMx-CUDA V1.0 10829 1.0 37237 1.0 

CAMx-CUDA V1.1 1403 7.7 1082 34.4 

CAMx-CUDA V1.2 1207 9.0 548 68.0 

CAMx-CUDA V1.3 751 12.7 393 94.8 

CAMx-CUDA V1.4 373 29.0 290 128.4 

In terms of the single module computational efficiency of HADVPPM and GPU-533 

HADVPPM, we further tested the computational performance of the Fortran version of 534 

HADVPPM on the CPU, C version of HADVPPM on the CPU, and the CUDA C 535 

version of GPU-HADVPPM in CAMx-CUDA V1.4 (GPU-HADVPPM V1.4) on the 536 

GPU using system_clock functions in the Fortran language and cudaEvent_t in CUDA 537 

programming. The specific results are shown in Figure 10. On the K40m cluster, it takes 538 

37.7 seconds and 51.4 seconds to launch the Intel Xeon E5-2682 v4 CPU to run the 539 

Fortran and C version HADVPPM, respectively, and the C version is 26.7% slower 540 

than the Fortran version. After the CUDA technology was used to convert the C code 541 

into CUDA C, the CUDA C version took 29.6 seconds to launch an NVIDIA Telsa 542 

K40m GPU to run GPU-HADVPPM V1.4, with a 1.3x and 1.7x acceleration. On the 543 

V100 cluster, the Fortran, C, and CUDA C versions are computationally more efficient 544 

than those on the K40m cluster. It takes 30.1 seconds and 45.2 seconds to launch the 545 

Intel Xeon Platinum 8168 CPU to run the Fortran and C version HADVPPM, and 1.6 546 

seconds to run the GPU-HADVPPM V1.4 using an NVIDIA V100 GPU. The 547 

computational efficiency of the CUDA C version is 18.8x and 28.3x higher than the 548 

Fortran and C versions, respectively. 549 
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 550 

Figure 10. The elapsed time of the Fortran version HADVPPM on the CPU, the C version 551 

HADVPPM on the CPU and the CUDA C version GPU-HADVPPM V1.4 on the GPU. The unit is 552 

in seconds (s). 553 

4.4.2. CAMx-CUDA on multiple GPUs 554 

To make full use of the multicore and multi-GPUs in the heterogeneous cluster, 555 

the MPI+CUDA acceleration algorithm was implemented to improve the total 556 

computational performance of the CAMx-CUDA model. Two different compile flags 557 

were implemented in this study before comparing the computational efficiency of 558 

CAMx-CUDA V1.3 and V1.4 on multiple GPUs, namely, -mieee-fp and -fp-model 559 

precise. The -mieee-fp compile flag comes from the Makefile of the official CAMx 560 

version, which uses the IEEE standard to compare the floating-point numbers. Its 561 

computational accuracy is higher but the efficiency is slower. The -fp-model precise 562 

compile flag controls the balance between the precision and efficiency of the floating-563 

point calculations, and it can force the compiler to use the vectorization of some 564 

calculations under value safety. The experimental results show that the -fp model 565 

precise compile flag is 41.4% faster than -mieee-fp, and the AEs of the simulation 566 

results are less than ±0.05 ppbv (Figure S3). Therefore, the -fp model precise compile 567 

flag is implemented when comparing the computational efficiency of CAMx-CUDA 568 
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V1.3 and V1.4 on multiple GPU cards. Figure 11 shows the total elapsed time and 569 

speedup of CAMx-CUDA V1.3 and V1.4 on the V100 cluster. The total elapsed time 570 

decreases as the number of CPU cores and GPU cards increases. When starting 8 CPU 571 

cores and 8 GPU cards, the speedup of CAMx-CUDA V1.4 is increased from 3.9x to 572 

4.5x compared with V1.3, and the computational efficiency is increased by 35.0%. 573 

 574 

Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple 575 

GPUs. The unit of elapsed time for experiments is seconds (s). 576 

5. Conclusions and discussion 577 

GPU accelerators are playing an increasingly important role in high-performance 578 

computing. In this study, a GPU acceleration version of the PPM solver (GPU-579 

HADVPPM) of horizontal advection for an air quality model was developed, which 580 

runs on GPU accelerators using the standard C programming language and CUDA 581 

technology. The offline performance experimental results showed that the K40m and 582 

V100 GPU can achieve up to a 845.4x and 1113.6x speedup, respectively, and the larger 583 

the data input to the GPU, the more obvious the acceleration effect. After coupling the 584 

GPU-HADVPPM to the CAMx model, a series of optimization measures were taken, 585 

including reducing the CPU-GPU communication frequency, increasing the data 586 
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computation size on the GPU, optimizing the GPU memory access order and using 587 

thread and block indices to improve the overall computing performance of the CAMx-588 

CUDA model. Using a single GPU card, the optimized CAMx-CUDA V1.4 model 589 

improved the computing efficiency by 29.0x and 128.4x on the K40m cluster and the 590 

V100 cluster, respectively. In terms of the single-module computational efficiency of 591 

GPU-HADVPPM, it achieved a 1.3x and 18.8x speedup on an NVIDIA Tesla K40m 592 

GPU and NVIDA Tesla V100 GPU, respectively. To make full use of the multicore and 593 

multi-GPU supercomputers and further improve the total computational performance 594 

of the CAMx-CUDA model, a parallel architecture with an MPI+CUDA hybrid 595 

paradigm was presented. After implementing the acceleration algorithm, the total 596 

elapsed time decreased as the number of CPU cores and GPU cards increased, and it 597 

achieved up to a 4.5x speedup when launching 8 CPU cores and 8 GPU cards compared 598 

with 2 CPU cores and 2 GPU cards. 599 

However, the current approach has some limitations, which are as follows: 600 

1) We currently implement thread and block coindexing to compute horizontal 601 

grid points in parallel. Given the CAMx Model 3-dimensional grid computing 602 

characteristics, in the future, 3-dimensional thread and block coindexing will be 603 

considered to compute 3-dimensional grid points in parallel. 604 

2) The communication bandwidth of data transfer is one of the main issues 605 

restricting the computing performance of the CUDA C codes on the GPUs. This 606 

restriction holds true not only for GPU-HADVPPM but also for the WRF module 607 

(Mielikainen et al., 2012b; Mielikainen et al., 2013b; Huang et al., 2013). In this study, 608 

the data transmission efficiency between the CPU and GPU is improved only by 609 

reducing the communication frequency. In the future, more technologies, such as 610 

pinned memory (Wang et al., 2016), will be considered to resolve the communication 611 

bottleneck between the CPUs and GPUs. 612 

3) To further improve the overall computational efficiency of the CAMx model, 613 

the heterogeneous porting scheme proposed in this study will be considered to conduct 614 

the heterogeneous porting of other CAMx modules in the future. 615 
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