
1

GPU-HADVPPM V1.0: A high-efficiency parallel GPU design of 1

the piecewise parabolic method (PPM) for horizontal advection 2

in an air quality model (CAMx V6.10) 3

Kai Cao1, Qizhong Wu1, Lingling Wang2, Nan Wang2, Huaqiong Cheng1, Xiao 4

Tang3, Dongqing Li1, and Lanning Wang1 5

1College of Global Change and Earth System Science, Beijing Normal University, 6

Beijing 100875, China 7
2Henan Ecological Environment Monitoring and Safety Center, Henan Key 8

Laboratory of Environmental Monitoring Technology, Zhengzhou 450000, China 9
3State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric 10

Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 11

100029, China 12

 13

Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn); Lingling Wang 14

(928216422@qq.com); Lanning Wang (wangln@bnu.edu.cn) 15

 16

Abstract. With semiconductor technology gradually approaching its physical and 17

thermal limits, graphics processing units (GPUs) are becoming an attractive solution 18

for many scientific applications due to their high performance. This paper presents an 19

application of GPU accelerators in an air quality model. We demonstrate an approach 20

that runs a PPM solver of horizontal advection (HADVPPM) for the air quality model 21

CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new 22

Compute Unified Device Architecture C (CUDA C) code to make it computable on the 23

GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including 24

reducing the CPU-GPU communication frequency, increasing the data size 25

computation on the GPU, optimizing the GPU memory access and using thread and 26

block indices to improve the overall computing performance of the CAMx model 27

coupled with GPU-HADVPPM (named the CAMx-CUDA model). Finally, a 28

heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-29

HADVPPM on the GPU clusters with a message passing interface (MPI) and CUDA. 30

The offline experimental results show that running GPU-HADVPPM on one NVIDIA 31

Tesla K40m and an NVIDIA Tesla V100 GPU can achieve up to a 845.4x and 1113.6x 32

2

acceleration. By implementing a series of optimization schemes, the CAMx-CUDA 33

model results in a 29.0x and 128.4x improvement in computational efficiency by using 34

a GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the 35

single-module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and 36

18.8x speedup on an NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU, 37

respectively. The multi-GPU acceleration algorithm enables a 4.5x speedup with 8 CPU 38

cores and 8 GPU accelerators on a V100 cluster. 39

1. Introduction 40

Since the introduction of personal computers in the late 1980s, the computer and 41

mobile device industry has created a flourishing worldwide market (Bleichrodt et al., 42

2012). In recent years, improvements of the central processing unit (CPU) performance 43

have been limited by its heat dissipation, and the applicability of Moore's Law has 44

flattened. A common trend in high-performance computing today is the utilization of 45

hardware accelerators, which execute codes rich in data parallelism, to form high-46

performance heterogeneous systems. GPUs are widely used as accelerators due to their 47

high peak performances. In the top ten supercomputing list released in December 2022 48

(https://www.top500.org/lists/top500/list/2022/11/, last access: 19 December 2022), 49

there were seven heterogeneous supercomputing platforms built with CPU processors 50

and GPU accelerators, of which the top one, Frontier at the Oak Ridge National 51

Laboratory, uses AMD's third-generation EPYC CPU and AMD’s Instinct MI250X 52

GPU, and its computing performance reaches exascale levels (10�� calculations per 53

second) for the first time (https://www.amd.com/en/press-releases/2022-05-30-world-54

s-first-exascale-supercomputer-powered-amd-epyc-processors-and-amd, last access: 55

19 December 2022). Such a powerful computing performance of the heterogeneous 56

system not only injects new vitality into high-performance computing but also 57

generates new solutions for improving the performance of geoscience numerical 58

models. 59

3

The GPU has proven successful in weather models such as the nonhydrostatic 60

icosahedral model (NIM; Govett et al., 2017), global/regional assimilation and 61

prediction system (GRAPES; Xiao et al., 2022), weather research and forecasting 62

model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et al., 2012a; 63

Mielikainen et al., 2012b; Mielikainen et al., 2013a; Mielikainen et al., 2013b; Price et 64

al., 2014; Huang et al., 2015), ocean models such as the LASG/IAP climate system 65

ocean model (LICOM; Jiang et al., 2019; Wang et al., 2021a) and Princeton ocean 66

model (POM; Xu et al., 2015) and earth system model of the Chinese Academy of 67

Sciences (CAS-ESM; Wang et al., 2016; Wang et al., 2021b). 68

Govett et al. (2017) used open accelerator (OpenACC) directives to port the 69

dynamics of NIM to the GPU and achieved a 2.5x acceleration. Additionally, using 70

OpenACC directives, Xiao et al. (2022) ported the PRM (piecewise rational method) 71

scalar advection scheme in GRAPES to the GPU, achieving up to 3.51x faster results 72

than 32 CPU cores. In terms of the most widely used WRF, several parameterization 73

schemes, such as the RRTMG_LW scheme (Price et al., 2014), 5-layer thermal 74

diffusion scheme (Huang et al., 2015), Eta Ferrier cloud microphysics scheme (Huang 75

et al., 2012), Goddard shortwave scheme (Mielikainen et al., 2012a), Kessler cloud 76

microphysics scheme (Mielikainen et al., 2013b), SBU-YLIN scheme (Mielikainen et 77

al., 2012b), WMS5 scheme (Huang et al., 2011) and WMS6 scheme (Mielikainen et al., 78

2013a), have been ported heterogeneously using CUDA C and achieved 37x~896x 79

acceleration results. LICOM has conducted heterogeneous porting using OpenACC 80

(Jiang et al., 2019) and used heterogeneous-compute interface for portability C (HIP C) 81

technologies and achieved up to a 6.6x and 42x acceleration, respectively (Wang et al., 82

2021a). For the Princeton ocean model, Xu et al. (2015) use CUDA C to conduct 83

heterogeneous porting and optimization, and the performance of gpu-POM v1.0 on four 84

GPUs is comparable to that on the 408 standard Intel Xeon X5670 CPU cores. In terms 85

of climate system models, Wang et al. (2016) and Wang et al. (2021b) used CUDA 86

Fortran and CUDA C to conduct heterogeneous porting of the RRTMG_SW and 87

RRTMG_LW schemes of the atmospheric component model of the CAS-ESM earth 88

4

system model and achieved a 38.88x and 77.78x acceleration, respectively. 89

Programming a GPU accelerator can be a difficult and error-prone process that 90

requires specially designed programming methods. There are three widely used 91

methods for porting programs to GPUs, as described above. The first method uses the 92

OpenACC directive (https://www.openacc.org/, last access: 19 December 2022), which 93

provides a set of high-level directives that enable C/C++ and Fortran programmers to 94

utilize accelerators. The second method uses CUDA Fortran. CUDA Fortran is a 95

software compiler that was codeveloped by the Portland Group (PGI) and NVIDIA, 96

and is a tool chain for building performance-optimized GPU-accelerated Fortran 97

applications targeting the NVIDIA GPU platform (https://developer.nvidia.com/cuda-98

fortran, last access: 19 December 2022). Using CUDA C involves rewriting the entire 99

program using the standard C programming language and low-level CUDA subroutines 100

(https://developer.nvidia.com/cuda-toolkit, last access: 19 December 2022) to support 101

the NVIDIA GPU accelerator. Compared to the other two technologies, the CUDA C 102

porting scheme is the most complex but it has the highest computational performance 103

(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu et al., 2015). 104

Air quality models are critical for understanding how the chemistry and 105

composition of the atmosphere may change throughout the 21st century, as well as for 106

preparing adaptive responses or developing mitigation strategies. Because air quality 107

models need to take into account the complex physicochemical processes that occur in 108

the atmosphere of anthropogenic and natural emissions, simulations are 109

computationally expensive. Compared to other geoscientific numerical models, few 110

studies have conducted a heterogeneous porting of air quality models. In this study, the 111

CUDA C scheme, implemented in this paper, conducted a hotspot module porting of 112

CAMx to improve the computation efficiency. 113

5

2. The CAMx model and experiments 114

2.1. Model description 115

The CAMx model is a state-of-the air quality model developed by Ramboll 116

Environ (https://www.camx.com/, last access: 19 December 2022). CAMx version 6.10 117

(CAMx V6.10; ENVIRON, 2014) is chosen in this study; it simulates the emission, 118

dispersion, chemical reaction and removal of pollutants by marching the Eulerian 119

continuity equation forward in time for each chemical species on a system of nested 120

three-dimensional grids. The Eulerian continuity equation is expressed mathematically 121

in terrain-following height coordinates as Formula (1): 122

���

��
= −∇� ∙ ���� + �

�(���)

��
− ��

��ℎ

����
� + ∇ ∙ �Κ∇(�� �⁄) 123

+
���

��
�

��������
+

���

��
�

���������
+

���

��
�

�������

(1) 124

∇� ∙ ��� =
��

���

�

��
�

�����

�
� +

��

���

�

��
�

�����

�
� (2) 125

The first term on the right-hand side represents horizontal advection. In numerical 126

methods, the horizontal advection equation (described in Formula (2)) is performed 127

using the area preserving flux-form advection solver of the piecewise parabolic method 128

(PPM) of Colella and Woodward (1984) as implemented by Odman and Ingram (1996). 129

The PPM horizontal advection solution (HADVPPM) was incorporated into the CAMx 130

model because it provides higher order accuracy with minimal numerical diffusion. 131

In the Fortran code implementation of the HADVPPM scheme, the CAMx main 132

program calls the emistrns program, which mainly performs physical processes such as 133

emission, diffusion, advection and dry/wet deposition of pollutants. Then, the 134

horizontal advection program is invoked by the emistrns program to solve the 135

horizontal advection equation by using the HADVPPM scheme. 136

6

2.2. Benchmark performance experiments 137

The first porting step is to test the performance of the CAMx benchmark version 138

and identify the model’s hotspots. On the Intel x86 CPU platform, we launch two 139

processes concurrently to run the CAMx, and take advantage of the Intel trace analyser 140

collector (ITAC; https://www.intel.com/content/www/us/en/docs/trace-analyzer-141

collector/get-started-guide/2021-4/overview.html, last access: 19 December 2022) and 142

the Intel VTune profiler 143

(VTune;https://www.intel.com/content/www/us/en/develop/documentation/vtune-144

help/top.html, last access: 19 December 2022) performance analysis tools to collect 145

performance information during the CAMx operation. 146

The general MPI performance can be reported by the ITAC tool, and MPI load 147

balance information, computation and communication profiling of each process is 148

shown in Fig. 1a. During the running process of the CAMx model, Process 0 (P0) 149

spends 99.6% of the time on the MPI_Barrier function and only 0.4% of the time on 150

computation, while Process 1 (P1) spends 99.8% of its time computation and only 0.2% 151

of its time receiving messages from P0. It is apparent that the parallel design of the 152

CAMx model adopts the Master-Slave mode, and P0 is responsible for inputting and 153

outputting the data and calling the MPI_Barrier function to synchronize the process, so 154

there is a lot of MPI waiting time. The other processes are responsible for computation. 155

The VTune tool detects each module's runtime and the most time-consuming 156

functions on P1. As shown in Figure 1b, the top four time-consuming modules are 157

chemistry, diffusion, horizontal advection and vertical advection in the CAMx model. 158

In the above four modules, the top five most time-consuming programs are the ebirate, 159

hadvppm, tridiag, diffus and ebisolv programs, and the total runtime of P1 is 325.1 160

seconds. Top1 and Top2's most time-consuming programs take 49.4 and 35.6 seconds, 161

respectively. 162

By consideration, the hadvppm program was selected to conduct heterogeneous 163

porting for several reasons. First, the advection module is one of the air quality model’s 164

compulsory modules, and is mainly used to simulate the transport process of air 165

7

pollutants, additionally it is also a hotspot module detected by the Intel VTune tool. The 166

typical air quality models, CAMx, CMAQ and NAQPMS, include advection modules 167

and use the exact PPM advection solver. The heterogeneous version developed in this 168

study can be directly applied to the above models. Furthermore, the weather model (e.g., 169

WRF) also contains an advection module, so this study's heterogeneous porting method 170

and experience can be used for reference. Therefore, a GPU acceleration version of the 171

HADVPPM scheme, namely, GPU-HADVPPM, is built to improve the CAMx 172

performance. 173

 174

Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and 175

communication profiling of P0 and P1. (b) Overhead proportions of P1. The top four most time-176

consuming modules are chemistry, diffusion, horizontal advection and vertical advection. 177

 178

2.3. Porting scheme introduction 179

The CAMx-CUDA heterogeneous scheme is shown in Figure 2. The second time-180

consuming hadvppm program in the CAMx model was selected to implement 181

heterogeneous porting. To map the hadvppm program to the GPU, the Fortran code was 182

converted to standard C code. Then, the CUDA programming language, which was 183

tailor-made for NVIDIA, was added to convert the standard C code into CUDA C for 184

8

data-parallel execution on the GPU, as GPU-HADVPPM. It prepared the input data for 185

GPU-HADVPPM by constructing random numbers, and tested its offline performance 186

on the GPU platform. 187

After coupling the GPU-HADVPPM to the CAMx model, the advection module 188

code was optimized according to the characteristics of the GPU architecture to improve 189

the overall computational efficiency on the CPU-GPU heterogeneous platform. Then, 190

the multi-CPU core and multi-GPU card acceleration algorithm was adopted to improve 191

the parallel extensibility of heterogeneous computing. Finally, the coupling 192

performance test is implemented after verifying the different CAMx model simulation 193

results. 194

 195

Figure 2. Heterogeneous porting scheme of the CAMx-CUDA model. 196

2.4. Hardware components and software environment of the testing system 197

The experiments are conducted on two GPU clusters, K40m and V100. The 198

hardware components and software environment of the two clusters are listed in Table 199

1. The K40m cluster is equipped with two 2.5 GHz 16-core Intel Xeon E5-2682 v4 200

CPU processors and one NVIDIA Tesla K40m GPU card on each node. The NVIDIA 201

Tesla K40m GPU has 2880 CUDA cores with 12 GB of memory. The V100 cluster 202

contains two 2.7 GHz 24-core Intel Xeon Platinum 8168 processors and eight NVIDIA 203

Tesla V100 GPU cards with 5120 CUDA cores and 16 GB memory on each card. 204

Table 1. Configurations of GPU cluster. 205

Hardware components

CPU GPU

9

K40m cluster
Intel Xeon E5-2682 v4 CPU @2.5

GHz, 16 cores

NVIDIA Tesla K40m, 2880 CUDA

cores, 12GB memory

V100 cluster
Intel Xeon Platinum 8168 CPU @2.7

GHz, 24 cores

NVIDIA Tesla V100, 5120 CUDA

cores, 16GB memory

Software environment

Compiler and MPI Programming Model

K40m cluster Intel-2021.4.0 CUDA-10.2

V100 cluster Intel-2019.1.144 CUDA-10.0

For Fortran and standard C programming, Intel Toolkit (including compiler and 206

MPI library) version 2021.4.0 and version 2019.1.144 are employed for compiling on 207

an Intel Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU, respectively. Then, 208

CUDA version 10.2 and version 10.0 are employed on an NVIDIA Tesla K40m GPU 209

and NVIDIA Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of the C 210

programming language that offers direct programming of the GPUs. In CUDA 211

programming, a kernel is actually a subroutine that can be executed on the GPU. The 212

underlying code in the kernel is divided into a series of threads, each with a unique "ID" 213

number that simultaneously process different data through a single-instruction multiple-214

thread (SIMT) parallel mode. These threads are grouped into equal-sized thread blocks, 215

which are organized into a grid. 216

3. Porting and optimization of the CAMx advection module on a heterogeneous 217

platform 218

3.1. Mapping the HADVPPM scheme to the GPU 219

3.1.1. Manual code translation from Fortran to standard C 220

As the CAMx V6.10 code was written in Fortran 90, we rewrote the hadvppm 221

program from Fortran to CUDA C. As an intermediate conversion step, we refactor the 222

original Fortran code using standard C. During the refactoring, some of the 223

considerations are listed in Table 2: 224

(1) The subroutine name refactored with standard C must be followed by an 225

10

underscore identifier, which can only be recognized when Fortran calls. 226

(2) In the Fortran language, the parameters are transferred by a memory address 227

by default. In the case of mixed programming in Fortran and standard C, the parameters 228

transferred by Fortran are processed by the pointer in standard C. 229

(3) Variable precision types defined in standard C must be strictly consistent with 230

those in Fortran. 231

(4) Some built-in functions in Fortran are not available in standard C, and need to 232

be defined in the standard C macro definitions. 233

(5) For multidimensional arrays, Fortran and standard C follow a column-major 234

and row-major order, and in-memory read and write, respectively; 235

(6) Array subscripts in Fortran and standard C are indexed from any integer and 0, 236

respectively. 237

Table 2. Some considerations during Fortran to C refactoring. 238

 Fortran code C code

Function name subroutine hadvppm() void hadvppm()

Parameter passing
hadvppm(nn, dt,dx, con,vel,

area,areav, flxarr,mynn)

hadvppm(int *nn, float *dt,

float *dx, float *con, float

*vel, float *area, float *areav,

float *flxarr, int *mynn)

Variable precision real(kind=8) x double x

Built-in functions max
#define Max(a, b)

((a)>(b)?(a):(b))

Memory read and

write for

multidimensional

array

Column-major Row-major

Array subscript

index
Starting from any integer Starting from 0

 239

3.1.2. Converting standard C code into CUDA C 240

After refactoring the Fortran code of the hadvppm program with standard C, 241

11

CUDA was used to convert the C code into CUDA C to make it computable on the 242

GPU. A standard C program using CUDA extensions distributes a large number of 243

copies of the kernel functions into available multiprocessors and executes them 244

simultaneously on the GPU. 245

Figure 3 shows the GPU-HADVPPM implementation process. As mentioned in 246

Sect. 2.1, the xyadvec program calls the hadvppm program to solve the horizontal 247

advection function. Since the rewritten CUDA program cannot be called directly by the 248

Fortran program (xyadvec.f), we add an intermediate subroutine (hadvppm.c) as an 249

interface to transfer the parameters and data required for GPU computing from the 250

xyadvec Fortran program to the hadvppm_kernel CUDA C program. 251

A CUDA program automatically uses numerous threads on the GPU to execute 252

kernel functions. Therefore, the hadvppm_kernel CUDA C program first calculates the 253

number of parallel threads according to the array dimension. Then, the GPU memory 254

is allocated, and the parameters and data are copied from the CPU to the GPU. As the 255

CUDA program launches a large number of parallel threads to execute kernel functions 256

simultaneously, the computation results will be copied from the GPU back to the CPU. 257

Finally, the GPU memory is released, and the data computed on the GPU are returned 258

to the xyadvec program via the hadvppm C program. 259

 260

Figure 3. The calling and computation process of the GPU-HADVPPM on the CPU-GPU 261

12

heterogeneous platform. 262

3.2. Coupling and optimization of the GPU-HADVPPM scheme on a single GPU 263

After the hadvppm program was rewritten with standard C and CUDA, the 264

implementation process of the HADVPPM scheme was loaded from the CPU to the 265

GPU. Then, we coupled the GPU-HADVPPM to the CAMx model. For ease of 266

description, we will refer to this original heterogeneous version of CAMx as CAMx-267

CUDA V1.0. In CAMx-CUDA V1.0, four external loops are nested when the hadvppm 268

C program is called by the xyadvec program. This will result in widespread data 269

transfers from the CPU to the GPU over the PCIe bus within a time step, making the 270

computation of CAMx-CUDA V1.0 inefficient. 271

Therefore, we optimize the xyadvec Fortran program to significantly reduce the 272

frequency of data transmission between the CPU and GPU, increase the amount of data 273

computation on the GPU, and improve the total computing efficiency of the CAMx on 274

the CPU-GPU heterogeneous platforms. In the original CAMx-CUDA V1.0, four 275

external loops outside the hadvppm C program, and several one-dimensional arrays, are 276

computed before calling the hadvppm C program. Then, the CPU will frequently launch 277

the GPU and transfer data to it within a time step. When the code optimization is 278

completed, the three- or four-dimensional arrays required for a GPU computation 279

within a time step will be sorted before calling the hadvppm C program, and then the 280

CPU will package and transfer the arrays to the GPU in batches. An example of the 281

xyadvec Fortran program optimization is shown in Figure S1. 282

The details of the four different versions are shown in Table 3. In CAMx-CUDA 283

V1.0, the Fortran code of the HADVPPM scheme was rewritten using standard C and 284

CUDA, and the xyadvec program was not optimized. The dimensions of the c1d 285

variable array transmitted to the GPU in the X and Y directions are 157 and 145 in this 286

case, respectively. In CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the c1d variable 287

transmitted from the CPU to GPU is expanded to two (approximately 23,000 numbers) 288

and four dimensions (approximately 27.4 million numbers) by optimizing the xyadvec 289

13

Fortran program and hadvppm_kernel CUDA C program, respectively. 290

The order in which the data are accessed in GPU memory affects the 291

computational efficiency of the code. In CAMx-CUDA V1.3 of Table 4, we further 292

optimized the order in which the data are accessed in GPU memory based on the order 293

in which they are stored in memory and eliminated the unnecessary assignment loops 294

that were added due to the difference in memory read order between Fortran and C. 295

As described in Sect. 2.4, a thread is the basic unit of parallelism in CUDA 296

programming. The thread structure is organized into a three-level hierarchy. The highest 297

level is a grid, which consists of three-dimensional thread blocks. The second level is a 298

block, which also consists of three-dimensional threads. The built-in CUDA variable 299

threadIdx.x determines a unique thread "ID" number inside a thread block. Similarly, 300

the built-in variables blockIdx.x and blockIdx.y determine which block to execute on, 301

and the size of the block is determined by using the built-in variable blockdim.x. For 302

the two-dimensional horizontal grid points, many threads and blocks can be organized 303

so that each CUDA thread computes the results for different spatial positions 304

simultaneously. 305

Before CAMx-CUDA V1.4, the loops for the three-dimensional spatial grid points 306

(i,j,k) are replaced by index computations using only the thread index (i = threadIdx.x 307

+ blockIdx.x*blockDim.x) to use the thread indices to simultaneously compute the grid 308

point in the x or y direction. To take full advantage of the thousands of threads in the 309

GPU, we implement thread and block indices (i = threadIdx.x + blockIdx.x*blockDim.x; 310

j = blockIdx.y) to simultaneously compute all the horizontal grid points (i,j) in CAMx-311

CUDA V1.4. This is permitted because there are no interactions among the horizontal 312

grid points. 313

Table 3. The details of different CAMx-CUDA versions during optimization. 314

Version Major revisions
Amount of data

computation on GPU

CAMx-CUDA V1.0

The Fortran code of the HADVPPM

subroutine was rewritten using standard

C and CUDA, and xyadvec.f was not

optimized.

157 and 145 in the x

direction and y direction for

the c1d variable,

respectively.

CAMx-CUDA V1.1 Optimize xyadec.f and 157×145,

14

hadvppm_kernel.cu to expand the

dimension of the array transmitted to the

GPU from 1-dimensional to 2-

dimensional.

approximately 23,000

numbers

for the c2d variable.

CAMx-CUDA V1.2

Based on the CAMx-CUDA V1.1, the

dimension of the array transmitted to the

GPU is extended from 2 to 4

dimensions.

157×145×14×86,

approximately 27.4 million

numbers

for the c4d variable.

CAMx-CUDA V1.3

Based on the CAMx-CUDA V1.2, the

order of GPU memory access is

optimized and unnecessary assignment

loops are eliminated.

157×145×14×86,

approximately 27.4 million

numbers

for the c4d variable.

CAMx-CUDA V1.4

Based on the CAMx-CUDA V1.3, using

thread and block indices (i = threadIdx.x

+ blockIdx.x*blockDim.x; j =

blockIdx.y).

157×145×14×86,

approximately 27.4 million

numbers

for the c4d variable.

 315

3.3. MPI+CUDA acceleration algorithm of CAMx-CUDA on multiple GPUs 316

Generally, superlarge clusters have thousands of compute nodes. The current 317

CAMx V6.10, implemented by adopting MPI communication technology, typically 318

runs on dozens of compute nodes. Once the GPU-HADVPPM is coupled into the 319

CAMx, it also has to run on multiple compute nodes that are equipped with one or more 320

GPUs on each node. To make full use of multicore and multi-GPU supercomputers, and 321

further improve the overall computational performance of CAMx-CUDA, we adopt a 322

parallel architecture with an MPI+CUDA hybrid paradigm; that is, the collaborative 323

computing strategy of multiple CPU cores and multiple GPU cards is adopted during 324

the operation of the CAMx-CUDA model. Adopting this strategy, the GPU-HADVPPM 325

can run on multiple GPUs, and the Fortran code of the other modules in the CAMx-326

CUDA model can run on multiple CPU cores. 327

As shown in Figure 4, after the simulated region is subdivided by MPI, a CPU 328

core is responsible for the computation of a subregion. To improve the total 329

computational performance of the CAMx-CUDA model, we further used the NVIDIA 330

CUDA library to obtain the number of GPUs per node and then used the MPI process 331

ID and remainder function to determine the GPU ID to be launched by each node. 332

15

Finally, we used the NVIDIA CUDA library, cudaSetDevice, to configure a GPU card 333

for each CPU core. 334

According to the benchmark performance experiments, the parallel design of 335

CAMx adopts the master-slave mode, and P0 is responsible for inputting and outputting 336

data. If two processes (P0 and P1) were launched, only the P1 and its configured GPU 337

participate in integration. 338

 339

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple 340

GPUs. 341

4. Experimental results 342

The validation and evaluation of porting the HADVPPM scheme from the CPU to 343

the GPU platform were conducted using offline and coupling performance experiments. 344

First, we validated the results between the different CAMx versions, and then the offline 345

performance of the GPU-HADVPPM on a single GPU was tested by offline 346

experiments. Finally, coupling performance experiments illustrate its potential in three 347

dimensions with varying chemical regimes. In Sect.4.2 and Sect.4.4, the CAMx 348

versions of the HADVPPM scheme written in Fortran, standard C and CUDA C are 349

named F, C and CUDA C, respectively. 350

16

4.1. Experimental setup 351

The test case is a 48 h simulation covering Beijing, Tianjin and part of the Hebei 352

Province region. The horizontal resolution is 3 km with 145 × 157 grid boxes. The 353

model adopted 14 vertical layers. The simulation started at 12:00 UTC on 01 November 354

2020 and ended at 12:00 UTC on 03 November 2020. The meteorological fields driving 355

the CAMx model were provided by the weather research and forecasting (WRF; 356

Skamarock et al., 2008) model. The sparse matrix operator kernel emission (SMOKE; 357

Houyoux and Vukovich, 1999) version 2.4 model is used to provide gridded emission 358

data for the CAMx model. The emission inventories (Sun et al., 2022) include the 359

regional emissions in East Asia that were obtained from the transport and chemical 360

evolution over the Pacific (TRACE-P; Streets et al., 2003; Streets et al., 2006) project, 361

30-min (approximately 55.6 km at mid-latitude) spatial resolution Intercontinental 362

chemical transport experiment-Phase B (INTEX-B; Zhang et al., 2009) and the updated 363

regional emission inventories in North China. The physical and chemical numerical 364

methods selected during the CAMx model integration are listed in Table S2. 365

4.2. Error analysis 366

The hourly concentrations of different CAMx simulations (Fortran, C, and CUDA 367

C versions) are compared to verify the usefulness of the CUDA C version of CAMx for 368

numerical precision for scientific usage. Here, we chose six major species, i.e., SO2, O3, 369

NO2, CO, H2O2 and PSO4, after 48 h of integration to verify the results. Due to the 370

differences in programming languages and hardware, the simulation results are affected 371

during the porting process. Figures 5~7 present the spatial distributions of SO2, O3, NO2, 372

CO, H2O2 and PSO4, as well as the absolute errors (AEs) of their concentrations from 373

different CAMx versions. The species' spatial patterns of the three CAMx versions are 374

visually very similar. Between the Fortran and C versions, especially, the AEs in all the 375

grid boxes are in the range of ±0.01 ppbV (the unit of PSO4 is �� ∙ ���). During the 376

porting process, the primary error comes from converting standard C to CUDA C, and 377

17

the main reason is related to the hardware difference between the CPU and GPU. Due 378

to the slight difference in data operation and accuracy between the CPU and GPU 379

(NVIDIA,2023), the concentration variable of the hadvppm program appears to have 380

minimal negative values (approximately −10��~−10��) when integrated on the GPU. 381

To allow the program to continue running, we forcibly replace these negative values 382

with 10��. It is because these negative values are replaced by positive values that the 383

simulation results are biased. In general, for SO2, O3, NO2, H2O2 and PSO4, the AEs in 384

the majority of the grid boxes are in the range of ±0.8 ppbV or �� ∙ ��� between the 385

standard C and CUDA C versions; for CO, because its background concentration is 386

higher, the AEs of the standard C and CUDA C versions are outside that range, and fall 387

into the range of -8 and 8 ppbV in some grid boxes and shows more obvious AEs than 388

the other species. 389

18

 390

Figure 5. SO2 and O3 concentrations outputted by the CAMx model for the Fortran, standard C, and 391

19

CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from the 392

standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 393

output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the 394

output concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the 395

output concentration differences of the Fortran and CUDA C versions. 396

20

 397

Figure 6. NO2 and CO concentrations outputted by the CAMx model for the Fortran, standard C, 398

21

and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from 399

the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 400

output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the 401

output concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the 402

output concentration differences of the Fortran and CUDA C versions. 403

22

 404

23

Figure 7. H2O2 and PSO4 concentrations output by the CAMx model for the Fortran, standard C, 405

and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from 406

the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the 407

output concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 408

concentration differences of the standard C and CUDA C versions. Panels (f) and (l) are the output 409

concentration differences of the Fortran and CUDA C versions. 410

Figure 8 shows the boxplot of the AEs and relative error (REs) in all the grid boxes 411

for the six species during the porting process. As described above, the AEs and REs 412

introduced by Fortran to the standard C code refactoring process are significantly small, 413

and the primary error comes from converting standard C to CUDA C. Statistically, the 414

average AEs (REs) of SO2, O3, NO2, CO, H2O2 and PSO4 were -0.0009 ppbV (-0.01%), 415

0.0004 ppbV (-0.004%), 0.0005 ppbV (0.008%), 0.03 ppbV (0.01%), 2.1 × 10�� 416

ppbV (-0.01%) and 0.0002 �� ∙ ��� (0.0023%), respectively, between the Fortran 417

and CUDA C versions. In terms of the time series, the regionally averaged time series 418

of the three versions are almost consistent (as shown in Figure S2), and the maximum 419

AEs for the above six species are 0.001 ppbv, 0.005 ppbv, 0.002 ppbv, 0.03 ppbv, 0.0001 420

ppbv and 0.0002 �� ∙ ���, respectively, between the Fortran and CUDA C versions. 421

 422

Figure 8. The distributions of absolute errors and relative errors for SO2, O3, NO2, CO, H2O2 and 423

PSO4 in all of the grid boxes after 48 hours of integration. 424

Figure 9 presents the regionally averaged time series and the AEs of SO2, O3, NO2, 425

CO, H2O2 and PSO4. The time series between the different versions is almost consistent, 426

24

and the maximum AEs for the above six species are 0.001 ppbv, 0.005 ppbv, 0.002 ppbv, 427

0.03 ppbv, 0.0001 ppbv and 0.0002 �� ∙ ���, respectively, between the Fortran and 428

CUDA C versions. 429

It is difficult to verify the scientific applicability of the results from the CUDA C 430

version because the programming language and hardware are different between the 431

Fortran and CUDA C versions. Here, we used the evaluation method of Wang et al. 432

(2021a) to compute the root mean square errors (RMSEs) of SO2, O3, NO2, CO, H2O2 433

and PSO4 between the Fortran and CUDA C versions, which are 0.0007 ppbV, 0.001 434

ppbV, 0.0002 ppbV, 0.0005 ppbV, 0.00003 ppbV and 0.0004 �� ∙ ���, respectively, 435

much smaller than the spatial variation of the whole region, which is 7.0 ppbV 436

(approximately 0.004%), 9.7 ppbV (approximately 0.003%), 7.4 ppbV (approximately 437

0.003%), 142.2 ppbV (approximately 0.006%), 0.2 ppbv (approximately 0.015%) and 438

1.7 �� ∙ ��� (approximately 0.004%). The bias between CUDA C and the Fortran 439

version of the above six species is negligible compared with their own spatial changes, 440

and the results of the CUDA C version are generally acceptable for research purposes. 441

 442

4.3. Offline performance comparison of GPU-HADVPPM 443

As described in Sect. 4.2, we validate that the CAMx model result of the CUDA 444

C version is generally acceptable for scientific research. We tested the offline 445

performance of the HADVPPM and GPU-HADVPPM schemes on 1 CPU core and 1 446

GPU card. There are 7 variables input into the HADVPPM program, which are nn, dt, 447

dx, con, vel, area and areav, and their specific meanings are shown in Table S1. 448

First, we use the random_number function in Fortran to create random single-449

precision floating-point numbers of different sizes for the above 7 variables, and then 450

transmit these random numbers to the hadvppm Fortran program and hadvppm_kernel 451

CUDA C program for computation. Finally, we test the offline performance of the 452

HADVPPM and GPU-HADVPPM on the CPU and GPU platforms. During the offline 453

performance experiments, we used two different CPUs and GPUs described in Sect. 454

2.4., and the experimental results are shown in Figure 9. 455

25

On the CPU platform, the wall time of the hadvppm Fortran program does not 456

change significantly when the data size is less than 1000. With the increase in the data 457

size, its wall time increases linearly. When the data size reaches 10�, the wall time of 458

the hadvppm Fortran program on the Intel Xeon E5-2682v4 and Intel Platinum 8168 459

CPU platforms is 1737.3 ms and 1319.0 ms, respectively. On the GPU platform, the 460

reconstructed and extended CUDA C program implements parallel computation of 461

multiple grid points by executing a large number of kernel function copies, so the 462

computational efficiency of the hadvppm_kernel CUDA C code on it is significantly 463

improved. In the size of 10� random numbers, the hadvppm_kernel CUDA C program 464

takes only 12.1 ms and 1.6 ms to complete the computation on the NVIDIA Tesla K40m 465

and NVIDIA Tesla V100 GPU. 466

Figure 9. (b) shows the speedup of HADVPPM and GPU-HADVPPM on the CPU 467

platform and GPU platform under different data sizes. When mapping the HADVPPM 468

scheme to the GPU, the computational efficiency under different data sizes is not only 469

significantly improved, but the larger the data size is, the more obvious the acceleration 470

effect of the GPU-HADVPPM. For example, in the size of 10� random numbers, the 471

GPU-HADVPPM achieved a 1113.6x and 845.4x acceleration on the NVIDIA Tesla 472

V100 GPU, respectively, compared to the two CPU platforms. Although the K40m 473

GPU's single-card computing performance is slightly lower than that of the V100 GPU, 474

GPU-HADVPPM can also achieve up to a 143.3x and 108.8x acceleration. 475

As described in Sect. 3.2, the thread is the most basic GPU unit for parallel 476

computing. Each dimension of the three-dimensional block can contain a maximum 477

number of threads of 1024, 1024 and 64. Each dimension of the three-dimensional grid 478

can contain a maximum number of blocks of 2�� − 1 , 65535, and 65535. It is 479

theoretically possible to distribute a large number of copies of kernel functions into tens 480

of billions of threads for parallel computing without exceeding the GPU memory. In 481

the offline performance experiments, the GPU achieved up to 10 million threads of 482

parallel computing, while the CPU can only use serial cyclic computation. Therefore, 483

GPU-HADVPPM achieves a maximum acceleration of approximately 1100x without 484

26

I/O. In addition to this study, the GPU-based SBU-YLIN scheme in the WRF model 485

can achieve a 896x acceleration compared to the Fortran implementation running on 486

the CPU (Mielikainen et al., 2012b). 487

 488

Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM scheme on the CPU 489

and GPU. The unit of the wall times for the offline performance experiments is in milliseconds (ms). 490

4.4. Coupling performance comparison of GPU-HADVPPM with different GPU 491

configurations 492

4.4.1. CAMx-CUDA on a single GPU 493

The offline performance results show that the larger the data size is, the more 494

obvious the acceleration effect of the GPU-HADVPPM scheme. After coupling the 495

GPU-HADVPPM to CAMx without changing the advection module algorithm, the 496

overall computational efficiency of the CAMx-CUDA model is extremely low, and it 497

takes approximately 621 minutes to complete a one-hour integration on the V100 498

cluster. Therefore, according to the optimization scheme in Sect. 3.2, by optimizing the 499

algorithm of the xyadvec Fortran program, we gradually increase the size of the data 500

transmitted and reduce the data transmission frequency between the CPU and GPU. 501

When the data transmission frequency between the CPU and GPU is reduced to 1 within 502

one time step, we further optimize the GPU memory access order on the GPU card, 503

eliminate unnecessary assignment loops before kernel functions are launched and use 504

27

the thread and block indices. 505

Table 4 lists the total elapsed time for different versions of the CAMx-CUDA 506

model during the optimization, as described in Section 3.2. Since the xyadvec program 507

in CAMx-CUDA V1.0 is not optimized, it is extremely computationally inefficient 508

when starting two CPU processes and configuring a GPU card for P1. On the K40m 509

and V100 clusters, it takes 10829 seconds and 37237 seconds, respectively, to complete 510

a 1-hour simulation. 511

By optimizing the algorithm of the xyadvec Fortran program and hadvppm_kernel 512

CUDA C program, the data transmission frequency between the CPU and GPU was 513

decreased, and the overall computing efficiency was improved after GPU-HADVPPM 514

was coupled to the CAMx-CUDA model. In CAMx-CUDA V1.2, the data transmission 515

frequency between CPU-GPU within one time step is reduced to 1, the elapsed time on 516

the two heterogeneous clusters is 1207 seconds and 548 seconds, respectively, and the 517

speedup is 9.0x and 68.0x compared to CAMx-CUDA V1.0. 518

 The GPU memory access order can directly affect the overall GPU-HAVPPM 519

computational efficiency on the GPU. In CAMx-CUDA V1.3, we optimized the 520

memory access order of the hadvppm_kernel CUDA C program on the GPU and 521

eliminated the unnecessary assignment loops before the kernel functions were launched, 522

which further improved the CAMx-CUDA model’s computational efficiency, resulting 523

in 12.7x and 94.8x speedups. 524

Using thread and block indices to simultaneously compute the horizontal grid 525

points can greatly improve the computational efficiency of the GPU-HADVPPM and 526

thus reduce the overall elapsed time of the CAMx-CUDA model. CAMx-CUDA V1.4 527

further reduces the elapsed time by 378 seconds and 103 seconds on the K40m cluster 528

and V100 cluster, respectively, compared with CAMx-CUDA V1.3 and achieves up to 529

a 29.0x and 128.4x speedup compared with CAMx-CUDA V1.0. 530

Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The 531

unit of elapsed time for experiments is in seconds (s). 532

Versions K40m cluster V100 cluster

28

Elapsed Time Speedup Elapsed Time Speedup

CAMx-CUDA V1.0 10829 1.0 37237 1.0

CAMx-CUDA V1.1 1403 7.7 1082 34.4

CAMx-CUDA V1.2 1207 9.0 548 68.0

CAMx-CUDA V1.3 751 12.7 393 94.8

CAMx-CUDA V1.4 373 29.0 290 128.4

In terms of the single module computational efficiency of HADVPPM and GPU-533

HADVPPM, we further tested the computational performance of the Fortran version of 534

HADVPPM on the CPU, C version of HADVPPM on the CPU, and the CUDA C 535

version of GPU-HADVPPM in CAMx-CUDA V1.4 (GPU-HADVPPM V1.4) on the 536

GPU using system_clock functions in the Fortran language and cudaEvent_t in CUDA 537

programming. The specific results are shown in Figure 10. On the K40m cluster, it takes 538

37.7 seconds and 51.4 seconds to launch the Intel Xeon E5-2682 v4 CPU to run the 539

Fortran and C version HADVPPM, respectively, and the C version is 26.7% slower 540

than the Fortran version. After the CUDA technology was used to convert the C code 541

into CUDA C, the CUDA C version took 29.6 seconds to launch an NVIDIA Telsa 542

K40m GPU to run GPU-HADVPPM V1.4, with a 1.3x and 1.7x acceleration. On the 543

V100 cluster, the Fortran, C, and CUDA C versions are computationally more efficient 544

than those on the K40m cluster. It takes 30.1 seconds and 45.2 seconds to launch the 545

Intel Xeon Platinum 8168 CPU to run the Fortran and C version HADVPPM, and 1.6 546

seconds to run the GPU-HADVPPM V1.4 using an NVIDIA V100 GPU. The 547

computational efficiency of the CUDA C version is 18.8x and 28.3x higher than the 548

Fortran and C versions, respectively. 549

29

 550

Figure 10. The elapsed time of the Fortran version HADVPPM on the CPU, the C version 551

HADVPPM on the CPU and the CUDA C version GPU-HADVPPM V1.4 on the GPU. The unit is 552

in seconds (s). 553

4.4.2. CAMx-CUDA on multiple GPUs 554

To make full use of the multicore and multi-GPUs in the heterogeneous cluster, 555

the MPI+CUDA acceleration algorithm was implemented to improve the total 556

computational performance of the CAMx-CUDA model. Two different compile flags 557

were implemented in this study before comparing the computational efficiency of 558

CAMx-CUDA V1.3 and V1.4 on multiple GPUs, namely, -mieee-fp and -fp-model 559

precise. The -mieee-fp compile flag comes from the Makefile of the official CAMx 560

version, which uses the IEEE standard to compare the floating-point numbers. Its 561

computational accuracy is higher but the efficiency is slower. The -fp-model precise 562

compile flag controls the balance between the precision and efficiency of the floating-563

point calculations, and it can force the compiler to use the vectorization of some 564

calculations under value safety. The experimental results show that the -fp model 565

precise compile flag is 41.4% faster than -mieee-fp, and the AEs of the simulation 566

results are less than ±0.05 ppbv (Figure S3). Therefore, the -fp model precise compile 567

flag is implemented when comparing the computational efficiency of CAMx-CUDA 568

30

V1.3 and V1.4 on multiple GPU cards. Figure 11 shows the total elapsed time and 569

speedup of CAMx-CUDA V1.3 and V1.4 on the V100 cluster. The total elapsed time 570

decreases as the number of CPU cores and GPU cards increases. When starting 8 CPU 571

cores and 8 GPU cards, the speedup of CAMx-CUDA V1.4 is increased from 3.9x to 572

4.5x compared with V1.3, and the computational efficiency is increased by 35.0%. 573

 574

Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple 575

GPUs. The unit of elapsed time for experiments is seconds (s). 576

5. Conclusions and discussion 577

GPU accelerators are playing an increasingly important role in high-performance 578

computing. In this study, a GPU acceleration version of the PPM solver (GPU-579

HADVPPM) of horizontal advection for an air quality model was developed, which 580

runs on GPU accelerators using the standard C programming language and CUDA 581

technology. The offline performance experimental results showed that the K40m and 582

V100 GPU can achieve up to a 845.4x and 1113.6x speedup, respectively, and the larger 583

the data input to the GPU, the more obvious the acceleration effect. After coupling the 584

GPU-HADVPPM to the CAMx model, a series of optimization measures were taken, 585

including reducing the CPU-GPU communication frequency, increasing the data 586

31

computation size on the GPU, optimizing the GPU memory access order and using 587

thread and block indices to improve the overall computing performance of the CAMx-588

CUDA model. Using a single GPU card, the optimized CAMx-CUDA V1.4 model 589

improved the computing efficiency by 29.0x and 128.4x on the K40m cluster and the 590

V100 cluster, respectively. In terms of the single-module computational efficiency of 591

GPU-HADVPPM, it achieved a 1.3x and 18.8x speedup on an NVIDIA Tesla K40m 592

GPU and NVIDA Tesla V100 GPU, respectively. To make full use of the multicore and 593

multi-GPU supercomputers and further improve the total computational performance 594

of the CAMx-CUDA model, a parallel architecture with an MPI+CUDA hybrid 595

paradigm was presented. After implementing the acceleration algorithm, the total 596

elapsed time decreased as the number of CPU cores and GPU cards increased, and it 597

achieved up to a 4.5x speedup when launching 8 CPU cores and 8 GPU cards compared 598

with 2 CPU cores and 2 GPU cards. 599

However, the current approach has some limitations, which are as follows: 600

1) We currently implement thread and block coindexing to compute horizontal 601

grid points in parallel. Given the CAMx Model 3-dimensional grid computing 602

characteristics, in the future, 3-dimensional thread and block coindexing will be 603

considered to compute 3-dimensional grid points in parallel. 604

2) The communication bandwidth of data transfer is one of the main issues 605

restricting the computing performance of the CUDA C codes on the GPUs. This 606

restriction holds true not only for GPU-HADVPPM but also for the WRF module 607

(Mielikainen et al., 2012b; Mielikainen et al., 2013b; Huang et al., 2013). In this study, 608

the data transmission efficiency between the CPU and GPU is improved only by 609

reducing the communication frequency. In the future, more technologies, such as 610

pinned memory (Wang et al., 2016), will be considered to resolve the communication 611

bottleneck between the CPUs and GPUs. 612

3) To further improve the overall computational efficiency of the CAMx model, 613

the heterogeneous porting scheme proposed in this study will be considered to conduct 614

the heterogeneous porting of other CAMx modules in the future. 615

32

 616

Code and data availability. The source codes of CAMx version 6.10 are available at 617

https://camx-wp.azurewebsites.net/download/source/(last access: 24 March 2023, 618

ENVIRON,2022). The dataset related to this paper and the CAMx-CUDA codes are 619

available online via ZENODO (http://doi.org/10.5281/zenodo.7765218; Cao et 620

al.,2023). 621

 622

Author contributions. KC conducted the simulation and prepared the materials. QZW, 623

LLW and LNW planned and organized the project. KC, QZW and XT refactored and 624

optimized the codes. LLW, NW, HQC and DQL collected and prepared the data for the 625

simulation. KC, QZW, XT and LNW participated in the discussion. 626

 627

Competing interests. The authors declare that they have no conflicts of interest. 628

 629

Acknowledgements. The National Key R&D Program of China (2020YFA0607804 & 630

2017YFC0209805), the National Supercomputing Center in Zhengzhou Innovation 631

Ecosystem Construction Technology Special Program (Grant No. 201400210700) and 632

the Beijing Advanced Innovation Program for Land Surface funded this work. The 633

research is supported by the High Performance Scientific Computing Center (HSCC) 634

of Beijing Normal University and the National Supercomputing Center in Zhengzhou. 635

 636

References 637

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean 638

model using a GPU, Ocean Modelling, 41, 16-21, 10.1016/j.ocemod.2011.10.001, 639

2012. 640

Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: The 641

dataset of the manuscript "GPU-HADVPPM V1.0: high-efficient parallel GPU 642

33

design of the Piecewise Parabolic Method (PPM) for horizontal advection in air 643

quality model (CAMx V6.10)", ZENODO, 644

https://doi.org/10.5281/zenodo.7765218, 2023. 645

Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-646

dynamical simulations, Journal of Computational Physics, 54, 174-201, 647

https://doi.org/10.1016/0021-9991(84)90143-8, 1984. 648

ENVIRON: User Guide for Comprehensive Air Quality Model with Extensions649

 Version 6.1, available at: https://camx-wp.azurewebsites.net/Files/CAMxUser650

sGuide_v6.10.pdf (last access: 19 December 2022), 2014 651

Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., MacDonald, A., Wang, 652

N., Madden, P., Schramm, J., and Duarte, A.: Parallelization and Performance of 653

the NIM Weather Model on CPU, GPU, and MIC Processors, Bulletin of the 654

American Meteorological Society, 98, 2201-2213, 10.1175/bams-d-15-00278.1, 655

2017. 656

Houyoux, M. R. and Vukovich, J. M.: Updates to the Sparse Matrix Operator Kernel 657

Emissions (SMOKE) Modeling System and Integration with Models-3, 658

Huang, B., Mielikainen, J., Plaza, A. J., Huang, B., Huang, A. H. L., and Goldberg, M. 659

D.: GPU acceleration of WRF WSM5 microphysics, High-Performance 660

Computing in Remote Sensing, 10.1117/12.901826, 2011. 661

Huang, B., Huang, M., Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D., 662

and Plaza, A. J.: On the acceleration of Eta Ferrier Cloud Microphysics Scheme in 663

the Weather Research and Forecasting (WRF) model using a GPU, High-664

Performance Computing in Remote Sensing II, 10.1117/12.976908, 2012. 665

Huang, M., Huang, B., Chang, Y.-L., Mielikainen, J., Huang, H.-L. A., and Goldberg, 666

M. D.: Efficient Parallel GPU Design on WRF Five-Layer Thermal Diffusion 667

Scheme, IEEE Journal of Selected Topics in Applied Earth Observations and 668

Remote Sensing, 8, 2249-2259, 10.1109/jstars.2015.2422268, 2015. 669

Huang, M., Huang, B., Mielikainen, J., Huang, H. L. A., Goldberg, M. D., and Mehta, 670

A.: Further Improvement on GPU-Based Parallel Implementation of WRF 5-Layer 671

34

Thermal Diffusion Scheme, 2013 International Conference on Parallel and 672

Distributed Systems, 10.1109/icpads.2013.126, 2013. 673

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang, 674

L.: Porting LASG/ IAP Climate System Ocean Model to Gpus Using OpenAcc, 675

IEEE Access, 7, 154490-154501, 10.1109/access.2019.2932443, 2019. 676

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU Acceleration 677

of the Updated Goddard Shortwave Radiation Scheme in the Weather Research 678

and Forecasting (WRF) Model, IEEE Journal of Selected Topics in Applied Earth 679

Observations and Remote Sensing, 5, 555-562, 10.1109/jstars.2012.2186119, 680

2012a. 681

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU 682

Implementation of Stony Brook University 5-Class Cloud Microphysics Scheme 683

in the WRF, IEEE Journal of Selected Topics in Applied Earth Observations and 684

Remote Sensing, 5, 625-633, 10.1109/jstars.2011.2175707, 2012b. 685

Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D., and Mehta, A.: Speeding 686

Up the Computation of WRF Double-Moment 6-Class Microphysics Scheme with 687

GPU, Journal of Atmospheric and Oceanic Technology, 30, 2896-2906, 688

10.1175/jtech-d-12-00218.1, 2013a. 689

Mielikainen, J., Huang, B., Wang, J., Allen Huang, H. L., and Goldberg, M. D.: 690

Compute unified device architecture (CUDA)-based parallelization of WRF 691

Kessler cloud microphysics scheme, Computers & Geosciences, 52, 292-299, 692

10.1016/j.cageo.2012.10.006, 2013b. 693

NVIDIA: CUDA C++ Programming Guide Version 10.2, available at: 694

https://docs.nvidia.com/cuda/archive/10.2/pdf/CUDA_C_Programming_Guide.p695

df (last access: 19 December 2022), 2020 696

NVIDIA: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Release 12.1, 697

available at: https://docs.nvidia.com/cuda/floating-point/#differences-from-x86 698

(last access: 18 May 2023), 2023. 699

Odman, M. and Ingram, C.: Multiscale Air Quality Simulation Platform (MAQSIP): 700

35

Source Code Documentation and Validation, 1996. 701

Price, E., Mielikainen, J., Huang, M., Huang, B., Huang, H.-L. A., and Lee, T.: GPU-702

Accelerated Longwave Radiation Scheme of the Rapid Radiative Transfer Model 703

for General Circulation Models (RRTMG), IEEE Journal of Selected Topics in 704

Applied Earth Observations and Remote Sensing, 7, 3660-3667, 705

10.1109/jstars.2014.2315771, 2014. 706

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D.M., Duda, M. G., 707

Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the Advanced 708

Research WRF Version3 (No.NCAR/TN-475CSTR), University Corporation for 709

Atmospheric Research, https://doi.org/10.5065/D68S4MVH, NCAR, 2008. 710

Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, 711

G. R.: Revisiting China's CO emissions after the Transport and Chemical 712

Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, 713

atmospheric modeling, and observations, Journal of Geophysical Research: 714

Atmospheres, 111, https://doi.org/10.1029/2006JD007118, 2006. 715

Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, 716

Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An 717

inventory of gaseous and primary aerosol emissions in Asia in the year 2000, 718

Journal of Geophysical Research: Atmospheres, 108, 719

https://doi.org/10.1029/2002JD003093, 2003. 720

Sun, Y., Wu, Q., Wang, L., Zhang, B., Yan, P., Wang, L., Cheng, H., Lv, M., Wang, N., 721

and Ma, S.: Weather Reduced the Annual Heavy Pollution Days after 2016 in 722

Beijing, Sola, 18, 135-139, 10.2151/sola.2022-022, 2022. 723

Wahib, M. and Maruyama, N.: Highly optimized full GPU-acceleration of non-724

hydrostatic weather model SCALE-LES, 2013 IEEE International Conference on 725

Cluster Computing (CLUSTER), 23-27 Sept. 2013, 1-8, 726

10.1109/CLUSTER.2013.6702667, 727

Wang, P., Jiang, J., Lin, P., Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng, 728

W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System 729

36

Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for 730

portability (HIP) framework and its large-scale application, Geosci. Model Dev., 731

14, 2781-2799, 10.5194/gmd-14-2781-2021, 2021a. 732

Wang, Y., Guo, M., Zhao, Y., and Jiang, J.: GPUs-RRTMG_LW: high-efficient and 733

scalable computing for a longwave radiative transfer model on multiple GPUs, 734

The Journal of Supercomputing, 77, 4698-4717, 10.1007/s11227-020-03451-3, 735

2021b. 736

Wang, Z., Wang, Y., Wang, X., Li, F., Zhou, C., Hu, H., and Jiang, J.: GPU-737

RRTMG_SW: Accelerating a Shortwave Radiative Transfer Scheme on GPU, 738

IEEE Access, 9, 84231-84240, 10.1109/access.2021.3087507, 2016. 739

Xiao, H., Lu, Y., Huang, J., and Xue, W.: An MPI+OpenACC-based PRM scalar 740

advection scheme in the GRAPES model over a cluster with multiple CPUs and 741

GPUs, Tsinghua Science and Technology, 27, 164-173, 742

10.26599/TST.2020.9010026, 2022. 743

Xu, S., Huang, X., Oey, L. Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: 744

a GPU-based Princeton Ocean Model, Geoscientific Model Development, 8, 745

2815-2827, 10.5194/gmd-8-2815-2015, 2015. 746

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, 747

Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and 748

Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. 749

Chem. Phys., 9, 5131-5153, 10.5194/acp-9-5131-2009, 2009. 750

