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Abstract. With semiconductor technology gradually approaching its physical and

thermal limits, graphics processing units (GPUs) are becoming an attractive solution

for many scientific applications due to their high performance. This paper presents an

application of GPU accelerators in an air quality model. We demonstrate an approach

that runs a PPM solver of horizontal advection (HADVPPM) for the air quality model
CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new
Compute Unified Device Architecture C (CUDA C) code to make it computable on the
GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including
reducing the CPU-GPU communication frequency, increasing the data size

computation on the GPU, optimizing the GPU memory access, and using thread and

block indices to improve the overall computing performance of the CAMx model

coupled with GPU-HADVPPM (named fhe CAMx-CUDA model). Finally, a

heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-

HADVPPM on the GPU clusters with a message passing interface (MPI) and CUDA.

The offline experimental results show that running GPU-HADVPPM on one NVIDIA »

Tesla K40m and an NVIDIA Tesla V100 GPU can achieve up to a 845.4x and 1113.6x
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acceleration. By implementing a series of optimization schemes, the CAMx-CUDA

model results in a 29.0x and 128.4x improvement in computational efficiency by using

a GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the
single-module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and
18.8x speedup on an NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU,
respectively. The multi-GPU acceleration algorithm enables a 4.5x speedup with 8 CPU

cores and 8 GPU accelerators on a V100 cluster.

1. Introduction

Since the introduction of personal

mobile device industry has created a flourishing worldwide market (Bleichrodt et al.,

2012). In recent years, jimprovements of the central processing u

has been limited by its heat dissipation, and the applicability of Moore's Law has

nit (CPU) performance

Gmﬂ%ﬂ‘] %51 resulted

[M‘JIL% PRI 7 the

[ﬂ’}ﬂl}fﬁ I %5: computer

S h [Wl‘”‘% P9 %5 been one

"[mumqm: of the most

flattened. A common trend in high-performance computing today is the utilization of
: [ﬂﬂ‘ll&%ﬂﬁl’ﬂﬁ:me

hardware accelerators, which execute codes rich in data parallelism, to form high-

performance heterogeneous systems. GPUs are widely used as accelerators due to their

high peak performances, In the top ten supercomputing list released in December 2022

(https://www.top500.org/lists/top500/1ist/2022/11/, last access: 19 December 2022),

there were seven heterogeneous supercomputing platforms built with CPU processors

3% (M‘JI&%H‘JW@:

and GPU accelerators, of which the top one, Frontier at the Oak Ridge National -

Laboratory, uses AMD's third-generation EPYC CPU and AMD’s Instinct MI250X

GPU, and its computing performance reaches exascale levels (108 calculations per ;

[WNF/% ffJP9 %51 markets all over the world

| [WF%H"] %5 of the performance of the C

[’m@ﬂ‘] %5 Processing

@m BRIP4 Unit

s

' [ﬂ’}ﬂl}fﬁ P4 %5: development

[mwmm: that

y ¥ [ﬂ’}ﬂlﬁ?ﬂ‘] %% system

‘[Muwm 75 offered

second) for the first time (https://www.amd.com/en/press-releases/2022-05-30-world-

[ﬂnu BRI % are

s-first-exascale-supercomputer-powered-amd-epyc-processors-and-amd, last access:

19 December 2022). Such a powerful computing performance of the heterogeneous

system not only injects new vitality into high-performance computing, but also .

generates new solutions for improving the performance of geoscience numerical

models,

[wm@ s

[WN PRI 25 Exascale

[MW%E’JV\JE:,

[WF% P %5 provides
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The GPU has proven successful in weather models such as the nonhydrostatic

Jcosahedral jmodel (NIM; Govett et al.,, 2017), global/regional assimilation and

prediction system (GRAPES; Xiao et al., 2022), weather research and forecasting

model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et al., 2012a;
/
Mielikainen et al., 2012b; Mielikainen et al., 2013a; Mielikainen et al., 2013b; Price et /

al., 2014; Huang et al., 2015), ocean models such as the LASG/IAP climate

ocean jnodel (LICOM; Jiang et al., 2019; Wang et al., 2021a) and Princeton pcean

model (POM; Xu et al., 2015), and, earth system jmodel of the Chinese Academy of

Sciences (CAS-ESM; Wang et al., 2016; Wang et al., 2021b),, |

Govett et al, (2017) used open accelerator (OpenACC) directives to port the

JHBR(¥) 4 2% : Non-Hydrostatic...he N...onhydrostatic

Icosahedral ...cosahedral Model ...odel (NIM; Govett et al., 2017),
Global...lobal/Regional ...egional Assimilation ...ssimilation and
Prediction ...rediction System ...ystem (GRAPES; Xiao et al., 2022),
and W...eather Research ...esearch and Forecasting ...orecasting
model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et
al., 2012a; Mielikainen et al., 2012b; Mielikainen et al., 2013a ...
Mielikainen et al., 2013b; Price et al., 2014; Huang et al., 2015),
ocean models such as the LASG/IAP Climate ...limate

System ...ystem Ocean ...cean Model ...odel (LICOM; Jiang et al.,
2019; Wang et al., 2021a) and Princeton Ocean ...cean Model ...odel
(POM; Xu et al., 2015),...and the...Earth ...arth System ...ystem
Model ...odel of the Chinese Academy of Sciences (CAS-ESM;

Wang et al., 2016; Wang et al., 2021b). (1]

dynamics of NIM to the GPU and achieved a 2.5x acceleration.

OpenACC directives, Xiao et al, (2022) ported the PRM (piecewise rational method) / I
scalar advection scheme in GRAPES to the GPU, achieving up to 3.51x faster results
I

than 32 CPU cores. In terms of the most widely used WREF, several parameterization

microphysics scheme (Mielikainen et al., 2013b), SBU-YLIN scheme (Mielikainen et
al., 2012b), WMSS5 scheme (Huang et al., 2011),and WMS6 scheme (Mielikainen et al., |

2013a), have been ported heterogeneously using CUDA C and achieved 37x~896x

acceleration results.,, LICOM has conducted heterogeneous porting using OpenACC

(Jiang et al., 2019) and used heterogeneous-compute jnterface for portability C (HIP C) ||

technologies,and achieved up to a 6.6x and 42x acceleration, respectively (Wang et al., |

2021a). For the Princeton ocean jmodel, Xu et al, (2015) use CUDA C to conduct

heterogeneous porting and optimization, and the performance of gpu-POM v1.0 on four
GPUs is comparable to that on the 408 standard Intel Xeon X5670 CPU cores. In terms

of_climate system models, Wang et al., (2016) and Wang et al, (2021b) used CUDA

Fortran and CUDA C to conduct heterogeneous porting of the RRTMG SW and |

|
RRTMG_LW schemes of the atmospheric component model of the CAS-ESM earth |

BRI %5 ,...(2017) used Open ...pen Accelerator ...ccelerator
(OpenACC) directives to port the dynamics of NIM to the GPU and
achieved a 2.5x acceleration. Also...dditionally, using OpenACC
directives, Xiao et al.,...(2022) ported the PRM (Piecewise Rational
Method...iecewise rational method) scalar advection scheme in

the ...RAPES to the GPU, achieving up to 3.51x faster results than
32 CPU cores. In terms of the most widely used WRE, several
parameterization schemes, such as the RRTMG_LW scheme (Price et
al., 2014), 5-layer thermal diffusion scheme (Huang et al., 2015), Eta
Ferrier Cloud ...loud Microphysics ...icrophysics scheme (Huang et
al., 2012), Goddard Shortwave ...hortwave scheme (Mielikainen et
al., 2012a), Kessler cloud microphysics scheme (Mielikainen et al.,
2013b), SBU-YLIN scheme (Mielikainen et al., 2012b), WMS5
scheme (Huang et al., 2011),...and WMS6 scheme (Mielikainen et
al., 2013a), etc., ...ave been ported heterogeneously using CUDA C
and achieved 37x~896x acceleration results. The...LICOM has
carried out...onducted heterogeneous porting using OpenACC (Jiang
etal., 2019) and used Heterogeneous...eterogeneous-compute
Interface for Portability...nterface for portability C (HIP C)
technologies,...and achieved up to a 6.6x and 42x acceleration,
respectively (Wang et al., 2021a). For the Princeton Ocean ...cean
Model...odel, Xu et al.,...(2015) use CUDA C to carry out...onduct
heterogeneous porting and optimization, and the performance of gpu-
POM v1.0 on four GPUs is comparable to that on the 408 standard
Intel Xeon X5670 CPU cores. In terms of the...climate system
models, Wang et al.,...(2016) and Wang et al.,...(2021b) used CUDA
Fortran and CUDA C to carry out...onduct heterogeneous porting of

the RRTMG_SW and RRTMG_LW scheme (2]




216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240

AL N A A A

system model, and achieved a,38.88x and 77.78x acceleration, respectively. @;}mmw P
Programming a GPU accelerator can be a difficult and error-prone process that [MUF%E‘JV\]?: a
o [ﬂnur@mm: hard
methods for porting programs to GPUs, as described above. The first method uses the [mm%mﬁ: programing
OpenACC directive (https://www.openacc.org/, last access: 19 December 2022), which ’[M\Jli% HIP3&: , there
provides a set of high-level directives that enable C/C++ and Fortran programmers to [mum@ww: proen
utilize accelerators. The second method uses CUDA Fortran. CUDA Fortran is a
software compiler, that was codeveloped by the Portland Group (PGI) and NVIDIA, [M‘JI&%H@W@: which co-developed
and is a tool chain for building performance-optimized GPU-accelerated Fortran [mum@ww: ,
applications targeting the NVIDIA GPU platform (https://developer.nvidia.com/cuda- [’ml‘% fypy 25

fortran, last access: 19 December 2022), Using CUDA C involves rewriting the entire .

program using the standard C programming language and low-level CUDA subroutines

(https://developer.nvidia.com/cuda-toolkit, last access: 19 December 2022) to support

the NVIDIA GPU accelerator. Compared to the other two technologies, the CUDA C

[M‘J BRI P 2

P N N

porting scheme is the most complex, but it has the highest computational performance [;15]\”;%%?\]@; ,
(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu et al., 2015), EMUM?E’W\J‘?‘?: iits computational performance is the highest
Air quality models are critical for understanding how the chemistry and h [’WW% Py 75
composition of the atmosphere may change throughout the 21* century, as well as for - [mumﬁ W o
preparing adaptive responses or developing mitigation strategies. Because air quality N [mu%:mﬁ; atmospheric
models need to take into account the complex physicochemical processes that occur in [MM;’% s over
the atmosphere of anthropogenic and patural emissions, simulations are . [MUI‘%H"]V\]@: naturally
computationally expensive. Compared to other geoscientific numerical models, few [W%m@ the
[MUF%H’JV\] %¥: research
[ﬂ’}ﬂr&% Ml 75 carried out
CAMXx fo improve the computation efficiency. R [ﬂ’lﬂﬂ%%l’m: was
"[mw% {9745 to carry out the
[W%E‘]W‘?‘?: attempt
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2. The CAMx model and experiments

2.1. Model description

The CAMx model is a state-of-the air quality model developed by Ramboll

Environ (https://www.camx.com/, last access: 19 December 2022). CAMx version 6.10

(CAMx V6.10; ENVIRON, 2014) is chosen in this study; it simulates the emission,

dispersion, chemical reaction, and removal of pollutants by marching the Eulerian

continuity equation forward, in time for each chemical species on a system of nested

three-dimensional grids. The Eulerian continuity equation is expressed mathematically

in terrain-following height coordinates as Formula (1):

A [AC ) o%h +V-pKV
9t VH HCi 9z Ci 920t PKV(ci/p)
aCi aCi aCi
+ - - 1)
ot Emission ot Chemistry at Removal
m? 3 uAyp\  mM* 0 (VAP
. = _ 2
Vi« PVu Ayzax( m )+szay( m ) @

The first term on the right-hand side represents horizontal advection. In pumerical

methods, the horizontal advection_equation (described in Formula (2)) is performed

using the area preserving flux-form advection solver of the piecewise parabolic method

(PPM) of Colella and Woodward (1984) as implemented by Odman and Ingram (1996),,

The PPM horizontal advection solution (HADVPPM) was incorporated into the CAMx

[Mﬂ&%E‘JV\JE:,

'[ﬂﬂﬂ%ﬁﬁ@l’\]ﬁ:,

[ﬂﬂﬂ&%ﬂ‘il’\]ﬁ:

sforward

N N N

[MW%E‘JV\J%:

formula

[wm@w ey

the

[ﬂﬂﬂﬁﬁ?ﬂ‘]w%‘:

equation of

[MUK%H‘JV\JE:

formula

‘@ﬂumﬁm:

Piecewise Parabolic Method

[ﬂﬂﬂ&%ﬂ‘il’\]ﬁ:

model because it provides higher order accuracy with minimal numerical diffusion,,
In the Fortran code implementation of the HADVPPM scheme, the CAMx main

program calls the emistrns program, which mainly performs physical processes such as

emission, diffusion, advection and dry/wet deposition of pollutants. [Then, the
horizontal advection program is invoked by_the emistrns program to solve the

horizontal advection equation by using the HADVPPM scheme.

[M‘J BB P 2

solution of
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2.2. Benchmark performance experiments

The first porting step is to test the performance of the CAMx benchmark version

and identify the model’s hotspots, On the Intel x86 CPU platform, we launch two

race analyse

processes concurrently to run the CAMX, and take advantage of the Intel

collector  (ITAC; https://www.intel.com/content/www/us/en/docs/trace—analyzer—‘

collector/get-started-guide/2021-4/overview.html, last access: 19 December 2022) and

the Intel VTune profiler i

'[ﬂHUFﬁE‘]W‘ﬁ:

step of the

[ﬂﬂﬂlﬁ%ﬂ‘]l}ﬂ‘ﬁ:

of the model

'@auwww;

Trace

@ww%%m:

A

Y “@ﬂum@w %

Analyzer

"@ﬂurzfz o %

Collector

(VTune;https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top.html, last access: 19 December 2022) performance analysis tools to collect

performance information during the CAMx operation,,

The general MPI performance can be reported by the ITAC tool, and MPI load
balance information, computation and communication profiling of each process is

shown jn Fig. la. During the running process of the CAMx model, Process 0 (P0)

spends 99.6% of the time on the MPI_Barrier function and only 0.4% of the time on

computation, while Process 1 (P1) spends 99.8% of its time computation and only 0.2%

of its time receiving messages from PO. It is apparent that the parallel design of the .

CAMx model adopts_the Master-Slave mode, and PO is responsible for inputting and
outputting the data and calling the MPI_Barrier function to synchronize the process, so
there is a lot of MPI waiting time. The other processes are responsible for computation,,

The VTune tool detects each module's runtime and the most time-consuming

functions on P1. As shown in Figure 1b, the top four time-consuming modules are

chemistry, diffusion, horizontal advection, and vertical advection in the CAMx model. .

In the above four modules, the top five most time-consuming programs are the ebirate,

hadvppm, tridiag, diffus, and ebisolv programs, and the total runtime of P1 is 325.1 .

seconds. Top1 and Top2's most time-consuming programs take 49.4 and 35.6 seconds,

respectively.

By consideration, the hadvppm program was selected to conduct heterogeneous -

s

compulsory modules, and is mainly used to simulate the transport process of air
6
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pollutants, additionally it is also a hotspot module detected by the Intel VTune tool. The

typical air quality models, CAMx, CMAQ, and NAQPMS, include advection modules

and use the exact PPM advection solver. The heterogeneous version developed in this
study can be directly applied to the above models. Furthermore, the weather model (e.g.,
WRF) also contains an advection module, so this study's heterogeneous porting method
and experience can be used for reference. Therefore, a GPU acceleration version of the
HADVPPM scheme, namely, GPU-HADVPPM, is built to improve the CAMx

performance.

@)

99.6% 99.8%

[ Computation [ MP1
(b)

55.9%

[ Chemistry EE Diffusion M H Advection [V Advection [0 Others

Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and
communication profiling of PO and P1. (b) Overhead proportions of P1. The top four most time-

consuming modules are chemistry, diffusion, horizontal advection,and vertical advection.

2.3. Porting scheme introduction

The CAMx-CUDA heterogeneous scheme is shown in Figure 2. The second time-

consuming hadvppm program in the CAMx model was selected to implement, .

heterogeneous porting. To map the hadvppm program to the GPU, the Fortran code was .-

converted to standard C code. Then, the CUDA programming language, which was .

tailor-made for NVIDIA, was added to convert the standard C code into CUDA C for
7
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data-parallel execution on the GPU, as GPU-HADVPPM. It prepared the input data for
GPU-HADVPPM by constructing random numbers, and tested its offline performance
on the GPU platform.

After coupling the GPU-HADVPPM to the CAMx model, the advection module
code was optimized according to the characteristics of the GPU architecture to improve
the overall computational efficiency on the CPU-GPU heterogeneous platform. Then,
the multi-CPU core and multi-GPU card acceleration algorithm was adopted to improve
the parallel extensibility of heterogeneous computing. Finally, the coupling
performance test is implemented after verifying the different CAMx model simulation

results.

Heterogeneous
CAMx V6.10  -------------3) > CAMx-CUDA Optimization MPI+CUDA
porting
l TCoupling l

Offline performance

ITAC and VTune CUDACcode —>» X Error analysis
testing
l T CUDA l
Fortranto C o
(Fol-r‘torfnpzfde) ————> Standard C code y COUP"ntQ i
Rewrite performance testing

Figure 2. Heterogeneous porting scheme of the CAMx-CUDA model.

2.4. Hardware components and software environment of the testing system

The experiments are conducted on two GPU clusters, K40m and V100, The

hardware components and software environment of the two clusters are listed in Table

1. The K40m cluster is equipped with two 2.5 GHz 16-core Intel Xeon E5-2682 v4

CPU processors and one NVIDIA Tesla K40m GPU card on each node. The NVIDIA
Tesla K40m GPU has 2880 CUDA cores with 12 GB of memory. The V100 cluster

contains two 2.7 GHz 24-core Intel Xeon Platinum 8168 processors and eight NVIDIA

Tesla V100 GPU cards with 5120 CUDA cores and 16 GB memory on each card,,

Table 1. Configurations of GPU cluster.

Hardware components
CPU GPU

[M‘”’? 9%t And then

[MIK%E‘JV\JE::

[M‘J BRI P 25

AN

[murf,%emw %51 5GHz

N

[ﬂﬂUK%E‘JV\J % 12GB

[ﬂﬂﬂ BRI %5 7GHz

[ﬂﬂﬂﬁfﬁﬂ@?\]ﬁ: 16GB

[M‘J BRI 2
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Intel Xeon E5-2682 v4 CPU @2.5  NVIDIA Tesla K40m, 2880 CUDA
K40m cluster

GHz, 16 cores cores, 12GB memory
Intel Xeon Platinum 8168 CPU @2.7  NVIDIA Tesla V100, 5120 CUDA
V100 cluster
GHz, 24 cores cores, 16GB memory
Software environment
Compiler and MPI Programming Model
K40m cluster Intel-2021.4.0 CUDA-10.2
V100 cluster Intel-2019.1.144 CUDA-10.0

For Fortran and standard C programming, Intel Toolkit (including compiler and
MPI library) version 2021.4.0 and version 2019.1.144 are employed for compiling on
an Intel Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU, respectively. T'hen,

CUDA version 10.2 and version 10.0 are employed on_an NVIDIA Tesla K40m GPU
and NVIDIA Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of the C
programming language that offers direct programming of the GPUs. In CUDA

programming,, a kernel is actually a subroutine that can be executed on the GPU. The

underlying code in the kernel is divided into a series of threads, each with a unique "ID"

number that simultaneously process different data through a single-instruction multiple-

thread (SIMT) parallel mode. These threads are grouped into equal-sized thread blocks,

which are organized into a grid.

3. Porting and optimization of the CAMx advection module on a heterogeneous

platform

3.1. Mapping the HADVPPM scheme to the GPU

3.1.1. Manual code translation from Fortran to standard C

As the CAMx V6.10 code was written in Fortran 90, we rewrote the hadvppm
program from Fortran to CUDA C. As an intermediate conversion step, we refactor the
original Fortran code using standard C. During the refactoring, some of the

considerations are,listed in Table 2:

(1) The subroutine name refactored with standard C must be followed by an
9
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underscore identifier, which can only be recognized when Fortran calls.

(2) In the Fortran language, the parameters are transferred by a memory address
by default. In the case of mixed programming in Fortran and standard C, the parameters
transferred by Fortran are processed by the pointer in standard C.

(3) Variable precision types defined in standard C must be strictly consistent with
those in Fortran.

(4) Some built-in functions in Fortran are not available in standard C, and need to
be defined in the standard C macro definitions.

(5) For multidimensional arrays, Fortran and standard C follow a column-major
and row-major order, and in-memory read and write, respectively;

(6) Array subscripts in Fortran and standard C are indexed from any integer and 0,
respectively.

Table 2. Some considerations during Fortran to C refactoring.

Fortran code C code
Function name subroutine hadvppm() void hadvppm()
hadvppm(int *nn, float, *dt, . [ﬂﬂ‘lﬁ%ﬂ‘]l’ﬂ 21 nn float
hadvppm(nn, dt,dx, con,vel, float *dx, float *con, float

i BRI nnde
Parameter passing *vel, float *area, float *areav, [ ”

area,areav, flxarr,mynn)

ﬂoat "jlxarn int *mynn) [M‘”’?H@W@: dx,con

(s e
Variable precision real(kind=8) x double x s [ AT elarea

@m%% 4% avfixarr
#define Max(a, b)

A A N A N

Built-in functions max
((@)>(b)?(a): (b))
Memory read and

write for

. A Column-major Row-major
multidimensional
array
Array subscript
Starting from any integer Starting from 0

index

3.1.2. Converting standard C code into CUDA C

After refactoring the Fortran code of the hadvppm program with standard C,
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CUDA was used to convert the C code into CUDA C to make it computable on the
GPU. A standard C program using CUDA extensions distributes a large number of
copies of the kernel functions into available multiprocessors and executes them

simultaneously on the GPU.

Figure 3 shows the GPU-HADVPPM implementation process. As mentioned in .

Sect. 2.1, the xyadvec program calls the hadvppm program to solve the horizontal
advection function. Since the rewritten CUDA program cannot be called directly by the
Fortran program (xyadvec.f), we add an intermediate subroutine (hadvppm.c) as an
interface to transfer the parameters and data required for GPU computing from the
xyadvec Fortran program to the hadvppm_kernel CUDA C program.

A CUDA program automatically uses numerous threads on the GPU to execute

kernel functions. Therefore, the hadvppm_kernel CUDA C program first calculates the

number of parallel threads according to the array dimension. Then, the GPU memory .

is allocated, and the parameters and data are copied from the CPU to the GPU. As the

CUDA program launches a large number of parallel threads to execute kernel functions

simultaneously, the computation results will be copied from the GPU back to the CPU.

Finally, the GPU memory is released, and the data computed on the GPU are returned .

to the xyadvec program via the hadvppm C program.

GPU
cPU cPU CcPU ﬂ
S,
Fortran code on CPU C code on the CPU CUDA C code on the CPU Kernel function on the GPU
(xyadvec.f) (hadvppm.c) (hadvppm_kernel.cu) (Kernel)

i
. Prepare the data 1 1
—>!
required for the GPU. . .
3 | Call the hadvppm_kernel.cu |
Call hadvppm.c —————» and use pointer to transfer !
parameters and data to CUDA. i
Calculate the number of parallel

threads.

!
|
]
|
\
|
]
|
|
'
]
]
\
|
'
]
|
i
|
]
i
Launch the kernel. —»'.
I4. ——--  Figish ~=--mmm-

-
Allocate GPU memory and copy parameters
and data from the CPU to the GPU.
-
Finish.
Copy data from the GPU to the CPU.
|

Release the GPU memory.

Return the results .
[ — ~  Transfer parameter and -

to the xyadvec.. data from CUDA.

Figure 3. The calling and computation process of the GPU-HADVPPM on the CPU-GPU
11
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heterogeneous platform.

3.2. Coupling and optimization of the GPU-HADVPPM scheme on a single GPU

After the hadvppm program was rewritten with standard C and CUDA, the

implementation process of the HADVPPM scheme ywas loaded from the CPU to the

GPU. Then, we coupled the GPU-HADVPPM to the CAMx model. For ease of

description, we will refer to this original heterogeneous version of CAMx as CAMx-

CUDA V1.0. In CAMx-CUDA V1.0, four external loops are nested when the hadvppm

C program is called by the xyadvec program. [This will result in widespread data

transfers from the CPU to the GPU over the PCle bus within a time step, making the

computation of CAMx-CUDA V1.0 inefficient.

Therefore, we optimize the xyadvec Fortran program to significantly reduce the
frequency of data transmission between the CPU and GPU, increase the amount of data
computation on the GPU, and improve the total computing efficiency of the CAMx on
the CPU-GPU heterogeneous platforms. In the original CAMx-CUDA V1.0, four

external loops outside the hadvppm C program, and several one-dimensional arrays, are

computed before calling the hadvppm C program. Then, the CPU will frequently launch
the GPU and transfer data to it within a time step. When the code optimization is
completed, the three- or four-dimensional arrays required for a GPU computation
within a time step will be sorted before calling the hadvppm C program, and then the
CPU will package and transfer the arrays to the GPU in batches. An example of the

xyadvec Fortran program optimization js shown in Figure S1.

The details of the four different versions are shown in Table 3. In CAMx-CUDA
V1.0, the Fortran code of the HADVPPM scheme was rewritten using standard C and

CUDA, and the xyadvec program was not optimized. The dimensions of the cld

variable array transmitted to the GPU in the X and Y directions are 157 and 145 in this

case, respectively. In CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the cld variable

transmitted from the CPU to GPU js expanded to two (approximately 23,000 numbers)
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and four dimensions (approximately 27.4 million numbers) by optimizing the xyadvec
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Fortran program and hadvppm_kernel CUDA C program, respectively.

The order in which the data are accessed in GPU memory affects the

computational efficiency of the code. In CAMx-CUDA V1.3 of, Table 4, we further

optimized the order in which the data are accessed in GPU memory based on the order

in which they are stored in memory, and eliminated the unnecessary assignment loops

that were added due to the difference in memory read order between Fortran and C.
As described in Sect._2.4, a thread is the basic unit of parallelism in CUDA

programming. The thread structure,is organized into a three-level hierarchy. The highest

simultaneously.

Before CAMx-CUDA V1.4, the loops for the three-

[ﬂﬂﬂf&%ﬂ‘]l’ﬂ@: i

7

[wm@w 7

o

he

[MK%E‘JV\JE:

the

‘[ﬂmu@n@m: i

@

‘ @ﬂuwwm:

it is

“[wm Rim

[M‘J B P 2

structure of

A N A N, U A N0 . A N

level is a grid, which consists of three-dimensional thread blocks. The second level is a [ﬂﬂum@ww: s
block, which also consists of three-dimensional threads. The built-in CUDA variable [mu&%%m& Built
threadldx.x determines a unique thread "ID" number inside a thread block. Similarly, . [mumgmg; Similarity,
the built-in yariables blockldx.x and blockldx.y determine which block to execute on, [}[}}\]ﬁ%ﬁ@ﬂq@; variable
and the size of the block is determined by using the built-in variable blockdim.x. For
the two-dimensional horizontal grid points, many threads and blocks can be organized
so that each CUDA thread computes the results for different spatial positions
[W}‘J BRI 2 the
(i,j,k) are replaced by index computations using only the thread index (i = threadldx.x @ﬂummw: dimension
+ blockldx.x*blockDim.x),to use the thread indices to simultaneously compute the grid ‘ [’Wﬁ? P75 using
point in the x or y direction, To take full advantage of the thousands of threads in the ; 1 [ﬂﬂﬂr@ﬂﬁm@: .
GPU, we implement thread and block indices (i = threadldx.x + blockldx.x*blockDim.x; (5 indecs oty compts
. . . . . [W}‘J BRI %5:  simultaneous. In order to
J = blockldx.y) to simultaneously compute all the horizontal grid points (i,/) jn CAMx-
[%U%?E’UV\JW: simultaneous
CUDA V1.4. This is permitted because there are no interactions among the horizontal
[WNK% A2 the

grid points.
Table 3. The details of different CAMx-CUDA versions during optimization.
Amount of data

Version Major revisions .
computation on GPU

The Fortran code of the HADVPPM 157 and 145 in the x
subroutine was rewritten using standard  direction and y direction for
CAMx-CUDA V1.0
C and CUDA, and xyadvec.f was not

optimized.

the c1d variable,
respectively.
157x145,

CAMx-CUDA V1.1 Optimize xyadec.fand
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CAMx-CUDA V1.2

CAMx-CUDA V1.3

CAMx-CUDA V1.4

hadvppm_kernel.cu to expand the
dimension of the array transmitted to the
GPU from 1-dimensional to 2-
dimensional.

Based on the CAMx-CUDA V1.1, the
dimension of the array transmitted to the
GPU is extended from 2 to 4
dimensions.

Based on the CAMx-CUDA V1.2, the
order of GPU memory access is
optimized and unnecessary assignment
loops are eliminated.

Based on the CAMx-CUDA V1.3, using
thread and block indices (i = threadldx.x
+ blockldx.x*blockDim.x; j =
blockldx.y).

approximately 23,000

numbers
for the c2d variable.

157%x145%x14x86,
approximately 27.4 million

numbers
for the c4d variable.
157x145%14x86,

approximately 27.4 million

numbers
for the c4d variable.
157%145x14%86,
approximately 27.4 million

numbers
for the c4d variable.

3.3. MPI+CUDA acceleration algorithm of CAMx-CUDA on multiple GPUs

Generally, superlarge clusters have thousands of compute nodes. The current

CAMx V6.10, implemented by adopting MPI communication technology, typically
runs on dozens of compute nodes. Once the GPU-HADVPPM is coupled into the

CAMx, it also has to run on multiple compute nodes that are equipped with one or more

GPUs on each node. To make full use of multicore and multi-GPU supercomputers, and

further improve the overall computational performance of CAMx-CUDA, we adopt a

parallel architecture with an MPI+CUDA hybrid paradigm; that is, the collaborative

computing strategy of multiple CPU cores and multiple GPU cards is adopted during
the operation of the CAMx-CUDA model. Adopting this strategy, the GPU-HADVPPM

can run on multiple GPUs, and the Fortran code of the other modules in the CAMx-

CUDA model can run on multiple CPU cores.

As, shown in Figure 4, after the simulated region is subdivided by MPI, a CPU

core is responsible for the computation of a subregion. To improve the total

computational performance of the CAMx-CUDA model, we further used the NVIDIA

CUDA library to obtain the number of GPUs per node, and then used the MPI process

ID and remainder function to determine the GPU ID to be launched by each node.
14
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Finally, we used the NVIDIA CUDA library, cudaSetDevice, to configure a GPU card
for each CPU core.

According to the benchmark performance experiments, the parallel design of

data. If two processes (PO and P1) were launched, only the P1 and its configured GPU

participate in integration.

MPI communication

1 [ [ 1
' [ [ |
' cpU o cPU . CPU !
] : :
| muim-mhm | | e-mhe e |
] : ;
i P P [
i [ cubaapis | i1 [ cupbaaps | i [ cupbaaps | 1 T
i v o i
1 L o 1
' [ [ |
B B @ B9 B @
S ®x | (.. g
Node 0 Node 1 Node 2

[] node [] ceu [ cPucoe [[] GPUcard

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple
GPUs.

4. Experimental results

The validation and evaluation of porting the HADVPPM scheme from the CPU to
the GPU platform were conducted using offline and coupling performance experiments.

First, we validated the results between the different CAMx versions, and then the offline

performance of the GPU-HADVPPM on a single GPU was tested by offline

dimensions with varying chemical regimes. 4.2 and 4.4, the CAMx yersions of the

HADVPPM scheme written jn Fortran, standard C and CUDA G are named F, G and ;.

CUDA C, respectively.
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4.1. Experimental setup

The test case is a 48 h simulation covering Beijing, Tianjin and part of the Hebei _

Province region. The horizontal resolution is 3 km with 145 X 157 grid boxes. The

) '[?I’MM?E‘]W‘?’?:

48h

)

[WNJK%H‘JW@:

the

model adopted 14 vertical layers. The simulation started at 12:00 UTC,on 01 November ™ ‘[wm@w %1 the region of
2020,and ended at 12:00 UTC on 03 November 2020. The meteorological fields driving [’””F’% HIPY%5: province
. . IR P %5 3k
the CAMx model were provided by the weather research and forecasting (WRF; @”l% U Sk
. . [muwmﬁ:,

Skamarock et al., 2008) model. The sparse matrix operator kernel emission (SMOKE; . "

Vi [M‘JI‘%H‘JW@: .
Houyoux and Vukovich, 1999) version 2.4 model is used to provide gridded emission | [ o

BRI A 2%,
data for the CAMx model. The emission inventories (Sun et al., 2022) include the W -

I [WF%H‘JV‘]’@: Weather
regional emissions in East Asia that were obtained from the fransport and chemical : ‘ ; k[mum@ww: Research
evolution over the Pacific (TRACE-P; Streets et al., 2003; Streets et al., 2006) project, ~ [,m@m@: Forecasting
30-min (approximately 556 km at mid-latitude) spatial resolution Intercontinental . [mum@ P25 Sparse
chemical gransport experiment-Phase B (INTEX-B; Zhang et al., 2009) and the updated L [’WUF{%E"J PI%: Matrix
regional emission inventories in North China. The physical and chemical numerical 3 ! [ﬂ”""/’%nﬁmﬁ ¢ Operator

e 0 2
methods selected during the CAMx model integration are listed in Table S2. [WF%E’JV\]A. Kernel
| [}l’l‘”‘% P9 %5 : Emission
4.2. Error analysis @mm«mw: Transport
[WF% P9 %¥: Chemical
The hourly concentrations of different CAMx simulations (Fortran, C, and CUDA Gmr,@ngm % Evolution
C versions) are compared to verify the usefulness of the CUDA C version of CAMx for @ ‘[W,%E@V\Jﬁ: about
Jnumerical precision for scientific usage. Here, we chose six major species, i.e., SOz, O3, [M‘”‘% Ky Gkm
NO2, CO, H0> and PSOs, after 48 h of integration to verify the results. Due to the ] [Ww’m@ Chemical
. . . . . JHBR (¥ Y 752 Transport
differences in programming languages and hardware, the simulation results are affected [ PO e
: ; : . . . | BRI P 2% Experiment
during the porting process. Figures 5~7 present the spatial distributions of SOz, O3, NO»,
[WN PRI 451 concentration
CO, Hy07 and PSOqs, as well as the absolute errors (AEs) of their concentrations from
[WI%?;E‘JV\J%}': the
different CAMXx versions. The species' spatial patterns of the three CAMX versions are . N
3 BRI 2 of
visually very similar. Between the Fortran and C versions, especially, the AEs in all the | [ﬂﬂﬂﬂ% {fp0 75 48h
grid boxes are in the range of £0.01 ppbV (the unit of PSO4 is ug : m™2). During the k [W,Aﬁg@wﬁ; Figure
porting process, the primary error comes from converting standard C to CUDA C, and [M\JI@H@W@: distribution
[WMTE"]V‘JW: Especially b
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the main reason js related to the hardware difference between the CPU and GPU. Due

to the slight difference in data operation and accuracy between the CPU and GPU

(NVIDIA,2023), the concentration variable of the hadvppm program appears to have

minimal negative values (approximately —10 —9~-10 _4) when integrated on the GPU.

To allow the program to continue running, we forcibly replace these negative values

with 1079, It is because these negative values are replaced by positive values that the

simulation results are biased. In general, for SO2, O3, NO2, H20; and PSOs, the AEs in
the majority of the grid boxes are in the range of +0.8 ppbV or g -m™3 between the
standard C and CUDA C versions; for CO, because its background concentration is
higher, the AEs of the standard C and CUDA C versions are outside that range, and fall
into the range of -8 and 8 ppbV in some grid boxes and shows more obvious AEs than

the other species.
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Figure 5. SO, and O3 concentrations outputted by the CAMx model for the Fortran, standard C, and
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CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from the

standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the

output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the
output concentration differences of the standard C and CUDA C versions. Panels (f) and (1) are the

output concentration differences of the Fortran and CUDA C versions.
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Figure 6. NO, and CO concentrations outputted by the CAMx model for the Fortran, standard C,
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and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from
the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the
output concentration differences of the Fortran and standard C versions. Panels (e) and (k) are the
output concentration differences of the standard C and CUDA C versions. Panels (f) and (1) are the
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21



717

F Version

NTE UEE 119

H,0,

C Version CUDA Version

T4E NSE 16E M7 118 EE 19E

01 02 03 04 05 06 07 08 09 1

C - CUDA

T T T T T T
TE NSE 1EE MTE 18 19E

F Version

lug/m’]

T T T T T T T T T T T T
MEE NSE 16 MTE 18 19E MOE USE 1EE 1TE 118 M9E

002 0015 001 0005 0005 001 0015 002

PSO,

C Version CUDA Version

Ty T T T T

WEE NSE MEE UPE 1R 19E WeE NsE MeE  UPE e WEE NSE NEE UPE 1eE 1o
F-C
[ng/m’

v

an ]

aon |

aon |
— S — ——— — —
WE e HEE 0rE neE 1o WE nEE MEE uPE HeE e WeE neE neE nre teE  neE

04 03 02 o1 01 02 03 04

22



718
719
720
721
722
723

724

725
‘726
27
‘728
729
730
731
732
733

734

735

736
737

738

739

Figure 7. H>O2 and PSO4 concentrations putput by the CAMx model for the Fortran, standard C, .

and CUDA C versions. Panels (a) and (g) are from the Fortran versions. Panels (b) and (h) are from
the standard C versions. Panels (c) and (i) are from the CUDA C versions. Panels (d) and (j) are the
output concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output
concentration differences of the standard C and CUDA C versions. Panels (f) and (1) are the output

concentration differences of the Fortran and CUDA C versions.

Figure § shows the boxplot of the AEs and relative error (REs) in all the grid boxes .

for the six species during the porting process. As described above, the AEs and REs

introduced by Fortran to the standard C code refactoring process are significantly small,

and the primary error comes from converting standard C to CUDA C. Statistically, the

average AEs (REs) of SO2, O3, NO2, CO, H>02 and PSO4 were -0.0009 ppbV (-0.01%), .

0.0004 ppbV (-0.004%), 0.0005 ppbV (0.008%), 0.03 ppbV (0.01%), 2.1 x 1075
ppbV (-0.01%) and 0.0002 ug-m=3 (0.0023%), respectively, between the Fortran

and CUDA C versions. In terms of the time series, the regionally averaged time series

of the three versions are almost consistent (as, shown in Figure S2), and the maximum

AEs for the above six species are 0,001 ppbv, 0.005 ppbv, 0.002 ppbv, 0.03 ppbv,

0.0001 ppbv and 0.0002 ug-m™3, respectively, between the Fortran and CUDA C

versions.
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Figure 8. The distributions of absolute errors and relative errors for SO», O3, NO2, CO, H>0O; and

PSOy4 in all of the grid boxes after 48 hours of integration.

Figure 9,presents the regionally averaged time series and the AEs of SOz, O3, NOz, .

23

[ﬂﬂﬂlﬁ?ﬂ‘] P4 %5: outputted

[ﬂﬂﬂf&%ﬂ‘]?ﬂ@: .

[MUF%D‘JW 7

the

[M‘J BRI P 2

[W}‘J BB P 25

is

[WIK%H‘JV\]’@:

001ppbV

@ﬂum@m:

ppbVv

‘@aurzfz fripy %

ppbV

[M‘J BRI P 25

03ppbV

[MU%?E‘JW‘?’?:

ppbV

N A A A D

[M‘JI@H‘JW EH




751

752

753

754

755
756
‘757
758
759
‘760
761
762
763
764
765

766
767

768

769
770
771
772
773

774

775
776
‘777
778

‘779

CO, H20: and PSO4. The time series between the different versions is almost consistent,

and the maximum AEs for the above six species are 0,001 ppbv, 0.005 ppbv, 0.002

Dppbv, 003 ppbv, 0.0001 ppbv and 0.0002 ug - m=3, respectively, between the Fortran

and CUDA C versions,,

It is difficult to verify the scientific applicability of the results from the CUDA C
version because the programming language and hardware are different between the

Fortran and CUDA C yersions. Here, we used the evaluation method of Wang et al.

(2021a) to compute the root mean square errors (RMSEs) of SO», O3, NO», CO, H20»
and PSO4 between the Fortran and CUDA C versions, which are 0.0007 ppbV, 0.001
ppbV, 0.0002 ppbV, 0.0005 ppbV, 0.00003 ppbV, and 0.0004 ug - m~3, respectively,

much smaller than the spatial variation of the whole region, which is 7.0 ppbV
(approximately 0.004%), 9.7 ppbV (approximately 0.003%), 7.4 ppbV (approximately
0.003%), 142.2 ppbV (approximately 0.006%), 0.2 ppbv (approximately 0.015%) and
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1.7 ug -m™3 (approximately 0.004%). The bias between CUDA C and the Fortran . [mupggmg; Itis indicated that the
version of the above six species is negligible compared with their own spatial changes,
and the results of the CUDA C version are generally acceptable for research purposes.
4.3. Offline performance comparison of GPU-HADVPPM

As described in, Sect. 4.2, we validate that the CAMx model result of the CUDA '@ﬂﬂ;&gg@;}gﬁ; the
C version js, generally acceptable for scientific research. We tested the offline [ﬂﬂumm.ﬁ; canb
performance of the HADVPPM and GPU-HADVPPM schemes on 1 CPU core and 1 [MUK%H’JW?: e
GPU card, There are 7 variables input into the HADVPPM program, which are nn, dt, k [ﬂﬂ“m@ W% scheme
dx, con, vel, area,and areav, and their specific meanings are shown in Table S1. [MR%MQ > respectively

First, we use the random_number function in Fortran to create random single-

precision floating-point numbers of different sizes for the above 7 variables, and then

transmit these random numbers to the hadvppm Fortran program and hadvppm_kernel

CUDA C program for computation, Finally, we test the offline performance of the

HADVPPM and GPU-HADVPPM on the CPU and GPU platforms. During the offline

performance experiments, we used two different CPUs and GPUs described in Sect.
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2.4., and the experimental results are shown in Figure 9.

On the CPU platform, the wall time of the hadvppm Fortran program does not
change significantly when the data size is less than 1000. With the increase in the data
size, its wall time increases linearly. When the data size reaches 107, the wall time of
the hadvppm Fortran program on the Intel Xeon E5-2682v4 and Intel Platinum 8168
CPU platforms is 17373 ms and 13190 ms, respectively. On the GPU platform, the

reconstructed and extended CUDA C program implements parallel computation of
multiple grid points by executing a large number of kernel function copies, so the
computational efficiency of the hadvppm_kernel CUDA C code on it is significantly

improved. In the size of 107 random numbers, the hadvppm_kernel CUDA C program

takes only 12,1 ms and 1.6 ms to complete the computation on the NVIDIA Tesla K40m .

and NVIDIA Tesla V100 GPU.

Figure 9. (b) shows the speedup of HADVPPM and GPU-HADVPPM on the CPU
platform and GPU platform under different data sizes. When mapping the HADVPPM
scheme to_the GPU, the computational efficiency under different data sizes is not only

significantly improved, but the larger the data size is, the more obvious the acceleration

effect of the GPU-HADVPPM. For example, in the size of 107 random numbers, the
GPU-HADVPPM achieved a 1113.6x and 845.4x acceleration on the NVIDIA Tesla
V100 GPU, respectively, compared to the two CPU platforms. Although the K40m
GPU's single-card computing performance is slightly lower than that of the V100 GPU,
GPU-HADVPPM can also achieve up to a 143.3x and 108.8x acceleration.

As described in Sect. 3.2, the thread is the most basic GPU unit for parallel

computing. Each dimension of the three-dimensional block can contain a maximum

number of threads of 1024, 1024 and 64, Each dimension of the three-dimensional grid

can contain a maximum number of blocks of 23! —1, 65535, and 65535. It is
theoretically possible to distribute a large number of copies of kernel functions into tens
of billions of threads for parallel computing without exceeding the GPU memory. In
the offline performance experiments, the GPU achieved up to 10 million threads of

parallel computing, while the CPU can only use serial cyclic computation. Therefore,
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GPU-HADVPPM achieves a maximum acceleration of approximately 1100x without

I/O. In addition to this study, the GPU-based SBU-YLIN scheme in the WRF model
can achieve a 896x acceleration compared to the Fortran implementation running on

the CPU (Mielikainen et al., 2012b).
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Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM scheme on the CPU

and GPU. The unit of the wall times for the offline performance experiments is nilliseconds (ms).

4.4. Coupling performance comparison of GPU-HADVPPM with different GPU

configurations

4.4.1. CAMx-CUDA on a single GPU

The offline performance results show that the larger the data size is, the more

obvious the acceleration effect of the GPU-HADVPPM scheme. After coupling the
GPU-HADVPPM to CAMx without changing the advection module algorithm, the
overall computational efficiency of the CAMx-CUDA model is extremely low, and it

takes approximately 621 minutes to complete a_one-hour integration on the V100

cluster. Therefore, according to the optimization scheme in Sect. 3.2, by optimizing the

algorithm of the xyadvec Fortran program, we gradually increase the size of the data

transmitted and reduce the data transmission frequency between the CPU and GPU.

When the data transmission frequency between the CPU and GPU is reduced to 1 within

one time, step, we further optimize the GPU memory access order on the GPU card, .
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eliminate unnecessary assignment loops before kernel functions are launched and use
the thread and block indices.

Table 4, lists the total elapsed time for different versions of the CAMx-CUDA

model during the optimization, as described in Section 3.2. Since the xyadvec program

in, CAMx-CUDA V1.0 is not optimized, it is extremely computationally inefficient

when starting two CPU processes and configuring a GPU card for P1. On the K40m

and V100 clusters, it takes 10829 seconds and 37237 seconds, respectively, to complete

a 1-hour simulation.
By optimizing the algorithm of the xyadvec Fortran program and hadvppm_kernel

CUDA C program, the data transmission frequency between the CPU and GPU was

decreased, and the overall computing efficiency was improved after GPU-HADVPPM
was coupled to the CAMx-CUDA model. In CAMx-CUDA V1.2, the data transmission

frequency between CPU-GPU within one time step is reduced to 1, the elapsed time on

the two heterogeneous clusters is 1207 seconds and 548 seconds, respectively, and the

speedup is 9.0x and 68.0x compared to CAMx-CUDA V1.0.

The GPU memory access order can directly affect the overall GPU-HAVPPM

computational efficiency on the GPU. In CAMx-CUDA V1.3, we optimized the

memory access order of the hadvppm kernel CUDA C program on the GPU and

eliminated the unnecessary assignment loops before the kernel functions were launched,

which further improved the CAMx-CUDA model’s computational efficiency, resulting
in 12.7x and 94.8x speedups.
Using thread and block indices to_simultaneously compute the horizontal grid

points can greatly improve the computational efficiency of the GPU-HADVPPM and

thus reduce the overall elapsed time of the CAMx-CUDA model. CAMx-CUDA V1.4

further reduces the elapsed time by 378 seconds and 103 seconds on the K40m cluster

and V100 cluster, respectively, compared with CAMx-CUDA V1.3 and achieves up to

2 29.0x and 128.4x speedup compared with CAMx-CUDA V1.0.
Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The

unit of elapsed time for experiments is in seconds (s).
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K40m cluster V100 cluster
Versions
Elapsed Time  Speedup  Elapsed Time Speedup
CAMx-CUDA V1.0 10829 1.0 37237 1.0 «
CAMx-CUDA V1.1 1403 7.7 1082 344 <«
CAMx-CUDA V1.2 1207 9.0 548 68.0 «
CAMx-CUDA V1.3 751 12.7 393 94.8 «
CAMx-CUDA V1.4 373 29.0 290 128.4 «

In terms of the single module computational efficiency of HADVPPM and GPU-

HADVPPM, we further tested the computational performance of the Fortran version of

HADVPPM on the CPU, C version of HADVPPM on the CPU, and the CUDA C
version of GPU-HADVPPM in CAMx-CUDA V1.4 (GPU-HADVPPM V1.4) on the

GPU, using system_clock functions in the Fortran language and cudaEvent t in CUDA

programming. The specific results are shown in Figure 10. On the K40m cluster, it takes
37.7 seconds and 51.4 seconds to launch the Intel Xeon E5-2682 v4 CPU to run the

Fortran and C version HADVPPM, respectively, and the C version is 26.7% slower

than the Fortran version. After the CUDA technology was used to convert the C code
into CUDA C, the CUDA C version took 29.6 seconds to launch an NVIDIA Telsa
K40m GPU to run GPU-HADVPPM V1.4, with a 1.3x and 1.7x acceleration. On the

V100 cluster, the Fortran, C, and CUDA C yersions are computationally more efficient

than those on the K40m cluster. It takes 30.1 seconds and 45.2 seconds to launch the
Intel Xeon Platinum 8168 CPU to run the Fortran and C version HADVPPM, and 1.6
seconds to run the GPU-HADVPPM V1.4 using an NVIDIA V100 GPU. The
computational efficiency of the CUDA C version is 18.8x and 28.3x higher than the
Fortran and C versions, respectively.
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Figure 10. The elapsed time of the Fortran version HADVPPM on the CPU, the C version

HADVPPM on the CPU,and the CUDA C version GPU-HADVPPM V1.4 on the GPU. The unit is

in seconds (s).

4.4.2. CAMx-CUDA on multiple GPUs

To make full use of the multicore and multi-GPUs in the heterogeneous cluster,

the MPI+CUDA acceleration algorithm was implemented to improve the total
computational performance of the CAMx-CUDA model. Two different compile flags
were implemented in this study before comparing the computational efficiency of
CAMx-CUDA V1.3 and V1.4 on multiple GPUs, namely, -mieee-fp and -fp-model
precise. The -mieee-fp compile flag comes from the Makefile of the official CAMx
version, which uses the IEEE standard to compare the floating-point numbers. Its

computational accuracy is higher, but the efficiency is slower. The -fp-model precise

compile flag controls the balance between the precision and efficiency of the floating-

point calculations, and it can force the compiler to use the vectorization of some

calculations under value safety. The experimental results show that the -fp model .

precise compile flag is 41.4% faster than -mieee-fp, and the AEs of the simulation

results are less than 10,05 ppbv (Figure S3). Therefore, the -fp model precise compile

flag is implemented when comparing the computational efficiency of CAMx-CUDA
29
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V1.3 and V1.4 on multiple GPU cards. Figure 11, shows the total elapsed time and

speedup of CAMx-CUDA V1.3 and V1.4 on the V100 cluster. The total elapsed time
decreases as the number of CPU cores and GPU cards increases. When starting 8§ CPU
cores and 8 GPU cards, the speedup of CAMx-CUDA V1.4 is increased from 3.9x to

4.5x compared with V1.3, and the computational efficiency is increased by 35.0%.

600 6.0
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45
450 42 R 45
3.9
393 -
z . g
< 290 2.9 - -1
g 0 L 0%
= ~ @
150 P 15
I ] ]
I 69 65
0 I . L 0
2 CPU cores 3 CPU cores 4 CPU cores 5 CPU cores 6 CPU cores 7 CPU cores 8 CPU cores
+ + + + + + +
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Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple

GPUs. The unit of elapsed time for experiments is_in.seconds (s).

5. Conclusions and discussion

GPU accelerators are playing an increasingly important role in high-performance

computing. In this study, a GPU acceleration version of the PPM solver (GPU-

HADVPPM) of horizontal advection for an air quality model was developed, which .

Juns on GPU accelerators using the standard C programming language and CUDA

technology. The poffline performance experimental results showed that the K40m and ;

V100 GPU can achieve up to a 845.4x and 1113.6x speedup, respectively, and the larger
the data input to the GPU, the more obvious the acceleration effect. After coupling the

GPU-HADVPPM to the CAMx model, a series of optimization measures were taken,

including reducing the CPU-GPU communication frequency, increasing the data .
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computation size on the GPU, optimizing the GPU memory access order, and using .

thread and block indices to improve the overall computing performance of the CAMx-

CUDA model. Using a single GPU card, the optimized CAMx-CUDA V1.4 model

Jmproved the computing efficiency by 29.0x and 128.4x on the K40m cluster and the

V100 cluster, respectively. In terms of the single-module computational efficiency of

GPU-HADVPPM, it achieved a 1.3x and 18.8x speedup on an NVIDIA Tesla K40m

with 2 CPU cores and 2 GPU cards.
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GPU and NVIDA Tesla V100 GPU, respectively. To make full use of the,multicore and . @gumgm % multi-core
multi-GPU supercomputers and further improve the total computational performance
of the CAMx-CUDA model, a parallel architecture with an MPI+CUDA hybrid
paradigm was presented. After implementing the acceleration algorithm, the total [mu&%%m& s
elapsed time decreased as the number of CPU cores and GPU cards jncreased, and it [mummg; decreases
Aachieved up to a 4.5x speedup when Jaunching 8 CPU cores and 8 GPU cards compared [ﬂﬂﬂﬁ%ﬁ‘m‘#: increases
N [M‘JI‘%H‘JW % can
However, the current approach has some limitations, which are as follows: "@ﬂummw: faunch
1) We currently jmplement thread and block ; k GW%%W@ (here are some limitations of
grid points in parallel. Given the CAMx Model 3-dimensional grid computing [MUF’%MW@ implemented
U . . . . . [ﬂﬂﬂﬁﬁéﬂv\]ﬁ: co-indexing
characteristics, in the future, 3-dimensional thread and block gcoindexing will be . »‘;_[M‘”;%%W@ -
considered to compute 3-dimensional grid points in parallel. A ‘[MHM?E’W\J‘?#: co-indexing
2) The communication bandwidth of data transfer is one of the main issues
restricting the computing performance of the CUDA C codes on the GPUs. This GW%W\]@ for
restriction holds true not only, for GPU-HADVPPM, but also for the WRF module, . [Wg%gqp\]@; holds true
(Mielikainen et al., 2012b; Mielikainen et al., 2013b; Huang et al., 2013). In this study, ‘ [ﬂﬂum@ P,
the data transmission efficiency between the CPU and GPU is improved only by :@HUW"J W as well
reducing the communication frequency. In the future, more technologies, such as
pinned memory (Wang et al., 2016), will be considered to resolve the communication
bottleneck between the CPUs and GPUs. [ﬂm{ﬁqwﬁ; CPU
3) Jo further improve the overall computational efficiency of the CAMx model, [mMﬁ%H@W@: GPU
the heterogeneous porting scheme proposed in this study will be considered to conduct - [ﬂﬂ‘lﬁ% f1P4%: In order to
the heterogeneous porting of other CAMx modules in the future. [’WW%W #: carry out
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Code and data availability. The source codes of CAMx version 6.10 are available at

https://camx-wp.azurewebsites.net/download/source/(last access: 24 March 2023,

ENVIRON,2022). The dataset related to this paper and the CAMx-CUDA codes are
available online via ZENODO (http://doi.org/10.5281/zenodo.7765218; Cao et

al.,2023).

Author contributions. KC conducted the simulation and prepared the materials. QZW,

LLW,and LNW planned and organized the project. KC, QZW and XT refactored and

optimized the codes. LLW, NW, HQC, and DQL collected and prepared the data for

simulation. KC, QZW, XT,and LNW participated in the discussion.

Competing interests. The authors declare that they have no conflicts of interest.

Acknowledgements, The National Key R&D Program of China (2020YFA0607804 &

2017YFC0209805), the National Supercomputing Center in Zhengzhou Innovation

Ecosystem Construction Technology Special Program (Grant No. 201400210700),and
the Beijing Advanced Innovation Program for Land Surface funded this work. The
research is supported by the High Performance Scientific Computing Center (HSCC)

of Beijing Normal University and the National Supercomputing Center in Zhengzhou.

References

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean
model using a GPU, Ocean Modelling, 41, 16-21, 10.1016/j.ocemod.2011.10.001,
2012.

Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: The
dataset of the manuscript "GPU-HADVPPM V1.0: high-efficient parallel GPU

32

[ﬂﬂﬂ&%ﬂ‘]l’ﬂ 7 the

@aﬂmm el

[ﬂﬂ‘l&%ﬂ‘]lﬁ@: )

[M‘JI@H‘JW EN

[M‘JI‘%D‘JWE: ,

[ﬂﬂﬂ&% FIA %% took part

[M‘J FRIIPIZE: conflict

N A N N N

[W}‘J BB P 25

d

=3

[WF%H‘JV\J’@: a

[W}‘J BREI A

P A N

[W}‘J PRI P25 support

GHU%‘? )9 %5 Reference




1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

1100

design of the Piecewise Parabolic Method (PPM) for horizontal advection in air
quality model (CAMx V6.10)", ZENODO,
https://doi.org/10.5281/zenodo.7765218, 2023.

Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-
dynamical simulations, Journal of Computational Physics, 54, 174-201,
https://doi.org/10.1016/0021-9991(84)90143-8, 1984.

ENVIRON: User Guide for Comprehensive Air Quality Model with Extensions

Version 6.1, available at: https://camx-wp.azurewebsites.net/Files/CAMxUsers

Guide v6.10.pdf (last access: 19 December 2022), 2014

Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., MacDonald, A., Wang,
N., Madden, P., Schramm, J., and Duarte, A.: Parallelization and Performance of
the NIM Weather Model on CPU, GPU, and MIC Processors, Bulletin of the
American Meteorological Society, 98, 2201-2213, 10.1175/bams-d-15-00278.1,
2017.

Houyoux, M. R. and Vukovich, J. M.: Updates to the Sparse Matrix Operator Kernel
Emissions ( SMOKE ) Modeling System and Integration with Models-3,

Huang, B., Mielikainen, J., Plaza, A. J., Huang, B., Huang, A. H. L., and Goldberg, M.
D.: GPU acceleration of WRF WSMS5 microphysics, High-Performance
Computing in Remote Sensing, 10.1117/12.901826, 2011.

Huang, B., Huang, M., Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D.,
and Plaza, A. J.: On the acceleration of Eta Ferrier Cloud Microphysics Scheme in
the Weather Research and Forecasting (WRF) model using a GPU, High-
Performance Computing in Remote Sensing II, 10.1117/12.976908, 2012.

Huang, M., Huang, B., Chang, Y.-L., Mielikainen, J., Huang, H.-L. A., and Goldberg,
M. D.: Efficient Parallel GPU Design on WRF Five-Layer Thermal Diffusion
Scheme, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 8, 2249-2259, 10.1109/jstars.2015.2422268, 2015.

Huang, M., Huang, B., Mielikainen, J., Huang, H. L. A., Goldberg, M. D., and Mehta,

A.: Further Improvement on GPU-Based Parallel Implementation of WRF 5-Layer

33



1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

1129

Thermal Diffusion Scheme, 2013 International Conference on Parallel and
Distributed Systems, 10.1109/icpads.2013.126, 2013.

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang,
L.: Porting LASG/ IAP Climate System Ocean Model to Gpus Using OpenAcc,
IEEE Access, 7, 154490-154501, 10.1109/access.2019.2932443, 2019.

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU Acceleration
of the Updated Goddard Shortwave Radiation Scheme in the Weather Research
and Forecasting (WRF) Model, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 5, 555-562, 10.1109/jstars.2012.2186119,
2012a.

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU
Implementation of Stony Brook University 5-Class Cloud Microphysics Scheme
in the WRF, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 5, 625-633, 10.1109/jstars.2011.2175707, 2012b.

Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D., and Mehta, A.: Speeding
Up the Computation of WRF Double-Moment 6-Class Microphysics Scheme with
GPU, Journal of Atmospheric and Oceanic Technology, 30, 2896-2906,
10.1175/jtech-d-12-00218.1, 2013a.

Mielikainen, J., Huang, B., Wang, J., Allen Huang, H. L., and Goldberg, M. D.:
Compute unified device architecture (CUDA)-based parallelization of WRF
Kessler cloud microphysics scheme, Computers & Geosciences, 52, 292-299,
10.1016/j.cageo.2012.10.006, 2013b.

NVIDIA: CUDA C++ Programming Guide Version 10.2, available at:

https://docs.nvidia.com/cuda/archive/10.2/pdf/CUDA_C_Programming_Guide.p

df (last access: 19 December 2022), 2020

NVIDIA: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Release 12.1,
available at: https://docs.nvidia.com/cuda/floating-point/#differences-from-x86
(last access: 18 May 2023), 2023.

Odman, M. and Ingram, C.: Multiscale Air Quality Simulation Platform (MAQSIP):

34



1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

1158

Source Code Documentation and Validation, 1996.

Price, E., Mielikainen, J., Huang, M., Huang, B., Huang, H.-L. A., and Lee, T.: GPU-
Accelerated Longwave Radiation Scheme of the Rapid Radiative Transfer Model
for General Circulation Models (RRTMG), IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 7, 3660-3667,
10.1109/jstars.2014.2315771, 2014.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D.M., Duda, M. G.,
Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version3 (No.NCAR/TN-475CSTR), University Corporation for
Atmospheric Research, https://doi.org/10.5065/D68S4MVH, NCAR, 2008.

Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael,
G. R.: Revisiting China's CO emissions after the Transport and Chemical
Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories,
atmospheric modeling, and observations, Journal of Geophysical Research:
Atmospheres, 111, https://doi.org/10.1029/2006JD007118, 2006.

Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont,
Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An
inventory of gaseous and primary aerosol emissions in Asia in the year 2000,
Journal of Geophysical Research: Atmospheres, 108,
https://doi.org/10.1029/2002JD003093, 2003.

Sun, Y., Wu, Q., Wang, L., Zhang, B., Yan, P., Wang, L., Cheng, H., Lv, M., Wang, N.,
and Ma, S.: Weather Reduced the Annual Heavy Pollution Days after 2016 in
Beijing, Sola, 18, 135-139, 10.2151/s0la.2022-022, 2022.

Wahib, M. and Maruyama, N.: Highly optimized full GPU-acceleration of non-
hydrostatic weather model SCALE-LES, 2013 IEEE International Conference on
Cluster Computing (CLUSTER), 23-27 Sept. 2013, 1-8,
10.1109/CLUSTER.2013.6702667,

Wang, P., Jiang, J., Lin, P,, Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng,
W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System

35



1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

1179

Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for
portability (HIP) framework and its large-scale application, Geosci. Model Dev.,
14, 2781-2799, 10.5194/gmd-14-2781-2021, 202 1a.

Wang, Y., Guo, M., Zhao, Y., and Jiang, J.: GPUs-RRTMG_LW: high-efficient and
scalable computing for a longwave radiative transfer model on multiple GPUs,
The Journal of Supercomputing, 77, 4698-4717, 10.1007/s11227-020-03451-3,
2021b.

Wang, Z., Wang, Y., Wang, X., Li, F., Zhou, C., Hu, H., and Jiang, J.: GPU-
RRTMG_SW: Accelerating a Shortwave Radiative Transfer Scheme on GPU,
IEEE Access, 9, 84231-84240, 10.1109/access.2021.3087507, 2016.

Xiao, H., Lu, Y., Huang, J., and Xue, W.: An MPI+OpenACC-based PRM scalar
advection scheme in the GRAPES model over a cluster with multiple CPUs and
GPUs, Tsinghua Science and Technology, 27, 164-173,
10.26599/TST.2020.9010026, 2022.

Xu, S., Huang, X., Oey, L. Y., Xu, F.,, Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0:
a GPU-based Princeton Ocean Model, Geoscientific Model Development, 8,
2815-2827, 10.5194/gmd-8-2815-2015, 2015.

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont,
Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and
Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos.
Chem. Phys., 9, 5131-5153, 10.5194/acp-9-5131-2009, 2009.

36



53 0 MIBRRINE Editor
’; 3 0 MHBR K A 25 Editor
’?%; 3 0 MHBR K A 25 Editor
’?%; 3 0 MHBR K P 25 Editor
’; 3 00 ) BRI A2 pitor
’; 3 00 ) BRI 2 pitor
’?%; 3 0 MHBR K A 25 Editor
’; 3 00 ) BRI 2 pitor
’; 3 00 BRI 2 pitor




w
p=il

1 BRI A

Editor
’; 3 00 BRI 2 pitor
’?%’; 3 00 ) MHBREIA 2 Bditor
’?%’; 3 UL o BRI 2 Editor
’“’: 3 00 ) MHIBRHIAN 2 Bdirtor
’; 3 00 ) BRI 2 pitor
’?%’; 3 00 ) MHIBRHIA 2 Bdirtor
’“’: 3 T MIBR AT 25 Editor




s T o0 MIBRIT A E Editor
’?%’; 3 00 BRI AR pitor
’; 3 00 ) BRI 2 pitor
’; 3 00 BRI A2 pitor
’?%’; 3 00 MR AR pitor
’; 3 00 ) BRI 2 pitor
’; 3 00 BRI 2 pitor
’; 3 00 BRI 2 pitor




53 01 2 MIBRRINE Editor
’; 3 - 21 MHIBR KA 25 Editor
’?%; 3 - 21 MHIBRIK A 25 Editor
’?%; 3 - 21 MHIBRIK A 25 Editor
’; 3 0L: 121 BRI 2 pitor
’; 3 0L: 121 BRI 2 pitor
’?%; 3 - 21 MHIBR KA 25 Editor
’; 3 0L: 121 BRI 2 pitor
’; 3 0L: 121 BRI 2 pitor




w
p=il

-2 BRI

Editor
’; 3 0L: 121 BRI 2 pitor
’?%’; 3 00: 120 MHIBRHIA 2 Bditor
’?%’; 3 L. 20 AHIBR I P 2 Editor
’“’: 3 0. 120 MHIBRHIAN 2 Bdirtor
’; 3 0L: 121 BRI 2 pitor
’?%’; 3 00 120 MHIBRHI N2 Bdirtor
’“’: 3 L. 120 MIBRAT N2 Editor




s T MIBRIIAE Editor
’?%’; 3 W 21 BRI AR pitor
’; 3 0L: 121 BRI 2 pitor
’; 3 0L: 121 BRI 2 pitor
’?%’; 3 0. 21 MIBREI A A pitor
’; 3 0L: 121 BRI 2 pitor
’; 3 0L: 121 BRI 2 pitor
’; 3 0L: 121 BRI 2 pitor




% 3 ﬁ: [2] ﬂﬂ”lzfﬁﬂgljﬂﬁ Editor




