
1

GPU-HADVPPM V1.0: high-efficient parallel GPU design of the 1

Piecewise Parabolic Method (PPM) for horizontal advection in 2

air quality model (CAMx V6.10) 3

Kai Cao1, Qizhong Wu1, Lingling Wang2, Nan Wang2, Huaqiong Cheng1, Xiao 4

Tang3, Dongqing Li1, and Lanning Wang1 5
1College of Global Change and Earth System Science, Beijing Normal University, 6
Beijing 100875, China 7
2Henan Ecological Environmental Monitoring Centre and Safety Center, Henan Key 8
Laboratory of Environmental Monitoring Technology, Zhengzhou 450008, China 9
3State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric 10
Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 11
100029, China 12
 13
Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn); Lingling 14
Wang(928216422@qq.com); Lanning Wang (wangln@bnu.edu.cn) 15
 16

Abstract. With semiconductor technology gradually approaching its physical and 17

thermal limits, Graphics processing unit (GPU) is becoming an attractive solution in 18

many scientific applications due to their high performance. This paper presents an 19

application of GPU accelerators in air quality model. We endeavor to demonstrate an 20

approach that runs a PPM solver of horizontal advection (HADVPPM) for air quality 21

model CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new 22

Compute Unified Device Architecture C (CUDA C) code to make it computable on the 23

GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including 24

reducing the CPU-GPU communication frequency, increasing the size of data 25

computation on GPU, optimizing the GPU memory access, and using thread and block 26

indices in order to improve the overall computing performance of CAMx model 27

coupled with GPU-HADVPPM (named as CAMx-CUDA model). Finally, a 28

heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-29

HADVPPM on GPU clusters with Massage Passing Interface (MPI) and CUDA. 30

Offline experiment results show that running GPU-HADVPPM on one NVIDIA Tesla 31

K40m and NVIDIA Tesla V100 GPU can achieve up to 845.4x and 1113.6x 32

2

acceleration. By implementing a series of optimization schemes, the CAMx-CUDA 33

model resulted in a 29.0x and 128.4x improvement in computational efficiency using a 34

GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the single-35

module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and 18.8x 36

speedup on NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU respectively. The 37

multi-GPU acceleration algorithm enables 4.5x speedup with 8 CPU cores and 8 GPU 38

accelerators on V100 cluster. 39

1. Introduction 40

Since the introduction of the personal computer in the late 1980s, the computer 41

and mobile device industry has been one of the most flourishing markets all over the 42

world (Bleichrodt et al., 2012). In recent years, the improvement of the performance of 43

the Central Processing Unit (CPU) is limited by its heat dissipation, the development 44

of Moore's Law has flattened. A common trend in high-performance computing today 45

is the utilization of hardware accelerators that execute codes rich in data parallelism to 46

form high-performance heterogeneous system. GPUs are widely used as accelerators 47

due to high peak performance offered. In the top ten supercomputing list released in 48

December 2022 (https://www.top500.org/lists/top500/list/2022/11/, last access: 19 49

December 2022), there are seven heterogeneous supercomputing platforms built with 50

CPU processors and GPU accelerators, of which the top one Frontier at the Oak Ridge 51

National Laboratory uses AMD's third-generation EPYC CPU and AMD Instinct 52

MI250X GPU, and its computing performance reaches Exascale (10#$ calculations per 53

second) for the first time (https://www.amd.com/en/press-releases/2022-05-30-world-54

s-first-exascale-supercomputer-powered-amd-epyc-processors-and-amd, last access: 55

19 December 2022). Such powerful computing performance of the heterogeneous 56

system not only injects new vitality into high-performance computing, but also provides 57

new solutions for improving the performance of numerical models in geoscience. 58

The GPU has proven successful in weather models such as Non-Hydrostatic 59

3

Icosahedral Model (NIM; Govett et al.,2017), Global/Regional Assimilation and 60

Prediction System (GRAPES; Xiao et al., 2022), and Weather Research and Forecasting 61

model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et al., 2012a; 62

Mielikainen et al., 2012b; Mielikainen et al., 2013a ; Mielikainen et al., 2013b; Price et 63

al., 2014; Huang et al., 2015), ocean models such as LASG/IAP Climate System Ocean 64

Model (LICOM; Jiang et al., 2019; Wang et al., 2021a) and Princeton Ocean Model 65

(POM; Xu et al., 2015), and the Earth System Model of Chinese Academy of Sciences 66

(CAS-ESM; Wang et al., 2016; Wang et al., 2021b). 67

Govett et al., (2017) used Open Accelerator (OpenACC) directives to port the 68

dynamics of NIM to the GPU and achieved 2.5x acceleration. Also using OpenACC 69

directives, Xiao et al., (2022) ported the PRM (Piecewise Rational Method) scalar 70

advection scheme in the GRAPES to the GPU, achieving up to 3.51x faster than 32 71

CPU cores. In terms of the most widely used WRF, several parameterization schemes, 72

such as RRTMG_LW scheme (Price et al., 2014), 5-layer thermal diffusion scheme 73

(Huang et al., 2015), Eta Ferrier Cloud Microphysics scheme (Huang et al., 2012), 74

Goddard Shortwave scheme (Mielikainen et al., 2012a), Kessler cloud microphysics 75

scheme (Mielikainen et al., 2013b), SBU-YLIN scheme (Mielikainen et al., 2012b), 76

WMS5 scheme (Huang et al., 2011), WMS6 scheme (Mielikainen et al., 2013a), etc., 77

have been ported heterogeneously using CUDA C and achieved 37x~896x acceleration 78

results. The LICOM has carried out heterogeneous porting using OpenACC (Jiang et 79

al., 2019) and Heterogeneous-compute Interface for Portability C (HIP C) technologies, 80

and achieved up to 6.6x and 42x acceleration, respectively (Wang et al., 2021a). For the 81

Princeton Ocean Model, Xu et al., (2015) use CUDA C to carry out heterogeneous 82

porting and optimization, the performance of gpu-POM v1.0 on four GPUs is 83

comparable to that on 408 standard Intel Xeon X5670 CPU cores. In terms of climate 84

system model, Wang et al., (2016) and Wang et al., (2021b) used CUDA Fortran and 85

CUDA C to carry out heterogeneous porting of the RRTMG_SW and RRTMG_LW 86

scheme of the atmospheric component model of the CAS-ESM earth system model, 87

and achieved a 38.88x and 77.78x acceleration respectively. 88

删除的内容: CAS-EMS89

删除的内容: CAS-EMS 90

4

Programming a GPU accelerator can be a hard and error-prone process that 91

requires specially designed programing methods, there are three widely used methods 92

for porting program to GPUs as described above. The first method uses the OpenACC 93

directive (https://www.openacc.org/, last access: 19 December 2022) which provides a 94

set of high-level directives that enable C/C++ and Fortran programmers to utilize 95

accelerators. The second method uses CUDA Fortran. CUDA Fortran is a software 96

compiler which co-developed by the Portland Group (PGI) and NVIDIA, and tool chain 97

for building performance optimized GPU-accelerated Fortran applications targeting the 98

NVIDIA GPU platform (https://developer.nvidia.com/cuda-fortran, last access: 19 99

December 2022). CUDA C involves rewriting the entire program using standard C 100

programming language and low-level CUDA subroutines 101

(https://developer.nvidia.com/cuda-toolkit, last access: 19 December 2022) to support 102

the NVIDIA GPU accelerator. Compared to the other two technologies, CUDA C 103

porting scheme is the most complex, but its computational performance is the highest 104

(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu et al., 2015). 105

Air quality models are critical to understanding how the chemistry and 106

composition of atmospheric may change over 21st century, as well as preparing adaptive 107

responses or developing mitigation strategies. Because air quality models need to take 108

into account the complex physicochemical processes that occur in the atmosphere of 109

anthropogenic and naturally emissions, simulations are computationally expensive. 110

Compared to the other geoscientific numerical models, few research have carried out 111

heterogeneous porting of air quality models. In this study, CUDA C scheme was 112

implemented in this paper to carry out the hotspot module porting attempt of CAMx in 113

order to improve the computation efficiency. 114

2. The CAMx model and experiments 115

2.1. Model description 116

CAMx model is a state-of-the air quality model developed by Ramboll Environ 117

5

(https://www.camx.com/, last access: 19 December 2022). CAMx version 6.10 (CAMx 118

V6.10; ENVIRON, 2014) is chosen in this study, it simulates the emission, dispersion, 119

chemical reaction, and removal of pollutants by marching the Eulerian continuity 120

equation forward in time for each chemical species on a system of nested three-121

dimensional grids. The Eulerian continuity equation is expressed mathematically in 122

terrain-following height coordinates as formula (1): 123

𝜕𝑐'
𝜕𝑡 = −∇, ∙ 𝑉,𝑐' + 0

𝜕(𝑐'𝜂)
𝜕𝑧 − 𝑐'

𝜕5ℎ
𝜕𝑧𝜕𝑡7 + ∇ ∙ 𝜌Κ∇(𝑐' 𝜌⁄) 124

+	
𝜕𝑐'
𝜕𝑡 <=>'??'@A

+	
𝜕𝑐'
𝜕𝑡 <BCD>'?EFG

+	
𝜕𝑐'
𝜕𝑡 <HD>@IJK

(1) 125

∇, ∙ 𝜌𝑉, =
𝑚5

𝐴GN
𝜕
𝜕𝑥 P

𝑢𝐴GN𝜌
𝑚 R +

𝑚5

𝐴SN
𝜕
𝜕𝑦 P

𝑣𝐴SN𝜌
𝑚 R (2) 126

The first term on the right-hand side represents horizontal advection. In the 127

numerical methods, the equation of horizontal advection (described in formula (2)) is 128

performed using the area preserving flux-form advection solver of the Piecewise 129

Parabolic Method (PPM) of Colella and Woodward (1984) as implemented by Odman 130

and Ingram (1996). The PPM solution of horizontal advection (HADVPPM) was 131

incorporated into CAMx model because it provides higher order accuracy with minimal 132

numerical diffusion. 133

In the Fortran code implementation of HADVPPM scheme, the CAMx main 134

program calls the emistrns program, which mainly performs the physical processes such 135

as emission, diffusion, advection and dry/wet deposition of pollutants. And then, the 136

horizontal advection program is invoked by emistrns program to solve the horizontal 137

advection equation by using the HADVPPM scheme. 138

2.2. Benchmark performance experiments 139

The first step of the porting is to test the performance of CAMx benchmark version 140

and identify the hotspots of the model. On the Intel x86 CPU platform, we launch two 141

processes concurrently to run the CAMx and take advantage of the Intel Trace Analyzer 142

6

Collector(ITAC; https://www.intel.com/content/www/us/en/docs/trace-analyzer-143

collector/get-started-guide/2021-4/overview.html, last access: 19 December 2022) and 144

Intel VTune 145

Profiler(VTune;https://www.intel.com/content/www/us/en/develop/documentation/vtu146

ne-help/top.html, last access: 19 December 2022) performance analysis tools to collect 147

performance information during CAMx operation. 148

The general MPI performance can be reported by the ITAC tool, and MPI load 149

balance information, computation and communication profiling of each process is 150

shown as Fig. 1a. During the running process of CAMx model, Process 0 (P0) spends 151

99.6% of the time on the MPI_Barrier function and only 0.4% of the time on 152

computation, while Process 1(P1) spends 99.8% of its time computation and only 0.2% 153

of its time receiving messages from P0. It is indicated that the parallel design of CAMx 154

model adopts Master-Slave mode, P0 is responsible for inputting and outputting data 155

and calling the MPI_Barrier function to synchronize the process, so there is a lot of 156

MPI waiting time. The other processes are responsible for computation. 157

The VTune tool detects each module's runtime and the most time-consuming 158

functions on P1. As shown in Figure 1b, the top four time-consuming modules are 159

chemistry, diffusion, horizontal advection, and vertical advection in the CAMx model. 160

In the above four modules, the top five most time-consuming programs are ebirate, 161

hadvppm, tridiag, diffus, and ebisolv programs, and the total runtime of P1 is 325.1 162

seconds. Top1 and Top2's most time-consuming programs take 49.4 and 35.6 seconds, 163

respectively. 164

By consideration, the hadvppm program was selected to carry out heterogeneous 165

porting for some reasons. Firstly, the advection module is one of the compulsory 166

modules of the air quality model, which is mainly used to simulate the transport process 167

of air pollutants, and it is also a hotspot module detected by the Intel VTune tool. Then, 168

typical air quality models CAMx, CMAQ, and NAQPMS include advection modules 169

and use the exact PPM advection solver. The heterogeneous version developed in this 170

study can be directly applied to the above models. Furthermore, the weather model (e.g., 171

删除的内容: The VTune tool is used to detect the runtime 172
of each module and the most time-consuming functions on 173
P1. As shown in Figure 1b, the top four time-consuming 174
modules are chemistry, diffusion, horizontal advection, and 175
vertical advection in CAMx model. The top five most time-176
consuming programs and their elapsed time are in Table 1. 177
The total runtime of P1 is 325.1 seconds, and the top five 178
most time-consuming programs are ebirate, hadvppm, tridiag, 179
diffus, and ebisolv program. Top1 and Top2's most time-180
consuming programs take 49.4 and 35.6 seconds, 181
respectively. By viewing the Fortran code of the above 182
programs, the hadvppm program has few calculation 183
branches, and its calculation process does not involve 184
iterative operations, which satisfies the basic conditions for 185
the program to run on the GPU. Therefore, a GPU 186
acceleration version of the HADVPPM scheme, namely 187
GPU-HADVPPM, is built to improve CAMx performance.↵188

7

WRF) also contains an advection module, so this study's heterogeneous porting method 189

and experience can be used for reference. Therefore, a GPU acceleration version of the 190

HADVPPM scheme, namely GPU-HADVPPM, is built to improve CAMx 191

performance. 192

 193

Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and 194

communication profiling of P0 and P1. (b) Overhead proportions of P1. The top four most time-195

consuming modules are chemistry, diffusion, horizontal advection, and vertical advection. 196

 198

2.3. Porting scheme introduction 199

The heterogeneous scheme of CAMx-CUDA is shown in Figure 2. The second 200

time-consuming hadvppm program in the CAMx model was selected to implement the 201

heterogeneous porting. In order to map the hadvppm program to the GPU, the Fortran 202

code was converted to standard C code. Then, CUDA programing language, which was 203

tailor-made for NVIDIA, was added to convert the standard C code into CUDA C for 204

data-parallel execution on GPU, as GPU-HADVPPM. It prepared the input data for 205

GPU-HADVPPM by constructing random numbers and tested its offline performance 206

on the GPU platform. 207

After coupling GPU-HADVPPM to CAMx model, the advection module code was 208

删除的内容: Table 1. The top five most time-consuming 209
programs on the P1 (Total runtime is 325.1 seconds).↵210

... [1]

删除的内容: The heterogeneous scheme of CAMx-CUDA 211
is shown in Figure 2. The second time-consuming program 212
hadvppm in CAMx model, was selected to implement the 213
heterogeneous porting. In order to map the hadvppm program 214
to the GPU, the Fortran code of hadvppm program is 215
converted to standard C code. Then, CUDA programing 216
language which is tailor-made for NVIDIA was added to 217
convert the standard C code into CUDA C for data-parallel 218
execution on GPU, as GPU-HADVPPM. It prepares the input 219
data for GPU-HADVPPM by constructing random numbers, 220
and tests its offline performance on GPU platform.↵221

8

optimized according to the characteristics of GPU architecture to improve the overall 222

computational efficiency on CPU-GPU heterogeneous platform. And then, the multi-223

CPU core and multi-GPU card acceleration algorithm was adopted to improve the 224

parallel extensibility of heterogeneous computing. Finally, the coupling performance 225

test is implemented after verifying the different CAMx model simulation results. 226

 227

Figure 2. Heterogeneous porting scheme of CAMx-CUDA model. 228

2.4. Hardware components and software environment of the testing system 229

The experiments are conducted on two GPU clusters: K40m and V100. 230

hardware components and software environment of the two clusters are listed in Table 231

1. The K40m cluster is equipped with two 2.5GHz 16-core Intel Xeon E5-2682 v4 CPU 232

processors and one NVIDIA Tesla K40m GPU card on each node. The NVIDIA Tesla 233

K40m GPU has 2880 CUDA cores with 12GB of memory. The V100 cluster contains 234

two 2.7GHz 24-core Intel Xeon Platinum 8168 processors and eight NVIDIA Tesla 235

V100 GPU cards with 5120 CUDA cores and 16GB memory on each card. 236

Table 1. Configurations of GPU cluster. 237

Hardware components

CPU GPU

K40m cluster
Intel Xeon E5-2682 v4 CPU

@2.5GHz, 16 cores
NVIDIA Tesla K40m, 2880 CUDA

cores, 12GB memory

V100 cluster
Intel Xeon Platinum 8168 CPU @2.7

GHz, 24 cores
NVIDIA Tesla V100, 5120 CUDA

cores, 16GB memory

Software environment

Compiler and MPI Programming Model
K40m cluster Intel-2021.4.0 CUDA-10.2

删除的内容: 2238

删除的内容: 2239

9

V100 cluster Intel-2019.1.144 CUDA-10.0

For Fortran and standard C programming, Intel Toolkit (including compiler and 240

MPI library) version 2021.4.0 and version 2019.1.144 are employed for compiling on 241

Intel Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU, respectively. And 242

then, CUDA version 10.2 and version 10.0 are employed on NVIDIA Tesla K40m GPU 243

and NVIDIA Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of the C 244

programming language that offers direct programming of the GPUs. In CUDA 245

programming, what is called a kernel is actually a subroutine that can be executed on 246

the GPU. The underlying code in the kernel is divided into a series of threads, each with 247

a unique "ID" number that can simultaneously process different data through a single-248

instruction multiple-thread (SIMT) parallel mode. These threads are grouped into 249

equal-sized thread blocks, which are organized into a grid. 250

3. Porting and optimization of CAMx advection module on heterogeneous 251

platform 252

3.1. Mapping HADVPPM scheme to GPU 253

3.1.1. Manual code translation from Fortran to standard C 254

As the CAMx V6.10 code was written in Fortran 90, we rewrote the hadvppm 255

program from Fortran to CUDA C. As an intermediate conversion step, we refactor the 256

original Fortran code using standard C. During the refactoring, some considerations are 257

listed in Table 2: 258

(1) The subroutine name refactored with standard C must be followed by an 259

underscore identifier, which can only be recognized when Fortran calls. 260

(2) In Fortran language, the parameters are transferred by memory address by 261

default. In the case of mixed programming in Fortran and standard C, parameters 262

transferred by Fortran are processed by the pointer in standard C. 263

(3) Variable precision types defined in standard C must be strictly consistent with 264

删除的内容: 3265

10

those in Fortran. 266

(4) Some built-in functions in Fortran are not available in standard C and need to 267

be defined in standard C macro definitions. 268

(5) For multidimensional arrays, Fortran and standard C follow column-major and 269

row-major order in-memory read and write, respectively; 270

(6) Array subscripts in Fortran and standard C are indexed from any integer and 0, 271

respectively. 272

Table 2. Some considerations during Fortran to C refactoring. 273

 Fortran code C code

Function name subroutine hadvppm() void hadvppm()

Parameter passing
hadvppm(nn,dt,dx,con,vel,area,areav,

flxarr,mynn)

hadvppm(int *nn,float *dt,
float *dx, float *con, float

*vel, float *area, float *areav,

float *flxarr, int *mynn)

Variable precision real(kind=8) x double x

Built-in functions max
#define Max(a, b)

((a)>(b)?(a):(b))
Memory read and

write for
multidimensional

array

Column-major Row-major

Array subscript

index
Starting from any integer Starting from 0

 274

3.1.2. Converting standard C code into CUDA C 275

After refactoring the Fortran code of the hadvppm program with standard C, 276

CUDA was used to convert the C code into CUDA C to make it computable on the 277

GPU. A standard C program using CUDA extensions distributes a large number of 278

copies of the kernel functions into available multiprocessors and executes them 279

simultaneously on the GPU. 280

Figure 3 shows the implementation process of the GPU-HADVPPM. As 281

删除的内容: 3282

11

mentioned in Sect.2.1, xyadvec program calls the hadvppm program to solve the 283

horizontal advection function. Since the rewritten CUDA program cannot be called 284

directly by Fortran program (xyadvec.f), we add an intermediate subroutine 285

(hadvppm.c) as an interface to transfer the parameters and data required for GPU 286

computing from xyadvec Fortran program to hadvppm_kernel CUDA C program. 287

A CUDA program automatically uses numerous threads on GPU to execute kernel 288

functions. Therefore, the hadvppm_kernel CUDA C program first calculates the 289

number of parallel threads according to the array dimension. And then allocate GPU 290

memory, and copy parameters and data from the CPU to the GPU. As the CUDA 291

program launches a large number of parallel threads to execute kernel functions 292

simultaneously, the computation results will be copied from the GPU back to the CPU. 293

Finally, the GPU memory is released, and data computed on the GPU is returned to the 294

xyadvec program via hadvppm C program. 295

 296

Figure 3. The calling and computation process of the GPU-HADVPPM on the CPU-GPU 297

heterogeneous platform. 298

3.2. Coupling and optimization of GPU-HADVPPM scheme on a single GPU 299

After the hadvppm program was rewritten with standard C and CUDA, the 300

implementation process of HADVPPM scheme is loaded from the CPU to the GPU. 301

12

And then, we coupled the GPU-HADVPPM to CAMx model. For ease of description, 302

we will refer to this original heterogeneous version of CAMx as CAMx-CUDA V1.0. 303

In the CAMx-CUDA V1.0, four external loops are nested when hadvppm C program is 304

called by the xyadvec program. It will result in the widespread data transfers from the 305

CPU to the GPU over the PCIe bus within a time step, making the computation of the 306

CAMx-CUDA V1.0 inefficient. 307

Therefore, we optimize the xyadvec Fortran program to significantly reduce the 308

frequency of data transmission between CPU and GPU, increase the amount of data 309

computation on GPU, and improve the total computing efficiency of the CAMx on 310

CPU-GPU heterogeneous platforms. In the original CAMx-CUDA V1.0, four external 311

loops outside of hadvppm C program and several one-dimensional arrays are computed 312

before calling hadvppm C program. Then the CPU will frequently launch the GPU and 313

transfer data to it within a time step. When the code optimization is completed, three or 314

four-dimensional arrays required for GPU computation within a time step will be sorted 315

before calling the hadvppm C program, and then the CPU will package and transfer the 316

arrays to the GPU in batches. The example of xyadvec Fortran program optimization 317

was shown in Figure S1. 318

The details of four different versions are shown in Table 3. In the CAMx-CUDA 319

V1.0, the Fortran code of the HADVPPM scheme was rewritten using standard C and 320

CUDA, and the xyadvec program is not optimized. The dimensions of the c1d variable 321

array transmitted to GPU in the X and Y directions are 157 and 145 in this case, 322

respectively. In CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the c1d variable 323

transmitted from CPU to GPU are expanded to two (about 23,000 numbers) and four 324

dimensions (about 27.4 million numbers) by optimizing the xyadvec Fortran program 325

and hadvppm_kernel CUDA C program, respectively. 326

The order in which data is accessed in GPU memory affects the computational 327

efficiency of the code. In the CAMx-CUDA V1.3 of the Table 4, we further optimized 328

the order in which data is accessed in GPU memory based on the order in which it is 329

stored in memory, and eliminated unnecessary assignment loops that were added due 330

删除的内容: 4331

13

to the difference in memory read order between Fortran and C. 332

As described in Sect.2.4, a thread is the basic unit of parallelism in CUDA 333

programming. The structure of threads is organized into a three-level hierarchy. The 334

highest level is a grid, which consists of three-dimensional thread blocks. The second 335

level is a block, which also consists of three-dimensional threads. Built-in CUDA 336

variable threadIdx.x determines a unique thread "ID" number inside a thread block. 337

Similarity, built-in variable blockIdx.x and blockIdx.y determine which block to execute 338

on, and the size of the block is determined by using the built-in variable blockdim.x. 339

For the two-dimensional horizontal grid points, many threads and blocks can be 340

organized so that each CUDA thread computes the results for different spatial positions 341

simultaneously. 342

Before the CAMx-CUDA V1.4, the loops for three-dimension spatial grid points 343

(i,j,k) are replaced by index computations only using thread index (i = threadIdx.x + 344

blockIdx.x*blockDim.x), to use thread indexes only computes the grid point in the x or 345

y direction simultaneous. In order to take full advantage of thousands of threads in the 346

GPU, we implement thread and block indices (i = threadIdx.x + blockIdx.x*blockDim.x; 347

j = blockIdx.y) to compute all horizontal grid points (i,j) simultaneous in the CAMx-348

CUDA V1.4. This is permitted because there are no interactions among horizontal grid 349

points. 350

Table 3. The details of different CAMx-CUDA versions during optimization. 351

Version Major revisions
Amount of data

computation on GPU

CAMx-CUDA V1.0

The Fortran code of the HADVPPM
subroutine was rewritten using standard

C and CUDA, and xyadvec.f was not
optimized.

157 and 145 in the x
direction and y direction for

the c1d variable,
respectively.

CAMx-CUDA V1.1

Optimize xyadec.f and
hadvppm_kernel.cu to expand the

dimension of the array transmitted to the
GPU from 1-dimensional to 2-

dimensional.

157×145,
about 23,000 numbers
for the c2d variable.

CAMx-CUDA V1.2

Based on the CAMx-CUDA V1.1, the
dimension of the array transmitted to the

GPU is extended from 2 to 4
dimensions.

157×145×14×86,
about 27.4 million numbers

for the c4d variable.

删除的内容: 4352

14

CAMx-CUDA V1.3

Based on the CAMx-CUDA V1.2, the
order of GPU memory access is

optimized and unnecessary assignment
loops are eliminated.

157×145×14×86,
about 27.4 million numbers

for the c4d variable.

CAMx-CUDA V1.4

Based on the CAMx-CUDA V1.3, using
thread and block indices (i = threadIdx.x

+ blockIdx.x*blockDim.x; j =
blockIdx.y).

157×145×14×86,
about 27.4 million numbers

for the c4d variable.

 353

3.3. MPI+CUDA acceleration algorithm of CAMx-CUDA on multiple GPUs 354

Generally, super-large clusters have thousands of compute nodes. The current 355

CAMx V6.10, implemented by adopting MPI communication technology, typically 356

runs on dozens of compute nodes. Once the GPU-HADVPPM is coupled into the 357

CAMx, it also has to run on multiple compute nodes which equipped one or more GPUs 358

on each node. To make full use of multi-core and multi-GPU supercomputers and 359

further improve the overall computational performance of the CAMx-CUDA, we adopt 360

a parallel architecture with an MPI+CUDA hybrid paradigm, that is, the collaborative 361

computing strategy of multiple CPU cores and multiple GPU cards is adopted during 362

the operation of CAMx-CUDA model. Adopt this strategy, the GPU-HADVPPM can 363

run on multiple GPUs, the Fortran code of other modules in CAMx-CUDA model can 364

run on multiple CPU cores. 365

As is shown in Figure 4., after the simulated region is subdivided by MPI, a CPU 366

core is responsible for the computation of a subregion. In order to improve the total 367

computational performance of the CAMx-CUDA model, we further used the NVIDIA 368

CUDA library to obtain the number of GPUs per node, and then used MPI process ID 369

and remainder function to determine the GPU ID to be launched by each node. Finally, 370

we used NVIDIA CUDA library cudaSetDevice to configure a GPU card for each CPU 371

core. 372

According to the benchmark performance experiments, the parallel design of 373

CAMx adopts Master-Slave mode, P0 is responsible for inputting and outputting data. 374

If two processes (P0 and P1) were launched, only the P1 and its configured GPU 375

15

participate in integration. 376

 377

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple 378
GPUs. 379

4. Experimental results 380

The validation and evaluation of porting the HADVPPM scheme from the CPU to 381

the GPU platform were conducted using offline and coupling performance experiments. 382

First, we validated the result between different CAMx versions, and then the offline 383

performance of the GPU-HADVPPM on a single GPU was tested by offline experiment. 384

Finally, the coupling performance experiments illustrate its potential in three 385

dimensions with varying chemical regimes. Sect.4.2 and Sect.4.4, the CAMx version 386

of the HADVPPM scheme written by Fortran language, standard C, and CUDA C, is 387

named F, C, and CUDA C, respectively. 388

4.1. Experimental setup 389

The test case is a 48h simulation covering the Beijing, Tianjin and part region of 390

Hebei province. The horizontal resolution is 3km with 145 × 157 grid boxes. The 391

model adopted 14 vertical layers. The simulation started at 12:00 UTC, 01 November 392

删除的内容: The validation and evaluation of porting the 393
HADVPPM scheme from CPU to GPU platform were 394
conducted using offline and coupling performance 395
experiments. First, we validate the result between different 396
CAMx versions, and then the offline performance of the 397
GPU-HADVPPM on a single GPU was tested by offline 398
experiment. Finally, the coupling performance experiments 399
illustrate its potential in three dimensions with varying 400
chemical regimes. In Sect.4.2 and Sect.4.4, the CAMx 401
version of the HADVPPM scheme written by Fortran 402
language, standard C, and CUDA C are named as F, C, and 403
CUDA C, respectively.↵404

16

2020, and ended at 12:00 UTC, 03 November 2020. The meteorological fields driving 405

the CAMx model were provided by the Weather Research and Forecasting (WRF; 406

Skamarock et al., 2008) model. The Sparse Matrix Operator Kernel Emission (SMOKE; 407

Houyoux and Vukovich, 1999) version 2.4 model is used to provide gridded emission 408

data for the CAMx model. The emission inventories (Sun et al., 2022) include the 409

regional emissions in East Asia that were obtained from the Transport and Chemical 410

Evolution over the Pacific (TRACE-P; Streets et al., 2003; Streets et al., 2006) project, 411

30-min(about 55.6km at mid-latitude) spatial resolution Intercontinental Chemical 412

Transport Experiment-Phase B (INTEX-B; Zhang et al., 2009) and the updated regional 413

emission inventories in North China. The physical and chemical numerical methods 414

selected during CAMx model integration are listed in Table S2. 415

4.2. Error analysis 416

The hourly concentration of different CAMx simulations (Fortran, C, and CUDA 417

C versions) are compared to verify the usefulness of the CUDA C version of CAMx for 418

the numerical precision of scientific usage. Here, we chose six major species, i.e., SO2, 419

O3, NO2, CO, H2O2 and PSO4 after 48h integration to verify the results. Due to the 420

differences in programming languages and hardware, the simulation results are affected 421

during the porting process. Figure 5~7 present the spatial distribution of SO2, O3, NO2, 422

CO, H2O2 and PSO4, as well as the absolute errors (AEs) of their concentrations from 423

different CAMx versions. The species' spatial patterns of the three CAMx versions are 424

visually very similar. Especially between the Fortran and C versions, the AEs in all grid 425

boxes are in the range of ±0.01 ppbV (the unit of PSO4 is 𝜇𝑔 ∙ 𝑚^_). During the porting 426

process, the primary error comes from converting standard C to CUDA C, and the main 427

reason was related to the hardware difference between the CPU and GPU. Due to the 428

slight difference in data operation and accuracy between CPU and GPU 429

(NVIDIA,2023), the concentration variable of hadvppm program appears to have 430

minimal negative values (about −10^`~−10^b) when integrating on GPU. In order to 431

allow the program to continue running, we forcibly replace these negative values with 432

删除的内容: 433

删除的内容: ↵434

17

10^`. The absolute errors between the simulation results are caused by the negative 435

values are replaced by positive values. In general, for SO2, O3, NO2, H2O2 and PSO4, 436

the AEs in the majority of grid boxes are in the range of ±0.8 ppbV or 𝜇𝑔 ∙ 𝑚^_ 437

between the standard C and CUDA C versions; for CO, because its background 438

concentration is higher, the AEs of standard C and CUDA C versions are outside that 439

range which falls into the range of -8 and 8 ppbV in some grid boxes and shows more 440

obvious AEs than other species. 441

删除的内容: .442

18

 443

Figure 5. SO2 and O3 concentrations outputted by CAMx model for Fortran, standard C, and CUDA 444

19

C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard C 445

versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 446

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 447

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 448

concentration differences of Fortran and CUDA C versions. 449

20

 450

Figure 6. NO2 and CO concentrations outputted by CAMx model for Fortran, standard C, and 451

21

CUDA C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard 452

C versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 453

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 454

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 455

concentration differences of Fortran and CUDA C versions. 456

22

 457

23

Figure 7. H2O2 and PSO4 concentrations outputted by CAMx model for Fortran, standard C, and 458

CUDA C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard 459

C versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 460

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 461

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 462

concentration differences of Fortran and CUDA C versions. 463

Figure 8. shows the boxplot of AEs and relative error (REs) in all grid boxes for 464

the six species during the porting process. As described above, the AEs and REs 465

introduced by the Fortran to standard C code refactoring process are significantly small, 466

and the primary error comes from converting standard C to CUDA C. Statistically, the 467

average of AEs (REs) of SO2, O3, NO2, CO, H2O2 and PSO4 were -0.0009 ppbV (-468

0.01%), 0.0004 ppbV (-0.004%), 0.0005 ppbV (0.008%), 0.03 ppbV (0.01%), 469

2.1 × 10^e ppbV (-0.01%) and 0.0002 𝜇𝑔 ∙ 𝑚^_ (0.0023%), respectively between 470

the Fortran and CUDA C versions. In terms of time series, the regionally averaged time 471

series of the three versions are almost consistent (as is shown in Figure S2), and the 472

maximum AEs for the above six species are 0.001ppbV, 0.005 ppbV, 0.002 ppbV, 473

0.03ppbV, 0.0001 ppbV and 0.0002 𝜇𝑔 ∙ 𝑚^_, respectively, between the Fortran and 474

CUDA C versions. 475

 476

Figure 8. The distributions of absolute errors and relative errors for SO2, O3, NO2, CO, H2O2 and 477

PSO4 in all of the grid boxes after 48 hours of integration. 478

Figure 9. presents the regionally averaged time series and AEs of SO2, O3, NO2, 479

24

CO, H2O2 and PSO4. The time series between different versions is almost consistent, 480

and the maximum AEs for above six species are 0.001ppbV, 0.005 ppbV, 0.002 ppbV, 481

0.03ppbV, 0.0001 ppbV and 0.0002 𝜇𝑔 ∙ 𝑚^_, respectively between the Fortran and 482

CUDA C versions. 483

It is difficult to verify the scientific applicability of the results from CUDA C 484

version because the programming language and hardware are different between the 485

Fortran and CUDA C version. Here, we used the evaluation method of Wang et al. 486

(2021a) to compute the root mean square errors (RMSEs) of SO2, O3, NO2, CO, H2O2 487

and PSO4 between the Fortran and CUDA C versions, which are 0.0007 ppbV, 0.001 488

ppbV, 0.0002 ppbV, 0.0005 ppbV, 0.00003 ppbV, and 0.0004 𝜇𝑔 ∙ 𝑚^_ respectively, 489

much smaller than the spatial variation of the whole region, which is 7.0 ppbV 490

(approximately 0.004%), 9.7 ppbV (approximately 0.003%), 7.4 ppbV (approximately 491

0.003%), 142.2 ppbV (approximately 0.006%), 0.2ppbV (approximately 0.015%) and 492

1.7 𝜇𝑔 ∙ 𝑚^_ (approximately 0.004%). It is indicated that the bias between CUDA C 493

and Fortran version of the above six species is negligible compared with their own 494

spatial changes, and the results of the CUDA C version are generally acceptable for 495

research. 496

 497

4.3. Offline performance comparison of GPU-HADVPPM 498

As described in the Sect. 4.2, we validate that the CAMx model result of the 499

CUDA C version can be generally acceptable for scientific research. We tested the 500

offline performance of the HADVPPM and GPU-HADVPPM scheme on 1 CPU core 501

and 1 GPU card, respectively. There are 7 variables input into the HADVPPM program, 502

which are nn, dt, dx, con, vel, area, and areav, and their specific meanings are shown in 503

Table S1. 504

Firstly, we use random_number function in Fortran to create random single-505

precision floating-point numbers of different sizes for the above 7 variables, and then 506

transmit these random numbers to the hadvppm Fortran program and hadvppm_kernel 507

CUDA C program for computation, respectively. Finally, test the offline performance 508

带格式的: 下标

带格式的: 下标

带格式的: 下标

带格式的: 下标

带格式的: 下标

带格式的: 下标

删除的内容: 509

删除的内容: Figure 9. Time series and AEs of SO2, O3, 510
NO2, CO, H2O2 and PSO4 outputted by CAMx model for 511
Fortran, standard C, and CUDA C versions.↵512

25

of the HADVPPM and GPU-HADVPPM on the CPU and GPU platforms. During the 513

offline performance experiments, we used two different CPUs and GPUs described in 514

the Sect. 2.4., and the experimental results are shown in Figure 9. 515

On the CPU platform, the wall time of hadvppm Fortran program does not change 516

significantly when the data size is less than 1000. With the increase in the data size, its 517

wall time increases linearly. When the data size reaches 10f, the wall time of the 518

hadvppm Fortran program on Intel Xeon E5-2682v4 and Intel Platinum 8168 CPU 519

platforms is 1737.3ms and 1319.0ms, respectively. On the GPU platform, the 520

reconstructed and extended CUDA C program implements parallel computation of 521

multiple grid points by executing a large number of kernel function copies, so the 522

computational efficiency of hadvppm_kernel CUDA C code on it is significantly 523

improved. In the size of 10f	random numbers, the hadvppm_kernel CUDA C program 524

takes only 12.1ms and 1.6ms to complete the computation on the NVIDIA Tesla K40m 525

and NVIDIA Tesla V100 GPU. 526

Figure 9. (b) shows the speedup of HADVPPM and GPU-HADVPPM on CPU 527

platform and GPU platform under different data sizes. When mapping the HADVPPM 528

scheme to GPU, the computational efficiency under different data size is not only 529

significantly improved, but also the larger the data size, the more obvious the 530

acceleration effect of the GPU-HADVPPM. For example, in the size of 10f random 531

numbers, the GPU-HADVPPM achieved 1113.6x and 845.4x acceleration on the 532

NVIDIA Tesla V100 GPU, respectively, compared to the two CPU platforms. Although 533

the K40m GPU's single-card computing performance is slightly lower than that of the 534

V100 GPU, GPU-HADVPPM can also achieve up to 143.3x and 108.8x acceleration. 535

As described in Sect. 3.2, the thread is the most basic unit of GPU for parallel 536

computing. Each dimension of the three-dimensional block can contain a maximum 537

number of threads of 1024,1024, and 64, respectively. Each dimension of the three-538

dimensional grid can contain a maximum number of blocks of 2_# − 1, 65535, and 539

65535. It is theoretically possible to distribute a large number of copies of kernel 540

functions into tens of billions of threads for parallel computing without exceeding the 541

删除的内容: 10542

删除的内容: 10543

26

GPU memory. In the offline performance experiments, the GPU achieved up to 10 544

million threads of parallel computing, while the CPU can only use serial cyclic 545

computation. Therefore, GPU-HADVPPM achieves a maximum acceleration of about 546

1100x without I/O. In addition to this study, the GPU-based SBU-YLIN scheme in the 547

WRF model can achieve 896x acceleration compared to the Fortran implementation 548

running on the CPU (Mielikainen et al., 2012b). 549

 550

Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM scheme on CPU and 551

GPU. The unit of the wall times for the offline performance experiments is millisecond(ms). 552

4.4. Coupling performance comparison of GPU-HADVPPM with different GPU 553

configurations 554

4.4.1. CAMx-CUDA on a single GPU 555

Offline performance results show that the larger the data size, the more obvious 556

the acceleration effect of GPU-HADVPPM scheme. After coupling the GPU-557

HADVPPM to CAMx without changing the advection module algorithm, the overall 558

computational efficiency of CAMx-CUDA model is extremely low, and it takes about 559

621 minutes to complete one-hour integration on the V100 cluster. Therefore, according 560

to the optimization scheme in Sect. 3.2, by optimizing the algorithm of xyadvec Fortran 561

program, we gradually increase the size of data transmitted and reduce the frequency 562

of data transmission between CPU and GPU. When the data transmission frequency 563

删除的内容: 10564

27

between CPU and GPU is reduced to 1 within one time-step, we further optimize the 565

GPU memory access order on GPU card, eliminate unnecessary assignment loops 566

before kernel functions launched and use thread and block indices. 567

Table 4. lists the total elapsed time for different versions of CAMx-CUDA model 568

during the optimization, as described in Section 3.2. Since the xyadvec program in the 569

CAMx-CUDA V1.0 is not optimized, it is extremely computationally inefficient when 570

starting two CPU processes and configuring a GPU card for P1. On the K40m and V100 571

cluster, it takes 10829 seconds and 37237 seconds respectively to complete 1-hour 572

simulation. 573

By optimizing the algorithm of xyadvec Fortran program and hadvppm_kernel 574

CUDA C program, the frequency of data transmission between CPU and GPU was 575

decreased, and the overall computing efficiency was improved after GPU-HADVPPM 576

coupling to CAMx-CUDA model. In CAMx-CUDA V1.2, the frequency of data 577

transmission between CPU-GPU within one time step is reduced to 1, and the elapsed 578

time on the two heterogeneous clusters is 1207 seconds and 548 seconds, respectively, 579

and the speedup is 9.0x and 68.0x compared to the CAMx-CUDA V1.0. 580

 GPU memory access order can directly affect the overall computational 581

efficiency of GPU-HAVPPM on the GPU. In CAMx-CUDA V1.3, we have optimized 582

the memory access order of hadvppm_kernel CUDA C program on the GPU and 583

eliminated unnecessary assignment loops before kernel functions launched, which 584

further improved the CAMx-CUDA model computational efficiency, resulting in 12.7x 585

and 94.8x speedups. 586

Using thread and block indices to compute horizontal grid points simultaneous can 587

greatly improve the computational efficiency of GPU-HADVPPM and thus reduce the 588

overall elapsed time of CAMx-CUDA model. CAMx-CUDA V1.4 further reduces the 589

elapsed time by 378 seconds and 103 seconds respectively on K40m cluster and V100 590

cluster compared with CAMx-CUDA V1.3, and achieving up to 29.0x and 128.4x 591

speedup compared with CAMx-CUDA V1.0. 592

Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The 593

删除的内容: 5594

删除的内容: CAMx-V1.0595

删除的内容: 5596

28

unit of elapsed time for experiments is seconds (s). 597

Versions
K40m cluster V100 cluster

Elapsed Time Speedup Elapsed Time Speedup

CAMx-CUDA V1.0 10829 1.0 37237 1.0

CAMx-CUDA V1.1 1403 7.7 1082 34.4

CAMx-CUDA V1.2 1207 9.0 548 68.0

CAMx-CUDA V1.3 751 12.7 393 94.8

CAMx-CUDA V1.4 373 29.0 290 128.4

 598

 599

In terms of the single module computational efficiency of HADVPPM and GPU-600

HADVPPM, we further coupling test the computational performance of the Fortran 601

version HADVPPM on the CPU, C version HADVPPM on the CPU, and CUDA C 602

version GPU-HADVPPM in CAMx-CUDA V1.4 (GPU-HADVPPM V1.4) on the 603

GPU, using system_clock functions in the Fortran language and cudaEvent_t in 604

CUDA programming. The specific results are shown in Figure 10. On the K40m 605

cluster, it takes 37.7 seconds and 51.4 seconds to launch the Intel Xeon E5-2682 v4 606

CPU to run Fortran and C version HADVPPM, the C version is 26.7% slower than 607

the Fortran version. After the CUDA technology was used to convert the C code into 608

CUDA C, the CUDA C version took 29.6 seconds to launch an NVIDIA Telsa K40m 609

GPU to run GPU-HADVPPM V1.4, with 1.3x and 1.7x acceleration. On the V100 610

cluster, the Fortran, the C, and the CUDA C version are computationally more 611

efficient than those on the K40m cluster. It takes 30.1 seconds and 45.2 seconds to 612

launch Intel Xeon Platinum 8168 CPU to run Fortran and C version HADVPPM and 613

1.6 seconds to run the GPU-HADVPPM V1.4 using an NVIDIA V100 GPU. The 614

computational efficiency of the CUDA C version is 18.8x and 28.3x higher than 615

删除的内容: In terms of the single-module computational 616
efficiency of HADVPPM and GPU-HADVPPM, we further 617
test their performance in CPU and GPU using system_clock 618
functions in the Fortran language and cudaEvent_t in CUDA 619
programming. Figure 11. show the elapsed time of 620
HADVPPM and GPU-HADVPPM in CAMX-CUDA V1.4 621
(GPU-HADVPPM V1.4) on K40m cluster and V100 cluster. 622
On K40m cluster, it takes 37.7 seconds and 29.6 seconds to 623
launch the Intel Xeon E5-2682 v4 CPU and a NVIDIA Tesla 624
K40m GPU to run HADVPPM and GPU-HADVPPM, 625
respectively, with 1.3x acceleration. On the V100 cluster, it 626
takes 30.6 seconds to launch the Intel Xeon Platinum 8168 627
CPU to complete the HADVPPM operation, and only 1.6 628
seconds to run the GPU-HADVPPM using a NVIDIA V100 629
GPU after porting, with a speedup of 19.4x.630

删除的内容: ↵631
Figure 11. The elapsed time of HADVPPM and GPU-632
HADVPPM V1.4 on CPU and GPU. The unit is seconds (s).633

删除的内容: 11634

29

Fortran and C versions.635

 636

Figure 10. The elapsed time of the Fortran version HADVPPM on the CPU, the C version 637

HADVPPM on the CPU, and CUDA C version GPU-HADVPPM V1.4 on the GPU. The unit is 638

seconds (s). 639

4.4.2. CAMx-CUDA on multiple GPUs 640

To make full use of multi-core and multi-GPU in the heterogeneous cluster, 641

MPI+CUDA acceleration algorithm was implemented to improve the total 642

computational performance of the CAMx-CUDA model. Two different compile flags 643

were implemented in this study before comparing the computational efficiency of 644

CAMx-CUDA V1.3 and V1.4 on multiple GPUs, namely -mieee-fp and -fp-model 645

precise. The -mieee-fp compile flag comes from the Makefile of the official CAMx 646

version, which uses the IEEE standard to compare floating-point numbers. Its 647

computation accuracy is higher, but the efficiency is slower. The -fp-model precise 648

compile flag control the balance between precision and efficiency of floating-point 649

calculations, and it can force the compiler to use the vectorization of some calculations 650

under the value-safe. The experiment results show that -fp model precise compile flag 651

is 41.4% faster than -mieee-fp, and the AEs of the simulation results are less than 652

±0.05ppbV (Figure S3). Therefore, the -fp model precise compile flag is implemented 653

删除的内容: ↵654

带格式的: 两端对齐

删除的内容: 2655

30

when comparing the computational efficiency of CAMx-CUDA V1.3 and V1.4 on 656

multiple GPU cards. Figure 11. shows the total elapsed time and speedup of CAMx-657

CUDA V1.3 and V1.4 on the V100 cluster. The total elapsed time decreases as the 658

number of CPU cores and GPU cards increases. When starting 8 CPU cores and 8 GPU 659

cards, the speedup of CAMx-CUDA V1.4 is increased from 3.9x to 4.5x compared with 660

V1.3, and the computational efficiency is increased by 35.0%. 661

 662

Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple 663

GPUs. The unit of elapsed time for experiments is seconds (s). 664

5. Conclusions and discussion 665

GPU accelerators are playing an increasingly important role in high-performance 666

computing. In this study, a GPU acceleration version of the PPM solver (GPU-667

HADVPPM) of horizontal advection for air quality model is developed, that can be run 668

on GPU accelerators using the standard C programming language and CUDA 669

technology. Offline performance experiments results show that K40m and V100 GPU 670

can achieve up to 845.4x and 1113.6x speedup, respectively, and the larger the data 671

input to the GPU, the more obvious the acceleration effect. After coupling GPU-672

HADVPPM to CAMx model, a series of optimization measures are taken, including 673

删除的内容: 12674

删除的内容: 12675

31

reducing the CPU-GPU communication frequency, increasing the size of data 676

computation on GPU, optimizing the GPU memory access order, and using thread and 677

block indices to improve the overall computing performance of CAMx-CUDA model. 678

Using a single GPU card, the optimized CAMx-CUDA V1.4 model improves the 679

computing efficiency by 29.0x and 128.4x on the K40m cluster and the V100 cluster, 680

respectively. In terms of the single-module computational efficiency of GPU-681

HADVPPM, it can achieve 1.3x and 18.8x speedup on NVIDIA Tesla K40m GPU and 682

NVIDA Tesla V100 GPU respectively. To make full use of multi-core and multi-GPU 683

supercomputers and further improve the total computational performance of CAMx-684

CUDA model, a parallel architecture with an MPI+CUDA hybrid paradigm is presented. 685

After implementing the acceleration algorithm, the total elapsed time decreases as the 686

number of CPU cores and GPU cards increases, and it can achieve up to 4.5x speedup 687

when launch 8 CPU cores and 8 GPU cards compared with 2 CPU cores and 2 GPU 688

cards. 689

However, there are some limitations of the current approach which are as follows: 690

1) We currently implemented thread and block co-indexing to compute horizontal 691

grid points in parallel. Given the CAMx model 3-dimensional grid computing 692

characteristics, 3-dimensional thread and block co-indexing will be considered to 693

compute 3-dimensional grid points in parallel. 694

2) The communication bandwidth of data transfer is one of the main issues for 695

restricting the computing performance of CUDA C codes on GPUs. This restriction not 696

only holds true for GPU-HADVPPM, but also WRF module as well (Mielikainen et al., 697

2012b; Mielikainen et al., 2013b; Huang et al., 2013). In this study, data transmission 698

efficiency between CPU and GPU is improved only by reducing communication 699

frequency. In the future, more technologies, such as pinned memory (Wang et al.,2016), 700

will be considered to solve the communication bottleneck between CPU and GPU. 701

3) In order to further improve the overall computational efficiency of the CAMx 702

model, the heterogeneous porting scheme proposed in this study will be considered to 703

carry out the heterogeneous porting of other CAMx modules in the future. 704

删除的内容: The communication bandwidth of data transfer 705
is one of the main issues for restricting the computing 706
performance of CUDA C codes on GPUs. This restriction not 707
only holds true for GPU-HADVPPM, but also WRF module 708
as well (Mielikainen et al., 2012b; Mielikainen et al., 2013b; 709
Huang et al., 2013). Data transfer efficiency between CPU 710
and GPU can be optimized. ↵711
The results of this offline performance experiment shows that 712
the larger the amount of data transferred to the GPU, the more 713
obvious the acceleration effect. However, the number of 3D 714
grids points in the coupling test case in this paper is only 715
145×157×14, a larger simulation case can be used. ↵716
The computation of HADVPPM is just a small part of the 717
whole CAMx model. When CAMx model will be completely 718
implemented on GPU, the inputs for GPU-HADVPPM do not 719
have to be transferred from CPU. Similarly, outputs of GPU-720
HADVPPM will be directly inputs to another CAMx module 721
on GPU. Therefore, the role of I/O is greatly diminished once 722
all of CAMx model have been converted to run on GPUs. In 723
the future, other CAMx modules can be considered to adopt 724
the scheme given in this paper to carry out heterogeneous 725
porting.↵726

32

 727

Code and data availability. The source codes of the CAMx version 6.10 are available 728

at https://camx-wp.azurewebsites.net/download/source/ (last access: 24 March 2023, 729

ENVIRON,2022). The dataset related to this paper and CAMx-CUDA codes are 730

available online via ZENODO (http://doi.org/10.5281/zenodo.7765218; Cao et 731

al.,2023). 732

 733

Author contributions.KC conducted the simulation and prepared the materials. QZW, 734

LLW, and LNW planned and organized the project. KC, QZW and XT refactored and 735

optimized code. LLW, NW, HQC, and DQL collected and prepared the data for 736

simulation. KC, QZW, XT, and LNW took part in the discussion. 737

 738

Competing interests. The authors declare that they have no conflict of interest. 739

 740

Acknowledgements. The National Key R&D Program of China (2020YFA0607804 741

& 2017YFC0209805), and National Supercomputing Center in Zhengzhou Innovation 742

Ecosystem Construction Technology Special Program (Grant No.201400210700), and 743

Beijing Advanced Innovation Program for Land Surface funded this work. The research 744

is support by the High Performance Scientific Computing Center (HSCC) of Beijing 745

Normal University and the National Supercomputing Center in Zhengzhou. 746

 747

Reference 748

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a barotropic ocean 749

model using a GPU, Ocean Modelling, 41, 16-21, 10.1016/j.ocemod.2011.10.001, 750

2012. 751

Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: The 752

dataset of the manuscript "GPU-HADVPPM V1.0: high-efficient parallel GPU 753

33

design of the Piecewise Parabolic Method (PPM) for horizontal advection in air 754

quality model (CAMx V6.10)", ZENODO, 755

https://doi.org/10.5281/zenodo.7765218, 2023. 756

Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-757

dynamical simulations, Journal of Computational Physics, 54, 174-201, 758

https://doi.org/10.1016/0021-9991(84)90143-8, 1984. 759

ENVIRON: User Guide for Comprehensive Air Quality Model with Extensions 760

Version 6.1, available at: https://camx-wp.azurewebsites.net/Files/CAMxUsers761

Guide_v6.10.pdf (last access: 19 December 2022), 2014 762

Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., MacDonald, A., Wang, 763

N., Madden, P., Schramm, J., and Duarte, A.: Parallelization and Performance of 764

the NIM Weather Model on CPU, GPU, and MIC Processors, Bulletin of the 765

American Meteorological Society, 98, 2201-2213, 10.1175/bams-d-15-00278.1, 766

2017. 767

Houyoux, M. R. and Vukovich, J. M.: Updates to the Sparse Matrix Operator Kernel 768

Emissions (SMOKE) Modeling System and Integration with Models-3, 769

Huang, B., Mielikainen, J., Plaza, A. J., Huang, B., Huang, A. H. L., and Goldberg, M. 770

D.: GPU acceleration of WRF WSM5 microphysics, High-Performance 771

Computing in Remote Sensing, 10.1117/12.901826, 2011. 772

Huang, B., Huang, M., Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D., 773

and Plaza, A. J.: On the acceleration of Eta Ferrier Cloud Microphysics Scheme in 774

the Weather Research and Forecasting (WRF) model using a GPU, High-775

Performance Computing in Remote Sensing II, 10.1117/12.976908, 2012. 776

Huang, M., Huang, B., Chang, Y.-L., Mielikainen, J., Huang, H.-L. A., and Goldberg, 777

M. D.: Efficient Parallel GPU Design on WRF Five-Layer Thermal Diffusion 778

Scheme, IEEE Journal of Selected Topics in Applied Earth Observations and 779

Remote Sensing, 8, 2249-2259, 10.1109/jstars.2015.2422268, 2015. 780

Huang, M., Huang, B., Mielikainen, J., Huang, H. L. A., Goldberg, M. D., and Mehta, 781

A.: Further Improvement on GPU-Based Parallel Implementation of WRF 5-Layer 782

34

Thermal Diffusion Scheme, 2013 International Conference on Parallel and 783

Distributed Systems, 10.1109/icpads.2013.126, 2013. 784

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W., and Zhang, 785

L.: Porting LASG/ IAP Climate System Ocean Model to Gpus Using OpenAcc, 786

IEEE Access, 7, 154490-154501, 10.1109/access.2019.2932443, 2019. 787

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU Acceleration 788

of the Updated Goddard Shortwave Radiation Scheme in the Weather Research 789

and Forecasting (WRF) Model, IEEE Journal of Selected Topics in Applied Earth 790

Observations and Remote Sensing, 5, 555-562, 10.1109/jstars.2012.2186119, 791

2012a. 792

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: GPU 793

Implementation of Stony Brook University 5-Class Cloud Microphysics Scheme 794

in the WRF, IEEE Journal of Selected Topics in Applied Earth Observations and 795

Remote Sensing, 5, 625-633, 10.1109/jstars.2011.2175707, 2012b. 796

Mielikainen, J., Huang, B., Huang, H. L. A., Goldberg, M. D., and Mehta, A.: Speeding 797

Up the Computation of WRF Double-Moment 6-Class Microphysics Scheme with 798

GPU, Journal of Atmospheric and Oceanic Technology, 30, 2896-2906, 799

10.1175/jtech-d-12-00218.1, 2013a. 800

Mielikainen, J., Huang, B., Wang, J., Allen Huang, H. L., and Goldberg, M. D.: 801

Compute unified device architecture (CUDA)-based parallelization of WRF 802

Kessler cloud microphysics scheme, Computers & Geosciences, 52, 292-299, 803

10.1016/j.cageo.2012.10.006, 2013b. 804

NVIDIA: CUDA C++ Programming Guide Version 10.2, available at: 805

https://docs.nvidia.com/cuda/archive/10.2/pdf/CUDA_C_Programming_Guide.p806

df (last access: 19 December 2022), 2020 807

NVIDIA: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Release 12.1, 808

available at: https://docs.nvidia.com/cuda/floating-point/#differences-from-x86 809

(last access: 18 May 2023), 2023. 810

Odman, M. and Ingram, C.: Multiscale Air Quality Simulation Platform (MAQSIP): 811

35

Source Code Documentation and Validation, 1996. 812

Price, E., Mielikainen, J., Huang, M., Huang, B., Huang, H.-L. A., and Lee, T.: GPU-813

Accelerated Longwave Radiation Scheme of the Rapid Radiative Transfer Model 814

for General Circulation Models (RRTMG), IEEE Journal of Selected Topics in 815

Applied Earth Observations and Remote Sensing, 7, 3660-3667, 816

10.1109/jstars.2014.2315771, 2014. 817

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D.M., Duda, M. G., 818

Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the Advanced 819

Research WRF Version3 (No.NCAR/TN-475CSTR), University Corporation for 820

Atmospheric Research, https://doi.org/10.5065/D68S4MVH, NCAR, 2008. 821

Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, 822

G. R.: Revisiting China's CO emissions after the Transport and Chemical 823

Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, 824

atmospheric modeling, and observations, Journal of Geophysical Research: 825

Atmospheres, 111, https://doi.org/10.1029/2006JD007118, 2006. 826

Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, 827

Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An 828

inventory of gaseous and primary aerosol emissions in Asia in the year 2000, 829

Journal of Geophysical Research: Atmospheres, 108, 830

https://doi.org/10.1029/2002JD003093, 2003. 831

Sun, Y., Wu, Q., Wang, L., Zhang, B., Yan, P., Wang, L., Cheng, H., Lv, M., Wang, N., 832

and Ma, S.: Weather Reduced the Annual Heavy Pollution Days after 2016 in 833

Beijing, Sola, 18, 135-139, 10.2151/sola.2022-022, 2022. 834

Wahib, M. and Maruyama, N.: Highly optimized full GPU-acceleration of non-835

hydrostatic weather model SCALE-LES, 2013 IEEE International Conference on 836

Cluster Computing (CLUSTER), 23-27 Sept. 2013, 1-8, 837

10.1109/CLUSTER.2013.6702667, 838

Wang, P., Jiang, J., Lin, P., Ding, M., Wei, J., Zhang, F., Zhao, L., Li, Y., Yu, Z., Zheng, 839

W., Yu, Y., Chi, X., and Liu, H.: The GPU version of LASG/IAP Climate System 840

36

Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for 841

portability (HIP) framework and its large-scale application, Geosci. Model Dev., 842

14, 2781-2799, 10.5194/gmd-14-2781-2021, 2021a. 843

Wang, Y., Guo, M., Zhao, Y., and Jiang, J.: GPUs-RRTMG_LW: high-efficient and 844

scalable computing for a longwave radiative transfer model on multiple GPUs, 845

The Journal of Supercomputing, 77, 4698-4717, 10.1007/s11227-020-03451-3, 846

2021b. 847

Wang, Z., Wang, Y., Wang, X., Li, F., Zhou, C., Hu, H., and Jiang, J.: GPU-848

RRTMG_SW: Accelerating a Shortwave Radiative Transfer Scheme on GPU, 849

IEEE Access, 9, 84231-84240, 10.1109/access.2021.3087507, 2016. 850

Xiao, H., Lu, Y., Huang, J., and Xue, W.: An MPI+OpenACC-based PRM scalar 851

advection scheme in the GRAPES model over a cluster with multiple CPUs and 852

GPUs, Tsinghua Science and Technology, 27, 164-173, 853

10.26599/TST.2020.9010026, 2022. 854

Xu, S., Huang, X., Oey, L. Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: 855

a GPU-based Princeton Ocean Model, Geoscientific Model Development, 8, 856

2815-2827, 10.5194/gmd-8-2815-2015, 2015. 857

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, 858

Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and 859

Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. 860

Chem. Phys., 9, 5131-5153, 10.5194/acp-9-5131-2009, 2009. 861

第 7 页: [1] 删除的内容 凯 2023/5/18 10:34:00

... [1]

带格式的

... [2]

