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Abstract. With semiconductor technology gradually approaching its physical and 17 

thermal limits, Graphics processing unit (GPU) is becoming an attractive solution in 18 

many scientific applications due to their high performance. This paper presents an 19 

application of GPU accelerators in air quality model. We endeavor to demonstrate an 20 

approach that runs a PPM solver of horizontal advection (HADVPPM) for air quality 21 

model CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new 22 

Compute Unified Device Architecture C (CUDA C) code to make it computable on the 23 

GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including 24 

reducing the CPU-GPU communication frequency, increasing the size of data 25 

computation on GPU, optimizing the GPU memory access, and using thread and block 26 

indices in order to improve the overall computing performance of CAMx model 27 

coupled with GPU-HADVPPM (named as CAMx-CUDA model). Finally, a 28 

heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-29 

HADVPPM on GPU clusters with Massage Passing Interface (MPI) and CUDA. 30 

Offline experiment results show that running GPU-HADVPPM on one NVIDIA Tesla 31 

K40m and NVIDIA Tesla V100 GPU can achieve up to 845.4x and 1113.6x 32 
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acceleration. By implementing a series of optimization schemes, the CAMx-CUDA 33 

model resulted in a 29.0x and 128.4x improvement in computational efficiency using a 34 

GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the single-35 

module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and 18.8x 36 

speedup on NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU respectively. The 37 

multi-GPU acceleration algorithm enables 4.5x speedup with 8 CPU cores and 8 GPU 38 

accelerators on V100 cluster. 39 

1. Introduction 40 

Since the introduction of the personal computer in the late 1980s, the computer 41 

and mobile device industry has been one of the most flourishing markets all over the 42 

world (Bleichrodt et al., 2012). In recent years, the improvement of the performance of 43 

the Central Processing Unit (CPU) is limited by its heat dissipation, the development 44 

of Moore's Law has flattened. A common trend in high-performance computing today 45 

is the utilization of hardware accelerators that execute codes rich in data parallelism to 46 

form high-performance heterogeneous system. GPUs are widely used as accelerators 47 

due to high peak performance offered. In the top ten supercomputing list released in 48 

December 2022 (https://www.top500.org/lists/top500/list/2022/11/, last access: 19 49 

December 2022), there are seven heterogeneous supercomputing platforms built with 50 

CPU processors and GPU accelerators, of which the top one Frontier at the Oak Ridge 51 

National Laboratory uses AMD's third-generation EPYC CPU and AMD Instinct 52 

MI250X GPU, and its computing performance reaches Exascale (10#$ calculations per 53 

second) for the first time (https://www.amd.com/en/press-releases/2022-05-30-world-54 

s-first-exascale-supercomputer-powered-amd-epyc-processors-and-amd, last access: 55 

19 December 2022). Such powerful computing performance of the heterogeneous 56 

system not only injects new vitality into high-performance computing, but also provides 57 

new solutions for improving the performance of numerical models in geoscience.  58 

The GPU has proven successful in weather models such as Non-Hydrostatic 59 
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Icosahedral Model (NIM; Govett et al.,2017), Global/Regional Assimilation and 60 

Prediction System (GRAPES; Xiao et al., 2022), and Weather Research and Forecasting 61 

model (WRF; Huang et al., 2011; Huang et al., 2012; Mielikainen et al., 2012a; 62 

Mielikainen et al., 2012b; Mielikainen et al., 2013a ; Mielikainen et al., 2013b; Price et 63 

al., 2014; Huang et al., 2015), ocean models such as LASG/IAP Climate System Ocean 64 

Model (LICOM; Jiang et al., 2019; Wang et al., 2021a) and Princeton Ocean Model 65 

(POM; Xu et al., 2015), and the Earth System Model of Chinese Academy of Sciences 66 

(CAS-ESM; Wang et al., 2016; Wang et al., 2021b).  67 

Govett et al., (2017) used Open Accelerator (OpenACC) directives to port the 68 

dynamics of NIM to the GPU and achieved 2.5x acceleration. Also using OpenACC 69 

directives, Xiao et al., (2022) ported the PRM (Piecewise Rational Method) scalar 70 

advection scheme in the GRAPES to the GPU, achieving up to 3.51x faster than 32 71 

CPU cores. In terms of the most widely used WRF, several parameterization schemes, 72 

such as RRTMG_LW scheme (Price et al., 2014), 5-layer thermal diffusion scheme 73 

(Huang et al., 2015), Eta Ferrier Cloud Microphysics scheme (Huang et al., 2012), 74 

Goddard Shortwave scheme (Mielikainen et al., 2012a), Kessler cloud microphysics 75 

scheme (Mielikainen et al., 2013b), SBU-YLIN scheme (Mielikainen et al., 2012b), 76 

WMS5 scheme (Huang et al., 2011), WMS6 scheme (Mielikainen et al., 2013a), etc., 77 

have been ported heterogeneously using CUDA C and achieved 37x~896x acceleration 78 

results. The LICOM has carried out heterogeneous porting using OpenACC (Jiang et 79 

al., 2019) and Heterogeneous-compute Interface for Portability C (HIP C) technologies, 80 

and achieved up to 6.6x and 42x acceleration, respectively (Wang et al., 2021a). For the 81 

Princeton Ocean Model, Xu et al., (2015) use CUDA C to carry out heterogeneous 82 

porting and optimization, the performance of gpu-POM v1.0 on four GPUs is 83 

comparable to that on 408 standard Intel Xeon X5670 CPU cores. In terms of climate 84 

system model, Wang et al., (2016) and Wang et al., (2021b) used CUDA Fortran and 85 

CUDA C to carry out heterogeneous porting of the RRTMG_SW and RRTMG_LW 86 

scheme of the atmospheric component model of the  CAS-ESM earth system model, 87 

and achieved a 38.88x and 77.78x acceleration respectively. 88 

删除的内容: CAS-EMS89 

删除的内容: CAS-EMS 90 
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Programming a GPU accelerator can be a hard and error-prone process that 91 

requires specially designed programing methods, there are three widely used methods 92 

for porting program to GPUs as described above. The first method uses the OpenACC 93 

directive (https://www.openacc.org/, last access: 19 December 2022) which provides a 94 

set of high-level directives that enable C/C++ and Fortran programmers to utilize 95 

accelerators. The second method uses CUDA Fortran. CUDA Fortran is a software 96 

compiler which co-developed by the Portland Group (PGI) and NVIDIA, and tool chain 97 

for building performance optimized GPU-accelerated Fortran applications targeting the 98 

NVIDIA GPU platform (https://developer.nvidia.com/cuda-fortran, last access: 19 99 

December 2022).  CUDA C involves rewriting the entire program using standard C 100 

programming language and low-level CUDA subroutines 101 

(https://developer.nvidia.com/cuda-toolkit, last access: 19 December 2022) to support 102 

the NVIDIA GPU accelerator. Compared to the other two technologies, CUDA C 103 

porting scheme is the most complex, but its computational performance is the highest 104 

(Mielikainen et al., 2012b; Wahib and Maruyama, 2013; Xu et al., 2015).  105 

Air quality models are critical to understanding how the chemistry and 106 

composition of atmospheric may change over 21st century, as well as preparing adaptive 107 

responses or developing mitigation strategies. Because air quality models need to take 108 

into account the complex physicochemical processes that occur in the atmosphere of 109 

anthropogenic and naturally emissions, simulations are computationally expensive. 110 

Compared to the other geoscientific numerical models, few research have carried out 111 

heterogeneous porting of air quality models. In this study, CUDA C scheme was 112 

implemented in this paper to carry out the hotspot module porting attempt of CAMx in 113 

order to improve the computation efficiency. 114 

2. The CAMx model and experiments 115 

2.1. Model description 116 

CAMx model is a state-of-the air quality model developed by Ramboll Environ 117 
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(https://www.camx.com/, last access: 19 December 2022). CAMx version 6.10 (CAMx 118 

V6.10; ENVIRON, 2014) is chosen in this study, it simulates the emission, dispersion, 119 

chemical reaction, and removal of pollutants by marching the Eulerian continuity 120 

equation forward in time for each chemical species on a system of nested three-121 

dimensional grids. The Eulerian continuity equation is expressed mathematically in 122 

terrain-following height coordinates as formula (1):  123 
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The first term on the right-hand side represents horizontal advection. In the 127 

numerical methods, the equation of horizontal advection (described in formula (2)) is 128 

performed using the area preserving flux-form advection solver of the Piecewise 129 

Parabolic Method (PPM) of Colella and Woodward (1984) as implemented by Odman 130 

and Ingram (1996).  The PPM solution of horizontal advection (HADVPPM) was 131 

incorporated into CAMx model because it provides higher order accuracy with minimal 132 

numerical diffusion.  133 

In the Fortran code implementation of HADVPPM scheme, the CAMx main 134 

program calls the emistrns program, which mainly performs the physical processes such 135 

as emission, diffusion, advection and dry/wet deposition of pollutants. And then, the 136 

horizontal advection program is invoked by emistrns program to solve the horizontal 137 

advection equation by using the HADVPPM scheme. 138 

2.2. Benchmark performance experiments 139 

The first step of the porting is to test the performance of CAMx benchmark version 140 

and identify the hotspots of the model. On the Intel x86 CPU platform, we launch two 141 

processes concurrently to run the CAMx and take advantage of the Intel Trace Analyzer 142 
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Collector(ITAC; https://www.intel.com/content/www/us/en/docs/trace-analyzer-143 

collector/get-started-guide/2021-4/overview.html, last access: 19 December 2022) and 144 

Intel VTune 145 

Profiler(VTune;https://www.intel.com/content/www/us/en/develop/documentation/vtu146 

ne-help/top.html, last access: 19 December 2022) performance analysis tools to collect 147 

performance information during CAMx operation.  148 

The general MPI performance can be reported by the ITAC tool, and MPI load 149 

balance information, computation and communication profiling of each process is 150 

shown as Fig. 1a. During the running process of CAMx model, Process 0 (P0) spends 151 

99.6% of the time on the MPI_Barrier function and only 0.4% of the time on 152 

computation, while Process 1(P1) spends 99.8% of its time computation and only 0.2% 153 

of its time receiving messages from P0. It is indicated that the parallel design of CAMx 154 

model adopts Master-Slave mode, P0 is responsible for inputting and outputting data 155 

and calling the MPI_Barrier function to synchronize the process, so there is a lot of 156 

MPI waiting time. The other processes are responsible for computation.  157 

The VTune tool detects each module's runtime and the most time-consuming 158 

functions on P1. As shown in Figure 1b, the top four time-consuming modules are 159 

chemistry, diffusion, horizontal advection, and vertical advection in the CAMx model. 160 

In the above four modules, the top five most time-consuming programs are ebirate, 161 

hadvppm, tridiag, diffus, and ebisolv programs, and the total runtime of P1 is 325.1 162 

seconds. Top1 and Top2's most time-consuming programs take 49.4 and 35.6 seconds, 163 

respectively.  164 

By consideration, the hadvppm program was selected to carry out heterogeneous 165 

porting for some reasons. Firstly, the advection module is one of the compulsory 166 

modules of the air quality model, which is mainly used to simulate the transport process 167 

of air pollutants, and it is also a hotspot module detected by the Intel VTune tool. Then, 168 

typical air quality models CAMx, CMAQ, and NAQPMS include advection modules 169 

and use the exact PPM advection solver. The heterogeneous version developed in this 170 

study can be directly applied to the above models. Furthermore, the weather model (e.g., 171 

删除的内容: The VTune tool is used to detect the runtime 172 
of each module and the most time-consuming functions on 173 
P1. As shown in Figure 1b, the top four time-consuming 174 
modules are chemistry, diffusion, horizontal advection, and 175 
vertical advection in CAMx model. The top five most time-176 
consuming programs and their elapsed time are in Table 1. 177 
The total runtime of P1 is 325.1 seconds, and the top five 178 
most time-consuming programs are ebirate, hadvppm, tridiag, 179 
diffus, and ebisolv program. Top1 and Top2's most time-180 
consuming programs take 49.4 and 35.6 seconds, 181 
respectively. By viewing the Fortran code of the above 182 
programs, the hadvppm program has few calculation 183 
branches, and its calculation process does not involve 184 
iterative operations, which satisfies the basic conditions for 185 
the program to run on the GPU. Therefore, a GPU 186 
acceleration version of the HADVPPM scheme, namely 187 
GPU-HADVPPM, is built to improve CAMx performance.↵188 
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WRF) also contains an advection module, so this study's heterogeneous porting method 189 

and experience can be used for reference. Therefore, a GPU acceleration version of the 190 

HADVPPM scheme, namely GPU-HADVPPM, is built to improve CAMx 191 

performance. 192 

 193 

Figure 1. The computation performance of the modules in the CAMx model. (a) Computation and 194 

communication profiling of P0 and P1. (b) Overhead proportions of P1. The top four most time-195 

consuming modules are chemistry, diffusion, horizontal advection, and vertical advection. 196 

 198 

2.3. Porting scheme introduction 199 

The heterogeneous scheme of CAMx-CUDA is shown in Figure 2. The second 200 

time-consuming hadvppm program in the CAMx model was selected to implement the 201 

heterogeneous porting. In order to map the hadvppm program to the GPU, the Fortran 202 

code was converted to standard C code. Then, CUDA programing language, which was 203 

tailor-made for NVIDIA, was added to convert the standard C code into CUDA C for 204 

data-parallel execution on GPU, as GPU-HADVPPM. It prepared the input data for 205 

GPU-HADVPPM by constructing random numbers and tested its offline performance 206 

on the GPU platform. 207 

After coupling GPU-HADVPPM to CAMx model, the advection module code was 208 

删除的内容: Table 1. The top five most time-consuming 209 
programs on the P1 (Total runtime is 325.1 seconds).↵210 

... [1]

删除的内容: The heterogeneous scheme of CAMx-CUDA 211 
is shown in Figure 2. The second time-consuming program 212 
hadvppm in CAMx model, was selected to implement the 213 
heterogeneous porting. In order to map the hadvppm program 214 
to the GPU, the Fortran code of hadvppm program is 215 
converted to standard C code. Then, CUDA programing 216 
language which is tailor-made for NVIDIA was added to 217 
convert the standard C code into CUDA C for data-parallel 218 
execution on GPU, as GPU-HADVPPM. It prepares the input 219 
data for GPU-HADVPPM by constructing random numbers, 220 
and tests its offline performance on GPU platform.↵221 
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optimized according to the characteristics of GPU architecture to improve the overall 222 

computational efficiency on CPU-GPU heterogeneous platform. And then, the multi-223 

CPU core and multi-GPU card acceleration algorithm was adopted to improve the 224 

parallel extensibility of heterogeneous computing. Finally, the coupling performance 225 

test is implemented after verifying the different CAMx model simulation results. 226 

 227 

Figure 2. Heterogeneous porting scheme of CAMx-CUDA model.  228 

2.4. Hardware components and software environment of the testing system 229 

The experiments are conducted on two GPU clusters: K40m and V100.   230 

hardware components and software environment of the two clusters are listed in Table 231 

1. The K40m cluster is equipped with two 2.5GHz 16-core Intel Xeon E5-2682 v4 CPU 232 

processors and one NVIDIA Tesla K40m GPU card on each node. The NVIDIA Tesla 233 

K40m GPU has 2880 CUDA cores with 12GB of memory. The V100 cluster contains 234 

two 2.7GHz 24-core Intel Xeon Platinum 8168 processors and eight NVIDIA Tesla 235 

V100 GPU cards with 5120 CUDA cores and 16GB memory on each card.  236 

Table 1. Configurations of GPU cluster. 237 

 
Hardware components 

CPU GPU 

K40m cluster 
Intel Xeon E5-2682 v4 CPU 

@2.5GHz, 16 cores 
NVIDIA Tesla K40m, 2880 CUDA 

cores, 12GB memory 

V100 cluster 
Intel Xeon Platinum 8168 CPU @2.7 

GHz, 24 cores 
NVIDIA Tesla V100, 5120 CUDA 

cores, 16GB memory 

 
Software environment 

Compiler and MPI Programming Model 
K40m cluster Intel-2021.4.0 CUDA-10.2 

删除的内容: 2238 

删除的内容: 2239 
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V100 cluster Intel-2019.1.144 CUDA-10.0 

For Fortran and standard C programming, Intel Toolkit (including compiler and 240 

MPI library) version 2021.4.0 and version 2019.1.144 are employed for compiling on 241 

Intel Xeon E4-2682 v4 CPU and Intel Xeon Platinum 8168 CPU, respectively. And 242 

then, CUDA version 10.2 and version 10.0 are employed on NVIDIA Tesla K40m GPU 243 

and NVIDIA Tesla V100 GPU. CUDA (NVIDIA, 2020) is an extension of the C 244 

programming language that offers direct programming of the GPUs. In CUDA 245 

programming, what is called a kernel is actually a subroutine that can be executed on 246 

the GPU. The underlying code in the kernel is divided into a series of threads, each with 247 

a unique "ID" number that can simultaneously process different data through a single-248 

instruction multiple-thread (SIMT) parallel mode. These threads are grouped into 249 

equal-sized thread blocks, which are organized into a grid. 250 

3. Porting and optimization of CAMx advection module on heterogeneous 251 

platform 252 

3.1. Mapping HADVPPM scheme to GPU 253 

3.1.1. Manual code translation from Fortran to standard C 254 

As the CAMx V6.10 code was written in Fortran 90, we rewrote the hadvppm 255 

program from Fortran to CUDA C. As an intermediate conversion step, we refactor the 256 

original Fortran code using standard C. During the refactoring, some considerations are 257 

listed in Table 2: 258 

(1) The subroutine name refactored with standard C must be followed by an 259 

underscore identifier, which can only be recognized when Fortran calls. 260 

(2) In Fortran language, the parameters are transferred by memory address by 261 

default. In the case of mixed programming in Fortran and standard C, parameters 262 

transferred by Fortran are processed by the pointer in standard C. 263 

(3) Variable precision types defined in standard C must be strictly consistent with 264 

删除的内容: 3265 
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those in Fortran. 266 

(4) Some built-in functions in Fortran are not available in standard C and need to 267 

be defined in standard C macro definitions. 268 

(5) For multidimensional arrays, Fortran and standard C follow column-major and 269 

row-major order in-memory read and write, respectively; 270 

(6) Array subscripts in Fortran and standard C are indexed from any integer and 0, 271 

respectively. 272 

Table 2. Some considerations during Fortran to C refactoring. 273 

 Fortran code C code 

Function name subroutine hadvppm() void hadvppm() 

Parameter passing 
hadvppm(nn,dt,dx,con,vel,area,areav,

flxarr,mynn) 

hadvppm(int *nn,float *dt, 
float *dx, float *con, float 

*vel, float *area, float *areav, 

float *flxarr, int *mynn) 

Variable precision real(kind=8) x double x 

Built-in functions max 
#define Max(a, b) 

((a)>(b)?(a):(b)) 
Memory read and 

write for 
multidimensional 

array 

Column-major Row-major 

Array subscript 

index 
Starting from any integer Starting from 0 

 274 

3.1.2. Converting standard C code into CUDA C 275 

After refactoring the Fortran code of the hadvppm program with standard C, 276 

CUDA was used to convert the C code into CUDA C to make it computable on the 277 

GPU. A standard C program using CUDA extensions distributes a large number of 278 

copies of the kernel functions into available multiprocessors and executes them 279 

simultaneously on the GPU. 280 

Figure 3 shows the implementation process of the GPU-HADVPPM. As 281 

删除的内容: 3282 
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mentioned in Sect.2.1, xyadvec program calls the hadvppm program to solve the 283 

horizontal advection function. Since the rewritten CUDA program cannot be called 284 

directly by Fortran program (xyadvec.f), we add an intermediate subroutine 285 

(hadvppm.c) as an interface to transfer the parameters and data required for GPU 286 

computing from xyadvec Fortran program to hadvppm_kernel CUDA C program.  287 

A CUDA program automatically uses numerous threads on GPU to execute kernel 288 

functions. Therefore, the hadvppm_kernel CUDA C program first calculates the 289 

number of parallel threads according to the array dimension. And then allocate GPU 290 

memory, and copy parameters and data from the CPU to the GPU. As the CUDA 291 

program launches a large number of parallel threads to execute kernel functions 292 

simultaneously, the computation results will be copied from the GPU back to the CPU. 293 

Finally, the GPU memory is released, and data computed on the GPU is returned to the 294 

xyadvec program via hadvppm C program.  295 

 296 

Figure 3. The calling and computation process of the GPU-HADVPPM on the CPU-GPU 297 

heterogeneous platform. 298 

3.2. Coupling and optimization of GPU-HADVPPM scheme on a single GPU 299 

After the hadvppm program was rewritten with standard C and CUDA, the 300 

implementation process of HADVPPM scheme is loaded from the CPU to the GPU. 301 
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And then, we coupled the GPU-HADVPPM to CAMx model. For ease of description, 302 

we will refer to this original heterogeneous version of CAMx as CAMx-CUDA V1.0. 303 

In the CAMx-CUDA V1.0, four external loops are nested when hadvppm C program is 304 

called by the xyadvec program. It will result in the widespread data transfers from the 305 

CPU to the GPU over the PCIe bus within a time step, making the computation of the 306 

CAMx-CUDA V1.0 inefficient. 307 

Therefore, we optimize the xyadvec Fortran program to significantly reduce the 308 

frequency of data transmission between CPU and GPU, increase the amount of data 309 

computation on GPU, and improve the total computing efficiency of the CAMx on 310 

CPU-GPU heterogeneous platforms. In the original CAMx-CUDA V1.0, four external 311 

loops outside of hadvppm C program and several one-dimensional arrays are computed 312 

before calling hadvppm C program. Then the CPU will frequently launch the GPU and 313 

transfer data to it within a time step. When the code optimization is completed, three or 314 

four-dimensional arrays required for GPU computation within a time step will be sorted 315 

before calling the hadvppm C program, and then the CPU will package and transfer the 316 

arrays to the GPU in batches. The example of xyadvec Fortran program optimization 317 

was shown in Figure S1. 318 

The details of four different versions are shown in Table 3. In the CAMx-CUDA 319 

V1.0, the Fortran code of the HADVPPM scheme was rewritten using standard C and 320 

CUDA, and the xyadvec program is not optimized. The dimensions of the c1d variable 321 

array transmitted to GPU in the X and Y directions are 157 and 145 in this case, 322 

respectively. In CAMx-CUDA V1.1 and CAMx-CUDA V1.2, the c1d variable 323 

transmitted from CPU to GPU are expanded to two (about 23,000 numbers) and four 324 

dimensions (about 27.4 million numbers) by optimizing the xyadvec Fortran program 325 

and hadvppm_kernel CUDA C program, respectively. 326 

The order in which data is accessed in GPU memory affects the computational 327 

efficiency of the code. In the CAMx-CUDA V1.3 of the Table 4, we further optimized 328 

the order in which data is accessed in GPU memory based on the order in which it is 329 

stored in memory, and eliminated unnecessary assignment loops that were added due 330 

删除的内容: 4331 
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to the difference in memory read order between Fortran and C. 332 

As described in Sect.2.4, a thread is the basic unit of parallelism in CUDA 333 

programming. The structure of threads is organized into a three-level hierarchy. The 334 

highest level is a grid, which consists of three-dimensional thread blocks. The second 335 

level is a block, which also consists of three-dimensional threads. Built-in CUDA 336 

variable threadIdx.x determines a unique thread "ID" number inside a thread block. 337 

Similarity, built-in variable blockIdx.x and blockIdx.y determine which block to execute 338 

on, and the size of the block is determined by using the built-in variable blockdim.x. 339 

For the two-dimensional horizontal grid points, many threads and blocks can be 340 

organized so that each CUDA thread computes the results for different spatial positions 341 

simultaneously. 342 

Before the CAMx-CUDA V1.4, the loops for three-dimension spatial grid points 343 

(i,j,k) are replaced by index computations only using thread index (i = threadIdx.x + 344 

blockIdx.x*blockDim.x), to use thread indexes only computes the grid point in the x or 345 

y direction simultaneous. In order to take full advantage of thousands of threads in the 346 

GPU, we implement thread and block indices (i = threadIdx.x + blockIdx.x*blockDim.x; 347 

j = blockIdx.y) to compute all horizontal grid points (i,j) simultaneous in the CAMx-348 

CUDA V1.4. This is permitted because there are no interactions among horizontal grid 349 

points. 350 

Table 3. The details of different CAMx-CUDA versions during optimization. 351 

Version Major revisions 
Amount of data 

computation on GPU 

CAMx-CUDA V1.0 

The Fortran code of the HADVPPM 
subroutine was rewritten using standard 

C and CUDA, and xyadvec.f was not 
optimized. 

157 and 145 in the x 
direction and y direction for 

the c1d variable, 
respectively. 

CAMx-CUDA V1.1 

Optimize xyadec.f and 
hadvppm_kernel.cu to expand the 

dimension of the array transmitted to the 
GPU from 1-dimensional to 2-

dimensional. 

157×145, 
about 23,000 numbers  
for the c2d variable. 

CAMx-CUDA V1.2 

Based on the CAMx-CUDA V1.1, the 
dimension of the array transmitted to the 

GPU is extended from 2 to 4 
dimensions. 

157×145×14×86, 
about 27.4 million numbers 

for the c4d variable. 

删除的内容: 4352 
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CAMx-CUDA V1.3 

Based on the CAMx-CUDA V1.2, the 
order of GPU memory access is 

optimized and unnecessary assignment 
loops are eliminated. 

157×145×14×86, 
about 27.4 million numbers 

for the c4d variable. 

CAMx-CUDA V1.4 

Based on the CAMx-CUDA V1.3, using 
thread and block indices (i = threadIdx.x 

+ blockIdx.x*blockDim.x; j = 
blockIdx.y). 

157×145×14×86, 
about 27.4 million numbers 

for the c4d variable. 

 353 

3.3. MPI+CUDA acceleration algorithm of CAMx-CUDA on multiple GPUs  354 

Generally, super-large clusters have thousands of compute nodes. The current 355 

CAMx V6.10, implemented by adopting MPI communication technology, typically 356 

runs on dozens of compute nodes. Once the GPU-HADVPPM is coupled into the 357 

CAMx, it also has to run on multiple compute nodes which equipped one or more GPUs 358 

on each node. To make full use of multi-core and multi-GPU supercomputers and 359 

further improve the overall computational performance of the CAMx-CUDA, we adopt 360 

a parallel architecture with an MPI+CUDA hybrid paradigm, that is, the collaborative 361 

computing strategy of multiple CPU cores and multiple GPU cards is adopted during 362 

the operation of CAMx-CUDA model. Adopt this strategy, the GPU-HADVPPM can 363 

run on multiple GPUs, the Fortran code of other modules in CAMx-CUDA model can 364 

run on multiple CPU cores. 365 

As is shown in Figure 4., after the simulated region is subdivided by MPI, a CPU 366 

core is responsible for the computation of a subregion. In order to improve the total 367 

computational performance of the CAMx-CUDA model, we further used the NVIDIA 368 

CUDA library to obtain the number of GPUs per node, and then used MPI process ID 369 

and remainder function to determine the GPU ID to be launched by each node. Finally, 370 

we used NVIDIA CUDA library cudaSetDevice to configure a GPU card for each CPU 371 

core. 372 

According to the benchmark performance experiments, the parallel design of 373 

CAMx adopts Master-Slave mode, P0 is responsible for inputting and outputting data. 374 

If two processes (P0 and P1) were launched, only the P1 and its configured GPU 375 
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participate in integration. 376 

 377 

Figure 4. An example of parallel architecture with an MPI+CUDA hybrid paradigm on multiple 378 
GPUs. 379 

4. Experimental results 380 

The validation and evaluation of porting the HADVPPM scheme from the CPU to 381 

the GPU platform were conducted using offline and coupling performance experiments. 382 

First, we validated the result between different CAMx versions, and then the offline 383 

performance of the GPU-HADVPPM on a single GPU was tested by offline experiment. 384 

Finally, the coupling performance experiments illustrate its potential in three 385 

dimensions with varying chemical regimes. Sect.4.2 and Sect.4.4, the CAMx version 386 

of the HADVPPM scheme written by Fortran language, standard C, and CUDA C, is 387 

named F, C, and CUDA C, respectively. 388 

4.1. Experimental setup 389 

The test case is a 48h simulation covering the Beijing, Tianjin and part region of 390 

Hebei province. The horizontal resolution is 3km with 145 × 157 grid boxes. The 391 

model adopted 14 vertical layers. The simulation started at 12:00 UTC, 01 November 392 
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2020, and ended at 12:00 UTC, 03 November 2020. The meteorological fields driving 405 

the CAMx model were provided by the Weather Research and Forecasting (WRF; 406 

Skamarock et al., 2008) model. The Sparse Matrix Operator Kernel Emission (SMOKE; 407 

Houyoux and Vukovich, 1999) version 2.4 model is used to provide gridded emission 408 

data for the CAMx model. The emission inventories (Sun et al., 2022) include the 409 

regional emissions in East Asia that were obtained from the Transport and Chemical 410 

Evolution over the Pacific (TRACE-P; Streets et al., 2003; Streets et al., 2006) project, 411 

30-min(about 55.6km at mid-latitude) spatial resolution Intercontinental Chemical 412 

Transport Experiment-Phase B (INTEX-B; Zhang et al., 2009) and the updated regional 413 

emission inventories in North China. The physical and chemical numerical methods 414 

selected during CAMx model integration are listed in Table S2. 415 

4.2. Error analysis 416 

The hourly concentration of different CAMx simulations (Fortran, C, and CUDA 417 

C versions) are compared to verify the usefulness of the CUDA C version of CAMx for 418 

the numerical precision of scientific usage. Here, we chose six major species, i.e., SO2, 419 

O3, NO2, CO, H2O2 and PSO4 after 48h integration to verify the results. Due to the 420 

differences in programming languages and hardware, the simulation results are affected 421 

during the porting process. Figure 5~7 present the spatial distribution of SO2, O3, NO2, 422 

CO, H2O2 and PSO4, as well as the absolute errors (AEs) of their concentrations from 423 

different CAMx versions. The species' spatial patterns of the three CAMx versions are 424 

visually very similar. Especially between the Fortran and C versions, the AEs in all grid 425 

boxes are in the range of ±0.01 ppbV (the unit of PSO4 is 𝜇𝑔 ∙ 𝑚^_). During the porting 426 

process, the primary error comes from converting standard C to CUDA C, and the main 427 

reason was related to the hardware difference between the CPU and GPU. Due to the 428 

slight difference in data operation and accuracy between CPU and GPU 429 

(NVIDIA,2023), the concentration variable of hadvppm program appears to have 430 

minimal negative values (about −10^`~−10^b) when integrating on GPU. In order to 431 

allow the program to continue running, we forcibly replace these negative values with 432 
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10^`. The absolute errors between the simulation results are caused by the negative 435 

values are replaced by positive values. In general, for SO2, O3, NO2, H2O2 and PSO4, 436 

the AEs in the majority of grid boxes are in the range of ±0.8 ppbV or 𝜇𝑔 ∙ 𝑚^_ 437 

between the standard C and CUDA C versions; for CO, because its background 438 

concentration is higher, the AEs of standard C and CUDA C versions are outside that 439 

range which falls into the range of -8 and 8 ppbV in some grid boxes and shows more 440 

obvious AEs than other species. 441 
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 443 

Figure 5. SO2 and O3 concentrations outputted by CAMx model for Fortran, standard C, and CUDA 444 
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C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard C 445 

versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 446 

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 447 

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 448 

concentration differences of Fortran and CUDA C versions. 449 
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 450 

Figure 6. NO2 and CO concentrations outputted by CAMx model for Fortran, standard C, and 451 
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CUDA C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard 452 

C versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 453 

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 454 

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 455 

concentration differences of Fortran and CUDA C versions. 456 
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Figure 7. H2O2 and PSO4 concentrations outputted by CAMx model for Fortran, standard C, and 458 

CUDA C versions. Panels (a) and (g) are from Fortran versions. Panels (b) and (h) are from standard 459 

C versions. Panels (c) and (i) are from CUDA C versions. Panels (d) and (j) are the output 460 

concentration differences of Fortran and standard C versions. Panels (e) and (k) are the output 461 

concentration differences of standard C and CUDA C versions. Panels (f) and (l) are the output 462 

concentration differences of Fortran and CUDA C versions. 463 

Figure 8. shows the boxplot of AEs and relative error (REs) in all grid boxes for 464 

the six species during the porting process. As described above, the AEs and REs 465 

introduced by the Fortran to standard C code refactoring process are significantly small, 466 

and the primary error comes from converting standard C to CUDA C. Statistically, the 467 

average of AEs (REs) of SO2, O3, NO2, CO, H2O2 and PSO4 were -0.0009 ppbV (-468 

0.01%), 0.0004 ppbV (-0.004%), 0.0005 ppbV (0.008%), 0.03 ppbV (0.01%), 469 

2.1 × 10^e  ppbV (-0.01%) and 0.0002 𝜇𝑔 ∙ 𝑚^_  (0.0023%), respectively between 470 

the Fortran and CUDA C versions. In terms of time series, the regionally averaged time 471 

series of the three versions are almost consistent (as is shown in Figure S2), and the 472 

maximum AEs for the above six species are 0.001ppbV, 0.005 ppbV, 0.002 ppbV, 473 

0.03ppbV, 0.0001 ppbV and 0.0002 𝜇𝑔 ∙ 𝑚^_, respectively, between the Fortran and 474 

CUDA C versions. 475 

 476 

Figure 8. The distributions of absolute errors and relative errors for SO2, O3, NO2, CO, H2O2 and 477 

PSO4 in all of the grid boxes after 48 hours of integration. 478 

Figure 9. presents the regionally averaged time series and AEs of SO2, O3, NO2, 479 
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CO, H2O2 and PSO4. The time series between different versions is almost consistent, 480 

and the maximum AEs for above six species are 0.001ppbV, 0.005 ppbV, 0.002 ppbV, 481 

0.03ppbV, 0.0001 ppbV and 0.0002 𝜇𝑔 ∙ 𝑚^_, respectively between the Fortran and 482 

CUDA C versions.  483 

It is difficult to verify the scientific applicability of the results from CUDA C 484 

version because the programming language and hardware are different between the 485 

Fortran and CUDA C version. Here, we used the evaluation method of Wang et al. 486 

(2021a) to compute the root mean square errors (RMSEs) of SO2, O3, NO2, CO, H2O2 487 

and PSO4 between the Fortran and CUDA C versions, which are 0.0007 ppbV, 0.001 488 

ppbV, 0.0002 ppbV, 0.0005 ppbV, 0.00003 ppbV, and 0.0004 𝜇𝑔 ∙ 𝑚^_ respectively, 489 

much smaller than the spatial variation of the whole region, which is 7.0 ppbV 490 

(approximately 0.004%), 9.7 ppbV (approximately 0.003%), 7.4 ppbV (approximately 491 

0.003%), 142.2 ppbV (approximately 0.006%), 0.2ppbV (approximately 0.015%) and 492 

1.7 𝜇𝑔 ∙ 𝑚^_ (approximately 0.004%). It is indicated that the bias between CUDA C 493 

and Fortran version of the above six species is negligible compared with their own 494 

spatial changes, and the results of the CUDA C version are generally acceptable for 495 

research. 496 

 497 

4.3. Offline performance comparison of GPU-HADVPPM 498 

As described in the Sect. 4.2, we validate that the CAMx model result of the 499 

CUDA C version can be generally acceptable for scientific research. We tested the 500 

offline performance of the HADVPPM and GPU-HADVPPM scheme on 1 CPU core 501 

and 1 GPU card, respectively. There are 7 variables input into the HADVPPM program, 502 

which are nn, dt, dx, con, vel, area, and areav, and their specific meanings are shown in 503 

Table S1. 504 

Firstly, we use random_number function in Fortran to create random single-505 

precision floating-point numbers of different sizes for the above 7 variables, and then 506 

transmit these random numbers to the hadvppm Fortran program and hadvppm_kernel 507 

CUDA C program for computation, respectively. Finally, test the offline performance 508 
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of the HADVPPM and GPU-HADVPPM on the CPU and GPU platforms. During the 513 

offline performance experiments, we used two different CPUs and GPUs described in 514 

the Sect. 2.4., and the experimental results are shown in Figure 9.  515 

On the CPU platform, the wall time of hadvppm Fortran program does not change 516 

significantly when the data size is less than 1000. With the increase in the data size, its 517 

wall time increases linearly. When the data size reaches 10f, the wall time of the 518 

hadvppm Fortran program on Intel Xeon E5-2682v4 and Intel Platinum 8168 CPU 519 

platforms is 1737.3ms and 1319.0ms, respectively. On the GPU platform, the 520 

reconstructed and extended CUDA C program implements parallel computation of 521 

multiple grid points by executing a large number of kernel function copies, so the 522 

computational efficiency of hadvppm_kernel CUDA C code on it is significantly 523 

improved. In the size of 10f	random numbers, the hadvppm_kernel CUDA C program 524 

takes only 12.1ms and 1.6ms to complete the computation on the NVIDIA Tesla K40m 525 

and NVIDIA Tesla V100 GPU. 526 

Figure 9. (b) shows the speedup of HADVPPM and GPU-HADVPPM on CPU 527 

platform and GPU platform under different data sizes. When mapping the HADVPPM 528 

scheme to GPU, the computational efficiency under different data size is not only 529 

significantly improved, but also the larger the data size, the more obvious the 530 

acceleration effect of the GPU-HADVPPM. For example, in the size of 10f random 531 

numbers, the GPU-HADVPPM achieved 1113.6x and 845.4x acceleration on the 532 

NVIDIA Tesla V100 GPU, respectively, compared to the two CPU platforms. Although 533 

the K40m GPU's single-card computing performance is slightly lower than that of the 534 

V100 GPU, GPU-HADVPPM can also achieve up to 143.3x and 108.8x acceleration. 535 

As described in Sect. 3.2, the thread is the most basic unit of GPU for parallel 536 

computing. Each dimension of the three-dimensional block can contain a maximum 537 

number of threads of 1024,1024, and 64, respectively. Each dimension of the three-538 

dimensional grid can contain a maximum number of blocks of 2_# − 1, 65535, and 539 

65535. It is theoretically possible to distribute a large number of copies of kernel 540 

functions into tens of billions of threads for parallel computing without exceeding the 541 
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GPU memory. In the offline performance experiments, the GPU achieved up to 10 544 

million threads of parallel computing, while the CPU can only use serial cyclic 545 

computation. Therefore, GPU-HADVPPM achieves a maximum acceleration of about 546 

1100x without I/O. In addition to this study, the GPU-based SBU-YLIN scheme in the 547 

WRF model can achieve 896x acceleration compared to the Fortran implementation 548 

running on the CPU (Mielikainen et al., 2012b). 549 

 550 

Figure 9. The offline performance of the HADVPPM and GPU-HADVPPM scheme on CPU and 551 

GPU. The unit of the wall times for the offline performance experiments is millisecond(ms). 552 

4.4. Coupling performance comparison of GPU-HADVPPM with different GPU 553 

configurations 554 

4.4.1. CAMx-CUDA on a single GPU 555 

Offline performance results show that the larger the data size, the more obvious 556 

the acceleration effect of GPU-HADVPPM scheme. After coupling the GPU-557 

HADVPPM to CAMx without changing the advection module algorithm, the overall 558 

computational efficiency of CAMx-CUDA model is extremely low, and it takes about 559 

621 minutes to complete one-hour integration on the V100 cluster. Therefore, according 560 

to the optimization scheme in Sect. 3.2, by optimizing the algorithm of xyadvec Fortran 561 

program, we gradually increase the size of data transmitted and reduce the frequency 562 

of data transmission between CPU and GPU. When the data transmission frequency 563 
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between CPU and GPU is reduced to 1 within one time-step, we further optimize the 565 

GPU memory access order on GPU card, eliminate unnecessary assignment loops 566 

before kernel functions launched and use thread and block indices. 567 

Table 4. lists the total elapsed time for different versions of CAMx-CUDA model 568 

during the optimization, as described in Section 3.2. Since the xyadvec program in the 569 

CAMx-CUDA V1.0 is not optimized, it is extremely computationally inefficient when 570 

starting two CPU processes and configuring a GPU card for P1. On the K40m and V100 571 

cluster, it takes 10829 seconds and 37237 seconds respectively to complete 1-hour 572 

simulation.  573 

By optimizing the algorithm of xyadvec Fortran program and hadvppm_kernel 574 

CUDA C program, the frequency of data transmission between CPU and GPU was 575 

decreased, and the overall computing efficiency was improved after GPU-HADVPPM 576 

coupling to CAMx-CUDA model. In CAMx-CUDA V1.2, the frequency of data 577 

transmission between CPU-GPU within one time step is reduced to 1, and the elapsed 578 

time on the two heterogeneous clusters is 1207 seconds and 548 seconds, respectively, 579 

and the speedup is 9.0x and 68.0x compared to the CAMx-CUDA V1.0. 580 

 GPU memory access order can directly affect the overall computational 581 

efficiency of GPU-HAVPPM on the GPU. In CAMx-CUDA V1.3, we have optimized 582 

the memory access order of hadvppm_kernel CUDA C program on the GPU and 583 

eliminated unnecessary assignment loops before kernel functions launched, which 584 

further improved the CAMx-CUDA model computational efficiency, resulting in 12.7x 585 

and 94.8x speedups. 586 

Using thread and block indices to compute horizontal grid points simultaneous can 587 

greatly improve the computational efficiency of GPU-HADVPPM and thus reduce the 588 

overall elapsed time of CAMx-CUDA model. CAMx-CUDA V1.4 further reduces the 589 

elapsed time by 378 seconds and 103 seconds respectively on K40m cluster and V100 590 

cluster compared with CAMx-CUDA V1.3, and achieving up to 29.0x and 128.4x 591 

speedup compared with CAMx-CUDA V1.0. 592 

Table 4. Total elapsed time for different versions of CAMx-CUDA during the optimization. The 593 
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unit of elapsed time for experiments is seconds (s). 597 

Versions 
K40m cluster V100 cluster 

Elapsed Time Speedup Elapsed Time Speedup 

CAMx-CUDA V1.0 10829 1.0 37237 1.0 

CAMx-CUDA V1.1 1403 7.7 1082 34.4 

CAMx-CUDA V1.2 1207 9.0 548 68.0 

CAMx-CUDA V1.3 751 12.7 393 94.8 

CAMx-CUDA V1.4 373 29.0 290 128.4 

 598 

 599 

In terms of the single module computational efficiency of HADVPPM and GPU-600 

HADVPPM, we further coupling test the computational performance of the Fortran 601 

version HADVPPM on the CPU, C version HADVPPM on the CPU, and CUDA C 602 

version GPU-HADVPPM in CAMx-CUDA V1.4 (GPU-HADVPPM V1.4) on the 603 

GPU, using system_clock functions in the Fortran language and cudaEvent_t in 604 

CUDA programming. The specific results are shown in Figure 10. On the K40m 605 

cluster, it takes 37.7 seconds and 51.4 seconds to launch the Intel Xeon E5-2682 v4 606 

CPU to run Fortran and C version HADVPPM, the C version is 26.7% slower than 607 

the Fortran version. After the CUDA technology was used to convert the C code into 608 

CUDA C, the CUDA C version took 29.6 seconds to launch an NVIDIA Telsa K40m 609 

GPU to run GPU-HADVPPM V1.4, with 1.3x and 1.7x acceleration. On the V100 610 

cluster, the Fortran, the C, and the CUDA C version are computationally more 611 

efficient than those on the K40m cluster. It takes 30.1 seconds and 45.2 seconds to 612 

launch Intel Xeon Platinum 8168 CPU to run Fortran and C version HADVPPM and 613 

1.6 seconds to run the GPU-HADVPPM V1.4 using an NVIDIA V100 GPU. The 614 

computational efficiency of the CUDA C version is 18.8x and 28.3x higher than 615 
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Fortran and C versions.635 

 636 

Figure 10. The elapsed time of the Fortran version HADVPPM on the CPU, the C version 637 

HADVPPM on the CPU, and CUDA C version GPU-HADVPPM V1.4 on the GPU. The unit is 638 

seconds (s). 639 

4.4.2. CAMx-CUDA on multiple GPUs 640 

To make full use of multi-core and multi-GPU in the heterogeneous cluster, 641 

MPI+CUDA acceleration algorithm was implemented to improve the total 642 

computational performance of the CAMx-CUDA model. Two different compile flags 643 

were implemented in this study before comparing the computational efficiency of 644 

CAMx-CUDA V1.3 and V1.4 on multiple GPUs, namely -mieee-fp and -fp-model 645 

precise. The -mieee-fp compile flag comes from the Makefile of the official CAMx 646 

version, which uses the IEEE standard to compare floating-point numbers. Its 647 

computation accuracy is higher, but the efficiency is slower. The -fp-model precise 648 

compile flag control the balance between precision and efficiency of floating-point 649 

calculations, and it can force the compiler to use the vectorization of some calculations 650 

under the value-safe. The experiment results show that -fp model precise compile flag 651 

is 41.4% faster than -mieee-fp, and the AEs of the simulation results are less than 652 

±0.05ppbV (Figure S3). Therefore, the -fp model precise compile flag is implemented 653 
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when comparing the computational efficiency of CAMx-CUDA V1.3 and V1.4 on 656 

multiple GPU cards. Figure 11. shows the total elapsed time and speedup of CAMx-657 

CUDA V1.3 and V1.4 on the V100 cluster. The total elapsed time decreases as the 658 

number of CPU cores and GPU cards increases. When starting 8 CPU cores and 8 GPU 659 

cards, the speedup of CAMx-CUDA V1.4 is increased from 3.9x to 4.5x compared with 660 

V1.3, and the computational efficiency is increased by 35.0%. 661 

 662 

Figure 11. The total elapsed time and speedup of CAMx-CUDA V1.3 and V1.4 on multiple 663 

GPUs. The unit of elapsed time for experiments is seconds (s). 664 

5. Conclusions and discussion 665 

GPU accelerators are playing an increasingly important role in high-performance 666 

computing. In this study, a GPU acceleration version of the PPM solver (GPU-667 

HADVPPM) of horizontal advection for air quality model is developed, that can be run 668 

on GPU accelerators using the standard C programming language and CUDA 669 

technology. Offline performance experiments results show that K40m and V100 GPU 670 

can achieve up to 845.4x and 1113.6x speedup, respectively, and the larger the data 671 

input to the GPU, the more obvious the acceleration effect. After coupling GPU-672 

HADVPPM to CAMx model, a series of optimization measures are taken, including 673 
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reducing the CPU-GPU communication frequency, increasing the size of data 676 

computation on GPU, optimizing the GPU memory access order, and using thread and 677 

block indices to improve the overall computing performance of CAMx-CUDA model. 678 

Using a single GPU card, the optimized CAMx-CUDA V1.4 model improves the 679 

computing efficiency by 29.0x and 128.4x on the K40m cluster and the V100 cluster, 680 

respectively. In terms of the single-module computational efficiency of GPU-681 

HADVPPM, it can achieve 1.3x and 18.8x speedup on NVIDIA Tesla K40m GPU and 682 

NVIDA Tesla V100 GPU respectively. To make full use of multi-core and multi-GPU 683 

supercomputers and further improve the total computational performance of CAMx-684 

CUDA model, a parallel architecture with an MPI+CUDA hybrid paradigm is presented. 685 

After implementing the acceleration algorithm, the total elapsed time decreases as the 686 

number of CPU cores and GPU cards increases, and it can achieve up to 4.5x speedup 687 

when launch 8 CPU cores and 8 GPU cards compared with 2 CPU cores and 2 GPU 688 

cards. 689 

However, there are some limitations of the current approach which are as follows: 690 

1) We currently implemented thread and block co-indexing to compute horizontal 691 

grid points in parallel. Given the CAMx model 3-dimensional grid computing 692 

characteristics, 3-dimensional thread and block co-indexing will be considered to 693 

compute 3-dimensional grid points in parallel.  694 

2) The communication bandwidth of data transfer is one of the main issues for 695 

restricting the computing performance of CUDA C codes on GPUs. This restriction not 696 

only holds true for GPU-HADVPPM, but also WRF module as well (Mielikainen et al., 697 

2012b; Mielikainen et al., 2013b; Huang et al., 2013). In this study, data transmission 698 

efficiency between CPU and GPU is improved only by reducing communication 699 

frequency. In the future, more technologies, such as pinned memory (Wang et al.,2016), 700 

will be considered to solve the communication bottleneck between CPU and GPU. 701 

3) In order to further improve the overall computational efficiency of the CAMx 702 

model, the heterogeneous porting scheme proposed in this study will be considered to 703 

carry out the heterogeneous porting of other CAMx modules in the future. 704 
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porting.↵726 
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