

- 1 Molecular signatures and formation mechanisms of particulate matter
- 2 (PM) water-soluble chromophores from Karachi (Pakistan) over
- 3 South Asia
- 4 Jiao Tang¹, Jun Li¹, Shizhen Zhao¹, Guangcai Zhong¹, Yangzhi Mo¹, Hongxing Jiang²,
- 5 Bin Jiang¹, Yingjun Chen², Jianhui Tang³, Chongguo Tian³, Zheng Zong⁴, Jabir Hussain
- 6 Syed⁵, Jianzhong Song¹, Gan Zhang¹
- 7

8 ¹State Key Laboratory of Organic Geochemistry and Guangdong province Key 9 Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong 10 Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 11 Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China 12 ²Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), 13 Department of Environmental Science and Engineering, Fudan University, Shanghai 14 200433, China 15 ³Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 16 264003, China 17 18 ⁴Department of Civil and Environmental Engineering, Hong Kong Polytechnic 19 University, Hong Kong, 999077, China 20 ⁵Department of Meteorology, COMSATS University Islamabad (CUI), Islamabad, 21 45550, Pakistan 22 23 Corresponding Authors: 24 Jun Li: junli@gig.ac.cn; Gan Zhang: zhanggan@gig.ac.cn

25

26 Abstract.

27	Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to					
28	characterize chemical components of brown carbon (BrC), yet the molecular basics and					
29	formation mechanisms of chromophores decomposed by parallel factor (PARAFAC)					
30	analysis are not fully understood. Here, water-soluble organic carbon (WSOC) in					
31	aerosols from Karachi, Pakistan, were characterized with EEM spectroscopy and					
32	Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Three					
33	PARAFAC components were identified, including two humic-like (C1 and C2), and					
34	one protein-like (C3) species. Among them, the C2 shows the longest emission maxima					
35	(~494 nm), and correlates tightly with the mass absorption efficiency at 365 nm					
36	(MAE ₃₆₅), the character of BrC. Molecular families associated with each of the three					
37	components were determined by Spearman correlation analysis between FT-ICR MS					
38	peaks and PARAFAC component intensities. The C1 and C2 components are associated					
39	with nitrogen-enriched compounds, despite that C2 more with higher aromaticity,					
40	higher N content, and highly oxygenated compounds. The formulas associated with C3					
41	include fewer nitrogen-containing species, with a lower unsaturated degree and					
42	oxidation state. A dominant oxidation pathway for the formation of C1 and C2 $% \left({\left({{{\left({{C_{1}}} \right)}} \right)_{i \in I}} \right)_{i \in I}} \right)$					
43	components was suggested, notwithstanding their different precursor types. A large					
44	number of formulas associated with C2 were found to be located in the "potential BrC"					
45	region, overlapped with BrC-associated formulas, and readily correlated tightly with					
46	$MAE_{365}.$ This suggests that the compounds illuminating C2 may have also contributed					
47	substantially to the BrC light absorption. These findings were important for future					
48	studies using the EEM-PARAFAC method to explore the compositions, processes, and					
49	sources of atmospheric BrC.					

50

51 **1. Introduction**

52 Water-soluble organic carbon (WSOC), containing aromatic rings or aliphatic 53 structures with carboxyl, hydroxyl, carbonyl, or methoxy functional groups, constitutes 54 a significant portion of organic aerosols (OA) and can affect the roles of aerosols in 55 climate processes, air quality, and human health (Lin and Yu, 2011; Wang et al., 2020b). 56 Atmospheric WSOC originated from primary emissions, including biomass burning, 57 coal burning, and other primary sources (Park and Yu, 2016; Li et al., 2018; Tang et al., 58 2020); as well as the secondary formations, such as the aqueous-phase reaction from 59 anthropogenic or biogenic emission (Gilardoni et al., 2016; Lamkaddam et al., 2021; Updyke et al., 2012; Yu et al., 2021). Light-absorbing WSOC is an important 60 61 component of brown carbon (BrC) and has a strong wavelength-dependent absorption 62 that peaks in the ultraviolet (UV) spectral region and declines through the visible spectral region (Choudhary et al., 2022; Hecobian et al., 2010; Laskin et al., 2015; 63 64 Sullivan et al., 2022). This fraction can contribute significantly to the global radiation 65 balance and affects the photochemistry of the atmosphere (Feng et al., 2013; 66 Kirchstetter and Thatcher, 2012).

67 The reactivity and fate of WSOC are tightly linked to its chemical composition, 68 yet isolating and characterizing the constitutive elements and structure of light-69 absorbing organic molecules from among an abundance of non-absorbing molecules in 70 aerosols is a challenging task. Bulk optical measurements, such as UV-visible (UV-vis) 71 absorption spectroscopy, is an efficient means of characterizing the light absorption 72 properties of BrC (Wu et al., 2021; Hecobian et al., 2010). Excitation-emission matrix 73 (EEM) fluorescence spectroscopy can be employed to quantify and characterize a 74 subset of BrC chromophores that absorb certain wavelengths of light and re-emit a 75 fraction of that energy as fluorescence, providing further insight into the origin, 76 chemical property, and process information. EEM is often coupled with parallel factor (PARAFAC) analysis, which mathematically decomposes the fluorescence data into 77

78	various components, such as humic-like (HULIS), protein-like components (PLOM),						
79	and so on (Chen et al., 2016b; Jiang et al., 2022c; Tang et al., 2020; Chen et al., 2021a).						
80	Due to its high detection sensitivity and chromophore-resolving ability, EEM						
81	spectroscopy has been widely used to track BrC chromophore variations in chamber						
82	experiments (Bianco et al., 2014; Lee et al., 2013; Vione et al., 2019), and in ambient						
83	BrC studies (Wu et al., 2019; Yue et al., 2019; Chen et al., 2021b). Despite widespread						
84	use, the molecular basics of atmospheric fluorescent chromophores are not fully						
85	understood. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass						
86	spectrometry (FT-ICR MS) is a powerful tool facilitating the analysis of organic matter						
87	based on individual molecular formulas that can aid in the interpretation of molecular						
88	patterns across systems (Jiang et al., 2014; Mopper et al., 2007). Based on this technique						
89	thousands of molecular formulas can be obtained, and basic structural features can be						
90	deduced (Song et al., 2019; Zeng et al., 2021).						

The water-soluble fraction of total OC aerosol is commonly up to 70% (Li et al., 2020b; Wu et al., 2019; Mo et al., 2022). Although serval studies have combined fluorescence analysis and FT-ICR MS to characterize the atmospheric WSOC, few have focused on the molecular characteristics of fluorescent components (Su et al., 2021; Tang et al., 2020; Li et al., 2022). Hence, it is necessary to seek the molecular basis of water-soluble fluorescent components.

97 Due to the chemical complexity of fluorescent chromophores, the formation of 98 these compounds may be complex and would be determined by the precursors and 99 atmospheric conditions (OH radicals, O₃, NO_x, and so on). For example, Lee et al. (2013; 100 2014) demonstrated that ammonia vapor converts initially colorless d-limonene/O3 101 secondary organic aerosol (SOA) into BrC material, yet the d-limonene/O₃+NH₃ brown 102 material almost completely lost its ability to absorb visible radiation or fluoresce after 103 irradiation. Conversely, Bianco et al. (2014) examined that tryptophan, tyrosine, and 4-104 phenoxyphenol in an aqueous solution after irradiation produced species with similar 105 fluorescence properties as humic substances. Fan et al. (2020) found that PLOM

106	components decomposed by PARAFAC analysis are quenching with O3 aging, yet					
107	HULIS components exhibit a gradual increase with O3 aging. Recently, results based					
108	on observations in the online EEM system showed a conversion process between					
109	highly-oxygenated and less-oxygenated HULIS under atmospheric oxidation (Chen et					
110	al., 2021a). However, studies on the molecular evidence were limited for the formation					
111	of fluorophore compounds, especially PARAFAC fluorescent components; it is also					
112	important to constrain the properties of BrC aerosols.					
113	Here, we examined the FT-ICR MS and fluorescence spectroscopy for WSOC in					
114	aerosols from Karachi, Pakistan in South Asia. Karachi represents a typical urban					
115	setting with a variety of air pollution sources including industrial and vehicular					
116	emissions, dust storms, and sea salts (Khwaja et al., 2009). The objectives of this study					
117	are to obtain: (1) the molecular families associated with PARAFAC components by					
118	using Spearman analysis of FT-ICR MS peaks and PARAFAC component intensities;					
119	(2) the possible formation pathway of PARAFAC components based on their molecular					
120	formulas; and (3) the molecular-level correlation between BrC chromophores and					
121	PARAFAC components. The results obtained help to understand the composition and					

122 fate of PARAFAC components, which broadens the application of the EEM-PARAFAC

123 method to characterize atmospheric BrC.

124 2. Materials and Methods

125 **2.1. Sampling campaign**

Total suspended particulate (TSP) samples were collected in Karachi (24°51'N; 67°02' E) from 2 February 2016 to 27 January 2017, as described previously (Zong et al., 2020). Briefly, the sampling site is on the floor of an office building of a government agency (approximately 12 m in height) located at the west edge of the main district of Karachi (Fig. S1 in Supplement). No agricultural land, but some semiarid bushes, surround it. Samples were collected on glass fiber filters with a high-volume sampler (KC-1000, Longtuo) at a flow rate of 1.13 m³ min⁻¹. Diurnal sampling (12/12 h; day:

142

10:00 am-10:00 pm; night: 10:00 pm-10:00 am, local time) was carried out once a 133 134 week. In total, 96 samples were collected during the sampling campaign. All filters were preheated at 450 °C for 6 h in a muffle furnace before sampling. After sampling, the 135 filters were folded and stored in a refrigerator (-20 °C) until further analysis. The 136 137 classification of seasons based on the air-mass trajectories contains pre-monsoon (Mar-138 May), monsoon (Jun-Sep), post-monsoon (Oct-Nov), and winter (Dec-Feb), where 139 marine air masses were prevailing in the monsoon period and continental air masses 140 were popularly occurred in the other periods, as shown in Fig. 1. The meteorological 141 parameters over Karachi during sampling periods were provided in Table S1.

143 Figure 1. The 72 h back air-mass trajectories at Karachi (Pakistan) from February 2, 2016, to 144 January 27, 2017. The samples were classified into four seasons, whose air masses were further 145 conducted by the cluster analysis, including pre-monsoon (blue lines), monsoon (azure lines), post-146 monsoon (green lines), and winter (red lines). The air-mass trajectories were analyzed by the 147 HYSPLIT model. The base map was derived from Bing Maps (© 2023 Microsoft).

148 **2.2. Optical characterization and PRAFAC modeling.**

149 The detailed methods of fluorescence characterization and PARAFAC analysis 150 have been described in our previous studies (Tang et al., 2021; Tang et al., 2020). Briefly, 151 WSOC was obtained by ultrasonicating the filter punches in ultrapure deionized water 152 (resistivity of > 18.2 M Ω) for 30 min and filtering the solutions. UV-vis absorption 153 spectra and EEM spectra were simultaneously collected using a fluorometer (Aqualog; 154 Horiba Scientific, USA). UV-vis absorption spectra were scanned in the range of 239 155 to 800 nm with a step size of 3 nm. Fluorescence scans were collected over increments 156 of 3 and 4.66 nm for the excitation (239-800 nm) and emission (247-825 nm) wavelengths, respectively. The corresponding concentration of WSOC and water-157 158 soluble total nitrogen (WSTN) was quantified using a TOC analyzer (Vario TOC cube; 159 Elementar) (Yu et al., 2017). The quality control for absorption spectra and EEM spectra, as well as carbon mass, were detailed in Text S1 of the supplement. 160 161 PARAFAC analysis was conducted to decompose the EEM datasets, using the

drEEM Toolbox in MATLAB version R2016a (http://models.life.ku.dk/drEEM, last access: June 2014) (Murphy et al., 2013) (details in Text S2). The light absorption coefficient (Abs_{λ}, Mm⁻¹), mass absorption efficiency (MAE, m² g⁻¹ C), absorption Ångström exponent (AAE), and optical indices, such as specific ultraviolet absorbance (SUVA), spectral slope (S_R), as well as fluorescence-based indices of the fluorescence index (FI), biological index (BIX), and humification index (HIX), were presented in Text S2.

169 **2.3. FT-ICR-MS analysis.**

A representative subset (12 samples) that covered a range of values of the relative intensities of PARAFAC components, WSOC concentrations, and total organic nitrogen at day and night in different seasons, was selected for ultrahigh-resolution electrospray FT-ICR MS analysis. Specially, the 72 h back air-mass trajectories of the selected samples showed different sources of air pollution (Fig. S2). Hence, the selected samples

175	reflected the typical features during the sampling period. The sample preparation and
176	analysis of FT-ICR MS are given elsewhere (Jiang et al., 2021; Tang et al., 2020).
177	Briefly, the WSOC extracts were desalted and concentrated through the solid-phase
178	extraction (SPE) method (Xu et al., 2020; Zhou et al., 2021), using a hydrophilic-
179	lipophilic balance (HLB) cartridge (Oasis HLB, 200 mg/cartridge, Waters, USA) (Varga
180	et al., 2001). The efficiency of the SPE method was evaluated by measuring the carbon
181	masses, UV-vis, and EEM spectra before and after elution (Varga et al., 2001), which
182	showed good analytical recoveries (details in Text S3). The majority of inorganic ions,
183	low-molecular-weight (MW) organic acids, and sugars were not retained by the SPE,
184	and the constituents retained on the SPE cartridge were eluted with methanol containing
185	2 % ammonia (v/v) (HPLC grade) (Lin et al., 2010). Methanol containing 2 % ammonia
186	was selected for elution to reduce the mass percentage of irreversibly adsorbed carbon
187	but not significantly change the molecular composition (Chen et al., 2016a; Lin et al.,
188	2012a). The eluents were dried under a gentle nitrogen gas stream and redissolved in 1
189	mL of methanol for subsequent analysis.

190 Preceding FT-ICR-MS analysis, ultrahigh-resolution mass spectra were obtained 191 using a solariX XR FT-ICR MS instrument (Bruker Daltonics GmbH, Bremen, 192 Germany) equipped with a 9.4 T superconducting magnet and an electrospray 193 ionization (ESI) ion source. Ions were produced in negative and positive ESI ion mode 194 (hereinafter abbreviated as ESI- and ESI+). The ion accumulation time was set to 0.6, 195 and the m/z range was set to 150–800. Peaks were considered if the signal-to-noise ratio 196 was greater than 4. A typical mass-resolving power of $> 450\ 000$ at m/z 319 with < 0.2197 ppm absolute mass error was achieved. The identified formulas were classified into 198 subgroups (CHO-, CHON-, CHOS-, CHONS-, CHO+, CHON+, CHONa+, and 199 CHN+). The CHO- and CHO+ refer to those that contain carbon, hydrogen, and oxygen 200 and are detected in the ESI- and ESI+ modes, respectively. Other compound categories 201 are defined analogously. Note that we report all detected compounds as neutral species 202 unless stated otherwise. The double bond equivalent (DBE), modified aromaticity index

203 (AI_{mod}), carbon oxidation state (\overline{OS}_C) and the nominal oxidation state of carbon (NOSC) 204 are calculated in Text S4. The formulas were further classified into four categories 205 referring to the AI_{mod} and H/C ratio (Kellerman et al., 2015; She et al., 2021): condensed 206 aromatic compounds (AI_{mod} \ge 0.67); aromatic compounds (0.5 < AI_{mod} < 0.67); highly 207 unsaturated and phenolic compounds (H/C \le 1.5, AI_{mod} \le 0.5); and aliphatic compounds 208 (1.5 \le H/C \le 2.5).

209 2.4. Statistical analyses

210 The molecular families associated with each PARAFAC component were derived 211 using Spearman correlation analysis according to our previous method (Jiang et al., 212 2022c). Before analysis, the PARAFAC component intensities were normalized to the 213 total fluorescence intensity for a given sample, and the intensities of FT-ICR MS peaks 214 were normalized to the total intensity of all peaks to which formulas were assigned within a sample. Then, Spearman's correlations between the FT-ICR MS and 215 216 PARAFAC component data were conducted in R. Note that FT-ICR MS peaks that were 217 present in fewer than two samples were not considered. For an n of 12 samples, a 218 Spearman's coefficient (r_s) of 0.57 was calculated to be significant at the 95% 219 confidence limit (Student's t test, see Text S5). When Spearman's $r_s \ge 0.57$, the 220 molecule was assigned to the PARAFAC components. The same method was used to 221 obtain the molecular signatures of PARAFAC components of dissolved organic matter 222 (DOM) in aquatic environments (Stubbins et al., 2014; Singer et al., 2012). The 223 molecular formulas associated with Abs at 365 nm (Abs₃₆₅), and optical indices (S_R , 224 SUVA254, A254, FI, BIX, and HIX) were similarly obtained. Note that many of these 225 associations may be due to different compounds responding in the same way to 226 environmental conditions.

3. Results and Discussion

228 **3.1. Fluorescence and light absorption properties**

229 PARAFAC analysis identified three individual fluorescent components (Fig. 2a), 230 two humic-like (C1, C2), and one protein-like (C3) (Ishii and Boyer, 2012; Coble, 2007; 231 Wu et al., 2019). All of them have been ubiquitously detected in aerosols (Wu et al., 2019; Wen et al., 2021; Wang et al., 2020a; Han et al., 2020), snow (Zhou et al., 2021), 232 and rainwater (Li et al., 2020c). Based on the comparison with the EEM region of 233 234 fluorescent components classified by a previous study (Chen et al., 2016b), C1, C2, and 235 C3 were similar to less-oxygenated and highly-oxygenated HULIS, and non-N-236 containing components, respectively. Note that the origins and chemical properties of 237 the components defined in this study are not necessarily similar to those of components 238 with the same name in other organic matter.

239 The relative abundances of PARAFAC component intensities were used to indicate 240 the changes in chemical compositions. Humic-like components (C1 and C2) were the 241 dominant species of the whole-year samples, representing 80 %±6.1 % of total 242 fluorescence intensity (Fig. S3), which is in accordance with precipitation samples in 243 the Guanzhong basin of China while higher than that at Seoul (Yan and Kim, 2017; Li 244 et al., 2022). Of those, C1 is 2-fold greater than that C2. During the sampling period, measurements of water extracts revealed the differences in PARAFAC component 245 246 distributions in different seasons. When the monsoon is prevailing (marine-derived air 247 masses, Fig. 1), the contribution of humic-like components decreased significantly (ttest, p < 0.01), suggesting that humic-like components may have a terrestrial origin. 248 249 Recent work revealed that continental-influenced WSOC was enriched in aromatic and 250 higher oxidation level compounds, while saturated primary marine biological 251 compounds with lower oxidation levels were more abundant in marine-influenced 252 WSOC (Mo et al., 2022). The redundancy analysis (RDA, detail in Text S6) conducted 253 on PARAFAC components and noncollinear variables (variance inflation factors, VIF

- 254 < 10) showed that C2 was positively related to HIX, A254, and SUVA254, and C1 was
- 255 positively associated with HIX, yet C3 correlated with FI, BIX, and S_R (Fig. S4). The
- results reflected that C1 and C2 are associated with a high degree of humification and 256

257 aromaticity (Zsolnay et al., 1999; Weishaar et al., 2003).

260 Figure 2. Molecular characteristics of PARAFAC components. (a) Patterns of the fluorescent 261 components (C1-3) identified by using the PARAFAC method. (b) van Krevelen diagrams of FT-262 ICR MS-identified compounds assigned to PARAFAC components (C1, C2, and C3). C1- and C1+ 263 refer to the molecules that are assigned to C1 detected in the ESI- and ESI+ modes, respectively, 264 and the others are defined analogously. Carboxylic-rich alicyclic molecules (CRAM) are remarked by the blue ellipse (Hertkorn et al., 2006). The dotted line shows the class identification, including 265 266 condensed aromatic compounds (A); aromatic compounds (B); highly unsaturated and phenolic 267 compounds (C); and aliphatic compounds (D).

268 The mass absorption efficiency at a wavelength of 365 nm (MAE₃₆₅) is a key

269 parameter that can be used to describe the light-absorbing ability of the different

270	chromophores in BrC. The MAE $_{365}$ of water extracts in Karachi were 0.80±0.40 m² g $^{\text{-}1}$					
271	C, which is comparable to that in Kharagpur (India) (Srinivas and Sarin, 2014) and					
272	Godavari (Nepal) (Wu et al., 2019), higher than in Indo-Gangetic Plain (IGP) outflow,					
273	such as Northern region of Maldives and Bay of Bengal (Bosch et al., 2014; Srinivas					
274	and Sarin, 2013), yet much lower than other cities in South Asia (Table S2, and Fig. 3c).					
275	The values of MAE ₃₆₅ in monsoon daytime (nighttime) and non-monsoon daytime					
276	(nighttime) are 0.47 \pm 0.20 m ² g ⁻¹ C (0.71 \pm 0.30 m ² g ⁻¹ C) and 0.88 \pm 0.34 m ² g ⁻¹ C					
277	(0.92±0.48 $m^2~g^{\text{-}1}$ C), respectively (Fig. 3a). The MAE_{365} exhibited strong seasonal					
278	variation and was much higher at non-monsoon than in the monsoon (test-t, $p < 0.01$),					
279	potentially due to the different sources and formation process. However, considerably					
280	increasing MAE $_{\rm 365}$ values during nighttime than daytime in monsoon were observed (t-					
281	test, $p < 0.05$), perhaps indicating that more light-absorbing substances were formed					
282	during night time NO_3^{\cdot} reaction and significantly enhanced the light absorption capacity					
283	of BrC in monsoon (Li et al., 2020a). No obvious increase was observed in non-					
284	monsoon season (t-test, $p > 0.05$).					

285

286 Figure 3. The seasonal and diurnal distributions of MAE₃₆₅ (a) and AAE (b) of WSOC in Karachi, 287 Pakistan. Panels c and d refer to the MAE₃₆₅ and AAE of WSOC reported in recent studies over 288 South Asia, including the Northern region of Maldives (MCOH) (Dasari et al., 2019; Bosch et al., 289 2014), Bay of Bengal (Srinivas and Sarin, 2013), Kharagpur (Srinivas and Sarin, 2014), Godavari 290 (Wu et al., 2019), Patiala (Srinivas et al., 2016), Bhola Island in the delta of Bay of Bengal (BCOB) 291 (Dasari et al., 2019), Kathmandu (Chen et al., 2020), New Delhi (Kirillova et al., 2014; Dasari et 292 al., 2019), and Kanpur (Choudhary et al., 2018; Choudhary et al., 2021). The column marked in 293 black color represents our results.

294 The parameter AAE reflects both the wavelength dependence of light absorption 295 and the conjugated degree of the extracted compounds. The average AAE values (fitting at 330-400 nm) of WSOC in Karachi were very close in monsoon (4.4±0.85) and non-296 297 monsoon season (4.5 ± 0.62) (Fig. 3b). However, the AAE values of WSOC during 298 monsoon nighttime substantially decreased (t-test, p < 0.05), indicating a more aromatic 299 and conjugated level of WSOC during nighttime, consistent with the significantly 300 increased MAE values in this season. Except for in the IGP outflow, the AAE values of 301 WSOC in Karachi were similar to that in South Asia, only higher than Kanpur and New 302 Delhi (Fig. 3d). In addition, as humic-like components and MAE₃₆₅ of WSOC

- significantly decreased in monsoon season and increased in non-monsoon season, the correlation between them was carried out (Fig. S5). The result showed that only C2 positively correlated with MAE₃₆₅ (r = 0.49, p < 0.01), suggesting that C2, representing a category of compounds, potentially makes significant contributions to the BrC light absorption. To ascertain this preliminary conclusion, we further investigated the molecular composition of fluorescent chromophores, as discussed below.
- 309

3.2. Molecular signatures of PARAFAC components

Using Spearman's rank correlations at the 95 % confidence limit, 22 % of total ESI– formulas and 23 % of ESI+ formulas were assigned to the three PARAFAC components, respectively. The elemental formulas of each PARAFAC component are listed in Table S3, and the elemental composition characteristics of complex molecular formulas of PARAFAC components are presented by the Van Krevelen (VK) diagrams, as shown in Fig. 2b.

316 The C1 was assigned 134 ESI- formulas and 208 ESI+ formulas, in which only 317 one formula overlapped in both modes. C1-assigned formulas were enriched in N-318 containing molecules, accounting for 63 % and 61 % of its assigned ESI- and ESI+ 319 formulas, respectively. Of those, CHON was the most prevalent. Given that the C1-320 assigned formulas contain abundant nitrogen and are oxygenated (\overline{OS}_{C} , and NOSC) 321 (Kroll et al., 2011), NOx-derived reactivity could occur in the formation of this 322 component (He et al., 2022; Lee et al., 2014). In contrast to C2 and C3, C1 formulas 323 had middle elemental composition ratios (e.g., O/C, H/C, and N/C), oxidation state 324 (OS_C, and NOSC), as well as unsaturated degrees (AI_{mod}, and DBE) and relatively 325 higher MW (Table S3, Figs. S6-S7). Of the formulas assigned to C1, 34 % of ESI-326 formulas and 50 % of ESI+ formulas were aliphatic compounds, 35 % and 39 % were 327 highly unsaturated and phenolic compounds, and 31 % and 11 % were aromatic 328 compounds.

329	A larger number of 1328 ESI- formulas and 1182 ESI+ formulas were assigned to						
330	C2, of which 108 formulas were overlapped. In common with C1, 67 % of ESI-						
331	formulas and 68 % of ESI+ formulas contained nitrogen, suggesting that C2 is also an						
332	N-enriched component. However, C2 formulas contain two or more nitrogen compared						
333	with C1 (N atom \geq 2, 38 % vs 14 % in ESI– and 42 % vs 18 % in ESI+) (Table S4),						
334	perhaps because they have different precursors or origins. For example, CHON2 species						
335	are observed almost exclusively in the aged limonene ozonolysis sample than in a-						
336	pinene ozonolysis (Laskin et al., 2014). C2 with the longest emission maxima (~ 494						
337	nm), was assigned to more compounds in higher aromaticity (AI_{mod} > 0.5), higher						
338	oxidation state ($\overline{OS}_{C} > 0$), and higher N content (N/C > 0.2) (Fig. S6). Accordingly, the						
339	aromaticity index, N/C ratio, and NOSC correlated maxima with fluorescence in a						
340	pattern strikingly similar to C2 (Fig. S8), consistent with a previous study (Kellerman						
341	et al., 2015). Specially, C2 formulas contain more compounds in the region of						
342	carboxylic-rich alicyclic molecules (CRAM) that are represented by carboxylated and						
343	fused alicyclic rings with very few hydrogen atoms in double bonds, yet not common						
344	for C1 and C3, suggesting that C2 has a probable character of resistance to						
345	biodegradation and refractory nature (Hertkorn et al., 2006). The findings collectively						
346	indicated that C2 is a highly aromatic, oxygen-rich, and high N-content component,						
347	with potentially recalcitrant properties in the atmosphere.						

348 Lower than 4 % ESI- and ESI+ formulas were assigned to C3. In contrast, more 349 than 60 % of formulas contain no nitrogen atoms (Table S3), implying that the 350 atmospheric protein-like component is not exclusively associated with N-containing 351 compounds, consistent with previously reported (Stubbins et al., 2014). A possible 352 explanation is that lignin, simple phenols, and naphthalene have a strong fluorescence 353 signal in this region (Hernes et al., 2009; Maie et al., 2007; Wu et al., 2019). Of the 354 formulas assigned to C3, almost all aromatic ESI- compounds and 43 % of aromatic 355 ESI+ compounds are without nitrogen, suggesting that a portion of water-soluble protein-like components were substantially derived from N-free or N-depleted aromatic 356

357	compounds, which corroborated the previous results (Chen et al., 2016b). However, an						
358	increasing fraction of S-containing species was observed, representing 41 % of C3-						
359	assigned ESI- formulas. Although these S-containing compounds may have no						
360	substantial contribution to BrC chromophores or fluorophores, similar formation						
361	pathways or origins is the potential to reflect C3 fate. C3 was strongly associated with						
362	less aromaticity degree (AI_{mod} $\! < \! 0.5)$ and a higher degree of saturation compounds (H/C $\! > \!$						
363	1) (Fig. S6), hence, lower than 5 $\%$ of formulas assigned to C3 were aromatic and						
364	condensed aromatic compounds. This character coupled with less oxidation state ($\overline{\text{OS}}_{\text{C}}$						
365	< 0, O/C $<$ 0.5) collectively indicate that the atmospheric protein-like component is low						
366	conjugation, oxygen-depleted, and N-depleted species.						

367 The use of Spearman's correlations purposefully allowed molecular formulas to 368 correlate with one or more PARAFAC components as a given FT-ICR MS molecular 369 formula can include many different structural isomers. Thus, the common molecules 370 assigned to different PARAFAC components could preferentially reflect their similar 371 chemical structures, molecular compositions, and origins. Of the formulas assigned to 372 PARAFAC components, C1 shares 52 ESI- formulas and 42 ESI+ formulas with C2 (Fig. S9). The overlapped formulas represented 39% of 134 ESI- formulas and 20% of 373 374 208 ESI+ formulas assigned to C1. This observation indicates that C1 possesses a 375 molecular-level correlation with C2, suggesting that they may have similar origins and 376 atmospheric processes, as discussed below. However, no common molecules were 377 found between C3 and C1 and C2, respectively.

378

3.3. Potential formation mechanisms of PARAFAC components

Early studies suggested that C1 and C2 components are less oxygenated and highly oxygenated humic-like components, respectively (Chen et al., 2016b), and another study found the two components may transform each other under atmospheric oxidation (Chen et al., 2021a). However, the formation pathways for these components are not fully understood. Conversely, fluorescence changes along with molecular composition

384 were observed in the photolysis experiment of naphthalene-derived SOA (Lee et al., 385 2014). HULIS-type fluorescence was also found to be produced in the vanillin and 386 acetosyringone solutions under simulated sunlight, attributed to oligomerization 387 processes observed from their molecular composition (Vione et al., 2019). These results 388 indicated that the molecular signatures could reflect possible formation pathways of 389 fluorescent components. It is worth noting that the selected samples for FT-ICR MS 390 analysis were collected on the day and night in different seasons, yielding a relatively 391 complete molecular dataset, thus to better explain the formation pathways of 392 fluorescent component-associated formulas we considered the potential precursors 393 from the molecular dataset. The reason is that the precursors may be not associated with 394 fluorescent components not as same as their formed new compounds, resulting in an 395 underestimation of the contribution.

396 The molecular composition of PARAFAC components was determined, including 397 CHO-, CHON-, CHOS-, CHONS-, CHO+, CHON+, CHONa+, and CHN+ compounds. For the different groups, the pathways may substantially differ. Given that 398 399 the N-containing compounds were enriched, in particular for C1 and C2, the formation 400 mechanism of this group was discussed first. N-containing compounds contain CHON-401 (CHONS- was classified as S-containing compounds), CHON+, and CHN+ (few were 402 associated with PARAFAC components and no longer discuss). Of the CHON formulas 403 assigned to PARAFAC components, the organic nitrogen molecules are suggested to be 404 divided into the subgroups by using the O/N ratios, such as oxidized forms with O/N > 2 ($-NO_2$ or $-ONO_2$), reduced forms with $O/N \le 2$ (amino or amide groups), which has 405 406 been widely used for the classification of CHON molecules in FT-ICR MS studies (Mo 407 et al., 2022; Jiang et al., 2022b; Zeng et al., 2021). A high relative abundance of CHON 408 subgroups in aerosol samples appeared $O/N \ge 3$, generally like to contain numerous 409 oxidized nitrogen function groups (Mo et al., 2018). In this study, 87 % of CHON- and 410 74 % of CHON+ molecules assigned to C1, 84 % and 63 % of formulas assigned to C2, 411 and 86 % and 33 % of formulas assigned to C3, had $O/N \ge 3$ (Figs. 4a, 4b, 4c and S10a,

412	S10b, S10c). Of those, the oxidized CHON assigned to C1 and C2 may be					
413	underestimated due to their formulas containing two-, and two more N atoms and need					
414	no 3 folds of O atoms to form $-NO_2$ or $-ONO_2$ groups. Hence, we assumed that these					
415	CHON formulas assigned to PARAFAC components were largely in an oxidized form.					
416	Recent work summarized the several pathways for organic nitrates, includin					
417	oxidation-product pair, hydrolyzation-product pair, mixed-processes product, and the					
418	remaining unknown product (Su et al., 2021). Kames et al. (1993) found that alcohole					
419	diols, and hydrooxyketones reacting with $N_2 O_5$ could produce organic nitrates: $R_1 OH$					
420	$+$ $N_2O_5 \rightarrow R_1ONO_2$ $+$ HNO_3. We thus defined R_1OH and R_1ONO_2 as an oxidation-					
421	product pair, with an element difference of -H+NO2. In addition, the organic nitrates					
422	are suggested to undergo hydrolysis, with the formation of HNO3: R ₂ ONO ₂ + H ₂ O \rightarrow					
423	R ₂ OH + HNO ₃ ; R ₂ ONO ₂ and R ₂ OH are defined as a hydrolyzation-product pair.					
424	Sometimes, \mbox{CHON}_1 can define as an oxidation-product pair with CHO and a					
425	hydrolyzation-product pair with CHON2. If the two processes occur simultaneously, we					
426	defined this molecule as a potential mixed-processes product. A more detailed					
427	description of the three processes was presented elsewhere (Su et al., 2021).					

428 Figures 4d, and 4e show potential pathways of CHON- molecules (CHON+ in Fig. 429 S10) assigned to C1, C2, and C3, respectively. The result showed that oxidation-product 430 pair, hydrolyzation-product pair, and mixed-processesproduct could explain a 431 significant proportion, with 33 %-75 %, 69 %-77 %, and 44 %-80 % of CHON 432 formulas assigned to C1, C2, and C3, respectively, which is comparable to the explained proportion of 52.8 %-69.7 % for CHON1 and 43.4 %-53.5 % for CHON2 in snow 433 434 samples (Su et al., 2021). CHON1 formulas assigned to C1 and C2 exhibited the highest 435 proportion of oxidation from CHO, yet the primary precursor types are aliphatic compounds (52 %) and highly unsaturated and phenolic compounds (30 %) for C1 and 436 437 highly unsaturated and phenolic compounds (54 %) and aromatic/condensed aromatic 438 compounds (40 %) for C2, respectively (Figs. 4f, and 4g). Whereas CHON1 assigned 439 to C3 exhibited the highest proportion of mixed-processes product. Note that C1 and

440	C3 formulas contain fewer CHON $_2$ and CHON $_3$ formulas, which is no longer to discuss
441	them. Conversely, C2 formulas contain abundant \mbox{CHON}_2 and \mbox{CHON}_3 formulas, and
442	the potential oxidation-product pairs from $CHON_1\ (CHON_2)$ contributed to 69 % of
443	$CHON_2\ (77\ \%\ of\ CHON_3),$ largely deriving from highly unsaturated and phenolic
444	compounds and aromatic compounds. In contrast to ESI-, the contribution determined
445	by the three processes decreased with the portion of 5 %–73 %, 29 %–65 %, and 0–17 %
446	for C1–3-assigned CHON+ formulas, respectively. Due to the small number of CHON ₂₋
447	$_{\rm 3}$ formulas assigned to C1 and CHON_{1-3} formulas assigned to C3, we only discussed
448	$CHON_1$ of C1 and $CHON_{1\text{-}3}$ of C2 (Fig. S10). The hydrolyzation process contributed
449	38 %, and oxidation-product pairs contributed 30 % of C1-assigned CHON1. In contrast,
450	oxidation-product pairs contributed to 29 %–48 % for C2-assigned CHON $_{1\text{-}3}$ formulas,
451	yet the main precursor types are highly unsaturated and phenolic (56 %–70 %) and
452	aliphatic compounds (20 %-33 %), different from C1 (Fig. S10g). Overall, although
453	hydrolyzation-product pairs contributed to C1-assigned CHON+ formulas, the result
454	showed that oxidation is one of the key formation pathways for the abundant CHON
455	formulas assigned to HULIS components, especially C2. N-containing compounds, in
456	particular CHON compounds, substantially contributed a lot of light absorption of BrC
457	(Lin et al., 2017; Bluvshtein et al., 2017). The significant differences in the formation
458	processes of CHON compounds assigned to PARAFAC components may be an
459	important factor affecting the light absorption of BrC, even radiation forcing.

461 Figure 4. O/N ratios distribution of CHON– compounds assigned to C1 (a), C2 (b), and C3 (c), and 462 the corresponding formula number distribution of different pathways for CHON– molecules 463 assigned to C1–3 (d) and the relative contributions of different pathways (e). Indeed, panels (f–g) 464 refer to the relative contributions of different precursor types to the abundant oxidation-product pair 465 for CHON₁₋₃ of C1 and C2, respectively.

466 Multiple studies have demonstrated that S-containing compounds have little or no 467 contribution to BrC chromophores (Song et al., 2019; Zeng et al., 2021), yet knowledge 468 of the formation pathway of S-containing compounds assigned to PARAFAC 469 components could help us understand its formation mechanism with possible similar 470 pathways. Previous work investigated the prevalence of the epoxide formation pathway 471 for organosulfates (OS) and nitrooxy-OS by examining the presence of precursor-472 product pairs of the CHOS (or CHONS) and the corresponding CHO (or CHON) 473 compounds (Lin et al., 2012b). If the epoxides form, both sulfate and water can act as 474 nucleophiles, and thus, both the OS and the corresponding alcohol should be present. 475 In our samples, although few S-containing compounds were assigned to C1 (19, 20 % 476 of its formulas) and C2 (56, 4.2 %) in that were less than C3 (117, 47 %), 84 %-100 % 477 of CHOS compounds assigned to PARAFAC components had O/S ratios > 4, and 15 %-478 70 % of CHONS compounds had O/S > 7 for CHON₁S compounds, and > 10 for 479 CHON₂S compounds, which satisfied the epoxides pathway. In Table 1, a similar

480	analysis shows this process over CHOS and CHONS assigned to three PARAFAC						
481	components. On average, for over 26 %-58 % of CHOS assigned to C1-3, the						
482	corresponding CHO alcohol formulas were found, consistent with the epoxide						
483	intermediate pathway for OS formation, yet the remaining 42 %-74 % of CHOS, have						
484	no corresponding alcohols, may be formed from other pathways. In contrast, only a						
485	small fraction of CHONS OS assigned to C1 and C2 were observed as exist for the						
486	corresponding CHON alcohol formulas, yet this fraction increased to 47 $\%$ of CHONS						
487	OS assigned to C3, implying that the epoxide pathway is more significant for the						
488	formation of OS in the CHONS assigned to C3. In addition, previous work showed that						
489	organonitrates hydrolyze more rapidly than OS (Hu et al., 2011). This hydrolysis						
490	process could substitute the nitrooxy group with a hydroxyl group (i.e., $-HNO_3 + H_2O$).						
491	On average for 76 $\%$ of CHOS assigned to C3 (Table 1), a corresponding CHONS is						
492	present, which could be explained by the hydrolysis of nitrooxy groups of OS, yet not						
493	common for CHOS assigned to C1 and C2. The prevalent hydrolysis of nitrooxy groups						
494	of OS is commonly observed in the Pearl River Delta of China and Bakersfield,						
495	California (Lin et al., 2012b; O'Brien et al., 2014). This collectively indicated that the						
496	CHOS assigned to C3 mainly derived from the epoxide intermediate pathway and						
497	hydrolysis process (80 %), and CHONS were mainly derived from the epoxide						
498	intermediate pathway.						

Number and Percentages of Precursor-Product Pairs						
Sample type	CHOS-	CHONS-	CHONS+OH-	References		
	SO ₃ →CHO	SO ₃ →CHON	NO ₃ →CHOS			
Karachi, Pakistan						
C1	11 (58 %)	2 (22 %)	0 (0.0 %)			
C2	12 (26 %)	0 (0.0 %)	2 (4.3 %)	This study		
C3	26 (31 %)	16 (47 %)	63 (76 %)			
Bakersfield, California						
Midnight to 6 A.M.	77 (45 %)	17 (30 %)	43 (74 %)			
6 A.M. to Noon	70 (41 %)	17 (27 %)	53 (79 %)	(O'Brien et al., 2014)		
Noon to 6 P.M.	115 (63 %)	12 (41 %)	26 (75 %)			
6 P.M. to Midnight	131 (79 %)	10 (30 %)	22 (66 %)			

499 **Table 1**. Numbers and percentages of formation and hydrolysis reactions of CHOS and CHONS. Number and Percentages of Precursor-Product Pairs

Guangzhou, China	ı			
Urban	148 (65 %)	2 (2.8 %)	52 (75 %)	
Suburban	74 (69 %)	7 (15 %)	22 (47 %)	(Lin et al., 2012b)
Rural	113 (75 %)	3 (5.1 %)	38 (69 %)	
Urban	699 (27 %)	508 (19 %)	-	(Jiang et al., 2022a)

500 Numbers and percent of CHOS and CHONS compounds with corresponding CHO, CHON, and 501 CHOS formulas in the same mass spectra for the following reactions: $C_xH_yO_zS \rightarrow C_xH_yO_{z,3} + SO_3$;

502 $C_xH_yO_zN_wS \rightarrow C_xH_yO_{z-3}N_w + SO_3$; $C_xH_yO_zN_wS \rightarrow C_xH_{y+1}O_{z-2}N_{w-1}S - H_2O + HNO_3$.

503 The remaining O-containing compounds, including CHO-, CHO+, and CHONa+ 504 groups, are mainly substituted with multiple polar functionalities including carboxyl, 505 carbonyl, and hydroxyl groups. Except for the primary emission source for CHO 506 compounds, secondary formation was suggested to occur (Lee et al., 2014; Lin et al., 507 2014). Kundu et al. (2012) detected hundreds of CHO molecules in SOA from limonene 508 ozonolysis. Specially, 42 % of CHO compounds (neutral molecules) assigned to C1, 509 34 % assigned to C2, and 5.3 % assigned to C3 were commonly detected in mass spectra 510 of limonene ozonolysis samples (Table S5), indicating a significant fraction of the 511 oxidation process for the formation of CHO compounds assigned to C1 and C2. 512 Undoubtedly, aging (e.g., NH₃) of limonene ozonolysis SOA is susceptible to the 513 formation of oligometric products with extensive conjugation of π -bonds creating the 514 BrC chromophores (Laskin et al., 2014). In contrast, some CHO assigned to C2 was 515 observed in the naphthalene photooxidation products, biomass burning, and aqueousphase reactions of phenols (Table S6), yet not common for CHO assigned to C1 and C3. 516 Remarkably, a majority of CHO (about 90 %) assigned to C3 may be formed from the 517 518 other pathways. The n_c -OSc space of the CHO compounds assigned to C3 allowed for 519 a probable hydrocarbon-like OA and biomass-burning OA source for this group (Fig. 520 S11) (Kroll et al., 2011). Overall, the obtained formation pathways for PARAFAC 521 components based on their molecular composition may explain the molecular similarity 522 in C1 and C2 as described above. For example, 36 % of overlapped CHON compounds 523 in C1 and C2 formulas were observed as oxidation-product pair, and 73 % of overlapped 524 CHO compounds were detected in limonene ozonolysis SOA, suggesting that the

525 oxidation reaction may be an important reason for their molecular-level correlation of

526 C1 and C2.

527 3.4. Underlying implication of PARAFAC component to BrC absorption 528 The exact molecular identities of the BrC chromophores are expected to have a 529 high degree of conjugation across the molecular skeleton and large absorption cross-530 sections (Lin et al., 2018). Fluorescence is a subset of BrC chromophores that absorb 531 certain wavelengths of light and re-emit a fraction of that energy. Thus, the components 532 decomposed by PARAFAC analysis represent a category of compounds that have 533 similar chemical properties, which can define as the chemical identification of BrC 534 chromophores. Our recent work found that the PARAFAC component with the longest-535 emission maxima had the largest coefficient by fitting the light absorption and 536 PARAFAC components using multiple linear regression (Tang et al., 2021), indicating that this component could significantly contribute to light absorption. However, the 537 538 molecular-level correlation between PARAFAC components and BrC chromophores was not fully understood. Solving this gap could promote the application of the EEM-539 540 PARAFAC method for studying BrC chromophores. Lin et al. (2018) proposed a plot 541 of carbon number versus DBE based on the formulas, and the compounds with DBE/C 542 ratios of 0.5~0.9 are potential BrC chromophores. The shaded area in Fig. 5 highlights 543 the molecules assigned to C1-3 matching this criterion. Of the formulas assigned to C1, 544 37 % of ESI- and 16 % of ESI+ formulas are located in the "BrC domain" marked by 545 the brown area. In contrast, a larger number of C2 formulas are located in this region, accounting for 65 % and 31 % of total C2 formulas detected in the ESI- and ESI+, 546 547 respectively, yet only 12 % of ESI- and 21 % of ESI+ formulas assigned to C3 are 548 within "BrC domain". The result implied that a category of compounds that produce 549 C2 fluorophores could substantially contribute to the light absorption of BrC, as further 550 confirmed by the highly overlapped formulas between C2 and BrC-assigned formulas 551 (72 %-94 % of C2 formulas and 47 %-57 % of BrC formulas) (Fig. S9). This may be

552 the molecular basis for the tight correlation between C2 and MAE₃₆₅ observed in this 553 study. Undoubtedly, the NO_x addition reaction generally produced highly absorbing 554 substances (Li et al., 2020a; He et al., 2022; Siemens et al., 2022), as this process largely 555 occurred in the formation of C2, suggesting that the molecular consistency between C2 556 and BrC may be due to the NO_x addition reaction. Remarkably, some of the molecules 557 assigned to PARAFAC components were observed as not matching this region, perhaps 558 because they underwent similar processes like BrC chromophores. In general, the 559 statistical significance of correlation provides more intrinsic information for 560 understanding the molecular basis and fate of atmospheric PARAFAC components, 561 even to BrC chromophores.

562

Figure 5. Plot of the double bond equivalent (DBE) vs the number of carbon atoms in PARAFAC components-assigned molecular formulas. Lines indicate DBE reference values of linear conjugated polyenes C_xH_{x+2} with DBE = $0.5 \times c$ (brown solid line), *cata*-condensed PAHs (yellow solid line), and fullerene-like hydrocarbons with DBE = $0.9 \times c$ (black solid line). Data points inside the orangeshaded area are potential BrC chromophores (Lin et al., 2018).

568 4. Conclusions and atmospheric implications

569 In this study, the fluorescence and molecular compositions of water extracts in 570 Karachi aerosol were characterized using EEM spectroscopy and negative and positive 571 ESI FT-ICR MS, respectively. The identified two humic-like (C1 and C2) and one 572 protein-like (C3) components are commonly observed in the atmosphere, which has 573 different molecular characteristics and formation pathways. The characteristics of 574 fluorescent components may be indicative of the sources, atmospheric processes, and 575 reactivity of water-soluble aerosol components. Of what we observed in this study, C1 576 and C2 were enriched in N-containing compounds, yet C2 is more associated with higher aromaticity, higher N content, and highly oxygenated compounds; C3 is 577 578 characterized as low conjugation, oxygen-depleted, N-depleted, but S-enriched species. 579 Previous studies showed that fluorescent components may be employed as source 580 indicators for OA (Chen et al., 2016b; Tang et al., 2020). Aromatic compounds 581 generally originate from combustion emissions; fluorescent components with high 582 aromatic moieties, such as the C2 component, may be derived from anthropogenic precursors that have experienced high oxidation (high NOSC and \overline{OS}_{C}). However, the 583 584 feature of C3 may originate from primary emissions, e.g., vehicular exhaust (Mladenov 585 et al., 2011).

586 Oxidation formation pathway was observed as an important process for the 587 formation of C1 and C2, especially their assigned CHON compounds. The O/C ratios 588 of C1- and C2-assigned ESI- compounds (0.48±0.18 and 0.59±0.20, respectively) also 589 exhibit higher values, especially C2, than that from primary emissions and some SOA, 590 as shown in Fig. 6. This molecular-level character of C2 indicates that this component 591 may be used as a secondary source tracer, consistent with a recent study observed using 592 online EEM monitoring (Chen et al., 2021b). The secondary information involved could 593 be used to probe the secondary source of BrC, which is poorly understood because of 594 its chemical complexity. In addition, C2 with the longest emission maxima (~494 nm), 595 was assigned to a large number of compounds that matched the "potential BrC" region

596	and overlapped with BrC-associated formulas, and readily correlated tightly with
597	$MAE_{365},$ collectively indicating that a category of compounds illuminating C2 may
598	significantly contribute to the BrC light absorption, which also observed in our previous
599	study (Tang et al., 2021). In the study of Chen et al. (2019), they showed that almost all
600	DTT activity is attributed to the C7 chromophore (99%), a component similar to C2 in
601	this study. Given the high light absorption radiation and health effect induced by C2,
602	much attention should be drawn to further study. It is also suggested that the commonly
603	used fluorescence characteristics derived from aquatic environments may not be
604	applicable, as references, to atmospheric WSOC study (refer to Text S7). Our findings
605	on the molecular compositions and formation mechanisms of atmospheric fluorescent
606	components are expected to be helpful to further studies using the EEM-PARAFAC as
607	a tool to study atmospheric BrC (Laskin et al., 2015).

608

609 Figure 6. Comparison of O/C and H/C ratios of C1-3 assigned ESI- compounds in water-soluble

610 organic compounds in this study with other primary emissions and secondary organic aerosol.

- 611 Data availability. The data used in this study are available in the Harvard 612 Dataverse (https://doi.org/10.7910/DVN/RWIJZT, Tang, 2023). 613 Supplement. The supplement related to this article is available online. Author Contributions. GaZ and JT designed the study. JH provided the samples. 614 JT, YM, HJ, ZZ, and BJ carried out the analysis. JianT provided the instrument. JT 615 616 processed the data and wrote the original draft. JL, SZ, GuZ, YC, CT, JS, and GaZ 617 review the manuscript. 618 Competing interests. The authors declare that they have no conflict of interest. 619 Acknowledgments. We appreciate Boji and Yangzhi for their help with the model 620 and FT-ICR MS analysis. 621 Financial support. This research has been supported by the National Natural 622 Science Foundation of China (Grant nos. 42030715 and 42207308), the Alliance of
- International Science Organizations (ANSO-CR-KP-2021-05), the Guangdong Basic
 and Applied Basic Research Foundation (2017BT01Z134, 2021A0505020017, and
 2023B1515020067), and Youth Innovation Promotion Association, CAS (2022359).

626 **References**:

Bianco, A., Minella, M., De Laurentiis, E., Maurino, V., Minero, C., and Vione, D.: Photochemical
generation of photoactive compounds with fulvic-like and humic-like fluorescence in aqueous
solution, Chemosphere, 111, 529-536, https://doi.org/10.1016/j.chemosphere.2014.04.035,
2014.

Bluvshtein, N., Lin, P., Flores, J. M., Segev, L., Mazar, Y., Tas, E., Snider, G., Weagle, C., Brown,
S. S., Laskin, A., and Rudich, Y.: Broadband optical properties of biomass-burning aerosol and
identification of brown carbon chromophores, J. Geophys. Res.-Atmos., 122, 5441-5456,
https://doi.org/10.1002/2016jd026230, 2017.

Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell, L. M.,
Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope composition
and optical properties of water-soluble organic carbon and elemental carbon in the South Asian
outflow intercepted over the Indian Ocean, J. Geophys. Res.-Atmos., 119, 11,743-711,759,
https://doi.org/10.1002/2014jd022127, 2014.

(10	
640 641	Chen, P., Kang, S., Iripatnee, L., Kam, K., Rupakneti, M., Panday, A. K., Zhang, Q., Guo, J., Wang,
641	X., Pu, I., and LI, C.: Light absorption properties of elemental carbon (EC) and water-soluble
042 642	brown carbon (w S-BrC) in the Kathmandu valley, Nepal: A 5-year study, Environ. Poliut., 261,
643	114239, https://doi.org/10.1016/j.envpoi.2020.114239, 2020.
644	chen, Q., Ikemon, F., Higo, H., Asakawa, D., and Moenida, M.: Chemical Structural Characteristics
645	Superturband Other Fractionated Organic Matter in Orban Aerosofs. Results from Mass
040 647	Spectral and F1-IK Analysis, Environ. Sci. lechnol., 50 , $1/21-1/30$,
04/ 649	https://doi.org/10.1021/acs.est.5005277, 2016a.
048 640	Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer, R., Iwamoto, Y.,
049 (50	Kagami, S., Deng, Y., Ogawa, S., Kamasamy, S., Kato, S., Ida, A., Kajii, Y., and Mochida, M.:
03U	Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine
651	Aerosols by HR-IoF-AMS Analysis and Excitation-Emission Matrix Spectroscopy, Environ.
652	Sci. Technol., 50, 10351-10360, https://doi.org/10.1021/acs.est.6b01643, 2016b.
653	Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: Oxidative Potential of Water-Soluble
654	Matter Associated with Chromophoric Substances in PM _{2.5} over Xi'an, China, Environ. Sci.
655	Technol., 53, 8574-8584, https:// doi.org/10.1021/acs.est.9b01976, 2019.
656	Chen, Q., Hua, X., and Dyussenova, A.: Evolution of the chromophore aerosols and its driving
657	factors in summertime Xi'an, Northwest China, Chemosphere, 281, 130838,
658	https://doi.org/10.1016/j.chemosphere.2021.130838, 2021a.
659	Chen, Q., Hua, X., Li, J., Chang, T., and Wang, Y.: Diurnal evolutions and sources of water-soluble
660	chromophoric aerosols over Xi'an during haze event, in Northwest China, Sci. Total Environ.,
661	786, 147412, https://doi.org/10.1016/j.scitotenv.2021.147412, 2021b.
662	Choudhary, V., Rajput, P., Singh, D. K., Singh, A. K., and Gupta, T.: Light absorption characteristics
663	of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain, Atmos.
664	Pollut. Res., 9, 494-501, https://doi.org/10.1016/j.apr.2017.11.012, 2018.
665	Choudhary, V., Rajput, P., and Gupta, T.: Absorption properties and forcing efficiency of light-
666	absorbing water-soluble organic aerosols: Seasonal and spatial variability, Environ. Pollut., 272,
667	115932, https://doi.org/10.1016/j.envpol.2020.115932, 2021.
668	Choudhary, V., Gupta, T., and Zhao, R.: Evolution of Brown Carbon Aerosols during Atmospheric
669	Long-Range Transport in the South Asian Outflow and Himalayan Cryosphere, ACS Earth and
670	Space Chemistry, 6, 2335-2347, https://doi.org/10.1021/acsearthspacechem.2c00047, 2022.
671	Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color, Chem. Rev., 107, 402-
672	418, https://doi.org/10.1021/cr050350, 2007.
673	Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K., Satheesh, S. K., Asmi, E.,
674	Kesti, J., Backman, J., and Salam, A.: Photochemical degradation affects the light absorption
675	of water-soluble brown carbon in the South Asian outflow, Sci. Adv., 5,
676	https://doi.org/10.1126/sciadv.aau8066, 2019.
677	Fan, X. J., Cao, T., Yu, X. F., Wang, Y., Xiao, X., Li, F. Y., Xie, Y., Ji, W. C., Song, J. Z., and Peng,
678	P. A.: The evolutionary behavior of chromophoric brown carbon during ozone aging of fine
679	particles from biomass burning, Atmos. Chem. Phys., 20, 4593-4605,
680	https://doi.org/10.5194/acp-20-4593-2020, 2020.

681	Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber
682	of solar radiation?, Atmos. Chem. Phys., 13, 8607-8621, https://doi.org/10.5194/acp-13-8607-
683	
684 (95	Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M., Decesari, S.,
083 686	Sandrini, S., Costabile, F., Gobbi, G. P., Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S.,
080	and Facchini, M. C.: Direct observation of aqueous secondary organic aerosol from biomass-
08/	burning emissions, Proc Nati Acad Sci U S A, 113, 10013-10018, $https://dxi.ex./10.1072/space.1602212112.2016$
000 600	https://doi.org/10.10/3/pnas.1602212113, 2016.
600	nan, H., Kim, G., Seo, H., Shin, KH., and Lee, DH Significant seasonal changes in optical
601	properties of brown carbon in the midlatitude autosphere, Autos. Chem. Phys., 20, 2709-2718,
602	Hups.//doi.org/10.3194/acp-20-2/09-2020, 2020.
602	Departies of Secondary Organic Acrossel Decduced by Distorvidation of Nonthelang under
69 <i>5</i>	NOx Condition Environ Soi Technol 56 4816 4827
605	NOX Condition, Environ. Sci. recimion, 50, 4810-4827,
606	Hugs//doi.oig/10.1021/dcs.est.100/526, 2022.
607	Organic Aerosal material and the light absorption characteristics of equeous extracts measured
698	over the Southeastern United States Atmos Chem Phys 10 5965 5077
699	https://doi.org/10.5194/acp_10.5965_2010_2010
700	Hernes P I Bergamaschi B A Eckard R S and Spencer R G M · Eluorescence-based provies
701	for lignin in freshwater discolved organic matter. I. Geonhys. Res.: Biogeosciences, 114
702	https://doi.org/10.1029/2009IG000938_2009
703	Hertkorn N Benner R Frommberger M Schmitt-Kopplin P Witt M Kaiser K Kettrup A
704	and Hedges, J. L.: Characterization of a major refractory component of marine dissolved
705	organic matter. Geochim. Cosmochim. Acta. 70. 2990-3010.
706	https://doi.org/10.1016/j.gca.2006.03.021, 2006.
707	Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of the hydrolysis of
708	atmospherically relevant organonitrates and organosulfates, Atmos. Chem. Phys., 11, 8307-
709	8320, https://doi.org/10.5194/acp-11-8307-2011, 2011.
710	Ishii, S. K., and Boyer, T. H.: Behavior of reoccurring PARAFAC components in fluorescent
711	dissolved organic matter in natural and engineered systems: a critical review, Environ. Sci.
712	Technol., 46, 2006-2017, https://doi.org/10.1021/es2043504, 2012.
713	Jiang, B., Liang, Y., Xu, C., Zhang, J., Hu, M., and Shi, Q.: Polycyclic Aromatic Hydrocarbons
714	(PAHs) in Ambient Aerosols from Beijing: Characterization of Low Volatile PAHs by Positive-
715	Ion Atmospheric Pressure Photoionization (APPI) Coupled with Fourier Transform Ion
716	Cyclotron Resonance, Environ. Sci. Technol., 48, 4716-4723,
717	https://doi.org/10.1021/es405295p, 2014.
718	Jiang, H., Li, J., Sun, R., Tian, C., Tang, J., Jiang, B., Liao, Y., Chen, CE., and Zhang, G.: Molecular
719	Dynamics and Light Absorption Properties of Atmospheric Dissolved Organic Matter, Environ.
720	Sci. Technol., 55, 10268-10279, https://doi.org/10.1021/acs.est.1c01770, 2021.
721	Jiang, H., Li, J., Tang, J., Cui, M., Zhao, S., Mo, Y., Tian, C., Zhang, X., Jiang, B., Liao, Y., Chen,
722	Y., and Zhang, G.: Molecular characteristics, sources, and formation pathways of organosulfur

723	compounds in ambient aerosol in Guangzhou, South China, Atmos. Chem. Phys., 22, 6919-
724	6935, https://doi.org/10.5194/acp-22-6919-2022, 2022a.
725	Jiang, H., Li, J., Tang, J., Zhao, S., Chen, Y., Tian, C., Zhang, X., Jiang, B., Liao, Y., and Zhang, G.:
726	Factors Influencing the Molecular Compositions and Distributions of Atmospheric Nitrogen -
727	Containing Compounds, J. Geophys. ResAtmos., 127, https://doi.org/10.1029/2021jd036284,
728	2022b.
729	Jiang, H., Tang, J., Li, J., Zhao, S., Mo, Y., Tian, C., Zhang, X., Jiang, B., Liao, Y., Chen, Y., and
730	Zhang, G.: Molecular Signatures and Sources of Fluorescent Components in Atmospheric
731	Organic Matter in South China, Environ. Sci. Technol. Lett., 9, 913-920,
732	https://doi.org/10.1021/acs.estlett.2c00629, 2022c.
733	Kames, J., Schurath, U., Flocke, F., and Volz-Thomas, A.: Preparation of organic nitrates from
734	alcohols and N_2O_5 for species identification in atmospheric samples, J. Atmos. Chem., 16, 349-
735	359, https://doi.org/10.1007/BF01032630, 1993.
736	Kellerman, A. M., Kothawala, D. N., Dittmar, T., and Tranvik, L. J.: Persistence of dissolved organic
737	matter in lakes related to its molecular characteristics, Nat. Geosci., 8, 454-U452,
738	https://doi.org/10.1038/ngeo2440, 2015.
739	Khwaja, H. A., Parekh, P. P., Khan, A. R., Hershey, D. L., Naqvi, R. R., Malik, A., and Khan, K.:
740	An In-Depth Characterization of Urban Aerosols Using Electron Microscopy and Energy
741	Dispersive X-Ray Analysis, CLEAN – Soil, Air, Water, 37, 544-554,
742	https://doi.org/10.1002/clen.200900012, 2009.
743	Kirchstetter, T. W., and Thatcher, T. L.: Contribution of organic carbon to wood smoke particulate
744	matter absorption of solar radiation, Atmos. Chem. Phys., 12, 5803-5816,
745	https://doi.org/10.5194/acp-12-6067-2012, 2012.
746	Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Gustafsson, Ö.: Water-
747	soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source
748	apportionment and optical properties, J. Geophys. ResAtmos., 119, 3476-3485,
749	https://doi.org/10.1002/2013jd020041, 2014.
750	Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R.,
751	Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb,
752	C. E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of
753	atmospheric organic aerosol, Nat. Chem., 3, 133-139, https://doi.org/10.1038/nchem.948, 2011.
754	Kundu, S., Fisseha, R., Putman, A. L., Rahn, T. A., and Mazzoleni, L. R.: High molecular weight
755	SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass
756	spectrometry characterization, Atmos. Chem. Phys., 12, 5523-5536,
757	https://doi.org/10.5194/acp-12-5523-2012, 2012.
758	Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D., Martin, A. T., Cummings,
759	M. J., Croasdale, D. R., Brune, W. H., Worsnop, D. R., and Davidovits, P.: Relationship
760	between oxidation level and optical properties of secondary organic aerosol, Environ. Sci.
761	Technol., 47, 6349-6357, https://doi.org/10.1021/es401043j, 2013.
762	Lamkaddam, H., Dommen, J., Ranjithkumar, A., Gordon, H., Wehrle, G., Krechmer, J., Majluf, F.,
763	Salionov, D., Schmale, J., Bjelic, S., Carslaw, K. S., El Haddad, I., and Baltensperger, U.: Large

764	contribution to secondary organic aerosol from isoprene cloud chemistry, Sci. Adv., 7,
765	https://doi.org/10.1126/sciadv.abe2952, 2021.
766	Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. rev.,
767	115, 4335-4382, https://doi.org/10.1021/cr5006167, 2015.
768	Laskin, J., Laskin, A., Nizkorodov, S. A., Roach, P., Eckert, P., Gilles, M. K., Wang, B., Lee, H. J.,
769	and Hu, Q.: Molecular selectivity of brown carbon chromophores, Environ. Sci. Technol., 48,
770	12047-12055, https://doi.org/10.1021/es503432r, 2014.
771	Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Excitation-emission spectra and
772	fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols, Environ.
773	Sci. Technol., 47, 5763-5770, https://doi.org/10.1021/es400644c, 2013.
774	Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of solar radiation on
775	the optical properties and molecular composition of laboratory proxies of atmospheric brown
776	carbon, Environ. Sci. Technol., 48, 10217-10226, https://doi.org/10.1021/es502515r, 2014.
777	Li, C., He, Q., Fang, Z., Brown, S. S., Laskin, A., Cohen, S. R., and Rudich, Y.: Laboratory Insights
778	into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown
779	Carbon Aerosols, Environ. Sci. Technol., 54, 11827-11837,
780	https://doi.org/10.1021/acs.est.0c04310, 2020a.
781	Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and Cao,
782	J.: Optical properties and molecular compositions of water-soluble and water-insoluble brown
783	carbon (BrC) aerosols in northwest China, Atmos. Chem. Phys., 20, 4889-4904,
784	https://doi.org/10.5194/acp-20-4889-2020, 2020b.
785	Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W., and Peng, P.: Abundances and light
786	absorption properties of brown carbon emitted from residential coal combustion in China,
787	Environ. Sci. Technol., 53, 595-603, https://doi.org/10.1021/acs.est.8b05630, 2018.
788	Li, S., Fan, R., Luo, D., Xue, Q., Li, L., Yu, X., Huang, T., Yang, H., and Huang, C.: Variation in
789	quantity and quality of rainwater dissolved organic matter (DOM) in a peri-urban region:
790	Implications for the effect of seasonal patterns on DOM fates, Atmos. Environ., 239, 117769,
791	https://doi.org/10.1016/j.atmosenv.2020.117769, 2020c.
792	Li, X., Yu, F., Cao, J., Fu, P., Hua, X., Chen, Q., Li, J., Guan, D., Tripathee, L., Chen, Q., and Wang,
793	Y .: Chromophoric dissolved organic carbon cycle and its molecular compositions and optical
794	properties in precipitation in the Guanzhong basin, China, Sci. Total Environ., 152775,
795	https://doi.org/10.1016/j.scitotenv.2021.152775, 2022.
796	Lin, P., Huang, XF., He, LY., and Zhen Yu, J.: Abundance and size distribution of HULIS in
797	ambient aerosols at a rural site in South China, J. Aerosol Sci, 41, 74-87,
798	https://doi.org/10.1016/j.jaerosci.2009.09.001, 2010.
799	Lin, P., and Yu, J. Z.: Generation of reactive oxygen species mediated by humic-like substances in
800	atmospheric aerosols, Environ. Sci. Technol., 45, 10362-10368,
801	https://doi.org/10.1021/es2028229, 2011.
802	Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl
803	River Delta Region, China: results inferred from positive and negative electrospray high
804	resolution mass spectrometric data, Environ. Sci. Technol., 46, 7454-7462,
805	https://doi.org/10.1021/es300285d, 2012a.

806	Lin P. Vu. I. Z. Engling, G. and Kalberer, M. Organosulfates in humic like substance fraction
807	isolated from aerosols at seven locations in Fast Asia: a study by ultra-high-resolution mass
808	spectrometry Environ Sci Technol 46 13118-13127 https://doi.org/10.1021/es303570v
809	2012b
810	Lin P Bluvshtein N Rudich Y Nizkorodov S A Laskin I and Laskin A Molecular
811	Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event
812	Environ Sci Technol 51 11561-11570 https://doi.org/10.1021/acs.est.7b02276.2017
813	Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Comprehensive Molecular
814	Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with
815	Electrospray and Atmospheric Pressure Photoionization. Anal. Chem., 90, 12493-12502.
816	https://doi.org/10.1021/acs.analchem.8b02177, 2018.
817	Lin, Y. H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang, H., Riva, M., Zhang, Z., Gold, A.,
818	Kautzman, K. E., and Surratt, J. D.: Light-absorbing oligomer formation in secondary organic
819	aerosol from reactive uptake of isoprene epoxydiols, Environ. Sci. Technol., 48, 12012-12021,
820	https://doi.org/10.1021/es503142b, 2014.
821	Maie, N., Scully, N. M., Pisani, O., and Jaffé, R.: Composition of a protein-like fluorophore of
822	dissolved organic matter in coastal wetland and estuarine ecosystems, Water Res., 41, 563-570,
823	https://doi.org/10.1016/j.watres.2006.11.006, 2007.
824	Marrero-Ortiz, W., Hu, M., Du, Z., Ji, Y., Wang, Y., Guo, S., Lin, Y., Gomez-Hermandez, M., Peng,
825	J., Li, Y., Secrest, J., Levy Zamora, M., Wang, Y., An, T., and Zhang, R.: Formation and optical
826	properties of brown carbon from small alpha-dicarbonyls and amines, Environ. Sci. Technol.,
827	53, 117-126, https://doi.org/10.1021/acs.est.8b03995, 2019.
828	Mladenov, N., Alados-Arboledas, L., Olmo, F. J., Lyamani, H., Delgado, A., Molina, A., and Reche,
829	I.: Applications of optical spectroscopy and stable isotope analyses to organic aerosol source
830	discrimination in an urban area, Atmos. Environ., 45, 1960-1969,
831	https://doi.org/10.1016/j.atmosenv.2011.01.029, 2011.
832	Mo, Y., Li, J., Jiang, B., Su, T., Geng, X., Liu, J., Jiang, H., Shen, C., Ding, P., Zhong, G., Cheng,
833	Z., Liao, Y., Tian, C., Chen, Y., and Zhang, G.: Sources, compositions, and optical properties
834	of humic-like substances in Beijing during the 2014 APEC summit: Results from dual carbon
835	isotope and Fourier-transform ion cyclotron resonance mass spectrometry analyses, Environ.
836	Pollut., 239, 322-331, https://doi.org/10.1016/j.envpol.2018.04.041, 2018.
837	Mo, Y., Zhong, G., Li, J., Liu, X., Jiang, H., Tang, J., Jiang, B., Liao, Y., Cheng, Z., and Zhang, G.:
838	The Sources, Molecular Compositions, and Light Absorption Properties of Water - Soluble
839	Organic Carbon in Marine Aerosols From South China Sea to the Eastern Indian Ocean, J.
840	Geophys. ResAtmos., 127, https://doi.org/10.1029/2021jd036168, 2022.
841	Mopper, K., Stubbins, A., Ritchie, J. D., Bialk, H. M., and Hatcher, P. G.: Advanced instrumental
842	approaches for characterization of marine dissolved organic matter: Extraction techniques,
843	mass spectrometry, and nuclear magnetic resonance spectroscopy, Chem. Rev., 107, 419-442,
844	https://doi.org/10.1021/cr050359b, 2007.
845	Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way
846	techniques. PARAFAC, Anal. Methods, 5, 6557-6566, https://doi.org/10.1039/c3ay41160e,
847	2013.

848	O'Brien, R. E., Nguyen, T. B., Laskin, A., Laskin, J., Hayes, P. L., Liu, S., Jimenez, J. L., Russell,
849	L. M., Nizkorodov, S. A., and Goldstein, A. H.: Probing molecular associations of field-
850	collected and laboratory-generated SOA with nano-DESI high-resolution mass spectrometry,
851	J. Geophys. ResAtmos., https://doi.org/118, 1042-1051, 10.1002/jgrd.50119, 2013.
852	O'Brien, R. E., Laskin, A., Laskin, J., Rubitschun, C. L., Surratt, J. D., and Goldstein, A. H.:
853	Molecular characterization of S- and N-containing organic constituents in ambient aerosols by
854	negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass
855	Spectrometry: CalNex 2010 field study, J. Geophys. ResAtmos., 119, 12,706-712,720,
856	https://doi.org/10.1002/2014jd021955, 2014.
857	Park, S. S., and Yu, J.: Chemical and light absorption properties of humic-like substances from
858	biomass burning emissions under controlled combustion experiments, Atmos. Environ., 136,
859	114-122, https://doi.org/10.1016/j.atmosenv.2016.04.022, 2016.
860	Romonosky, D. E., Laskin, A., Laskin, J., and Nizkorodov, S. A.: High-resolution mass spectrometry
861	and molecular characterization of aqueous photochemistry products of common types of
862	secondary organic aerosols, J. Phys. Chem. A, 119, 2594-2606,
863	https://doi.org/10.1021/jp509476r, 2015.
864	She, Z., Wang, J., He, C., Pan, X., Li, Y., Zhang, S., Shi, Q., and Yue, Z.: The Stratified Distribution
865	of Dissolved Organic Matter in an AMD Lake Revealed by Multi-sample Evaluation Procedure,
866	Environ. Sci. Technol., 55, 8401-8409, https://doi.org/10.1021/acs.est.0c05319, 2021.
867	Siemens, K., Morales, A., He, Q., Li, C., Hettiyadura, A. P. S., Rudich, Y., and Laskin, A.: Molecular
868	Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene,
869	Environ. Sci. Technol., 56, 3340-3353, https://doi.org/10.1021/acs.est.1c03135, 2022.
870	Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P., Dittmar, T., and Battin, T. J.:
871	Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate, Nat.
872	Geosci., 5, 710-714, https://doi.org/10.1038/ngeo1581, 2012.
873	Song, J. Z., Li, M. J., Fan, X. J., Zou, C. L., Zhu, M. B., Jiang, B., Yu, Z. Q., Jia, W. L., Liao, Y. H.,
874	and Peng, P. A .: Molecular Characterization of Water- and Methanol-Soluble Organic
875	Compounds Emitted from Residential Coal Combustion Using Ultrahigh-Resolution
876	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,
877	Environ. Sci. Technol., 53, 13607-13617, https://doi.org/10.1021/acs.est.9b04331, 2019.
878	Srinivas, B., and Sarin, M. M.: Light absorbing organic aerosols (brown carbon) over the tropical
879	Indian Ocean: impact of biomass burning emissions, Environ. Res. Lett., 8, 044042,
880	https://doi.org/10.1088/1748-9326/8/4/044042, 2013.
881	Srinivas, B., and Sarin, M. M.: Brown carbon in atmospheric outflow from the Indo-Gangetic Plain:
882	Mass absorption efficiency and temporal variability, Atmos. Environ., 89, 835-843,
883	https://doi.org/10.1016/j.atmosenv.2014.03.030, 2014.
884	Srinivas, B., Rastogi, N., Sarin, M. M., Singh, A., and Singh, D.: Mass absorption efficiency of light
885	absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-
886	Gangetic Plain, Atmos. Environ., 125, 360-370.
887	https://doi.org/10.1016/j.atmosenv.2015.07.017, 2016.

888	Stubbins A Lanierre, L.F. Bergoren, M. Prairie, Y.T. Dittmar, T. and del Giorgio, P.A. What's
889	in an FFM? Molecular signatures associated with dissolved organic fluorescence in boreal
890	Canada Environ Sci Technol 48 10598-10606 https://doi.org/10.1021/es502086e.2014
891	Su S. Xie O. Lang Y. Cao D. Xu Y. Chen J. Chen S. Hu W. Oi Y. Pan X. Sun Y. Wang
892	Z. Liu C. O. Jiang, G. and Fu, P. High Molecular Diversity of Organic Nitrogen in Urban
893	Snow in North China. Environ. Sci. Technol., 55, 4344-4356.
894	https://doi.org/10.1021/acs.est.0c06851.2021.
895	Sullivan, A. P., Pokhrel, R. P., Shen, Y., Murphy, S. M., Toohey, D. W., Campos, T., Lindaas, J.,
896	Fischer, E. V., and Collett Jr, J. L.: Examination of brown carbon absorption from wildfires in
897	the western US during the WE-CAN study, Atmos. Chem. Phys., 22, 13389-13406,
898	https://doi.org/10.5194/acp-22-13389-2022, 2022.
899	Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J.,
900	Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown
901	carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by
902	excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass
903	spectrometry analysis, Atmos. Chem. Phys., 20, 2513-2532, https://doi.org/10.5194/acp-20-
904	2513-2020, 2020.
905	Tang, J., Wang, J., Zhong, G., Jiang, H., Mo, Y., Zhang, B., Geng, X., Chen, Y., Tang, J., Tian, C.,
906	Bualert, S., Li, J., and Zhang, G.: Measurement report: Long-emission-wavelength
907	chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact
908	from biomass burning, Atmos. Chem. Phys., 21, 11337-11352, https://doi.org/10.5194/acp-21-
909	11337-2021, 2021.
910	Updyke, K. M., Nguyen, T. B., and Nizkorodov, S. A.: Formation of brown carbon via reactions of
911	ammonia with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos.
912	Environ., 63, 22-31, https://doi.org/10.1016/j.atmosenv.2012.09.012, 2012.
913	Varga, B., Kiss, G., Ganszky, I., Gelencsér, A., and Krivácsy, Z.: Isolation of water-soluble organic
914	matter from atmospheric aerosol, Talanta, 55, 561-572, https://doi.org/10.1016/S0039-
915	9140(01)00446-5, 2001.
916	Vione, D., Albinet, A., Barsotti, F., Mekic, M., Jiang, B., Minero, C., Brigante, M., and Gligorovski,
917	S.: Formation of substances with humic-like fluorescence properties, upon photoinduced
918	oligomerization of typical phenolic compounds emitted by biomass burning, Atmos. Environ.,
919	206, 197-207, https://doi.org/10.1016/j.atmosenv.2019.03.005, 2019.
920	Wang, H., Zhang, L., Huo, T., Wang, B., Yang, F., Chen, Y., Tian, M., Qiao, B., and Peng, C.:
921	Application of parallel factor analysis model to decompose excitation-emission matrix
922	fluorescence spectra for characterizing sources of water-soluble brown carbon in PM2.5,
923	Atmos. Environ., 223, 117192, https://doi.org/10.1016/j.atmosenv.2019.117192, 2020a.
924	Wang, J., Jiang, H., Jiang, H., Mo, Y., Geng, X., Li, J., Mao, S., Bualert, S., Ma, S., Li, J., and Zhang,
925	G.: Source apportionment of water-soluble oxidative potential in ambient total suspended
926	particulate from Bangkok: Biomass burning versus fossil fuel combustion, Atmos. Environ.,
927	235, 117624, https://doi.org/10.1016/j.atmosenv.2020.117624, 2020b.
928	Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.: Evaluation
929	of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity

930	of Dissolved Organic Carbon, Environ. Sci. Technol., 37, 4702-4708,
931	https://doi.org/10.1021/es030360x, 2003.
932	Wen, H., Zhou, Y., Xu, X., Wang, T., Chen, Q., Chen, Q., Li, W., Wang, Z., Huang, Z., Zhou, T., Shi,
933	J., Bi, J., Ji, M., and Wang, X.: Water-soluble brown carbon in atmospheric aerosols along the
934	transport pathway of Asian dust: Optical properties, chemical compositions, and potential
935	sources, Sci. Total Environ., 789, 147971, https://doi.org/10.1016/j.scitotenv.2021.147971,
936	2021.
937	Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E. A., Pradhan, B. B., Dangol, P. M.,
938	Panday, A. K., Wan, X., Bai, Z., Kang, S., Zhang, Q., and Cong, Z.: Water-Soluble Brown
939	Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South
940	Asia, Environ. Sci. Technol., 53, 3471-3479, https://doi.org/10.1021/acs.est.9b00596, 2019.
941	Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin,
942	A., and Cong, Z.: Fluorescence characteristics of water-soluble organic carbon in atmospheric
943	aerosol, Environ. Pollut., 268, 115906, https://doi.org/10.1016/j.envpol.2020.115906, 2021.
944	Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E., and Holder, A.
945	L.: Light Absorption of Secondary Organic Aerosol: Composition and Contribution of
946	Nitroaromatic Compounds, Environ. Sci. Technol., 51, 11607-11616,
947	https://doi.org/10.1021/acs.est.7b03263, 2017.
948	Xu, J., Hettiyadura, A. P. S., Liu, Y., Zhang, X., Kang, S., and Laskin, A.: Regional Differences of
949	Chemical Composition and Optical Properties of Aerosols in the Tibetan Plateau, J. Geophys.
950	ResAtmos., 125, e2019JD031226, https://doi.org/10.1029/2019jd031226, 2020.
951	Yan, G., and Kim, G.: Speciation and Sources of Brown Carbon in Precipitation at Seoul, Korea:
952	Insights from Excitation-Emission Matrix Spectroscopy and Carbon Isotopic Analysis,
953	Environ. Sci. Technol.,51, 11580-11587, https://doi.org/10.1021/acs.est./b02892, 2017.
954	Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical characterization of
955	SOA formed from aqueous-phase reactions of phenois with the triplet excited state of carbonyl
930	and hydroxyl radical, Atmos. Chem. Phys., 14, 13801-13816, https://doi.org/10.5194/acp-14-
957	13801-2014, 2014.
950	rimary sources and secondary formation of water soluble organic aerosols in downtown
960	Beijing Atmos Chem Phys. 21, 1775 1796 https://doi.org/10.5104/acp.21.1775.2021.2021
961	Superstring, Autos, Chem. 1 hys., 21, 175-1790, https://doi.org/10.5194/acp-21-1775-2021, 2021.
962	Song W Ding X Hu O Li L Bi X and Wang X Water Soluble Organic Nitrogen
963	(WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations
964	and Source Apportionment J Geophys Res-Atmos 122
965	https://doi.org/10.1002/2017id027327_2017.
966	Yue, S., Ren, L., Song, T., Li, L., Xie, O., Li, W., Kang, M., Zhao, W., Wei, L., Ren, H., Sun, Y.,
967	Wang, Z., Ellam, R. M., Liu, C. Q., Kawamura, K., and Fu, P.: Abundance and Diurnal Trends
968	of Fluorescent Bioaerosols in the Troposphere over Mt. Tai, China, in Spring, J. Geophys. Res
969	Atmos., 124, 4158-4173, https://doi.org/10.1029/2018jd029486, 2019.
970	Zeng, Y., Ning, Y., Shen, Z., Zhang, L., Zhang, T., Lei, Y., Zhang, Q., Li, G., Xu, H., Ho, S. S. H.,
971	and Cao, J.: The Roles of N, S, and O in Molecular Absorption Features of Brown Carbon in

972	PM2.5 in a Typical Semi - Arid Megacity in Northwestern China, J. Geophys. ResAtmos.,
973	126, e2021JD034791, https://doi.org/10.1029/2021jd034791, 2021.
974	Zhou, Y., West, C. P., Hettiyadura, A. P. S., Niu, X., Wen, H., Cui, J., Shi, T., Pu, W., Wang, X., and
975	Laskin, A .: Measurement report: Molecular composition, optical properties, and radiative
976	effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China,
977	Atmos. Chem. Phys., 21, 8531-8555, https://doi.org/10.5194/acp-21-8531-2021, 2021.
978	Zong, Z., Tian, C., Li, J., Syed, J. H., Zhang, W., Fang, Y., Jiang, Y., Nasir, J., Mansha, M., Rizvi, S.
979	H. H., Shafiq, M., Farhan, S. B., and Zhang, G.: Isotopic Interpretation of Particulate Nitrate
980	in the Metropolitan City of Karachi, Pakistan: Insight into the Oceanic Contribution to NOx,
981	Environ. Sci. Technol., 54, 7787-7797, https://doi.org/10.1021/acs.est.0c00490, 2020.
982	Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.: Differentiating with
983	fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying,
984	Chemosphere, 38, 45-50, https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
985	
986	