Supplementary information: CFC-11 emissions are declining as expected in Western Europe

Alison L. Redington¹*, Alistair J. Manning¹*, Stephan Henne², Francesco Graziosi³,⁴, Luke M. Western⁵,⁶, Igor Arduini³, Anita L. Ganesan⁷, Christina M. Harth⁸, Michela Maione³, Jens Mühle⁸, Simon O’Doherty⁵, Joseph Pitt⁵, Stefan Reimann², Matthew Rigby⁵, Peter K. Salameh⁸, Peter G. Simmonds⁵, T. Gerard Spain⁹, Kieran Stanley⁵, Martin K. Vollmer², Ray F. Weiss⁸, and Dickon Young⁵

¹Met Office Hadley Centre, Exeter EX1 3PB, UK
²Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
³Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy
⁴European Commission Joint Research Centre (JRC), Ispra (Va), Italy
⁵School of Chemistry, University of Bristol, Bristol, UK
⁶Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, USA
⁷School of Geographical Sciences, University of Bristol
⁸Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
⁹School of Natural Sciences, University of Galway, Galway, Ireland

*These authors contributed equally to this work.

Correspondence: Alison Redington (alison.redington@metoffice.gov.uk)

Copyright statement. The works published in this journal are distributed under the Creative Commons Attribution 4.0 License. This licence does not affect the Crown copyright work, which is re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 4.0 License and the OGL are interoperable and do not conflict with, reduce or limit each other. © Crown copyright 2023
Figure S1. Annual average model offset from the four-model average of the posterior baselines at MHD for a) CFC-11, b) CFC-12 and c) CCl₄

Figure S2. Percentage of total observations per year that are greater than either 1 standard deviation of the baseline and/or twice the instrument precision (blue bars) and total number of observations per year (red line) at MHD for a) CFC-11, b) CFC-12 and c) CCl₄
Figure S3. Average a posteriori CFC-11 emissions for the period 2013 to 2021 as estimated when using a flat a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S4. Average a posteriori CFC-11 emissions for the period 2013 to 2021 as estimated when using a population-based a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S5. Average a posteriori CFC-12 emissions for the period 2013 to 2021 as estimated when using a flat a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S6. Average a posteriori CFC-12 emissions for the period 2013 to 2021 as estimated when using a population-based a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S7. Average a posteriori CCl₄ emissions for the period 2013 to 2021 as estimated when using a flat a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S8. Average a posteriori CCl₄ emissions for the period 2013 to 2021 as estimated when using a population-based a priori distribution and by the four inversion systems: a) InTEM, b) University of Urbino, c) Empa, d) Bristol-HB. Each of the inversion systems used a different irregular inversion grid, these were re-sampled here to a regular grid to allow for a more direct comparison.
Figure S9. Model performance visualised in terms of Taylor diagrams, combining correlation coefficient and normalised standard deviation. Comparison statistics were calculated for the complete time series (2013 to 2021) of the regional concentration signals (observation minus baseline) at the four sites and daily aggregates: a) CFC-11, b) CFC-12, c) CCl$_4$. Solid symbols identify a posteriori and open symbols a priori results. Different colours identify the model systems and different symbols the observation sites.

S1 Bank Release Rate Calculation

We started with the assumption that all the emissions were from banks. We calculated the average 4-model emission for the period 2008-2021, giving a mid point of 2014. Initially assuming the average bank release rate from TEAP1, 2019 of 2.85%, we extrapolated backwards and forwards from this mid-2014 emission to give annual values for 2008-2021 inclusive. These annual values were compared with the modelled data using root mean square error (rmse). This process was repeated using values in the range (1.5-4.2 %) given by TEAP, 2019. The minima rmse for the 4-model average results occurred at a bank release rate of 3.4 % for CFC-11. In order to establish a range of possible outcomes we repeated the process for the 4 models individually and calculated a bank release rate range of 2.6-4.5 %. (InTEM 2.6 %, MCMC 2.9 %, Urbino 4.5 %, Empa 3.6 %). The calculations were repeated for CFC-12.
