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Abstract. Production and consumption of CFC-11 (trichlorofluoromethane, CCl3F), CFC-12 (dichlorodifluoromethane, CCl2F2)

and CCl4 (carbon tetrachloride) are controlled under the regulations of the Montreal Protocol and have been phased out glob-

ally since 2010. Only CCl4 is still widely produced under exemption as a chemical feedstock(non-dispersive use). After 2010,

emissions of CFC-11 and CFC-12 should therefore mostly originate from existing banks (e.g. from foams, mobile air condi-

tioning units and refrigerators), however evidence has emerged of an increase in global emissions of CFC-11 in the last decade,5

some of which has not been fully accounted for. The motivation for this work was to assess the emissions of CFC-11, CFC-12

and CCl4, from western Europe. All countries in this region have been subject to the controls of the Montreal Protocol since the

late 1980s and, as non-Article-5
:::::::::
non-Article

::
5 Parties, have been prohibited from producing CFCs and CCl4 for dispersive use

since 1996. Four different inverse modelling systems are used to estimate emissions of these gases from 2008 to 2021 using

data from four atmospheric measurement stations: Mace Head (Ireland), Jungfraujoch (Switzerland), Monte Cimone (Italy)10

and Tacolneston (UK). The average of the four model studies found that western European emissions of CFC-11, CFC-12 and

CCl4 between 2008 and 2021 were declining at 3.5 (2.7-4.8) %, 7.7 (6.3-8.0) % and 4.4 (2.6-6.4) % yr−1 respectively. Even

though the emissions are declining throughout the period, the area including Northern France, Belgium, the Netherlands and

Luxembourg show
:::::
shows consistently elevated emissions of CFC-11 compared with the surrounding regions. Emissions of

CFC-12 were slightly elevated in the same region. CCl4 emissions were highest in the south of France. France had the highest15

emissions of all three gases over the period 2008-2021. Emissions from western Europe (2008-2021) were on average 2.4 ±
0.4 Gg (CFC-11), 1.3 ± 0.3 Gg (CFC-12), 0.9 ± 0.2 Gg (CCl4). Our estimated decline in emissions of CFC-11 is consistent

1



with a western European bank release rate of 3.4 (2.6-4.5) %. This study concludes that emissions of CFC-11, CFC-12 and

CCl4 have all declined from 2008 to 2021 in western Europe. Therefore, this study finds no evidence
::
no

:::::::
evidence

::
is
::::::

found

that western European emissions contributed to the unexplained part of the global increase in atmospheric concentrations of20

CFC-11 observed in the last decade.
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1 Introduction25

Trichlorofluoromethane (CFC-11 or CFCl3), dichlorodifluoromethane (CFC-12 or CF2Cl2) and carbon tetrachloride (CCl4)

are damaging to the stratospheric ozone layer (?) and are strong greenhouse gases (?). Their production , consumption and

use
:::
and

:::::::::::
consumption

:
are controlled through the Montreal Protocol on Substances that Deplete the Ozone Layer (MP) and its

amendments. For non-Annex
:::::::::
non-Article

:
5 parties

::::::
Parties, including all of the countries in western Europe, the production and

consumption of CFC-11 and CFC-12 have been banned since 1996.
::::
1996,

:::::::
however

:::::::
Europe

::::::
phased

:::::
them

:::
out

:
a
::::
year

:::::
early,

:::
by30

:::::
1995. For developing countries (Annex-5

:::::
Article

::
5
::::::
Parties), production and consumption of CFC-11 and CFC-12 have been

banned since 2010.

CFC-11 was mainly used in aerosol spray cans, as a solvent and as an agent for blowing foams into buildings and consumer

products; CFC-12 was mainly used in refrigerators, mobile air conditioning units and as a foam blowing agent. CCl4 was used

historically as a solvent and also as a feedstock to produce other chemicals, predominantly CFC-11 and CFC-12. Production and35

consumption of CCl4 has
:::
also

:
been banned under the MP since

::::
1996

:::
for

:::::::::
developed

::::::::
countries

:::
and

:::::
since 2010 ,

::
for

::::::::::
developing

:::::::
countries

:::::
(i.e.,

::::::
Article

:
5
:::::::
Parties),

:
with the exception of use as a chemical feedstock. Feedstocks are permitted to be produced

under the assumption that the majority of CCl4 made, is fully converted into the target chemical, recycled or destroyed.

Globally, emissions of CFC-11 and CFC-12 have been decreasing as a result of the
::::::::
production

::::
and consumption controls

imposed by the MP. The CFC that remains in products and equipment is described as a bank, which is characterised as active40

if the product is still in use or as inactive if the product has been decommissioned. Nearly all the active banks are comprised

of foam panels and boardstock in buildings. Nearly all the remaining banks of foams used in refrigerating applications have

been decommissioned and either landfilled or destroyed. The European Union requires ozone-depleting blowing agents to be

captured and destroyed under the EU Directive 2002/96/EC (?). ? analysis suggests that globally there are an estimated 750 ±
50 Gg of CFC-11 in active foam banks and 700 ± 50 Gg in inactive banks in 2021, though work by ? suggests that they could45

be substantially larger. The majority of the global CFC-11 bank is in North America and Europe.

Emissions of CCl4 have also been decreasing globally since the 1990’s as a result of the MP, however there is a gap between

expected emissions and those calculated by inverse modelling techniques and atmospheric measurements, as highlighted in
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? and ?. The global rate of decrease in the mole fraction of CFC-11 had slowed from 2013 onward (?) and the most likely

cause was an increase in emissions of CFC-11 from eastern Asia. This finding was supported by ?, who identified emissions50

in eastern China (7.0 ± 3.0 Gg yr−1 2014-2017) that explained 40-60 % of the increased global emissions. In 2019, CFC-11

emissions from eastern China rapidly declined and they are now similar to before this period of renewed production and use

(??). CFC-12 and CCl4 emissions are often associated with production of CFC-11, and emission levels were shown to be higher

than expected in eastern China after 2013. They subsequently decreased just before the reduction in CFC-11 (?). ? reported

a lack of decline in CCl4 emissions during the period 2009-2016 in eastern China, also suggesting globally significant CCl455

sources in this region.

? used observational data from two global aircraft surveys to assess the continental scale contributions to global CFC-11

emissions from 2012 to 2017 to try to understand the additional increase in global CFC-11 not accounted for by the increased

emissions found in Eastern China (?). They speculated that in addition to eastern mainland China’s contribution, emissions

likely came from temperate western Asia and tropical Asia.60

? present a comprehensive review of CFC emissions in Australia from 1960 to 2017, where they conclude that Australian

emissions since the early 1990’s were declining at the same rate as the global emissions; around 10 % per year. They found

no evidence of renewed emission or consumption of CFCs in Australia. CCl4 emissions in Australia were assessed by ? from

1996 to 2011, where they identified potential local emission sources associated with contaminated soils, toxic waste treatment

facilities and chlor-alkali plants. They concluded that currently unaccounted-for emissions in other regions could arise from65

similar sources.

? reported on continued emissions of CCl4 in the United States (2008-2012) which are nearly two orders of magnitude

higher than those estimated by the US Environmental Protection Agency inventory for industrial chemical processes.

CFC-11, CFC-12 and CCl4 emissions from Europe have been reported in previous studies. ? estimated emissions of CFC-11

and CFC-12 from 1995 – 2002 for western Europe as 8.9 and 14.3 Gg y−1, respectively. ? used measurements at Mace Head,70

Jungfraujoch and K-Puszta (Hungary) to estimate emissions of CFC-11 of 2.1 ± 0.4 Gg y−1 in 2009 from North-West Europe

(Ireland, UK, France, Benelux, Germany and Denmark) and 4.2 ± 1.2 Gg y−1 in the whole of Europe (excluding Norway,

Sweden, Finland and Russia). In the same study, CFC-12 emissions of 1.0 ± 0.4 Gg y−1 in North-West Europe and 2.2 ± 1.1

Gg y−1 in the whole of Europe were estimated. ? reported on European CCl4 emissions over the period 2006 to 2014. They

found that France was the main source of emissions. On average European emissions contributed 4.0 % of global emissions75

for 2006-2012.

Here we use four inverse modelling systems, employing two atmospheric transport models with different meteorological

inputs and different inversion approaches to asses CFC-11, CFC-12 and CCl4 emissions from western Europe from 1990 to

2021 and their rates of decline.
:::
The

::::::::
modelled

:::::::
domain

:::
we

:::::
define

:::
as

:::::::
western

::::::
Europe

::::::::::
(W-Europe)

:::::::::
comprises

:::
of

:::::::
Ireland,

:::
the

:::
UK,

:::::::
France,

::::::::
Belgium,

:::
the

:::::::::::
Netherlands,

:::::::::::
Luxembourg,

::::::::
Germany,

:::::
Italy,

:::::::::::
Switzerland,

::::::
Austria

::::
and

::::::::
Denmark.

:
We present spatial80

distributions of the emission estimates, averaged in time and over the four model systems.

Section ?? describes the atmospheric measurements and inverse frameworks used, section ?? presents the emission estimates

and their discussion and finally concluding remarks are made in section ??.
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2 Methods

2.1 Atmospheric Measurements85

We use the in-situ high-frequency observations from four atmospheric monitoring stations which are part of the Advanced

Global Atmospheric Gases Experiment (AGAGE) network (?): Mace Head (MHD) on the west coast of Ireland, Jungfraujoch

(JFJ) in the Swiss Alps, Monte Cimone (CMN) in the northern Apennine Mountains in Italy and Tacolneston (TAC) in the

south-east of the UK (see Table ??). TAC and MHD are also part of the UK DECC network (?). Data from all four stations are

routinely inter-compared to ensure good data quality.90

The measurements at TAC and JFJ were made using Medusa gas chromatograph (GC) mass spectrometer (MS) instruments

(?). Typically, 2-litre samples of ambient air are pre-concentrated on a cold trap, then cryo-distilled and cryo-focussed on a

second cold trap held at ∼-160°C, where the main constituents in air (oxygen, nitrogen, noble gases, carbon dioxide and water)

are removed. The sample is then transferred to the GC with subsequent quadrupole MS detection. A sample run typically

takes 1 hour, and air sample measurements are bracketed by calibration standard measurements to correct for MS drift and to95

quantify the trace gases in the air samples, thus 2-hourly atmospheric observations are available from these systems. Typical

measurement precisions for CFC-11, CFC-12 and CCl4 from these instruments are ∼0.22 % (1 sigma std) ∼0.14 % and ∼1.11

% respectively.

The measurements at MHD from 1994 onwards were made with a GC Multiple Detector (MD) (?) system. These measure-

ments are made every 20 minutes and using bracketing standard measurements result in an ambient air sample observation100

every 40 minutes. Precision for these measurements (∼0.10 %, ∼0.08 % and ∼0.32 % for CFC-11, CFC-12 and CCl4 respec-

tively) are generally better than that achieved using the Medusa-GC-MS system.

Measurements at CMN started in Feb 2006. The system consists of a commercial Thermal Desorption – GC-MS system

(Markes International Unity2-AirServer2) coupled with a GC-MS (Agilent GC 6850 MS5975C) (?) to enrich halocarbons on

the adsorbing trap; ambient air samples are collected every second hour and bracketed with working standard runs following105

the AGAGE-Medusa protocol. The measurement precisions are ∼0.40 %, ∼0.31 % and ∼0.47 % for CFC-11, CFC-12 and

CCl4, respectively.

All measurements are based on Scripps Institution of Oceanography (SIO) primary calibration scales SIO-05. The accuracies

of these calibration scales are estimated at 2 %. The calibration scales are propagated to the field instruments using travelling

tertiary whole-air standards exchanged between SIO and the field sites (for CMN, calibrated standards are exchanged with110

MHD). Tertiary standards are used on site for the calibration of quaternary whole-air standards, which are used to bracket the

air measurements. This propagation of standards adds a statistically independent uncertainty of 1 – 2 % to the measurements.

Overall, the accuracy of the air measurements is ∼3 % and includes calibration scale, propagation and reproducibility of the

air measurements. For more details see, for example, ?.
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Table 1. Observation site information. Note the site altitude is given in metres above sea level (m asl) and inlet height as metres above ground

(m agl)

Site Country Site Latitude Longitude Site altitude inlet height Dates obs.

Name Acronym (◦N) (◦E) (m asl) height (m agl) available

Mace Head Ireland MHD 53.33 -9.904 8 10 1994–2021

Tacolneston UK TAC 52.52 1.139 56 100 2012–2017

Tacolneston UK TAC 52.52 1.139 56 185 2017–2021

Jungfraujoch Switzerland JFJ 46.55 7.986 3580 10 2008–2021

Monte Cimone Italy CMN 44.18 10.70 2165 8 2006–2021

2.2 Inversion Frameworks115

Four different atmospheric inverse modelling systems were employed to estimate emissions of CFC-11, CFC-12 and CCl4

from western Europe (WEU) where WEU comprises of Ireland, the UK, France, Belgium, the Netherlands, Luxembourg,

Germany, Italy, Switzerland, Austria and Denmark
::::::::
W-Europe. Each system consists of an atmospheric transport model (ATM)

and a Bayesian optimisation framework that infers emission into the atmosphere from the mole fractions observed at the

measurement sites. All of the systems have been applied in previous studies and are briefly described here.120

Both of the ATMs used are Lagrangian Particle Dispersion Models (LPDMs) that use 3-dimensional modelled meteorology

from operational meteorological centres. They were both run backward in time, releasing model particles at the location of the

atmospheric observations and thereby calculating source receptor relationships (SRR, also referred to as source sensitivities),

which are required for the inverse estimate of emissions (?). The SRRs represent the quantitative link between an emission

source at any location in the model domain and the change in mole fraction at a measurement site. As the main sources are125

expected to be close to the ground, we evaluate the SRRs from near to the ground (for example 0-40m a.g.l. in NAME) to the

sampling location and height. An overview of the ATMs and the release settings used are given in the following sections and

Table ??. Two common a priori emission fields were used by each model to test the sensitivity of the inverse results; the first,

‘flat’ uniform emissions across the land area of Europe, and the second, population-weighted emissions over land areas. CFC-

11 and CFC-12 were 3.0 kg km−2 yr−1 for the flat land a priori emissions which resulted in 6.6 Kt yr−1 over WEU
::::::::
W-Europe.130

CCl4 was emitted at 1.2 kg km−2 yr−1 for the flat land a priori emissions which gave 2.6 Kt yr−1 over WEU
::::::::
W-Europe.

The population-weighted a priori emissions used the same totals for WEU
::::::::
W-Europe. A common set of quality controlled

observational data (Section ??) including instrument precision, was compiled from the AGAGE database and shared among all

modelling groups. From these observations each modelling team estimated background mole fractions following their method

of choice; this enables calculation of enhancements above baseline. Individual groups used different temporal aggregation of135

the observational data to best fit their modelling frameworks.
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Table 2. The inversion systems: ATMs, meteorology, geographical domains over which the ATMs are run, number of particles released per

hour and the inversion time-steps.

Inversion System Atmospheric Transport Driving Meteorology Computational Domain Inversion Domain Particles Inversion

Model Released (hr−1) Time Step

InTEM NAME Unified Model -98.1 to 39.6◦E, 10.6 to 79.2◦N -14.3 to 30.8◦E, 36.4 to 66.3◦N 20,000 4 hr

Empa FLEXPART 9.1 ECMWF-IFS operational Global Alpine nest -12.0 to 26.4◦E, 36.0 to 62.0◦N 16,667 3 hr

University Urbino FLEXPART 10.4 ECMWF operational Global -20.0 to 50.0◦E, 0.0 to 80.0◦N 13,333 3 hr

Bristol-MCMC NAME Unified Model -98.1 to 39.6◦E, 10.6 to 79.2◦N -98.1 to 39.6◦E, 10.6 to 79.2◦N 20,000 12 hr

2.2.1 InTEM

The Inverse Technique for Emission Modelling (InTEM) (?, ?) is used by the UK government to verify its nationally reported

greenhouse gas emissions. InTEM uses the Numerical Atmospheric dispersion Modelling Environment (NAME, ?) LPDM

which has been used for many similar studies (????????). NAME is driven by three-dimensional meteorology; the horizontal140

and vertical resolution of the meteorology has increased over the modelled period (see ?). The NAME model simulates atmo-

spheric dispersion by the release of thousands of particles into the modelled atmosphere, here, 20,000 particles per hour from

each station (at heights of 10 m agl for MHD, 100 and 185 m agl for TAC, 1000 m agl for JFJ, and 500 m agl for CMN), and

followed backwards in time for 30 days or until they leave the computational domain. InTEM is a Bayesian system that min-

imises the mismatch between the model and the atmospheric observations given the constraints imposed by the observation145

and model uncertainties and prior information with its associated uncertainties. The 3-D varying background mole fraction

and observation station bias are solved-for within the inverse system along with the spatial distribution and magnitude of the

emissions. A time-varying prior background mole fraction is derived from the MHD, JFJ and CMN observations as described

in ?. TAC uses the same prior background mole fraction as used at MHD. The prior bias for each station is set to zero with an

uncertainty of 1.2 ppt for CFC-11 and CFC-12 and 0.43 ppt for CCl4 (see ?). The InTEM inversions used a prior uncertainty150

of 500 % over WEU
::::::::
W-Europe. The observations are averaged into 4-hr periods. The uncertainty of the observations is derived

from the reported daily observation precision uncertainty and the variability of the observations within a 12-hr period. The

modelling uncertainty for each 4-hr period is the larger of the median pollution (above baseline) event in that year, or 10 % of

the magnitude of the pollution event.

2.2.2 Empa155

The Empa (Swiss Federal Laboratories for Materials Science and Technology) Bayesian inverse modelling framework (?) has

been used e.g., to estimate methane emissions in Switzerland and halocarbon emissions in Europe (e.g., ???) and eastern Asia

(??).

The system uses source sensitivities as calculated by the LPDM FLEXPART (Version 9.1_Empa, ??, http://www.flexpart.eu)

driven by operational meteorological analysis fields provided by the ECMWF-IFS model extracted at a global resolution of160

1°x1° and a higher resolution nest (0.2°x0.2°) over the Alpine area. FLEXPART was run in backward mode, releasing 50,000

particles every 3 hours at each receptor site and following these 10 days backward in time. For elevated sites, model particles
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were released at a suitable altitude above model ground that is between model topography and real site altitude (?). Hence,

3000 m and 2000 m above sea level were chosen for JFJ and CMN, respectively. SRRs were evaluated from the surface to 100

m above ground.165

The Bayesian inversion was carried out to estimate annual mean emissions on an irregularly-sized grid covering western

Europe. Grid sizes were inversely proportional to SRRs, resulting in generally finer grid resolution close to the observational

sites. The employed covariance matrices consider correlated uncertainties in space in the emission a priori and correlated uncer-

tainties in time for the data-mismatch. The inversion framework offers different options for choosing uncertainty parameters.

Here, we chose a semi-objective approach setting the total uncertainty of the prior emissions to 100 % for the whole inversion170

domain with a correlation length scale of 100 km and an iterative approach for estimating the data-mismatch uncertainty from

the model-observation residuals assuming a linear relationship between data-mismatch uncertainty and simulated total source

sensitivity (?). The temporal correlation coefficient of the data-mismatch covariance was estimated from an exponential fit to

the auto-correlation function of the model residuals.

Baseline concentrations were estimated for each site using a statistical filter (REBS) on the observations (?). For each site175

the baseline was incorporated as a linear interpolation between baseline nodes. Baseline concentrations at the nodes were part

of the state vector and optimised along with the emissions. Baseline nodes were spaced 14-days apart. Baseline uncertainties

were taken from the REBS filter and assumed to be correlated with a time scale of 30 days.

The appropriate selection of uncertainty parameters was tested by evaluating the reduced χ2 index of the covariance matrices.

χ2 values were in the range of 0.85 to 1.15, 0.65 to 0.9, and 0.7 to 0.95 for CFC-11, CFC-12 and CCl4, respectively, indicating180

a balanced setup.

2.2.3 University Urbino

The University of Urbino inversion system used here is very similar to that described in (?). The inversion system has already

been applied to estimate CCl4 emissions , ?, and greenhouse gases in the European domain ?
::
(?,

::
?
:
). Like the Empa system, the

method is based on transport simulations using the FLEXPART (Version 10.4, ?) LPDM. However, FLEXPART was run with185

a different configuration and different input data. Here, FLEXPART was used to simulate the dispersion of 40,000 particles,

released from each receptor (measurement) site, every three hours, and followed for 20 days backward in time, calculating

source sensitivities from the ground to 100 m above ground. FLEXPART was driven by operational 3-hourly meteorological

data from ECMWF at 1° × 1° latitude and longitude resolution, from 2008 to 2021.

The University of Urbino inversion system is based on the analytical inversion method of ?, which was subsequently devel-190

oped and evaluated by ?. In this implementation we use the same mole fraction background filtering method, optimized by the

inversion scheme as described in this paper. With the purpose of reducing the number of unknowns in the inversion procedure,

a variable resolution grid is created, having a higher (lower) resolution over areas associated with high (low) sensitivity to the

observation sites. Uncertainty in the inversion grid is set to 250 % of prior emission flux in each gridbox, for both the flat

and population priors. In general, larger uncertainty reduction is associated with areas with larger source sensitivity, and lower195

uncertainty reduction is associated with lower source sensitivities.
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2.2.4 Bristol-MCMC

The Bristol-MCMC inverse system follows ? and ? with minor modifications. The sensitivities of the measurements to emis-

sions were derived using NAME driven by meteorology from the Met Office Unified Model global product (?), not using the

variable UK high resolution (UKV) component as used in InTEM. The spatial resolution of the global product varied over the200

period of study (as detailed in ?) and has a 3-hourly temporal resolution. The total model domain is detailed in Table ??, and

sensitivities are output at a horizontal resolution of 0.352° (lon) by 0.234° (lat) degrees.

Uncertainties in a priori emission estimates, the background (i.e. the mole fraction contribution outside the model domain)

and model transport are estimated following ?. This uses a Markov chain Monte Carlo (MCMC) algorithm to estimate the

joint-posterior distribution (?), where the reported values are the posterior mean and 68 % highest posterior density region205

(see ?). Inference is carried out as a scaling of the a priori emissions and boundary mole fraction, where the latter was taken

from the AGAGE 12-box model (????). The boundary mole fractions are inferred using a single value for each month at each

model boundary, with an additional bias term (additive offset) between each site for each year to allow for small systematic

differences in the modelling and measurements. This bias term is in reference to measurements at Mace Head. The likelihood

error contains three components added together in quadrature. The first is the measurement error, second is a term equal to 10210

% of the above-background mole fraction and the third is an additional model error term, which is estimated during inference.

The emissions are divided into 199 basis functions, chosen using a quadtree algorithm (?) based on the a priori contribution to

the mole fraction.

Prior uncertainty was set using a truncated Normal distribution (with a lower bound at 0 to prevent negative emissions) and

a standard deviation of 5. The prior distribution for the bias term was Normally distributed with a mean of zero and a standard215

deviation of 1 ppt. The prior for the model error followed a log-normal distribution with µ= 1.5 and σ = 0.5 and the boundary

condition followed a log-normal distribution with µ= 0.004 and σ = 0.02.

3 Results & Discussion

Estimating the background mole fractions at each measurement station is an integral part of each inversion system. Figure ??

shows example estimates from the InTEM system for CFC-11, CFC-12 and CCl4 at MHD from 1990. The monthly Northern220

Hemisphere background trend is derived from MHD observations using the UK Met Office background methodology (?). The

average rate of decline of the Northern Hemisphere mole fractions of CFC-11 at MHD between 2008 and 2021 is 1.7 ppt yr−1,

but it has not been uniform as discussed in (?). Between 2008 and 2012 at MHD it was 1.9 ppt yr−1 and between 2013 and

2018 it was 1.2 ppt −1. The slowdown in the decline has been attributed in part to enhanced emissions of CFC-11 from China

(?). The average rates of decline of the Northern Hemisphere mole fractions of CFC-12 and CCl4 at MHD between 2008 and225

2021 are 3.2 and 1.0 ppt yr−1, respectively.

Each inverse modelling system employs a priori background mole fractions estimated using different techniques and adjusts

these backgrounds within the inverse systems to produce a posterior background. A comparison of the posterior backgrounds

at MHD from the four inverse systems is shown in the supplementary Figure ??. The range of the models offset from the
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four-model average is generally within ± 0.25 ppt for all three gases, with the InTEM model having a positive offset for all 3230

gases, MCMC mostly positive for CFC-11 and CFC-12 with very little offset for CCl4, Empa having largely negatives offsets

from the mean for all gases and Urbino having largely negative offsets from the mean for CFC-11 and CFC-12 but very little

offset for CCl4.

Analysis of the MHD observational records for the three gases from 1989 has been undertaken to assess how the number of

pollution peaks (i.e. excursions from background) has changed over time. Figure ?? shows the percentage of observations per235

year greater than the larger of the standard deviation of the InTEM background and twice the instrument precision, per year

for each gas. The decrease in this percentage over the time period, for all three gases, clearly demonstrates that the emissions

of these gases from WEU
::::::::
W-Europe

:
have fallen significantly over this period.

Figure 1. Background mole fractions estimated from the observations at Mace Head (Ireland) for (a) CFC-11, (b) CFC-12 and (c) CCl4

The average yearly geographical sensitivities to surface emissions (footprints) at the four observation sites for the different

LPDMs for the period 2017-2021 are shown in Figure ??. Areas of high sensitivity are seen close to the measurement stations,240

but the footprints show that emissions from countries such as Spain and Poland are unlikely to be significant at the stations and

hence are not included in our definition of WEU
::::::::
W-Europe.
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Figure 2. Average model sensitivity to European surface emissions at the four observation stations (marked as x) for the period 2017-2021

for three of the atmospheric model configurations. The footprint used by Bristol-MCMC is indistinguishable from panel (a) and is not shown.

Figure ?? shows the WEU
::::::::
W-Europe emissions (2008-2021) estimated by the four different modelling systems, and the

average of the four in black, with associated uncertainty estimates for CFC-11, CFC-12 and CCl4 in the left hand panels, and

InTEM-only emission estimates for the three gases from 1990-2021 in the right hand panels. The WEU
::::::::
W-Europe

:
emission245

estimate results in Figure ??, and throughout the paper, are from the flat prior case, with the results from the population

prior case shown in the supplement. From 1990 until 2008, only observations from MHD were available, which greatly limits

the ability to estimate emissions over WEU
::::::::
W-Europe

:
due to the reduced footprint. To increase the number of observations

per inversion, the inversion time period was increased to 2-years, advanced in steps of 1-year. Additional observations were

included as they became available (CMN in 2006, JFJ in 2008 and TAC in 2012). The annual emissions shown are the average250

of the two inversions that include that year, with the exception of 1990 and 2021 which are based on a single two year inversion;

there are still large uncertainties in the early years, as seen in panels (b), (d) and (f). The results in Figure ?? panels (b) and (d)

show that WEU
::::::::
W-Europe

:
emissions of CFC-11 and CFC-12 declined sharply between 1990 and 1994 prior to the phase-out in

Europeduring 1995.
:
. Since then there has been a slow decline, likely relating to the gradual release from CFC-11 and CFC-12

"banks", which is the amount of each gas held in existing infrastructure
:::::::
products

:::
and

::::::::
buildings

::::
and

::
in

::::::
landfill. The estimated255

emissions of CCl4 also decreased rapidly from 1990 to 1993, but increased again in 1995-1996 before declining to the current

day.

The main focus of the study is the period from 2008 to 2021, when measurement data are available from at least three

European sites as shown in ?? panels (a), (c) and (e) for CFC-11, CFC-12 and CCl4, respectively. Some year to year variability

can be seen in the results, however we would caution reading too much into this as it may be due to errors in the estimates260

made by the models. Therefore, we focus on the trend over time, of the four model average, rather than year to year variation

in this work. Panel (a) shows the estimated CFC-11 emissions from WEU
::::::::
W-Europe

:
and the four modelling systems are in

good agreement, with InTEM and Empa generally estimating lower values and Urbino and Bristol-MCMC higher values. The

model average trend is downwards, from 3.1 ± 0.6 Gg yr−1 in 2008 to 1.7 ± 0.2 Gg yr−1 in 2021, although there is some

variability. The average decrease per year is 3.5 (2.7-4.8) % (gradient of the four model average compared to the average value;265
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range of the model gradients). Similarly there is an overall downward trend in CFC-12, from 2.2 ± 0.4 Gg yr−1 in 2008 to

0.9 ± 0.2 Gg yr−1 in 2021. Again there is both year-to-year and model-to-model variability, with the InTEM model generally

estimating lower than the average values and the Bristol-MCMC model estimating higher than the average values. The average

decrease per year is 7.7 (6.3-8.0) %. Panel (e) shows a flatter trend for CCl4 with the InTEM model being more of an outlier

with consistently lower estimates compared with the other three. The model average WEU
::::::::
W-Europe

:
emissions are 1.3 ± 0.3270

Gg yr−1 in 2008 declining to 0.6 ± 0.1 Gg yr−1 in 2021. The average decrease per year is 4.4 (2.6-6.4) % for CCl4.
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Figure 3. Panels (a), (c) and (e) show estimated annual emissions from 2008 to 2021 for the four models, with 1 standard deviation uncertainty

(shading), for WEU
::::::::
W-Europe, with the average shown in black, with uncertainty the average of the four models (grey shading), for CFC-11,

CFC-12 and CCl4 respectively. Panels (b), (d) and (f) show the annualised, 2-year InTEM inversion emission estimates from 1990 to 2021

for WEU
:::::::
W-Europe, for CFC-11, CFC-12 and CCl4 respectively.
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Figure ?? shows the four model average annual posterior CFC-11, CFC-12 and CCl4 emission distributions (2013 to 2021)

estimated using the flat prior distribution. As each inversion system used a different inversion grid, the solutions were re-

sampled to a standard grid and averaged. The models are consistent in their emission distribution, as shown quantitatively by

the relative standard deviations in panels (b), (d) and (f). The model results for flat and population prior inversions are compared275

in the supplement (Figures ??, ??, ??, ??, ?? and ??).

The average emission distribution, Figure ?? panel (a), indicates elevated emissions of CFC-11 over Belgium, southern

Netherlands, northern France and west Germany. A more precise location is not possible given the data sparsity, the precision

of the observation network and the uncertainty of the atmospheric modelling. The average emission distribution of CFC-12,

Figure ?? panel (c), is largely uniform over land, with slight enhancements in Belgium, southern Netherlands, west Germany280

and the far south east of France. Panel (e) shows the average emission distribution of CCl4, which indicates that the largest

emissions are in the south-east of France and some elevated emissions in the east of France, Belgium and central UK.

We evaluated the models’ ability to reproduce the observed concentrations at the four observational sites (2013-2021),

focusing on the regional signal (observation minus baseline) only, i.e. the ability of the models to reproduce pollution events

with the correct magnitude. Taylor diagrams of this analysis are available in the supplement (Figure ??). We observe a large285

spread in prior model performance with considerable differences across the four model systems. Performance significantly

improved in the posterior solutions, with the different systems much more aligned, no single model stands out. Performance

was generally better for the low-altitude sites (MHD and TAC), both in terms of correlation and normalised standard deviation,

compared to the high altitude sites, reflecting the challenges of atmospheric transport simulations to such locations.
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Figure 4. Posterior (a) CFC-11, (c) CFC-12 and (e) CCl4 emission distributions averaged over the period 2013 to 2021 and over the four

inversion systems using the flat prior. Relative standard deviations of CFC-11, CFC-12 and CCl4 emissions over the four inversion systems

are shown in (b), (d) and (f).
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Western Europe (WEU) has been further
::::::::
W-Europe

::::
has

::::
been

:
divided down to country level and the averages of the four290

models are shown in Figure ??. Panels (a), (c) and (e) show emissions per year per country in Gg per year. Panels (b), (d)

and (f) show population averaged emission from 2008 to 2021 in Gg per year per million of population. Austria and Denmark

are included in the WEU
::::::::
W-Europe

:
total but not presented separately due to their large individual emission uncertainties

resulting from country size and location with respect to the observation stations. Benelux represents the combined emissions

from Belgium, the Netherlands and Luxembourg.295

Panel (a) shows that CFC-11 emissions from Ireland and Switzerland are very low (<0.1 Gg per year); emissions from

Benelux
::::::::
countries, the UK, Italy and Germany range from 0.1 to 0.6 Gg per year; and France has emissions higher than any

other country with more than 0.7 Gg per year until 2018, dropping to 0.5 - 0.6 Gg per year thereafter. Panel (b) shows that

France also has the highest emissions per capita, followed by
:::
the Benelux countries.

Figure ?? panel (c) shows that CFC-12 emissions by country between 2008 and 2021 declined more consistently than CFC-300

11 emissions. The distribution of emissions between the countries is similar to that seen for CFC-11 in panel (a), except for

the Benelux
::::::::
countries which emitted less than the UK, Italy and Germany, though more than Ireland and Switzerland, whose

emissions are relatively low (<0.05 Gg). France has the greatest estimated emissions, but shows a strong decline of 62 %

between 2008 and 2021. The decline in CFC-11 in France for the same period was 44 %. Panel (d) shows that France has the

highest emission per capita, followed by Italy and Ireland.305

Figure ?? panel (e) shows that the decline in CCl4 emissions split by countries is less clear than the WEU
::::::::
W-Europe

:
decline

as shown in Figure ?? panel (e). The dominant emission of CCl4 in the WEU
::::::::
W-Europe

:
region comes from southern France

with a sustained decrease from 2017 to 2021, but France’s 2021 emissions are still more than double other WEU
::::::::
W-Europe

countries’s emissions. France’s per capita emissions are also clearly the largest (panel (f)). Unlike CFC-11 and CFC-12, where

emissions are mainly from the remaining bank, there is less of a link between CCl4 emissions and population. Emissions of310

this gas tend to arise from industrial processes resulting in a very different spatial distribution for CCl4 compared to CFC-

11 and CFC-12 (Figure ??). Fugitive emissions from the chlor-alkali industry are indicated by ? as potential source regions

of CCl4, which fits with the location in the south of France highlighted as the largest source in this study, and is in broad

agreement the distribution of emissions modelled in ?. ?, however, found 2006-2014 emissions in the Benelux region of a

similar magnitude to those in the south of France, whereas this study (2013-2021 Figure ?? panel (e)) has found much lower315

emissions in Benelux
::
the

:::::::
Benelux

::::::::
countries. Emissions from this region may have decreased in more recent years, though

Figure ?? panel (e)) only shows a modest decline of CCl4 from 2008 to 2014 for Benelux
::
the

:::::::
Benelux

::::::::
countries.
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Figure 5. Panels (a), (c) and (e) show estimated emissions from 2008 to 2021 of the four model average by country, with 1 standard deviation

uncertainty (shading), for CFC-11, CFC-12 and CCl4, respectively. Panels (b), (d) and (f) show the emission per country (and average for

western Europe,
::::::::
W-Europe

:::::::
(labelled WEU) in Mg per year per million of population (?) over the period 2008-2021, for CFC-11, CFC-12

and CCl4, respectively.
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The emissions from the CFC-11 banks arise due to leakage from foams in buildings, the release during the destruction of

foams and from landfill. This study shows on average a 3.5 (2.7-4.8)% per year decrease in CFC-11 emissions between 2008

and 2021 and a 7.7 (6.3-8.0)% decrease per year in CFC-12 over the same period. We have calculated a bank release rate320

for CFC-11 of 3.4 (2.6-4.5) % (calculation detailed in supplement) which aligns with the upper end of the bank release rate

ranges of 1.5-2.5% (bottom up analysis) and 3.5-4.2% (derived from atmospheric measurements) summarised in the ? report,

Appendix 6 sections A6.2 and A6.3 respectively. We have estimated a CFC-12 bank release rate of 7.7 (6.3-8.1)%. Based on

the four model average, for 2021 we calculate a CFC-11 bank of 55 (41-75) Gg and a CFC-12 bank of 10 (7-12) Gg for WEU.

This is a small fraction (3.8 (2.8-5.2) % of what is estimated globally ? for CFC-11.325

The rate of
:::
rate

::
of decline for CCl4 is more complicated due to its permitted use as a chemical feedstock and consequent

uncertainty around potential emissions from ongoing industrial processes. CCl4 emissions in this study are decreasing on

average by 4.4 (2.6-6.4) % per year across WEU
::::::::
W-Europe, which is lower than the average 6.9 % decrease (2006-2014)

reported over a larger European domain by ?.

We do not know why Benelux
::
the

:::::::
Benelux

::::::::
countries (Belgium, Luxembourg, and the Netherlands) and north-east of France330

show enhanced CFC-11 emissions (Figure ??). Possibly, historical banks are higher in this region due to high population

density. When the emissions are scaled by population for the different countries, (Figure ?? panel (b)) the emissions from

France and Benelux
:::
the

:::::::
Benelux

::::::::
countries are similar, 168.3 ± 40.0 and 136.3 ± 50.0 Mg per million people and much higher

than that of the UK, Germany and Italy (69.0 ± 14.5, 73.7 ± 32.0 and 80.4 ± 39.0 Mg per million people respectively), which

are countries with similar sized populations to France. Ireland’s small relative population (approximately 8 % of that of France335

in 2021) makes the result less comparable. The emission of CFC-11 across WEU
::::::::
W-Europe for the period 2008-2021 shown in

Figure ?? equates to an annual emission of 2.4 ± 0.4 Gg for a population of 335 million people (2021), which can be compared

with emissions in the USA, with a population of 330 million people, of 5.6 ± 1.2 Gg (?), indicating that US per capita emission

are nearly twice those in WEU
::::::::
W-Europe

:
(on average) and comparable to those in France.

To understand the spatial distribution of CFC-11 in Europe it is useful to look at the distribution of the related chemicals,340

CFC-12 and CCl4 (Figure ??). The distribution estimated from the average of the four inverse systems shows a slight elevation

of CFC-12 emissions in the same area as seen for CFC-11. The estimated emissions of CCl4 do show enhanced emissions

from the same region, however the spatial distribution is dominated much more by the elevated emissions in the south east

of France. Together with the estimated WEU
::::::::
W-Europe

:
CFC-11 bank release rate discussed above, the lack of correlation in

the spatial distribution of CFC-11 and CCl4 suggests that the CFC-11 emissions are unlikely to be due to fugitive leaks from345

the chemical industry as it is reasonable to assume that these compounds would be co-emitted
:
if
::::

that
:::::
were

:::
the

::::
case. Further

research is required to get a better understanding of the geographical spread of CFC-11 use historically, as well as past and

present locations for decommissioning and subsequent destruction of CFC-11 containing materials. A more comprehensive set

of observations closer to the Benelux
:::::::
countries

:
and northern France geographical region, would also potentially shed further

light on this region’s elevated emissions.350
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4 Conclusions

In this study we have estimated the western European
:::::::::
W-Europe emissions of CFC-11, CFC-12 and CCl4 using four different

inverse modelling systems and data from four atmospheric measurement sites for the period 2008 to 2021. This has allowed

us to look at the spatial distribution of the emissions over this region and to calculate the recent trends in emission for each of

these gases.355

Over WEU
:
In

:::::::::
W-Europe

:
we found that the average CFC-11 emission over the period 2008-2021 was 2.4 ± 0.4 Gg yr−1

decreasing at a rate of 3.5 (2.7-4.8) % yr−1. CFC-12 emissions were 1.3 ± 0.3 Gg yr−1 decreasing at a rate of 7.7 (6.3-

8.0) % yr−1, and CCl4 emissions were 0.9 ± 0.2 Gg yr−1 decreasing at a rate of 4.4 (2.6-6.4) % yr−1. Assuming that all

emissions come from banks, we thus estimate bank release rates of 3.4 (2.6-4.5) % and 7.7 (6.3-8.1) % for CFC-11 and CFC-

12 respectively, consistent with ?. We have estimated the 2021 WEU
::::::::
W-Europe

:
bank for each gas to be 55 (41-75) Gg for360

CFC-11 and 10 (7-12) Gg for CFC-12. We find the highest CFC-11 emissions during the 2013-2021 period in Benelux
:::
the

:::::::
Benelux

::::::::
countries and the north east of France, with smaller co-located CFC-12 emissions. The highest CCl4 emissions are

found in the south-east of France. This emission area is consistent with known emissions from chlor-alkali plants and previous

work by ?. France has the highest emissions per capita for all three gases. Despite the regions of higher emissions of CFC-11 in

France and Benelux
::
the

::::::::
Benelux

::::::::
countries, as the emissions are reducing at a rate consistent with a decline in the bank, we do365

not consider this to be indicative of unreported production or consumption. Instead, it is likely a reflection of historic use and

population density in these regions. This study concludes that emissions of CFC-11, CFC-12 and CCl4 have all declined from

2008 to 2021 in western Europe. Therefore, this study finds no evidence
::
no

:::::::
evidence

::
is

:::::
found

:
that western European emissions

contributed to the unexplained part of the global increase in atmospheric concentrations of CFC-11 observed in the last decade.
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