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Abstract. The ability of numerical sea ice models to reproduce localized deformation features associated with fracture pro-

cesses is key for an accurate representation of the ice dynamics and of dynamically coupled physical processes in the Arctic

and Antarctic. Equally key is the capacity of these models to minimize the numerical diffusion stemming from the advection

of these features, to ensure that the associated strong gradients persist in time, without the need to unphysically re-inject en-

ergy for re-localization. To control diffusion and improve the approximation quality, we present a new numerical core for the5

dynamics of sea ice that is based on higher order finite element discretizations for the momentum equation and higher order

discontinuous Galerkin methods for the advection. The mathematical properties of this core are discussed and detailed descrip-

tion of an efficient shared memory parallel implementation is given. In addition, we present different numerical tests and apply

the new framework to a benchmark problem to quantify the advantages of the higher order discretization. These tests are based

on Hibler’s viscous-plastic sea ice model, but the implementation of the developed framework in the context of other physical10

models reproducing a strong localization of the deformation are possible.

1 Introduction

Sea ice plays a critical role for the development of the Earth system with up to 15% of the world’s oceans being covered

by it at some point during the year. It contributes importantly to the global energy budget and its high albedo keeps arctic

oceans cool, affecting global oceanic circulation. An accurate simulation of sea ice is therefore of importance, in particular to15

describe the evolution and impact of climate change. The numerical modeling of sea ice is, however, very challenging since it

is characterized by nonlinear and highly localized processes.

In the present work, we develop a numerical scheme for sea ice that use higher order finite elements for the sea ice momentum

and the advection equations and specifically aims to provide a high fidelity discretization with small numerical diffusion and

good approximation properties. We choose discontinuous Galerkin methods for the advection because they allow a Eulerian20

treatment of the equations of motion that is compatible with the habits of the sea ice and climate modelling community while

extending naturally to high order and exhibiting limited numerical diffusion. The momentum equation will be formulated in

a variational finite element way that also allows naturally for higher order schemes and allows for a direct coupling to the
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discontinuous Galerkin advection discretization. The proposed numerical scheme will form the dynamical core in the next

neXtSIM-DG sea ice model that is currently under development.25

Since the first extended in-situ observational campaigns of the 1970’s in the Arctic, sea ice has been identified as a densely

fractured material in which most of the deformation is taking place locally by “relative motion at the cracks” with the ice

between the cracks being virtually “rigid” (Coon et al., 1974). This relative motion of ice plates, referred to in the sea ice

community as floes, translates into three main deformation processes: opening of fractures; joining along larger features called

leads; the shearing along opened fractures and the closing of leads, resulting in the formation of pressure ridges. Although30

highly localized around cracks, the processes play a key role in the polar ocean systems by governing the location and intensity

of bio-chemical processes and the exchange of heat, mass and momentum between the ice, ocean, and atmosphere, e.g. (Marcq

and Weiss, 2012; Vihma, 2014; Goosse et al., 2018; Horvat and Tziperman, 2018; Taylor et al., 2018). Importantly, the three

processes also determine to a significant extent the large-scale mechanical resistance of the ice cover and hence its mobility

and the overall rates of ice export out of the Arctic (e.g., Rampal et al., 2009, 2011).35

Satellite remote sensing data, such as the RADARSAT Geophysical Processor System sea ice motion products which became

available in the late 1990’s, have allowed for the observation of these localized processes at the global scale of the Arctic

Ocean. The term “Linear Kinematic Features” (LKFs) was then proposed to designate the associated near-linear zones of

discontinuities in the drift velocity fields. These LKFs correspond to areas with a high density of fractures in the ice cover,

which strongly concentrates its deformation (Kwok, 2001). In recent years, a large number of observational analyses of sea40

ice deformation data, e.g. Lindsay and Stern (2003); Marsan et al. (2004); Rampal et al. (2008); Stern and Lindsay (2009);

Hutchings et al. (2011); Oikkonen et al. (2017), has fuelled a race in the modelling community towards a better reproduction

of LKFs in thermodynamical models, in particular, with respect to their spatial and temporal statistics, e.g. (Girard et al.,

2011; Rampal et al., 2016; Hutter et al., 2018; Rampal et al., 2019; Bouchat et al., 2022). Different approaches have been

taken towards this goal : new mechanical (i.e., rheological) continuum models have been proposed for sea ice (Schreyer et al.,45

2006; Sulsky and Peterson, 2011; Girard et al., 2011; Dansereau et al., 2016; Ólason et al., 2022), the mechanical parameters of

existing models have been tuned (Bouchat and Tremblay, 2017), and the spatial resolution of models has been increased (Hutter

et al., 2018).

The ability to reproduce adequately LKFs in continuum sea ice models however raises an equally important challenge: that

of keeping the very strong gradients in sea ice properties (e.g. velocity, thickness, concentration) that stem from the extreme50

localization of the deformation as the ice is advected by winds and ocean currents. This numerical discretization problem is, in

fact, not unique to sea ice but encountered for all materials that are experiencing both highly localized deformations resulting

from brittle fracturing processes and high post-fracture strains. Another important example from the geosciences is the Earth

crust, where brittle processes leading to strain localization and slip coexist in faults, landslides and volcanic edifices, e.g. (Peng

and Gomberg, 2010; Burov, 2011). Sea ice, however, represents an extreme case as it is constantly moving and experiencing55

much larger relative deformations and drift velocities (about 5cm/s and 10cm/s as a daily average in the winter and summer,

respectively).
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Several numerical approaches have been studied and dedicated advection schemes have been developed to limit numerical

diffusion in models of the Earth crust, (e.g., see Zhong et al. (2015) for a review). In the sea ice modelling community however,

the treatment and, in particular, the quantification of numerical diffusion of advected gradients has received relatively little60

attention. Notable exceptions are the works by Flato (1993) and Huang and Savage (1998), which applied particle-in-cell

methods to treat the advection of strong gradients in ice concentration and thickness, not associated with LKFs but with the

migration of the edge of the Arctic sea ice cover (the so-called "ice edge"), Lipscomb and Hunke (2005), which used an

incremental remapping to preserve monotonicity, Sulsky and Peterson (2011) which introduced the Material Point Method

and tested its robustness in the context of sea ice by performing idealized convection benchmark problems and Danilov et al.65

(2015), which employed a flux corrected Taylor-Galerkin method. NeXtSIM (Rampal et al., 2016) is based on a Lagrangian

model and hence completely avoids diffusion during transport, although remeshing operations are required in this framework

which themselves induce some diffusion. The implementation of discontinuous Galerkin methods to treat the advection of

sea ice was first proposed by Dansereau et al. (2016, 2017) and used with higher orders, with a quantification of diffusion,

by Dansereau et al. (2021). Mehlmann et al. (2021b) compared sea ice simulations using different meshes, mesh resolutions70

and advection schemes. However, the focus of their paper was the discretization of the momentum equation and no specific

discussion of numerical diffusion was given. Recently, Mehlmann and Korn (2021b) have developed a finite element sea ice

discretization based on the Crouzeix-Raviart element which relates to a CD-grid staggering. This is a nonconforming approach

and the authors showed that this provides the best properties for resolving LKFs (Mehlmann and Korn, 2021a; Danilov et al.,

2022) among low-order approaches.75

Outline. The following section will introduce the basic equations and the notation used throughout the manuscript. We limit

ourselves to the most widely used dynamical framework, which is the so-called Visco-Plastic rheology (Hibler, 1979), to focus

on the discretization and to aid comparison to other numerical schemes in the literature. We will extend the discretization to

more recently developed “Elasto-Brittle” schemes (MEB and BBM, e.g. Dansereau et al. (2016); Ólason et al. (2022)) else-

where. The third section details the numerical discretization of the sea ice model, including the advection and the momentum80

equations. Section 4 focuses on the implementation as well as on the shared-memory parallelization of the numerical model.

Finally, in Section 5 we consider basic tests to validate the method and apply it to established benchmark problems (Mehlmann

and Korn, 2021a). The paper concludes with an outlook.

2 Governing equations

We denote by Ω⊂R2 the two-dimensional domain of the sea ice. The sea ice models we investigate consist of a momentum85

equation for the velocity field v : Ω→R2 and further advection equations for tracer variables. In simple models, such as

the one introduced by Hibler (1979), the tracers are usually the mean ice height H : Ω→ [0,∞)⊂R and ice concentration

A : Ω→ [0,1]⊂R. Here, we consider the following system of sea ice equations

ρiceH∂tv = div σ+Aτ (v)− ρiceHfcez ×v− ρiceHg∇H̃g,

∂tA+div(vA) = 0, ∂tH +div(vH) = 0.
(1)
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Here, ρice is the ice density, fcez ×v is the Coriolis term with Coriolis parameter fc and vertical unit vector ez , g is the90

gravitational acceleration, and H̃g the sea surface height. We focus on a stand alone dynamics model without coupling to an

ocean and an atmospheric model. Following Coon (1980), we approximate the surface height by the Coriolis term

−ρiceHg∇H̃g ≈ ρiceHfcez ×vo,

where vo is the ocean surface velocity. The forcing τ (v) is given by

τ (v) = Coρo∥vo −v∥2 · (vo −v)+Caρa∥va∥2 ·va.95

The index “o” represents the ocean with the surface drag Co, the water density ρo, and again the ocean surface velocity

vo while “a” denotes the atmosphere with drag coefficient Ca, density ρa and wind field va. We neglect turning angles

and thermodynamic effects in Eq. (1). Therefore, the constraints A ∈ [0,1] and H ∈ [0,∞) are not naturally enforced by the

equations but must be ensured by projections. In the following, we will use the following notation of the momentum equation

(with the approximation of the surface height)100

ρiceH∂tv = div σ+F (v), F (v) =Aτ (v)+ ρiceHfcez × (vo −v). (2)

Model (1) is closed by specifying a rheology, i.e., the relation between the (vertically integrated) stress σ and the strain

rate ϵ,

ϵ(v) =
1

2
(∇v+∇vT ), ϵ′(v) = ϵ(v)− 1

2
tr
(
ϵ(v)

)
I,

as well as the ice tracer quantitiesH andA (and possibly further parameters). Different rheological models have been proposed105

in the literature. As this paper focuses on computational questions that are largely independent of the chosen rheology, we

consider the most widely used one, i.e. the viscous-plastic (VP) model proposed by Hibler (1979). It prescribes

σ(v) = 2ηϵ′(v)+ ζ div(v)I − P

2
I, (3)

with viscosities η,ζ that, using the notation introduced in Mehlmann and Richter (2017), are given by

η =
ζ

e2
, ζ =

P0

2
√
∆2

min +tr(ϵ)2 +2e−2 · ϵ′ : ϵ′
. (4)110

Here e= 2 is the excentricity of the elliptical yield curve, ∆min > 0 is the threshold defining the transition to a viscous behaviour

for very small strain, P0 is the ice strength, and P is the replacement pressure

P0 = P ⋆ ·H · exp
(
−C(1−A)

)
, P =

∆(ϵ)

∆min +∆(ϵ)
·P0. (5)

Common default values for the model parameters ρice,ρa,ρw,e,C,P
⋆ can be found in Tab. 1.

The VP model is highly nonlinear. Therefore, a solution with implicit methods is very challenging, see Losch et al. (2014);115

Mehlmann and Richter (2017); Shih et al. (2022) for various approaches based on Newton’s method. Picard iterations are
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also slow and an explicit time-stepping would require excessively small time steps (Ip et al., 1991). Hence, the so-called

Elastic-Visco-Plastic (EVP) model is a widely used variant of the VP rheology (Hunke, 2001; Kimmritz et al., 2016). It adds a

pseudo-elastic behaviour to improve numerical performance. The constitutive law (3) is in this case given by

1

E
· d
dt

σ+σ = σ(v), (6)120

where σ(v) is the VP-relation given by Eq. (3). EVP should, however, be considered as a model different from VP since its

solutions do not converge to the VP ones. An alternative variant that can be considered as a pseudo-time-stepping scheme is

the mEVP scheme (Bouillon et al., 2013), see Section 3.4. The mEVP scheme converges to the VP solution given a sufficiently

large number of iterations. In practical applications, however, only a small and fixed number of iterations are performed and

the resulting solution may then differ significantly from the VP solution (Kimmritz et al., 2016; Koldunov et al., 2019).125

3 Higher order finite element discretization of the sea ice equations

In the following, we describe the discretization of the sea ice equations (1) in space and time using higher-order finite elements.

All tracers and also the strain rate tensor ϵ and the stresses σ are discretized with a discontinuous Galerkin (dG) approach

whereas the ice velocity v is discretized using quadratic continuous finite elements.

3.1 Mesh domain130

Discretizations of the sea ice equations are typically used within a coupled Earth system model. One consequence is that the

time step of the numerical sea ice model is not only determined by the desired accuracy and stability considerations but also

constrained by the atmospheric and oceanic components of the Earth system model.

By ∆t we denote the time step of the sea ice equations. Although dynamic time discretizations with varying step sizes are

possible, we will only consider uniform time steps with ∆tn =∆t for all steps n. The time mesh is hence given by135

t0 < t1 < t2 < · · ·< tN = T, ∆t := tn − tn−1. (7)

Assuming, for example, the time step size ∆t ∈ 240s. and ice velocities |v|∞ ≤ 1m · s−1, explicit time-stepping will be

stable for mesh sizes up to a resolution of

∆x≈ Cr · ∥v∥ ·∆t≈ Cr · 250m, (8)

where Cr is a constant that depends on the degree r of the time stepping scheme. The factor Cr scales like Cr ≈ 2r+140

1 (Chalmers and Krivodonova, 2020). Hence, for a dG(2) method and time stepping scheme of balanced order with r = 2,

the minimum mesh element size should be larger than 2km if a time step of ∆t= 240s is used. Usually, limitations due to the

CFL condition are more relevant in the ocean model where velocities are higher. For our higher order sea ice model, the CFL

condition might become a limiting factor since it scales with the polynomial degree.
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Figure 1. Parametric mesh. Each element Ti,j ∈ Th (on the right) arises from the a mapping Ti,j : T̂ → Ti,j from the reference element

T̂ = (0,1)2 (on the left). The mesh elements Ti,j are general quadrilaterals such that the mappings T are bi-linear polynomials. The edges

exi,j and eyi,j are straight lines.

For the spatial discretization, we employ a parametric finite element mesh of the domain Ω. We base the discretization on145

quadrilateral meshes Th (as opposed to triangular ones). The meshes are topologically fully regular but geometrically distorted

and consist of nodes xi,j , elements Ti,j and edges e{x,y}i,j , such that

Th =



xi,j ∈ Ω i= 0, . . . ,Nx, j = 0, . . . ,Ny,

Ti,j = (xi−1,j−1,xi,j−1,xi−1,j ,xi,j) i= 1, . . . ,Nx, j = 1, . . . ,Ny,

exi,j = (xi−1,j ,xi,j) i= 1, . . . ,Nx, j = 0, . . . ,Ny,

eyi,j = (xi,j−1,xi,j) i= 0, . . . ,Nx, j = 1, . . . ,Ny


, (9)

where Nx,Ny ∈N denote the number of elements in x- and y-direction. See Fig. 1 for an illustration. The nodes are lexico-

graphically ordered, i.e. k = i+(Nx +1)j is the consecutive index. Each geometric mesh element Ti,j can be defined via a150

mapping

Ti,j : T̂ := (0,1)2 7→ Ti,j

from a unique reference element T̂ using the bi-linear polynomial

Ti,j(x̂) = (1− x̂1)(1− x̂2)xi−1,j−1 + x̂1(1− x̂2)xi,j−1 +(1− x̂1)x̂2xi−1,j + x̂1x̂2xi,j , (10)

see again Fig. 1. On each edge exi,j and eyi,j , we consider one unit normal vector. Its orientation arises from mapping the unit155

normal vectors êx = (1,0)T and êy = (0,1)T of the reference element to the edges of Th.

6



3.2 Finite element spaces and degrees of freedom

We use continuous and discontinuous finite elements for the discretization of the momentum equation as well as the constitutive

equations and advection problems, respectively. On the reference element T̂ , we define two sets of basis functions. The dG-

basis functions that we employ are given by160

Ψ1(x̂) := 1 Ψ2(x̂) := x̂1 − 1/2

Ψ3(x̂) := x̂2 − 1/2 Ψ4(x̂) := (x̂1 − 1/2)(x̂2 − 1/2)

Ψ5(x̂) := (x̂1 − 1/2)
2 − 1/12, Ψ6(x̂) := (x̂2 − 1/2)

2 − 1/12

Ψ7(x̂) := (x̂2 − 1/2)
(
(x̂1 − 1/2)

2 − 1/12
)
, Ψ8(x̂) := (x̂1 − 1/2)

(
(x̂2 − 1/2)

2 − 1/12
)

(11)

These basis functions are orthogonal, i.e.
∫
T̂
ΨiΨj dx= δij . Second, we use degree r tensor product Lagrange finite element

basis functions

Φ
(r)
(r+1)l+k(x̂) := ξ

(1)
k (x1)ξ

(1)
l (x2), k, l = 1, . . . , r+1. (12)

The one-dimensional basis functions (for r = 1 and r = 2) are given by165

ξ
(1)
1 (x̂) := 1− x̂, ξ

(1)
2 (x̂) := x̂, ξ

(2)
1 (x̂) := (1− x̂)(1− 2x̂), ξ

(2)
2 (x̂) := 4x̂(1− x̂), ξ

(2)
3 (x̂) := x̂(2x̂− 1). (13)

All basis functions are mapped from the reference element T̂ onto the mesh elements of Th.

We define continuous finite element spaces V (r)
h , where r = 1,2 is the degree, and spaces W (s)

h associated with the discon-

tinuous finite elements, where s= 1,2, . . . is the number of local basis functions,

V
(r)
h =

{
ϕ ∈ C(Ω̄) : ϕ

∣∣
T
∈ span

{
Φ

(r)
k ◦T−1

T , k = 1, . . . ,(r+1)2
}

,∀T ∈ Th
}

W
(s)
h =

{
ψ ∈ L2(Ω) : ψ

∣∣
T
∈ span

{
Ψk ◦T−1

T , 1, . . . ,s
}

,∀T ∈ Th
}
.

(14)170

Locally on each mesh element T ∈ Th, the tracer Hh ∈W (s)
h and velocity vh ∈ V (r)

h are therefore desribed by the linear

combinations of the basis functions

ĤT (x̂) :=Hh

(
TT (x̂)

)
=

s∑
j=1

HT,jΨj(x̂), v̂T (x̂) := vh

(
TT (x̂)

)
=

N cG
loc∑

j=1

vT,jΦk(x̂), (15)

where N cG
loc = (r+1)2 is the local number of unknowns in each element. An analogous representation holds for the second

tracer. Finally, by (·, ·)T and ⟨·, ·⟩e we denote L2-scalar products175

(ϕ,ψ)T =

∫
T

ϕ(x)ψ(x)dx, ⟨ϕ,ψ⟩e =
∫
e

ϕ(x)ψ(x)ds,

on the elements Ti,j and the edges e{x,y}i,j , respectively.
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3.3 Discontinuous Galerkin advection scheme

We begin by describing the discretization of the advection equation

∂tH +div
(
vH

)
= 0.180

for the tracer H : Ω→R. We follow the notation of (Di Pietro and Ern, 2012, Chapter 3).

The temporal discretization will be by explicit Runge-Kutta schemes of order one, two or three. In space we useHh ∈W (s)
h ,

see Eq. 14 and Eq. 15. The discretiation is based on the standard upwind formulation∑
T∈Th

∂t (Hh,ψ)T − (Hhv,∇ψ)T +
∑
e∈Th

⟨{{Hh}},v ·ne[[ψ]]⟩e +
1

2
⟨|v ·ne| · [[Hh]], [[ψ]]⟩e = 0. (16)

By {{Hh}}
∣∣
e

we denote the average of the dG function Hh on an edge e= ∂T1 ∩ ∂T2 between the two elements T1,T2 and by185

[[Hh]]
∣∣
e

the jump over this edge, i.e.

{{Hh}}
∣∣
e
=

1

2

(
Hh

∣∣
T1

+Hh

∣∣
T2

)
, [[Hh]]

∣∣
e
=Hh

∣∣
T1

−Hh

∣∣
T2
.

The upwind scheme can be written in matrix-vector notation as

M∂tHh =A(vh)Hh,

where M is the dG-mass matrix in W (s)
h , which is block-diagonal with blocks of size s× s, and where A(vh) gathers all190

remaining terms of Eq. (16) which are all linear in Hh. The equation is discretized in time by standard explicit Runge-Kutta

methods on the advection time mesh in Eq. (7).

For dG(0) with space W (1)
h , the discretization is equivalent to the usual finite volume upwind scheme since the per element

term (Hhv,∇ψ) vanishes for all ψ ∈W (1)
h as ψ

∣∣
T

is constant on T . The advantage of using higher order methods will become

clear in Sec. 5.3.3.195

3.4 Discretizing the momentum equation

The coupled advection and momentum equation system in Eq. 1 is decoupled in a partitioned iteration by performing the ad-

vection step and then solving the momentum equation. The momentum equation is approximated with an mEVP solver, which

can be considered as a pseudo time-stepping scheme for the implicit backward Euler discretization of the VP formulation,

(e.g., see Lemieux et al. (2012); Bouillon et al. (2013)). We introduce the iterates v(p)
n and σ

(p)
n for p= 0,1, . . . ,NmEVP with200

v
(0)
n := vn−1 and σ

(0)
n := σn−1 in which case the update can be written as

(1+α)σ(p)
n = ασ(p−1)

n +σ
(
v(p−1)
n

)
,(

(1+β)ρiceHn +∆tAnCoρo∥vo −v(p−1)
n ∥2

)
v(p)
n = ρiceHn

(
vn−1 +βv(p−1)

n

)
+∆t

(
divσ(p)

n + F̃ (v(p−1)
n )

)
.

(17)
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The forcing term F (v
(p)
n ) in Eq. (2) is split into explicit and implicit parts. The ocean forcing term is considered implicitly,

which helps the stability of the scheme, and the remaining explicit terms on the right hand side are

F̃ (v(p−1)
n ) :=An

(
Coρo∥vo −v(p−1)

n ∥2 ·vo +Caρa∥va∥2 ·va

)
+ ρiceHnfcez × (vo −v(p−1)

n ). (18)205

The parameters α and β in Eq. 17 control the stability but also the speed of convergence of the mEVP-iteration to the

VP-solution whereas the number of steps NmEVP controls the accuracy. We refer the reader to Kimmritz et al. (2016) for a

discussion on this.

A mixed finite element approach is used for the spatial discretization of Eqs. (17)-(18) with continuous finite elements for

the momentum equation and discontinuous ones for the stress update. This yields210

(1+α)
(
σ(p)

n ,Ψh

)
= α

(
σ(p−1)

n ,Ψh

)
+
(
σ
(
v(p−1)
n

)
,Ψh

)
,((

(1+β)ρiceHn +∆tAnCoρo∥vo −v(p−1)
n ∥2

)
v(p)
n ,Φh

)
=

(
ρiceHn

(
vn−1 +βv(p−1)

n

)
+∆tF̃ (v(p−1)

n ),Φh

)
−∆t

(
σ(p)

n ,∇Φh

) (19)

for test functions

Ψ ∈Wh := [W
(s)
h ]2×2,sym := {σ ∈ L2(Ω)2×2, σ = σT , σij ∈W (s)

h , i, j = 1,2}, Φh ∈Vh := [V
(r)
h ]2. (20)

Compatibility of the velocity and stress spaces is important for the stability of the coupled iteration, see Sect. 5.2.3 for an

example of possible instabilities. Stress spaces that are too small do not provide sufficient control of the term (σ(v),Ψ) in215

Eq. (19) and lead to oscillatory stresses, see the upper right plot in Fig. 13. The problem is related to the control of the energy

and in a mixed formulation the spaces Vh and Wh must in particular satisfy the Babuška-Brezzi condition, see, e.g. Ern and

Guermond (2021, see, e.g. Theorem 49.13) for well-posedness. For a simplified linear equation, this condition would mean

that there exists a constant γ > 0 such that

inf
Φ∈Vh

sup
Ψ∈Wh

(Ψ,∇Φ)Ω
∥∇Φ∥ · ∥Ψ∥ ≥ γ > 0. (21)220

This condition can easily be satisfied if for every vh ∈Vh from the cG-velocity space it holds that

1

2

(
∇vh +∇vT

h

)
∈Wh := [W

(s)
h ]2×2,sym. (22)

Then, for any Φ= vh we choose Ψ as Eq. (22) and get, using the symmetry of the inner product(
∇vh +∇vT

h ,∇vh

)
Ω

∥∇vh +∇vT
h ∥Ω∥∇vh∥Ω

=

(
∇vh +∇vT

h ,
1
2

(
∇vh +∇vT

h

))
Ω

∥∇vh +∇vT
h ∥Ω∥∇vh∥Ω

=
1

2

∥∇vh +∇vT
h ∥Ω

∥∇vh∥Ω
≥ cK

2
,

where cK > 0 is the constant of Korn’s inequality (Ern and Guermond, 2021, Theorem 42.9 and 42.10). We therefore require225

that the spaces Wh and Vh always allow for choosing the stress test-function Ψ ∈Wh as the symmetric velocity gradient,

Eq. (22). To be precise, the degree s has to be chosen such that the symmetric gradient of the discrete velocity is part of the

stress space. On quadrilateral elements, the continuous finite element basis is not the pure polynomial basis P (r) but it includes

9



50[t]

Figure 2. The numerical quadrature nodes χ̂q are defined

on the reference element T̂ = (0,1)2 and mapped to the real

mesh elements T ∈ Th via χq :=T(χ̂q). We show a 2-point

Gauss rule (of degree 4) with 2 points on each edge and 4

points in the element.

the additional mixed terms xy for r = 1 and x2y,xy2,x2y2 for r = 2. Hence, the gradient space must also be enriched. For

linear elements with r = 1 the condition in Eq. (22) requires s= 3 and for quadratic velocities with r = 2 we must take s= 8230

in Eqs. (19)-(20). This update involves the inversion of the mass matrix of W (s)
h . The matrix is block-diagonal with block-size

s× s so that in the cG(2)-case with s= 8 the costs for the inversion are substantial. Sec. 4.2 describes our approach for an

efficient implementation.

The momentum equation is discretized with continuous finite elements in the discrete space Vh. All zero-order terms in the

momentum equation, Eq. (19), are evaluated node-wise and no integration is required. Adding the stress, however, requires235

integration and inversion of the mass matrix of Vh. To avoid the inversion, we use mass lumping. The evaluation of the

momentum equation’s right-hand side in Eq. (19) then becomes

v
(p)
n,i =

(
1+β)ρiceHn,i +∆tAn,iCoρo∥vo,i −v

(p−1)
n,i ∥2

)−1

·

·
(
ρiceHn,i

(
vn−1,i +βv

(p−1)
n,i

)
+∆tF̃ (v

(p−1)
n,i )−M−1

l,ii∆t
(
σ(p)

n ,∇Φi

)
Ω

)
, i= 1, . . . ,NcG (23)240

where Ml is the lumped mass matrix in the cG-velocity space. The implicit terms are handled analogously. The integration of

the stresses against the gradient of the test function is a non-local operation coupling adjacent degrees of freedom. All other

operations, like computing F̃ (v(p−1)
n ), are fully decoupled and can be processed node-wise in parallel.

Remark 1 (Mixed velocity-stress discretization on triangular and quadrilateral meshes). The choice of bilinear and biquadratic

velocity approaches given in Eq. (19)-(20) requires a local discontinuous stress space with s= 3 and s= 8 unknowns, respec-245

tively. This relation does not seem to be optimal because the corresponding discretization on triangles requires only constant

stresses with one unknown per cell in the case of linear velocities and locally linear stresses with 3 unknowns in the case

of quadratic velocities. However, a triangular mesh with the same number of velocity unknowns as a quadrilateral mesh has

twice the number of elements as a quadrilateral mesh. Hence, for r = 1 one has in total 2 unknowns per stress component

on triangles and for r = 2 one has 6 stress unknowns compared to s= 3 and s= 8 in the case of quadrilateral meshes. This250

means that the difference in effort between triangular and quadrilateral elements is less dramatic than it appears at first sight.

3.5 Numerical quadrature

In the parametric finite element setup, all integrals appearing in the advection scheme in Eq. (16) and the weak formulation of

the mEVP iteration in Eq. (17) must be evaluated on the reference element T̂ and, in case of the upwind scheme, also on the

10



reference edge ê= (0,1) since the basis functions are defined on T̂ . For the different terms of Eq. (16) it holds255

∂t(Hh,ψ)T = (JT∂tĤh,Ψ)T̂ (Hhv,∇ψ)T = (Ĥhv̂,JT ∇̂T−T
T ∇̂Ψ)T̂

⟨{{Hh}},(v ·ne)[[ψ]]⟩e = ⟨Je{{Ĥh}}, ̂(v ·ne)[[Ψ]]⟩ê
1

2
⟨|v ·ne| · [[Hh]], [[ψ]]⟩e =

1

2
⟨Je|v̂ ·ne| · [[Ĥh]], [[Ψ]]⟩ê

(24)

where Ĥh and v̂ are the functions on the reference element that by Eq. (15) are associated withHh and v on the element T , and

analogously for the edge terms. The reference element map TT dependent terms in Eq. 24 are the Jacobian ∇̂TT : T̂ →R2×2

and its determinant JT = det(∇̂T̂T ). Since TT is bi-linear (and not linear), the Jacobian and its determinant are not element-

wise constant. However, on the reference edges ê, TT is linear such that e ∈ Th are straight and hence Je = |e| as the reference260

element has edge length 1.

The integrals in Eq. (24) are approximated by Gaussian quadrature. For dG(r) (r = 0,1,2) we use r+1 quadrature points on

the edge and (r+1)2 quadrature points within the elements, see Fig. 2 for an example with two points on the edges and 2× 2

points within the element.

Implementation details are described in Section 3.1. Evaluation of the terms in (24) is numerically costly, mostly due to the265

evaluation of the map TT , the Jacobian ∇̂TT , its inverse and the determinant of the Jacobian.

4 Efficient parallelizable implementation

In the following paragraphs, we will describe the C++ implementation of the higher-order discretization. A hybrid paralleliza-

tion approach consisting of distributed memory MPI splitting and local shared memory OpenMP realization is considered. The

data is structured such that the implementation also allows to run modules on a GPU.270

MPI parallelization builds on a domain decomposition that splits the complete mesh into a balanced number of rectangular

subdomains such that the average number of ice-covered elements for each domain is comparable. Each parallel task then

operates on a subdomain that is topologically structured into Nel :=Nx ×Ny elements such as described in Sect. 3.1.

4.1 Implementation of continuous and discontinuous finite elements

We start by describing the handling of the data, i.e. the cG- and dG-vectors for each MPI task that is responsible for one275

topologically rectangular mesh Th consisting of Nx ×Ny elements. A dG-vector Ah ∈W (s)
h has s unknowns on each of the

Nel =Nx ·Ny elements and we store such a vector as a A ∈RNel×s matrix. The implementation is based on Eigen (Guen-

nebaud et al., 2010), a C++ library for linear algebra that heavily relies on C++ templates. In the code, the vector is represented

as
280

1: Matrix<FloatType, Dynamic, s, RowMajor> DGVector<s> A;

The first dimension of A (number of elements) is dynamic and determined at run-time, which allows us to flexibly handle

different subdomain sizes. The second dimension, i.e. the number of components, has degree s and is determined at compile

time. This allows for vectorized SIMD processing of computations, see Sect. 5.3.2 for a numerical demonstration.285

11



To provide one example of a frequently used operation, we explain the restriction of a dG(1) functionAh ∈W (3)
h (with three

local unknowns on T ) from an element T to one of its edges e ∈ ∂T . Let T have the element-id i ∈ {1, . . . ,Nel} and let e= exi

be the lower edge in the notation of (9). Then the restriction to the lower edge is realized as

1: Vector<FloatType, 2> lower_edge(const DGVector<3>& A, size_t i)290

2: { return Vector<FloatType, 2> a_e({A(i,0)-0.5 * A(i,2), A(i,1)}); }

Since the restriction does not depend on the specific element T ∈ Th, the relations are implemented for the four edges and

the different choices of dG-spaces, i.e. for the number of local basis functions, using template specializations. With this, both

Eigen and the compiler can optimize the computations.295

The parametric setup also allows for an efficient restriction of a dG or cG function to the Gauss points. Let Ah ∈W (6)
h and

let T ∈ Th be again any mesh element with element-id i ∈ {1, . . . ,Nel}. Assume that we want to evaluateAh in the 3×3 Gauss

points χ̂q ∈ (0,1)2, cf. Sect. 3.5. It holds χi
q :=TT (χ̂q) and hence

Ah(χ
i
q) =

6∑
l=1

Ai,lΨl

(
T−1

T (χi
q)
)
=

6∑
l=1

Ai,lΨ̂l(χ̂q) =:Ai
i. (25)

That is, by working with the pulled back function Ψ̂l on the reference element, Ψ̂l only needs to be evaluated on the fixed300

points χ̂q . Furthermore, by the linearity of the basis representation, the mapping of the local coefficients Ai,1, . . . ,Ai,6 of the

dG vector to the values of AG
i ∈R9 in the 9 Gauss points on the element T can be written as a matrix-vector product

AG
i =Ai,· ·G9,6

Ψ , [G9,6
Ψ ]l,q = Ψ̂l(χ̂q). (26)

with a fixed matrix G9,6
Ψ ∈R9×6. The matrices Gq,s

Ψ for possible dG-degrees with s local unknowns and for supported choices

of the Gauss quadrature rule with q points are pre-computed and directly inlined into the code to allow for an optimization by305

Eigen and the compiler. The matrices Gs,q
Ψ and similar code are auto-generated by Python scripts to allow for easy extension.

Another challenge for an efficient implementation is the evaluation of the integrals that are required to determine the viscosity

within the VP-model (4) in the mEVP iteration, see Eq. (19),

ζ =
P ⋆ ·Hh · exp

(
−C(1−Ah)

)√
∆2

min +tr(ϵh)2 +
2
e2 ϵ

′
h : ϵ′h

=
P ⋆ ·Hh · exp

(
−C(1−Ah)

)√
∆2

min +
5
4 (ϵ11 + ϵ22)2 +

3
2ϵ11ϵ22 + ϵ212

.

With i ∈ {1, . . . ,NT } again denoting the element index, the following example illustrates the evaluation of the viscosities in310

the 9 Gauss points in the case of biquadratic velocities, a strain tensor with 8 local unknowns, i.e. Eh ∈ [W
(8)
h ]2×2,sym, and

tracers discretized as dG(1)-functions in W (3)
h .

1: const Array<9> Ag = A.row(i) * Gpsi<9,3>; // restrict k-th element to Gauss points

2: const Array<9> Hg = H.row(i) * Gpsi<9,3>; // restrict ice height to Gauss points315

3: const Array<9> E11g = E11.row(i) * Gpsi<9,8>; // restrict strain tensor to Gauss points

4: const Array<9> E12g = E12.row(i) * Gpsi<9,8>; // restrict strain tensor to Gauss points

5: const Array<9> E22g = E22.row(i) * Gpsi<9,8>; // restrict strain tensor to Gauss points

6:

12



7: const Array<9> zeta = Pstar * Hg * (-C * (1-Ag)).exp() /320

8: (Dmin*Dmin + 1.25 * (E11g+E22g).square() + 1.5 * E11g * E22g + E12g.square()).sqrt();

The above implementation is close to the mathematical notation which simplifies the implementation of model variations. Long

expressions such as those in the last line also allow Eigen to vectorize operations efficiently.

4.2 Evaluation of the weak formulations on parametric meshes325

A substantial part of the computational effort is due to the mapping of the reference element T̂ onto the mesh elements T ∈ Th,

compare Sect. 3.1 and Sect. 3.5. We discuss the details of an efficient implementation for one specific term in the mEVP

momentum equation (19), namely the evaluation of (σ(p)
n ,∇Φi)Ω whose discretization has already been given in Eq. (23). In

the following, we will omit all indices referring to the time step and the mEVP iteration count.

At the heart of (σ(p)
n ,∇Φi)Ω is the integration of the symmetric stress tensor multiplied with the gradient of the (vector-330

valued) test function Φi = (Φx
i ,Φ

y
i ). Pulling this term back from an element T ∈ Th onto the reference element T̂ , we obtain

(σ,∇Φi)T =

∫
T̂

det
(
∇̂TT (x̂)

)
∇̂Φi(x̂)∇̂T−T

T (x̂) : σ̂(x̂)dx̂, i= 1, . . . ,N cG
loc. (27)

Here,N cG
loc := (r+1)2 is the local number of cG-degrees of freedom and A :B :=

∑
i,jAijBij is the full contraction of rank-2

tensors. Locally on the element T ∈ Th, symmetric stresses σ ∈ [W
(s)
h ]2×2,sym and the element map’s gradient ∇̂TT are given335

in the dG- and cG-basis as

σ(x̂)
∣∣∣
T
=

s∑
j=1

σ11
T,j σ12

T,j

σ12
T,j σ22

T,j


︸ ︷︷ ︸

= σT,j

Ψj(x̂), ∇̂TT (x̂) =

4∑
k=1

x1T,k

x2T,k


︸ ︷︷ ︸
= xT,k

(
∂x̂Φk(x̂) ∂ŷΦk(x̂)

)
︸ ︷︷ ︸

= ∇̂Φk(x̂)
T

(28)

with the xT,k = (x1T,k,x
2
T,k) ∈R2 being the four corner nodes of the element T . Approximating Eq. (27) and Eq. (28) by

Gauss quadrature with nQ points x̂1, . . . , x̂nQ
∈ T̂ and weights ω1, . . . ,ωnQ

yields

(σ,∇ϕi)T ≈
s∑

j=1

nQ∑
q=1

ωq det
(
∇̂T(x̂q)

)
Ψj(x̂q)∇̂Φi(x̂q)∇̂T(x̂q)

−T

︸ ︷︷ ︸
=:Xi,j

: σj , i= 1, . . . ,N cG
loc. (29)340

The computational effort of the above equation is substantial. The Jacobian ∇̂TT needs to be assembled nQ · s ·N cG
loc-times,

cf. Eq. (29), and its inverse and determinant need to be computed. For the second order case cG(2) with nQ = 9, N cG
loc = 9 and

s= 8, more than 15,000 floating point operations are required on each element.

The entries of the 2× 2-matrices Xi,j , however, do not depend on the solution but only on the mesh elements T ∈ Th. A

closer analysis further reveals that X1
i,j :=X11

i,j =X21
i,j and X2

i,j :=X12
i,j =X22

i,j . Hereby, the complete scalar product with345
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Figure 3. Parallel processing of the vectors on a small mesh with 12 elements, Nx = 4 and Ny = 3. All blocks of one color can be processed

in parallel without memory conflicts. From left to right: node-wise operations, local element-wise operations, edge-wise operations on ex-

edges (blue) and ey-edges (green), operations writing on biquadratic cG(2)-vectors.

Gauss approximation is evaluated asσ,∇

Φx
i

0


T

≈X1
Tσ

11
T +X2

Tσ
12
T ,

σ,∇

 0

Φy
i


T

≈X1
Tσ

12
T +X2

Tσ
22
T , (30)

with matrices X1
T ,X

2
T ∈RN cG

loc×s. The computational effort shrinks then to 4N cG
loc × s2 operations, which in the case of cG(2)

aounts to about 2300 operations. The matrices X1
T and X2

T can be precomputed and stored for each mesh element. Their small

size makes them, furthermore, amenable for efficient caching although additional storage is needed. Section 5.3.3 presents a350

numerical study on the effective performance of the alternatives, i.e. using precomputed matrices or computation of all terms

on the fly.

The same technique can be applied to all further terms of (17). For some of them the computational savings of precomputing

per element terms are even more substantial. This is in particular true if the inverse of the block-diagonal dG-mass matrix is

required, such as in the mEVP iteration (19).355

4.3 OpenMP parallelization

In each MPI task, only topologically regular rectangular meshes are considered that consist of Nel :=Nx ×Ny elements. As

the complete numerical workflow is based on explicit integrators, OpenMP parallelization is easily realized. Depending on the

specific task, a different coloring of the mesh elements (or mesh edges) is utilized to avoid any memory conflicts:

Node-wise Vector operations (such as sums, entry-wise products, etc.) are parallel with respect to the major index referring to360

the node.

Element-wise Operations such as the stress-update in Eq. (19) within the mEVP iteration in Eq. (17) are parallel with respect

to the mesh element. This also includes the element-wise terms (Hhv,∇ψ)T of the transport scheme in Eq. (16) where

no communication is involved and also the projection of the strain rate tensor from the cG- to the dG-space

(JTEh,Ψ)T̂ =
1

2

(
JT (∇̂v̂[∇̂TT ]

−1 + [∇̂TT ]
−T ∇̂v̂T ),Ψ

)
T̂

365
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Edge-wise The edge integrals in Eq. (16) are assembled in two sweeps. First, all horizontal edges ex ∈ Th are computed

Nx∑
ix=1

Ny∑
iy=0

⟨{{Hh}},v ·ne[[ψ]]⟩exix,iy

+
1

2
⟨|v ·ne| · [[Hh]], [[ψ]]⟩exix,iy

and the outer (in x-direction) is run in parallel as the integral on an edge exix,iy will affect the two elements atop and

below it. Then, a second sweep, parallelized in y-direction, performs the computation for the ey-edges.

When updating cG-vectors, e.g. in the stress update (cf. Eq. (23)), more care is required. We use a row-wise coloring of the370

elements and perform the update in two sweeps. Fig. 3 summarises the parallel processing of the mesh.

Remark 2 (Towards GPU acceleration). Our finite element discretization requires a large number of per element computations

with a substantial amount of computations for each one. Furthermore, the computational costs increase substantially with the

order, cf. Sec. 4.2. Only local coupling between adjacent elements thereby exists since an explicit time stepping and mEVP

iterations are used. This makes the problem well suited for a GPU parallelization where thousands of independent computations375

are required to fully utilize a state-of-the-art GPU and even more when multiple GPU are combined in a node. The current

implementation has already been designed with a GPU implementation in mind. Its realization is planned as a next step.

5 Numerical experiments

In this section we will present a set of experiments to validate our discretization. We will thereby first only study the accuracy

of the advection before considering the full mEVP scheme.380

5.1 Validating the higher-order transport scheme

5.1.1 Advection testcase I: transport of a initially smooth bump

On the domain Ω= (0,Lx)× (0,Ly) with Lx = 409600 and Ly = 512000 we advect the initially smooth bump

Hin(x) =

exp
(
− 1

1−r(x)

)
r(x)< 1

0 r(x)≥ 0
, r(x) = 40

∥∥ x

Lx
−
(1
4
,
1

2

)T∥∥2
with the stationary, rotational velocity field385

v(x) =
π

Lx

2x2 −Lx

Lx − 2x1

 .

The problem is run in the time interval T = [0,Lx] such that one complete revolution of the bump is performed. We compute

the test case on a sequence of meshes consisting of N (l)
x ×N

(l)
y elements and N (l)

T time steps using

N (l)
x = 24 · 2l−1, N (l)

y = 26 · 2l−1, N
(l)
T = 200 · 2l−1 · (r+1)−2, l = 1,2, . . . ,
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Figure 4. Advection testcase I: Convergence rates on uniform (red) and distorted (blue) meshes.

where r ∈ {0,1,2} is the degree of the dG(r) approach. The coarsest discretization consists of 24 · 26 = 624 elements of ap-390

proximate size 17km× 19.6km each and a time step ∆t= 512s. This results in a CFL constant lower than 0.5 · (r+1)−2,

which is sufficient for a robust discretization. Next to these uniform rectangular meshes, we use a sequence of distorted meshes

to model the effect one encounters in a mesh parametrization of the sphere, see Fig. 5. The nodes xi,j are in this case given by

xi,j =

 i·Lx

Nx
+ 1

20 sin
(
i·3π
Nx

)
sin

(
j·π
Ny

)
j·Ly

Ny
+ 1

20 sin
(
i·2π
Nx

)
sin

(
j·2π
Ny

)
 , for i= 0, . . . ,Nx, and j = 0, . . . ,Ny.

Through the periodicity of the domain, the exact solution at time T = Lx equals the initial condition. We measure the scaled395

L2-error by

err =
1

Lx
∥Hh,∆t(T )−Hin∥L2(Ω).

The scaling factor 1/Lx accounts for the drift-error accumulation that is expected to be dependent on the length of the advection

in space.

Fig. 4 shows the convergence behavior for the different meshes and degrees r. We observe the expected convergence rate400

of O(|∆x| 12 ) for dG(0), cf. (Di Pietro and Ern, 2012, Theorem 3.7) and even super-convergent second order instead of

O(|∆x|1+1/2) for dG(1) and super-convergent third order instead of O(|∆x|2+1/2) for dG(2), cf. (Di Pietro and Ern, 2012,

Theorem 3.13). Distortion of the meshes slightly increases the error constant but the convergence order is not affected, as

expected.
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Figure 5. Advection testcase I: Visualization

of the coarse meshes and the initial dG(0) so-

lution. Left: regular rectangular mesh. Right:

distorted parametric mesh.

5.1.2 Advection testcase II: transport in a cicular annulus405

The domain of the second test case is a circular annulus with inner radius r0 = 100km and outer radius r1 = 250km, cf. Fig. 6.

The parametric mesh is constructed by mapping a uniform rectangular mesh onto the ring using the map

T(xi) :=
(
r0 +(r1 − r0)

iy
Ny

) cos
(
2π·ix
Nx

)
−sin

(
2π·ix
Nx

)


The divergence free stationary velocity field for the transport is given by

v(x) =
2πm

250000s
·

 x2

−x1

 .410

and it moves the initial conditions uniformly along the domain.

One complete revolution around the annulus is achieved in T = 250000s. The initial field consists of four objects with

different regularity: a smooth C∞-bump centered at (−175km,0km) of radius 50km (on the left), a continuous C0-pyramid

centered at (175km,0km) with radius 50km (on the right) and two discontinous discs with radius 50km at (0km,−175km)

(on the bottom) and (0km,175km) (on the top). The last one has a “pacman-shaped” omission.415

Fig. 7 shows the absolute error between the initial condition and the solution at time T . The results verify the superiority

of higher-order methods with respect to numerical diffusion. While the finite volume dG(0) discretization is highly diffusive

and inaccurate, both dG(1) and dG(2) preserve all shapes well with very small errors for the smooth ones and small, but sharp

interface errors for the disc and the pacman-like shape.
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Figure 6. Advection testcase II: Computational domain and mesh (left) for the transport in a ring. The boundary lines marked in red are the

periodic boundaries of the regular reference mesh. On the right we show the initial solution.

Figure 7. Difference (absolute value) between the initial condition and the solution after one revolution for dG(0) (left), dG(1) (middle) and

dG(2) (right).

5.2 Validating the mEVP framework420

To validate the complete dynamical mEVP framework and to assess the higher order discretization, we study the VP benchmark

problem that has been introduced in Mehlmann and Richter (2017) and investigated in Mehlmann et al. (2021b) to compare

different sea ice realizations with respect to their ability to depict linear kinematic features.

The setup of the benchmark is described in Fig. 8. On the domain of size 512km×512km, the ice has an initial concentration

of one and an average height of 0.3m with a small amplitude oscillations of 0.005m and with wavelength 105km in x- and425
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Figure 8. Setup of the benchmark problem. Forc-

ing by means of a steady circular ocean current

(in blue) and a divergent wind field (in red) that

is moving diagonally across the domain (with

side length 512km. Initially the ice has average

height 0.3m (with a periodic variation) and con-

centration A= 1. The simulation is run for a pe-

riod of 2days, where the wind’s center travels

from the midpoint to the upper right (red arrow).

Param. Definition Value Param. Definition Value

ρice Sea ice density 900kg ·m−3 Ca Air drag 1.2 · 10−3

ρa Air density 1.3kg ·m−3 Co Water drag 5.5 · 10−3

ρo Water density 1026kg ·m−3 fc Coriolis 1.46 · 10−4 s−1

P ⋆ Ice strength 27.5 · 103N ·m−2 C Ice concentration parameter 20

e Ellipse ratio 2

T time horizon 2days α 1st mEVP param. 1500

NTevp Subcycling steps 100 β 2nd mEVP param. 1500

Table 1. Default values of the VP model used to define the benchmark Mehlmann and Richter (2017) as well as default mEVP-parameters

used in all numerical test cases.

210km in y-direction, i.e. we have

v
∣∣
t=0

= 0, A(x)
∣∣
t=0

= 1, H(x)
∣∣
t=0

= 0.3m+0.005m
(
sin

( 6x1

100km

)
+sin

( 3x2

100km

))
.

The forcing in the benchmark problem consists of a rotational ocean forcing

vo(x) =
0.01m · s−1

512km

2x2 − 512km

512km− 2x1


and a rotational divergent wind field with a center m(t) that is moving along the diagonal of the domain430

va(x) =
1

100
exp

(
1− |x−m(t)|2

100km

) cos(α) sin(α)

−sin(α) cos(α)

(
x−m(t)

)
, m(t) =

(
256km+ t · 51.2km ·day−1

)1

1

 .

The different parameters of the VP model and the mEVP iteration are given in Table 1.
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Figure 9. Shear deformation (log10) for the benchmark at time T = 2days. We compare different combinations of cG velocity discretizations

(linear and quadratic) with dG advection discretization (constant, linear and quadratic). All computations are run on meshes with the grid

spacing h= 2km.

Fig. 9 shows the shear S(ϵ) :=
√
(ϵ11 − ϵ22)2 +4ϵ212 at final time T = 2days on a mesh with h= 2km spacing. Results

are presented for all combinations of the velocity discretization (low order cG(1) and high order cG(2)) and advection schemes

dG(0), dG(1) and dG(2). The results are in very good agreement with earlier results for the benchmark (Mehlmann and Richter,435

2017) and also with recent numerical studies that consider some of the most widely used sea ice models (Mehlmann et al.,

2021b).

For all combinations of velocity and dG degrees, linear kinematic features are well resolved and the deformation field is

stable (for a detailed discussion, we refer to Sect. 5.3.1). The results of Fig. 9 suggest that the role of the advection scheme is

minor in comparison to the discretization of the velocities. This will be discussed in Sect. 5.2.2. While the cG(1) results in the440

top row of Fig. 9 are comparable to the B-grid staggerings (cG(1) is the finite element equivalent of this) given in (Mehlmann

et al., 2021b, Fig. 6), the high order cG(2) results show patterns that are at least as resolved as the CD-grid results in (Mehlmann

et al., 2021b, Fig. 6, Fig. 7).
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Figure 10. Total length and number of linear kinematic features detected for the low order cG(1)/dG(0) and high order cG(2)/dG(2)-

schemes. For comparison, we show selected simulation results on quadrilateral meshes from various models taken from Mehlmann et al.

(2021b).

5.2.1 Resolution of LKF’s

To further investigate the ability of the cG/dG framework to resolve linear kinematic features, we use code provided by Hutter445

et al. (2019)1 that identify LKFs from the shear deformation rate field. The original scripts have been slightly modified in

the following manner: the resolution of the uniform quadrilateral mesh onto which the outputs are initially projected has been

increased from 256×256 to 512×512 to account for the fact that the higher order dG-discretizations carry subgrid information

that would otherwise be lost. The length of LKFs, which the scripts measure in pixels, was adjusted accordingly. Fig. 10 shows

the results for a selection of the originally published data sets (Mehlmann et al., 2021b, a) together with the results of the450

low order cG(1)/dG(0) and high order cG(2)/dG(2) simulations performed with the proposed discretization. The low-order

results are consistent with the data published by Mehlmann et al. (2021b). In particular, the results agree with those obtained

with Gascoigne (B-grid) (Braack et al., 2021), which is based on the same discretization. The high-order cG(2) scheme of our

discretization can resolve substantially more (and longer) features on coarser meshes, demonstrating the advantage of higher

order schemes.455

We note that the exact number and length of features is affected by the chosen mEVP parameters. We have not applied any

fine-tuning here but use the values given in Table 1 for all meshes and all discretizations. Moreover, a direct comparison of

results obtained on quadrilaterals and triangles is difficult, so we refrain from a more detailed analysis. We refer to Mehlmann

et al. (2021b, Sect. 6) for an in-depth discussion as these aspects.

1The scripts are available in the repository (Mehlmann et al., 2021a).

21



dG(0) dG(1) dG(2)

Figure 11. Visualization of the ice concentration on meshes with a spacing of h= 8km for dG(0) (finite volumes), dG(1) and dG(2).

Table 2 indicate computational times for simulating the benchmark problem on the 4km mesh for all different cG/dG460

combinations for velocity and tracers. The simulations are run on an AMD EPYC 7662 64-Core Processor at 3.20 GHz using

32 cores. The given times are the total times for the complete benchmark run and they include everything apart from the I/O

operations. The impact of the degree of the tracers is negligible as the advection scheme only takes a small fraction of the

overall runtime. The runtime degradation from linear to quadratic velocities is less severe than expected. This is due to the

larger fraction of local work at higher order and associated with this a better possibility of vectorization by Eigen as well as465

better efficiency of parallelization.

5.2.2 The role of the advection scheme

In the literature, the role of the advection scheme in the VP model and in particular for the LKF resolution is not entirely

clear (again, see (Mehlmann et al., 2021b, Sect. 6)). We therefore compare for the above benchmark results for a high order

momentum discretization (biquadratic velocities) and dG(0), dG(1) and dG(2) advection to shed further light on the effect of470

the advection.

Fig. 11 shows the ice concentration at time T = 2days for the benchmark problem run on a mesh with spacing h= 8km.

The velocity is discretized bi-quadratically with cG(2) and the tracers are represented as discontinuous dG(0), dG(1) and dG(2)

functions. The elevated surfaces in the middle and on the right in Fig. 11 shows the additional information that is gained by

higher-order approaches. The finite volume dG(0) discretization only gives average values in each element while the dG(1)475

discretization includes the slope of the tracers and starting with dG(2) further information on the subgrid-scale, e.g. on the

curvature, is also represented. The effect of the dG degree on the representation of the sea ice drift (and derived values like

dG(0) dG(1) dG(2)

cG(1) 47.15s 51.43s 59.64s

cG(2) 88.91s 91.17s 102.45s

Table 2. Computational time for the benchmark test case using the 4km mesh. The spec-

ified times include the advection and the momentum equation for the complete simulation

spanning from t= 0 to t= 2days. Times for i/o are not included. 32 parallel threads are

used.
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Figure 12. Effect of the advection scheme on resolving linear kinematic features. Left: total length of detected LKFs. Right: number of

LKFs.

the shear deformation) is less drastic, as shown in Fig. 9. In comparison to the choice of the velocity discretization, the effect

of the tracer discretization on the representation of LKFs is small. This is also the conclusion of Mehlmann et al. (2021b).

Fig. 12 shows the results of the LKF detection code by Hutter et al. (2019) for different advection schemes. While the low480

order discretization with cG(1)-velocities is hardly affected by the advection discretization, the impact on the cG(2) high-order

scheme is larger. Here, the lowest order upwind scheme dG(0) yields the most and longest LKFs.

5.2.3 Stability of the mixed finite element formulation

Section 3.4 introduced the mEVP iteration as a mixed finite element formulation and in particular Remark 1 discussed the

optimal choice of the velocity and stress spaces. In this section, we demonstrate the effect of this choice on the results. We again485

consider the benchmark problem of Sec. using a mesh with h= 2km. The tracers are discretized with dG(1), all parameter

values are as given in Table 1.

Fig. 13 shows a snapshot of the shear deformation rate at time T = 2days for all different combinations of velocity and stress

spaces. The plots clearly show the need to use large-enough stress spaces. For the low order velocity V (1)
h the results based on

piece-wise constant stresses σ ∈ [W
(1)
h ]2×2,sym (upper left) appears to give reasonable results, in particular when compared to490

the highly diffusive combination V (1)
h /W

(3)
h (lower left). V (1)

h /W
(1)
h , however, is unstable and does not satisfy (22). It shows

oscillations on the level of the mesh elements, while the combination V (1)
h /W

(3)
h is stable. Stress spaces that are too small do

not provide sufficient control of the term (σ(v),Ψ) in (19) and lead to oscillatory stresses, see the upper right plot in Fig. 13.

We refer to the discussion in Section 3.4.
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5.3 Computational efficiency495

5.3.1 Shared memory node-level parallelization

The complete code is parallelized using OpenMP to benefit from shared memory parallelism available on individual nodes. To

evaluate the parallel performance of the code, we run a strong scalability test. The benchmark problem described in Sect. is

run for T = 1hour on a mesh with h= 2km spacing which amounts to N = 2562 = 65536 elements. Using a time step size

of ∆t= 60s a total of 60 advection time steps and mEVP subiterations with 100 steps each are computed. We discretize the500

velocity with quadratic cG(2) elements and use dG(2) with six local unknowns for ice height and sea ice concentration.

The simulation is run on an AMD EPYC 7662 64-Core Processor at 3.20 GHz. Fig. 14 shows the strong scalablity results.

The overall runtime drops from 245sec on 1 core to 6.5sec on 64 cores. The parallel efficiency stays very high at about 0.9

when run on up to 16 cores and then slightly drops. The parallel efficiency of the advection scheme is not as good as the

efficiency of the mEVP iteration. In this benchmark problem, this is not significant since only two tracers are advected and505

since there are 100 sub-steps of the mEVP solver in each advection step. For more complex thermodynamics, the situation will
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Figure 14. Scaling (left) and parallel efficiency (right) of the OpenMP parallelization for the benchmark test case on the 2km mesh. The

mesh has 65536 elements, a total of 60 advection steps with 100 momentum substeps within the mEVP iteration are covered by the total

time.

be different and further optimizations appear to be necessary. However, the parallelization effort so far has been restricted to

enabling OpenMP. A GPU implementaiton also provides significant opportunities for better parallel scaling.

5.3.2 Vectorization

Our implementation described in Sect. 4 benefits from the vectorization capabilities of Eigen (Guennebaud et al., 2010). Eigen510

can in particular exploit the additional computations that arise in a higher order discontinuous Galerkin methods as the dG

space W (s)
h naturally leads to many s× s matrices. Furthermore, the use of parametric meshes makes numerical quadrature

with Gauss rules necessary and leads to operations involving nq ×ncG-matrices, where nq is the number of Gauss points in an

element (usually 9) and ncG is the local number of cG basis functions (4 for cG(1) and 9 for cG(2)). The following table shows

the effect of CPU-level vectorization.2515

cG(2)/dG(2) cG(2)/dG(1) cG(1)/dG(1)

no vectorization 21.20s 18.06s 6.42s

with vectorization 16.43s 15.38s 4.85s

acceleration 23% 18% 24%

2Vectorization can be activated or deactivated by a simple compiler flag, for instance -march=native, which turns on all hardware-specific optimization

and in particular vectorization support.
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mesh size Nel 4096 16384 65536

memory usage 11.8MB 2.88kB/Nel 26.2MB 1.64kB/Nel 81.9MB 1.25kB/Nel

comp. time 5.77s 1.41ms/Nel 27.11s 1.65ms/Nel 109.96s 1.67ms/Nel

(a) Parametric meshes, on-the-fly computation of the mapping.

mesh size Nel 4096 16384 65536

memory usage 21.4MB 5.22kB/Nel 70.2MB 4.28kB/Nel 259MB 3.95kB/Nel

comp. time 1.40s 0.35ms/Nel 5.76s 0.35ms/Nel 22.47s 0.34ms/Nel

(b) Parametric meshes, precomputed matrices for fast mapping.

mesh size Nel 4096 16384 65536

memory usage 11.4MB 2.78kB/Nel 24.5MB 1.50kB/Nel 74.3MB 1.13kB/Nel

comp. time 1.48s 0.36ms/Nel 4.44s 0.27ms/Nel 15.69s 0.24ms/Nel

(c) Uniform meshes, precomputed static matrices.

Table 3. Comparison of different mesh structures. Evaluation of the benchmark problem with cG(2)/dG(2) discretization on meshes of size

h= 8km, h= 4km and h= 2km. The benchmark is simulated for T = 1hour. Tables 3a and 3b refer to the parametric meshes, where the

variational formulation must be evaluated using Gauss quadrature, 3c corresponds to the uniform mesh, where the exact evaluation of the

variational form is hard-coded. 3b in comparison to 3a precomputes and stores the matrices required for the parametric mapping.

The effect is significant and purely based on the design principle in our implementation to use Eigen as much as possible.

Computations are run using 16 cores of the AMD EPYC 7662 64-Core CPU running at 3.20 GHz and reported is the average

of three consecutive calls.

5.3.3 Computational overhead of parametric meshes520

As detailed in Sect. 3, with a parametric mesh the variational formulation needs to be mapped back onto the reference element

for numerical quadrature. This has substantial computational overhead compared to fully uniform grids where all essential

quantities can be precomputed. However, we described in Sect. 4 that also in the parametric case substantial precomputations

are possible.

Table 3 show memory usage and computation times as a function of the mesh type and for three successively refined meshes.525

We also provide computational time and memory consumption per element of the mesh. We again solve the benchmark problem

of Sect. 5.3.1 but only in the short interval [0,1hour] using 16 CPU cores and a high order discretization, i.e. cG(2) with dG(2)
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advection. The results in Table 3 clearly show the superiority of the uniform mesh approach both in terms of computational

time and memory consumption. It shows, however that parametric meshes can be realised either with a comparable memory

footprint but with substantial computational overhead or with comparable computational efficiency but with increased memory530

requirements.

The trade-off that is chosen in an implementation will likely depend on the hardware that is targeted. On common multi-core

CPUs with a moderate number of cores, the parametric approach with precomputed matrices seems to be superior. When using

many-core systems or moving to GPUs or TPUs, the balance between compute-memory performance may differ. This remains

a task for further research in the future.535

6 Conclusion

We presented the numerics and implementation of the neXtSIM-DG dynamical core, a new discretization of sea ice dynamics

aimed at Earth system models. A key feature is the use of higher order in terms of local discretization and the consistent use of

efficient data structures and modern programming paradigms.

The new framework has been validated in the context of Hibler’s established viscous-plastic sea ice model but the dynamical540

core is flexible and can accommodate different rheology models.

All advection equations are discretized using discontinuous Galerkin methods. Currently, the methods dG(0), dG(1), and

dG(2) have been implemented and validated, but the flexible software concept based on code-generation and pre-assembled

matrices for efficient implementation of the variational formulations easily allows an extension to even higher orders. This

could become relevant in connection with alternative sea ice rheologies, see e.g. Dansereau et al. (2016); Ólason et al. (2022).545

The momentum equation is discretized using second order continuous finite elements.

We validated the advection discretization and showed that the theoretically expected orders of convergence are realized

in practice. Thereby, by using parametric grids, we achieve great flexibility on the spatial discretization. On the other hand,

the underlying structured grid topology allows for an efficient numerical implementation. The momentum equation with an

mEVP approximation of the visco-plastic model and was tested using an established benchmark problem Mehlmann and550

Richter (2017). In particular, we showed that the high-order discretization can resolve more LKFs than the established mod-

els Mehlmann et al. (2021b), albeit with a larger number of degrees of freedom.

We also described the implementation of the dynamical core on a shared-memory compute node and parallelization using

OpenMP. In our future work, we will add coarser parallelization on distributed clusters with MPI and also parallelization on

GPUs.555

While MPI parallelization is standard and can be easily accomplished by using topologically simple, structured rectangular

grids, we enter new territory with GPU parallelization. However, this is already prepared by using a structured memory design.

Moreover, the current implementation of neXtSIM-DG allows an easy choice between a pre-assembly of matrices and an

on-the-fly computation of all sizes, which could be beneficial on GPUs to reduce memory bandwidth, see Section 5.3.3.
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