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Abstract. The ability of numerical sea ice models to reproduce localized deformation features associated with fracture pro-
cesses is key for an accurate representation of the ice dynamics and of dynamically coupled physical processes in the Arctic
and Antarctic. Equally key is the capacity of these models to minimize the numerical diffusion stemming from the advection
of these features, to ensure that the associated strong gradients persist in time, without the need to unphysically re-inject en-
ergy for re-localization. To control diffusion and improve the approximation quality, we present a new numerical core for the
dynamics of sea ice that is based on higher order finite element discretizations for the momentum equation and higher order
discontinuous Galerkin methods for the advection. The mathematical properties of this core are discussed and detailed descrip-
tion of an efficient shared memory parallel implementation is given. In addition, we present different numerical tests and apply
the new framework to a benchmark problem to quantify the advantages of the higher order discretization. These tests are based
on Hibler’s viscous-plastic sea ice model, but the implementation of the developed framework in the context of other physical

models reproducing a strong localization of the deformation are possible.

1 Introduction

Sea ice plays a critical role for the development of the Earth system with up to 15% of the world’s oceans being covered
by it at some point during the year. It contributes importantly to the global energy budget and its high albedo keeps arctic
oceans cool, affecting global oceanic circulation. An accurate simulation of sea ice is therefore of importance, in particular to
describe the evolution and impact of climate change. The numerical modeling of sea ice is, however, very challenging since it
is characterized by nonlinear and highly localized processes.

In the present work, we develop a numerical scheme for sea ice that use higher order finite elements for the sea ice momentum
and the advection equations and specifically aims to provide a high fidelity discretization with small numerical diffusion and
good approximation properties. We choose discontinuous Galerkin methods for the advection because they allow a Eulerian
treatment of the equations of motion that is compatible with the habits of the sea ice and climate modelling community while
extending naturally to high order and exhibiting limited numerical diffusion. The momentum equation will be formulated in

a variational finite element way that also allows naturally for higher order schemes and allows for a direct coupling to the
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discontinuous Galerkin advection discretization. The proposed numerical scheme will form the dynamical core in the next
neXtSIM-DG sea ice model that is currently under development.

Since the first extended in-situ observational campaigns of the 1970’s in the Arctic, sea ice has been identified as a densely
fractured material in which most of the deformation is taking place locally by “relative motion at the cracks” with the ice
between the cracks being virtually “rigid” (Coon et al., 1974). This relative motion of ice plates, referred to in the sea ice
community as floes, translates into three main deformation processes: opening of fractures; joining along larger features called
leads; the shearing along opened fractures and the closing of leads, resulting in the formation of pressure ridges. Although
highly localized around cracks, the processes play a key role in the polar ocean systems by governing the location and intensity
of bio-chemical processes and the exchange of heat, mass and momentum between the ice, ocean, and atmosphere, e.g. (Marcq
and Weiss, 2012; Vihma, 2014; Goosse et al., 2018; Horvat and Tziperman, 2018; Taylor et al., 2018). Importantly, the three
processes also determine to a significant extent the large-scale mechanical resistance of the ice cover and hence its mobility
and the overall rates of ice export out of the Arctic (e.g., Rampal et al., 2009, 2011).

Satellite remote sensing data, such as the RADARSAT Geophysical Processor System sea ice motion products which became
available in the late 1990’s, have allowed for the observation of these localized processes at the global scale of the Arctic
Ocean. The term “Linear Kinematic Features” (LKFs) was then proposed to designate the associated near-linear zones of
discontinuities in the drift velocity fields. These LKFs correspond to areas with a high density of fractures in the ice cover,
which strongly concentrates its deformation (Kwok, 2001). In recent years, a large number of observational analyses of sea
ice deformation data, e.g. Lindsay and Stern (2003); Marsan et al. (2004); Rampal et al. (2008); Stern and Lindsay (2009);
Hutchings et al. (2011); Oikkonen et al. (2017), has fuelled a race in the modelling community towards a better reproduction
of LKFs in thermodynamical models, in particular, with respect to their spatial and temporal statistics, e.g. (Girard et al.,
2011; Rampal et al., 2016; Hutter et al., 2018; Rampal et al., 2019; Bouchat et al., 2022). Different approaches have been
taken towards this goal : new mechanical (i.e., theological) continuum models have been proposed for sea ice (Schreyer et al.,
2006; Sulsky and Peterson, 2011; Girard et al., 2011; Dansereau et al., 2016; Olason et al., 2022), the mechanical parameters of
existing models have been tuned (Bouchat and Tremblay, 2017), and the spatial resolution of models has been increased (Hutter
et al., 2018).

The ability to reproduce adequately LKFs in continuum sea ice models however raises an equally important challenge: that
of keeping the very strong gradients in sea ice properties (e.g. velocity, thickness, concentration) that stem from the extreme
localization of the deformation as the ice is advected by winds and ocean currents. This numerical discretization problem is, in
fact, not unique to sea ice but encountered for all materials that are experiencing both highly localized deformations resulting
from brittle fracturing processes and high post-fracture strains. Another important example from the geosciences is the Earth
crust, where brittle processes leading to strain localization and slip coexist in faults, landslides and volcanic edifices, e.g. (Peng
and Gomberg, 2010; Burov, 2011). Sea ice, however, represents an extreme case as it is constantly moving and experiencing
much larger relative deformations and drift velocities (about 5cm/s and 10cm/s as a daily average in the winter and summer,

respectively).
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Several numerical approaches have been studied and dedicated advection schemes have been developed to limit numerical
diffusion in models of the Earth crust, (e.g., see Zhong et al. (2015) for a review). In the sea ice modelling community however,
the treatment and, in particular, the quantification of numerical diffusion of advected gradients has received relatively little
attention. Notable exceptions are the works by Flato (1993) and Huang and Savage (1998), which applied particle-in-cell
methods to treat the advection of strong gradients in ice concentration and thickness, not associated with LKFs but with the
migration of the edge of the Arctic sea ice cover (the so-called "ice edge"), Lipscomb and Hunke (2005), which used an
incremental remapping to preserve monotonicity, Sulsky and Peterson (2011) which introduced the Material Point Method
and tested its robustness in the context of sea ice by performing idealized convection benchmark problems and Danilov et al.
(2015), which employed a flux corrected Taylor-Galerkin method. NeXtSIM (Rampal et al., 2016) is based on a Lagrangian
model and hence completely avoids diffusion during transport, although remeshing operations are required in this framework
which themselves induce some diffusion. The implementation of discontinuous Galerkin methods to treat the advection of
sea ice was first proposed by Dansereau et al. (2016, 2017) and used with higher orders, with a quantification of diffusion,
by Dansereau et al. (2021). Mehlmann et al. (2021b) compared sea ice simulations using different meshes, mesh resolutions
and advection schemes. However, the focus of their paper was the discretization of the momentum equation and no specific
discussion of numerical diffusion was given. Recently, Mehlmann and Korn (2021b) have developed a finite element sea ice
discretization based on the Crouzeix-Raviart element which relates to a CD-grid staggering. This is a nonconforming approach
and the authors showed that this provides the best properties for resolving LKFs (Mehlmann and Korn, 2021a; Danilov et al.,
2022) among low-order approaches.

Outline. The following section will introduce the basic equations and the notation used throughout the manuscript. We limit
ourselves to the most widely used dynamical framework, which is the so-called Visco-Plastic rheology (Hibler, 1979), to focus
on the discretization and to aid comparison to other numerical schemes in the literature. We will extend the discretization to
more recently developed “Elasto-Brittle” schemes (MEB and BBM, e.g. Dansereau et al. (2016); Olason et al. (2022)) else-
where. The third section details the numerical discretization of the sea ice model, including the advection and the momentum
equations. Section 4 focuses on the implementation as well as on the shared-memory parallelization of the numerical model.
Finally, in Section 5 we consider basic tests to validate the method and apply it to established benchmark problems (Mehlmann

and Korn, 2021a). The paper concludes with an outlook.

2 Governing equations

We denote by €2 C R? the two-dimensional domain of the sea ice. The sea ice models we investigate consist of a momentum
equation for the velocity field v : Q — R? and further advection equations for tracer variables. In simple models, such as
the one introduced by Hibler (1979), the tracers are usually the mean ice height H : Q — [0,00) C R and ice concentration
A:Q —[0,1] C R. Here, we consider the following system of sea ice equations

Pice HOyv =div o+ AT(V) — pice H fe€, X vV — p,—ceHgiIg,

ey
O A+div(vA) =0, 0:H+div(vH)=0.
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Here, pic. is the ice density, f.e, X v is the Coriolis term with Coriolis parameter f. and vertical unit vector e, g is the
gravitational acceleration, and H ¢ the sea surface height. We focus on a stand alone dynamics model without coupling to an

ocean and an atmospheric model. Following Coon (1980), we approximate the surface height by the Coriolis term
—pice HgV Hy ~ picc H fo€2 X Vo,

where v, is the ocean surface velocity. The forcing 7(v) is given by

7(v) = Copollvo = Vll2 - (Vo = V) + Capallvallz - Va-

The index “o” represents the ocean with the surface drag C,, the water density p,, and again the ocean surface velocity
v, while “a” denotes the atmosphere with drag coefficient C,, density p, and wind field v,. We neglect turning angles
and thermodynamic effects in Eq. (1). Therefore, the constraints A € [0,1] and H € [0,00) are not naturally enforced by the
equations but must be ensured by projections. In the following, we will use the following notation of the momentum equation

(with the approximation of the surface height)
Pice HOwv =dive + F(v), F(v)=A1(V)+ piccHfeer X (Vo —V). 2)

Model (1) is closed by specifying a rheology, i.e., the relation between the (vertically integrated) stress o and the strain
rate €,

e(v) = %(VV-I—VVT), €v)=¢€(v)— %tr (e(v))I,

as well as the ice tracer quantities H and A (and possibly further parameters). Different rheological models have been proposed
in the literature. As this paper focuses on computational questions that are largely independent of the chosen rheology, we

consider the most widely used one, i.e. the viscous-plastic (VP) model proposed by Hibler (1979). It prescribes

o(v) =2n€ (v) +(div(v)I — gl, (3)

with viscosities 7, ¢ that, using the notation introduced in Mehlmann and Richter (2017), are given by

e?’ 2/A2 ttr(e)2+2e2-€: €

min

“4)

Here e = 2 is the excentricity of the elliptical yield curve, Api, > 01is the threshold defining the transition to a viscous behaviour
for very small strain, P is the ice strength, and P is the replacement pressure

Ale)

Py=P*-H-exp(—C(1-A)), Sy w—Yp)

- Py. (5)

Common default values for the model parameters pjce, pa, P, €, C, P* can be found in Tab. 1.
The VP model is highly nonlinear. Therefore, a solution with implicit methods is very challenging, see Losch et al. (2014);

Mehlmann and Richter (2017); Shih et al. (2022) for various approaches based on Newton’s method. Picard iterations are
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also slow and an explicit time-stepping would require excessively small time steps (Ip et al., 1991). Hence, the so-called
Elastic-Visco-Plastic (EVP) model is a widely used variant of the VP rheology (Hunke, 2001; Kimmritz et al., 2016). It adds a

pseudo-elastic behaviour to improve numerical performance. The constitutive law (3) is in this case given by

%~%a’+a:0(v), (6)
where o(v) is the VP-relation given by Eq. (3). EVP should, however, be considered as a model different from VP since its
solutions do not converge to the VP ones. An alternative variant that can be considered as a pseudo-time-stepping scheme is
the mEVP scheme (Bouillon et al., 2013), see Section 3.4. The mEVP scheme converges to the VP solution given a sufficiently
large number of iterations. In practical applications, however, only a small and fixed number of iterations are performed and

the resulting solution may then differ significantly from the VP solution (Kimmiritz et al., 2016; Koldunov et al., 2019).

3 Higher order finite element discretization of the sea ice equations

In the following, we describe the discretization of the sea ice equations (1) in space and time using higher-order finite elements.
All tracers and also the strain rate tensor € and the stresses o are discretized with a discontinuous Galerkin (dG) approach

whereas the ice velocity v is discretized using quadratic continuous finite elements.
3.1 Mesh domain

Discretizations of the sea ice equations are typically used within a coupled Earth system model. One consequence is that the
time step of the numerical sea ice model is not only determined by the desired accuracy and stability considerations but also
constrained by the atmospheric and oceanic components of the Earth system model.

By At we denote the time step of the sea ice equations. Although dynamic time discretizations with varying step sizes are

possible, we will only consider uniform time steps with At,, = At for all steps n. The time mesh is hence given by
to<ti <ta<---<tn=T, At:=t, —t,_1. @)

Assuming, for example, the time step size At € 240s. and ice velocities |v|s < 1m-s™!, explicit time-stepping will be

stable for mesh sizes up to a resolution of
Arx=C,-||v| At = C;-250m, (8)

where C,. is a constant that depends on the degree r of the time stepping scheme. The factor C). scales like C, ~ 2r +
1 (Chalmers and Krivodonova, 2020). Hence, for a dG(2) method and time stepping scheme of balanced order with r = 2,
the minimum mesh element size should be larger than 2km if a time step of At = 240s is used. Usually, limitations due to the
CFL condition are more relevant in the ocean model where velocities are higher. For our higher order sea ice model, the CFL

condition might become a limiting factor since it scales with the polynomial degree.
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Jj+1

J
T -t R
— L > Ti,j(x)
Jj—1 T
i—1 7 i+1

Figure 1. Parametric mesh. Each element T; ; € T, (on the right) arises from the a mapping T'; ; : T— T;,; from the reference element
T= (0,1)? (on the left). The mesh elements T ; are general quadrilaterals such that the mappings T are bi-linear polynomials. The edges

e;; and e ; are straight lines.

For the spatial discretization, we employ a parametric finite element mesh of the domain €. We base the discretization on
quadrilateral meshes 7}, (as opposed to triangular ones). The meshes are topologically fully regular but geometrically distorted

and consist of nodes x; ;, elements 7T; ; and edges e;-{f;-’y}, such that

Xi7j€Q iZO,...,Nm,j:O,...,Ny,
n,j = (Xi—l,j—laXi,j—laXi—l,jaXi,j) i= 17"'aNx7 .] = 17"'7Ny7
Ti=4 | | , ©)
ei,j:(xi—l,jvxi,j) 221,...,]\7x,.]:0,...,J\fy7
ei”jz(xi}j,hxi,j) iZO,...,NI,j:17...,Ny

where N, N, € IN denote the number of elements in - and y-direction. See Fig. 1 for an illustration. The nodes are lexico-

graphically ordered, i.e. k =i+ (N, +1)j is the consecutive index. Each geometric mesh element T; ; can be defined via a

mapping

Ti;:T:=(0,1)%— T,

from a unique reference element 7 using the bi-linear polynomial

T;;(%)=(1—-%1)(1—%o)xi—1j—1+X1(1 —Ro)x; j—1 + (1 — X1 )XoXi—1,; + K1X2X; ;, (10)

Y

;7> we consider one unit normal vector. Its orientation arises from mapping the unit
;

see again Fig. 1. On each edge €7 ; and e

normal vectors é* = (1,0)7 and é¥ = (0,1)” of the reference element to the edges of Ty,.
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3.2 Finite element spaces and degrees of freedom

We use continuous and discontinuous finite elements for the discretization of the momentum equation as well as the constitutive
equations and advection problems, respectively. On the reference element T, we define two sets of basis functions. The dG-

basis functions that we employ are given by

Y

= (%1 — 1/2) ((&2 1)’ - 1/12)

These basis functions are orthogonal, i.e. fT ¥;¥;dx = d;;. Second, we use degree r tensor product Lagrange finite element

basis functions

(I)E:iLl)lJrk(f() = fl(cl)(xl)gl(l)(XQL kil=1,....,r+1. (12)

The one-dimensional basis functions (for » = 1 and r = 2) are given by
V@) =1-867@) =2, §7@):=1-2)(1-20), &7 (@) =481~ 1), & (2) == 222 - 1). (13)

All basis functions are mapped from the reference element T onto the mesh elements of 7.
We define continuous finite element spaces Vh(r), where r = 1,2 is the degree, and spaces W,Es) associated with the discon-

tinuous finite elements, where s = 1,2,... is the number of local basis functions,

v = {¢e C(Q) : 6|, €span{B) 0Ty, k=1,...,(r+1)2} VT ¢ Th}

(14)
W}(LS) = {1/) € L*(Q) : ’(/)|T Espaun{\IJkoT;l7 1,...,5} ,VTE'E}.

Locally on each mesh element 1" € Ty, the tracer Hj, € W}(LS) and velocity vy, € V}fr) are therefore desribed by the linear
combinations of the basis functions
NZCSC

I:IT( ) Hh TT ZHT] \AIT()A() —Vh TT )A( ZVTJ(I)k (15)

where NS = (r +1)? is the local number of unknowns in each element. An analogous representation holds for the second

tracer. Finally, by (-,-), and (-,-), we denote L?-scalar products

ww»:/Q@W@Mx wwa:/wmwmm

{y}

on the elements T; ; and the edges e; ’*”, respectively.
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3.3 Discontinuous Galerkin advection scheme
We begin by describing the discretization of the advection equation
0:H + div (VH) =0.

for the tracer H : 2 — R. We follow the notation of (Di Pietro and Ern, 2012, Chapter 3).
The temporal discretization will be by explicit Runge-Kutta schemes of order one, two or three. In space we use Hj, € W,gs),

see Eq. 14 and Eq. 15. The discretiation is based on the standard upwind formulation

1
> 0 (Hn)p = (Hyv, Vo) + 3 ({H v ne[6]), + 5 (v - nel - [HaL []) =0. (16)
TETh e€Th
By {{H,}}|_ we denote the average of the dG function H}, on an edge e = 0T} N 9T between the two elements Ty, T and by
[Hz) |e the jump over this edge, i.e.

1
{{H’L}He = §(H’L|T1 +Hh|T2)’ [[Hhme = Hh|T1 - Hh’Tg'
The upwind scheme can be written in matrix-vector notation as
MatHh = A(Vh)Hh,

where M is the dG-mass matrix in W;ES), which is block-diagonal with blocks of size s x s, and where A (vy,) gathers all
remaining terms of Eq. (16) which are all linear in H},. The equation is discretized in time by standard explicit Runge-Kutta
methods on the advection time mesh in Eq. (7).

For dG(0) with space W(l), the discretization is equivalent to the usual finite volume upwind scheme since the per element
term (Hy, v, V1)) vanishes for all ¢ € W,Sl) as 1/)’ o 1s constant on 7. The advantage of using higher order methods will become

clear in Sec. 5.3.3.
3.4 Discretizing the momentum equation

The coupled advection and momentum equation system in Eq. 1 is decoupled in a partitioned iteration by performing the ad-
vection step and then solving the momentum equation. The momentum equation is approximated with an mEVP solver, which

can be considered as a pseudo time-stepping scheme for the implicit backward Euler discretization of the VP formulation,

(e.g., see Lemieux et al. (2012); Bouillon et al. (2013)). We introduce the iterates vﬁLp ) and o-%p )

VSLO) :=v,_1 and a'%o) := 0,1 in which case the update can be written as

for p=0,1,..., Nyevp With

(14 a)o) = acy= +o(vf)
~ (17)
((1 + ﬂ)pieeHn + AtAnCopOHVO - ng':nil) ||2)V$zp) = piceHn (Vn—l +BV£LP71)) + At(diva'gf) + F(Vv(vfuil)))'
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The forcing term F(v%p )) in Eq. (2) is split into explicit and implicit parts. The ocean forcing term is considered implicitly,

which helps the stability of the scheme, and the remaining explicit terms on the right hand side are
F(V%p_l)) = An (COPOHVO - ngp_l) ||2 "Vo Capa”Va“? 'Va> + piceancez X (vo - ngp_l))' (18)

The parameters o and § in Eq. 17 control the stability but also the speed of convergence of the mEVP-iteration to the
VP-solution whereas the number of steps Nygyp controls the accuracy. We refer the reader to Kimmritz et al. (2016) for a
discussion on this.

A mixed finite element approach is used for the spatial discretization of Egs. (17)-(18) with continuous finite elements for

the momentum equation and discontinuous ones for the stress update. This yields
(1+a) (e, 0,) = a(aﬁf’_l), Uy) + (o’(vglp_l)),\llh),
(14 B)pice Hu + ALALCopo[vo =V E D [2) v, 01 ) = (piceHn (vay +BvP ) + ALF(vP ), 3, ) (19)
At (ag’) : vq>h)

for test functions

Ve W, = [W22m .= (g e L2(0)*%, o

ol oy eW? ij=12}, ¥,eV,=[V"]2 (20)

Compatibility of the velocity and stress spaces is important for the stability of the coupled iteration, see Sect. 5.2.3 for an
example of possible instabilities. Stress spaces that are too small do not provide sufficient control of the term (o (v), ¥) in
Eq. (19) and lead to oscillatory stresses, see the upper right plot in Fig. 13. The problem is related to the control of the energy
and in a mixed formulation the spaces V; and W), must in particular satisfy the Babuska-Brezzi condition, see, e.g. Ern and
Guermond (2021, see, e.g. Theorem 49.13) for well-posedness. For a simplified linear equation, this condition would mean
that there exists a constant v > 0 such that

. (T, VP)q
inf sup ———=7>7>0. ey
ecViwew, [V - [P

This condition can easily be satisfied if for every v, € V, from the cG-velocity space it holds that

1 s sym

§(Vvh+vv{) € W, = [W(S)]2x2sum. (22)
Then, for any ® = v;, we choose W as Eq. (22) and get, using the symmetry of the inner product

(Vvh +VV;7;,VVh)Q (Vvh +Vvi, 3 (Vv +Vv£))9

Vvh+ Vv |a S CK

[Vvilla = 27

1
Vv + Vv ol Vvalle Vv +VvialVville 2

where cx > 0 is the constant of Korn’s inequality (Ern and Guermond, 2021, Theorem 42.9 and 42.10). We therefore require
that the spaces W), and 'V, always allow for choosing the stress test-function ¥ € W, as the symmetric velocity gradient,
Eq. (22). To be precise, the degree s has to be chosen such that the symmetric gradient of the discrete velocity is part of the

stress space. On quadrilateral elements, the continuous finite element basis is not the pure polynomial basis P(") but it includes
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Figure 2. The numerical quadrature nodes X, are defined

on the reference element 1’ = (0,1)? and mapped to the real

mesh elements 7' € Ty, via x, := T(X,). We show a 2-point
Gauss rule (of degree 4) with 2 points on each edge and 4

points in the element.

j—1

50[t] i—1 )

the additional mixed terms zy for = 1 and z2y, zy?, 22y? for r = 2. Hence, the gradient space must also be enriched. For
linear elements with = 1 the condition in Eq. (22) requires s = 3 and for quadratic velocities with » = 2 we must take s = 8
in Egs. (19)-(20). This update involves the inversion of the mass matrix of W,(Ls). The matrix is block-diagonal with block-size
s % s so that in the cG(2)-case with s = 8 the costs for the inversion are substantial. Sec. 4.2 describes our approach for an
efficient implementation.

The momentum equation is discretized with continuous finite elements in the discrete space V},. All zero-order terms in the
momentum equation, Eq. (19), are evaluated node-wise and no integration is required. Adding the stress, however, requires
integration and inversion of the mass matrix of V},. To avoid the inversion, we use mass lumping. The evaluation of the

momentum equation’s right-hand side in Eq. (19) then becomes

'nfz <1+ﬂ)pue nl+AtAnlcopo||Vol— P 1)H )
.(piCEHm(vn 1z+ﬁvp 1))+AtF( ey _ M ljjiAt(gglp),v@i)Q» i=1,...,N.g (23)

where M is the lumped mass matrix in the cG-velocity space. The implicit terms are handled analogously. The integration of
the stresses against the gradient of the test function is a non-local operation coupling adjacent degrees of freedom. All other

operations, like computing F (v%p -b ), are fully decoupled and can be processed node-wise in parallel.

Remark 1 (Mixed velocity-stress discretization on triangular and quadrilateral meshes). The choice of bilinear and biquadratic
velocity approaches given in Eq. (19)-(20) requires a local discontinuous stress space with s = 3 and s = 8 unknowns, respec-
tively. This relation does not seem to be optimal because the corresponding discretization on triangles requires only constant
stresses with one unknown per cell in the case of linear velocities and locally linear stresses with 3 unknowns in the case
of quadratic velocities. However, a triangular mesh with the same number of velocity unknowns as a quadrilateral mesh has
twice the number of elements as a quadrilateral mesh. Hence, for r =1 one has in total 2 unknowns per stress component
on triangles and for v = 2 one has 6 stress unknowns compared to s = 3 and s = 8 in the case of quadrilateral meshes. This

means that the difference in effort between triangular and quadrilateral elements is less dramatic than it appears at first sight.
3.5 Numerical quadrature

In the parametric finite element setup, all integrals appearing in the advection scheme in Eq. (16) and the weak formulation of

the mEVP iteration in Eq. (17) must be evaluated on the reference element T and, in case of the upwind scheme, also on the

10
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reference edge é = (0, 1) since the basis functions are defined on T'. For the different terms of Eq. (16) it holds
Oi(Hn, )1 = (Jr0 Hp, )z (Hnv, V)1 = (Hy¥, Jr VT V)7

o 1 (24)
({HHul}s (vome) [Y])e = (Jelinl, (v-me)[P]he - S(v-mne] - [Ha], [¥])e =

ST [ [0

where H, r and v are the functions on the reference element that by Eq. (15) are associated with Hy, and v on the element 7', and
analogously for the edge terms. The reference element map T'r dependent terms in Eq. 24 are the Jacobian VTr: T — R2*2
and its determinant Jp = det(@’i‘T). Since T'7 is bi-linear (and not linear), the Jacobian and its determinant are not element-
wise constant. However, on the reference edges é, T is linear such that e € 7}, are straight and hence J. = |e] as the reference
element has edge length 1.

The integrals in Eq. (24) are approximated by Gaussian quadrature. For dG(r) (r = 0,1, 2) we use r + 1 quadrature points on
the edge and (r + 1)? quadrature points within the elements, see Fig. 2 for an example with two points on the edges and 2 x 2
points within the element.

Implementation details are described in Section 3.1. Evaluation of the terms in (24) is numerically costly, mostly due to the

evaluation of the map T, the Jacobian @TT, its inverse and the determinant of the Jacobian.

4 Efficient parallelizable implementation

In the following paragraphs, we will describe the C++ implementation of the higher-order discretization. A hybrid paralleliza-
tion approach consisting of distributed memory MPI splitting and local shared memory OpenMP realization is considered. The
data is structured such that the implementation also allows to run modules on a GPU.

MPI parallelization builds on a domain decomposition that splits the complete mesh into a balanced number of rectangular
subdomains such that the average number of ice-covered elements for each domain is comparable. Each parallel task then

operates on a subdomain that is topologically structured into N,; := N, x N, elements such as described in Sect. 3.1.
4.1 Implementation of continuous and discontinuous finite elements

We start by describing the handling of the data, i.e. the ¢cG- and dG-vectors for each MPI task that is responsible for one
topologically rectangular mesh 7;, consisting of N, x N, elements. A dG-vector A, € W}Es) has s unknowns on each of the
Ney = N; - Ny elements and we store such a vector as a A € RNetXs matrix. The implementation is based on Eigen (Guen-
nebaud et al., 2010), a C++ library for linear algebra that heavily relies on C++ templates. In the code, the vector is represented

as

11 Matrix<FloatType, Dynamic, s, RowMajor> DGVector<s> A;

The first dimension of A (number of elements) is dynamic and determined at run-time, which allows us to flexibly handle
different subdomain sizes. The second dimension, i.e. the number of components, has degree s and is determined at compile

time. This allows for vectorized SIMD processing of computations, see Sect. 5.3.2 for a numerical demonstration.
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To provide one example of a frequently used operation, we explain the restriction of a dG(1) function A € W,ES) (with three
local unknowns on T) from an element 7 to one of its edges e € 9T Let T' have the element-id ¢ € {1,..., N} and lete = €7

be the lower edge in the notation of (9). Then the restriction to the lower edge is realized as

I: Vector<FloatType, 2> lower_edge (const DGVector<3>& A, size_t i)

2. { return Vector<FloatType, 2> a_e({A(i,0)-0.5  A(i,2), A(i,1)}); }

Since the restriction does not depend on the specific element T € Ty, the relations are implemented for the four edges and
the different choices of dG-spaces, i.e. for the number of local basis functions, using template specializations. With this, both
Eigen and the compiler can optimize the computations.

The parametric setup also allows for an efficient restriction of a dG or cG function to the Gauss points. Let A;, € W,Eﬁ) and
let T € Ty, be again any mesh element with element-id i € {1,..., N,; }. Assume that we want to evaluate Aj, in the 3 x 3 Gauss

points X, € (0,1)?, cf. Sect. 3.5. It holds x/, := Tr(xX,,) and hence
6 . 6 A .
=Y ALY (TH (X)) =Y Aili(x,) =: Al (25)
-1 =1

That is, by working with the pulled back function ¥; on the reference element, 0, only needs to be evaluated on the fixed
points x,. Furthermore, by the linearity of the basis representation, the mapping of the local coefficients A; 1,...,A; ¢ of the

dG vector to the values of AiG € R? in the 9 Gauss points on the element 7" can be written as a matrix-vector product

(2

A=A, -Gy’ [GYlig=Ti(x,) (26)

with a fixed matrix G?I,’G € R%5. The matrices G” for possible dG-degrees with s local unknowns and for supported choices
of the Gauss quadrature rule with ¢ points are pre-computed and directly inlined into the code to allow for an optimization by
Eigen and the compiler. The matrices G and similar code are auto-generated by Python scripts to allow for easy extension.

Another challenge for an efficient implementation is the evaluation of the integrals that are required to determine the viscosity

within the VP-model (4) in the mEVP iteration, see Eq. (19),
P* Hh exp( C(l—Ah))_ P*~Hh-exp(—C(1—Ah))
\/Amm +tr(en)?+ Ze) c €, \/Amm S(er1 +€2)2 + Senen + €l

With ¢ € {1,..., Ny} again denoting the element index, the following example illustrates the evaluation of the viscosities in

the 9 Gauss points in the case of biquadratic velocities, a strain tensor with 8 local unknowns, i.e. E}, € [W}Eg)]QXQ,sy?n’ and

tracers discretized as dG(1)-functions in W}(L?’).

1. const Array<9> Ag = A.row (1) * Gpsi<9,3>; // restrict k-th element to Gauss points
2 const Array<9> Hg = H.row (i) * Gpsi<9,3>; // restrict ice height to Gauss points

3 const Array<9> Ellg = Ell.row(i) = Gpsi<9,8>; // restrict strain tensor to Gauss points
4 const Array<9> El12g = El2.row (i) * Gpsi<9,8>; // restrict strain tensor to Gauss points

5. const Array<9> E22g = E22.row (i) * Gpsi<9,8>; // restrict strain tensor to Gauss points

12
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7. const Array<9> zeta = Pstar x Hg % (-C % (1-Ag)).exp() /
8: (Dmin*Dmin + 1.25 % (E1l1lg+E22g) .square() + 1.5 x Ellg % E22g + El2g.square()) .sqrt();

The above implementation is close to the mathematical notation which simplifies the implementation of model variations. Long

expressions such as those in the last line also allow Eigen to vectorize operations efficiently.
4.2 Evaluation of the weak formulations on parametric meshes

A substantial part of the computational effort is due to the mapping of the reference element T onto the mesh elements T' € 7T,,
compare Sect. 3.1 and Sect. 3.5. We discuss the details of an efficient implementation for one specific term in the mEVP
momentum equation (19), namely the evaluation of (0'%zo ) ,V®,)q whose discretization has already been given in Eq. (23). In
the following, we will omit all indices referring to the time step and the mEVP iteration count.

At the heart of (aslp ),V@i)g is the integration of the symmetric stress tensor multiplied with the gradient of the (vector-

valued) test function ®; = (97, <I>f) Pulling this term back from an element 7" € 7}, onto the reference element T, we obtain

(0, V&) = /det (VTr(2))Ve;(2)VTLT (2) : 6(2)d2, i=1,...,NfS. 27)
T
Here, NS := (r+1)? is the local number of cG-degrees of freedomand A : B := 5" ;.7 AijBij is the full contraction of rank-2

loc

tensors. Locally on the element T' € Ty, symmetric stresses o € [W,SS)}QXQ’SW” and the element map’s gradient VT are given

in the dG- and cG-basis as

s [oll iz R )
o@)| =S (" "L wi@), VT =Y [T ) (0:00%) 9,84(%)) (28)
T 12 22 2
j=1 \9T,; OT,j k=1 \%T,k
—_——— _ ¢ \T

with the x7 % = (775,27 ;) € R? being the four corner nodes of the element 7. Approximating Eq. (27) and Eq. (28) by

Gauss quadrature with ng points X1, ..., Xy, € T and weights wy, ..., wn, yields
s nQ ~ R R
(0. Ve)r~ > > wedet (VI(X)) W (%) V(%) VT (%) " 10, i=1,..., N5 (29)
j=1g=1
= Xi,j

The computational effort of the above equation is substantial. The Jacobian VT needs to be assembled ng-s- N, ffc-times,
cf. Eq. (29), and its inverse and determinant need to be computed. For the second order case cG(2) with ng =9, NN focé =9 and
s = 8, more than 15,000 floating point operations are required on each element.

The entries of the 2 x 2-matrices X; ;, however, do not depend on the solution but only on the mesh elements 7" € 7;,. A

closer analysis further reveals that Xj ; := X}, = X7 and X? ; := X% = X?2. Hereby, the complete scalar product with
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Figure 3. Parallel processing of the vectors on a small mesh with 12 elements, N, = 4 and N, = 3. All blocks of one color can be processed
in parallel without memory conflicts. From left to right: node-wise operations, local element-wise operations, edge-wise operations on e”-

edges (blue) and e”-edges (green), operations writing on biquadratic cG(2)-vectors.

Gauss approximation is evaluated as

Pz 0
oV ()] Xt 4 X3op. |0V || AXboR + X307, (30)
0

T g T

with matrices X1, X2 € RN i6e*s The computational effort shrinks then to 4N£S x s operations, which in the case of cG(2)
aounts to about 2300 operations. The matrices X1. and X?2. can be precomputed and stored for each mesh element. Their small
size makes them, furthermore, amenable for efficient caching although additional storage is needed. Section 5.3.3 presents a
numerical study on the effective performance of the alternatives, i.e. using precomputed matrices or computation of all terms
on the fly.

The same technique can be applied to all further terms of (17). For some of them the computational savings of precomputing
per element terms are even more substantial. This is in particular true if the inverse of the block-diagonal dG-mass matrix is

required, such as in the mEVP iteration (19).
4.3 OpenMP parallelization

In each MPI task, only topologically regular rectangular meshes are considered that consist of N¢; := N, x N, elements. As
the complete numerical workflow is based on explicit integrators, OpenMP parallelization is easily realized. Depending on the

specific task, a different coloring of the mesh elements (or mesh edges) is utilized to avoid any memory conflicts:

Node-wise Vector operations (such as sums, entry-wise products, etc.) are parallel with respect to the major index referring to

the node.

Element-wise Operations such as the stress-update in Eq. (19) within the mEVP iteration in Eq. (17) are parallel with respect
to the mesh element. This also includes the element-wise terms (H, v, V1)) of the transport scheme in Eq. (16) where

no communication is involved and also the projection of the strain rate tensor from the cG- to the dG-space

(JrEp,¥); = %(JT(WWTT]—1 + VT VT, ¥)
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Edge-wise The edge integrals in Eq. (16) are assembled in two sweeps. First, all horizontal edges e, € T, are computed

N, Ny

So 3 Y el | 5 (v enel - [ [D)

, : igiy
iy =11y=0

and the outer (in x-direction) is run in parallel as the integral on an edge e7 . will affect the two elements atop and

Tz ,iy

below it. Then, a second sweep, parallelized in y-direction, performs the computation for the e¥-edges.

When updating cG-vectors, e.g. in the stress update (cf. Eq. (23)), more care is required. We use a row-wise coloring of the

elements and perform the update in two sweeps. Fig. 3 summarises the parallel processing of the mesh.

Remark 2 (Towards GPU acceleration). Our finite element discretization requires a large number of per element computations
with a substantial amount of computations for each one. Furthermore, the computational costs increase substantially with the
order; cf. Sec. 4.2. Only local coupling between adjacent elements thereby exists since an explicit time stepping and mEVP
iterations are used. This makes the problem well suited for a GPU parallelization where thousands of independent computations
are required to fully utilize a state-of-the-art GPU and even more when multiple GPU are combined in a node. The current

implementation has already been designed with a GPU implementation in mind. Its realization is planned as a next step.

5 Numerical experiments

In this section we will present a set of experiments to validate our discretization. We will thereby first only study the accuracy

of the advection before considering the full mEVP scheme.
5.1 Validating the higher-order transport scheme
5.1.1 Adbvection testcase I: transport of a initially smooth bump

On the domain Q = (0, L) x (0, L,) with L, = 409600 and L,, = 512000 we advect the initially smooth bump

exp(—il_:(x)) r(x) <1 < 1 17,2
Hiy(x) = . r(x)=40||— - (=,=
=1 20 () =40l - = (3:3) |

with the stationary, rotational velocity field

2% — Ly,
v(x) = L e

Ll’ Lx - 2X1

The problem is run in the time interval T = [0, L,.] such that one complete revolution of the bump is performed. We compute

)

the test case on a sequence of meshes consisting of NS X Nél) elements and N¥ ) time steps using

NO =24.21 N =26.21 NP =200-2"1 (r+1)72, 1=1,2,...,
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Figure 4. Advection testcase I: Convergence rates on uniform (red) and distorted (blue) meshes.

where r € {0,1,2} is the degree of the dG(r) approach. The coarsest discretization consists of 24 - 26 = 624 elements of ap-

proximate size 17km x 19.6km each and a time step At = 512s. This results in a CFL constant lower than 0.5 - (r 4+ 1) =2
which is sufficient for a robust discretization. Next to these uniform rectangular meshes, we use a sequence of distorted meshes

to model the effect one encounters in a mesh parametrization of the sphere, see Fig. 5. The nodes x; ; are in this case given by

™) sin (§7)
=) sin ()

Through the periodicity of the domain, the exact solution at time 7' = L, equals the initial condition. We measure the scaled

i-Lm 1
+ 55 Sln(

, fori=0,...,N;, and j=0,...,N,.

Xij =

J—|— Obm(’

L?-error by

1
err = | Hy,ae(T) = Hinl| 12(@)-

The scaling factor 1/ L, accounts for the drift-error accumulation that is expected to be dependent on the length of the advection
in space.

Fig. 4 shows the convergence behavior for the different meshes and degrees r. We observe the expected convergence rate
of O(|Ax\%) for dG(0), cf. (Di Pietro and Ern, 2012, Theorem 3.7) and even super-convergent second order instead of
O(|Az|**+'/2) for dG(1) and super-convergent third order instead of O(|Az|>*+'/?) for dG(2), cf. (Di Pietro and Ern, 2012,
Theorem 3.13). Distortion of the meshes slightly increases the error constant but the convergence order is not affected, as

expected.
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Figure 5. Advection testcase I: Visualization

of the coarse meshes and the initial dG(0) so-

lution. Left: regular rectangular mesh. Right:

\

distorted parametric mesh.
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5.1.2 Adbvection testcase II: transport in a cicular annulus

The domain of the second test case is a circular annulus with inner radius o = 100 km and outer radius r; = 250km, cf. Fig. 6.

The parametric mesh is constructed by mapping a uniform rectangular mesh onto the ring using the map

fsin(%)

T(x;) := (To +(r1 — TO)]%U)

Y

The divergence free stationary velocity field for the transport is given by

2mm X2

V0= 2500005 | _x,

and it moves the initial conditions uniformly along the domain.

One complete revolution around the annulus is achieved in 7' = 250000s. The initial field consists of four objects with
different regularity: a smooth C'°°-bump centered at (—175km,0km) of radius 50 km (on the left), a continuous C°-pyramid
centered at (175km,0km) with radius 50km (on the right) and two discontinous discs with radius 50km at (Okm, —175km)
(on the bottom) and (Okm, 175km) (on the top). The last one has a “pacman-shaped” omission.

Fig. 7 shows the absolute error between the initial condition and the solution at time 7'. The results verify the superiority
of higher-order methods with respect to numerical diffusion. While the finite volume dG(0) discretization is highly diffusive
and inaccurate, both dG(1) and dG(2) preserve all shapes well with very small errors for the smooth ones and small, but sharp

interface errors for the disc and the pacman-like shape.
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Figure 6. Advection testcase I1I: Computational domain and mesh (left) for the transport in a ring. The boundary lines marked in red are the

periodic boundaries of the regular reference mesh. On the right we show the initial solution.

000

Figure 7. Difference (absolute value) between the initial condition and the solution after one revolution for dG(0) (left), dG(1) (middle) and

dG(2) (right).
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420 5.2 Validating the mEVP framework

To validate the complete dynamical mEVP framework and to assess the higher order discretization, we study the VP benchmark
problem that has been introduced in Mehlmann and Richter (2017) and investigated in Mehlmann et al. (2021b) to compare
different sea ice realizations with respect to their ability to depict linear kinematic features.

The setup of the benchmark is described in Fig. 8. On the domain of size 512km x 512km, the ice has an initial concentration

425 of one and an average height of 0.3m with a small amplitude oscillations of 0.005m and with wavelength 105km in - and
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) > Figure 8. Setup of the benchmark problem. Forc-
ing by means of a steady circular ocean current
(in blue) and a divergent wind field (in red) that
is moving diagonally across the domain (with
side length 512km. Initially the ice has average
height 0.3 m (with a periodic variation) and con-

centration A = 1. The simulation is run for a pe-

g riod of 2days, where the wind’s center travels

o

8 from the midpoint to the upper right (red arrow).

=

0

Y
512000 m

Param.  Definition Value Param. Definition Value
Pice Sea ice density 900kg - m~? C, Air drag 1.2-1073
Pa Air density 1.3kg-m™3 C, Water drag 5.5-1073
Po Water density 1026kg - m 3 fe Coriolis 1.46-10"4s7!
P* Ice strength 27.5-10°N-m~2 | C Ice concentration parameter 20
e Ellipse ratio 2
T time horizon 2days « 1st mEVP param. 1500
NT,,, Subcycling steps 100 B8 2nd mEVP param. 1500

Table 1. Default values of the VP model used to define the benchmark Mehlmann and Richter (2017) as well as default mEVP-parameters

used in all numerical test cases.

210km in y-direction, i.e. we have

6x

1 X2
T00km) +Sm(100km))'

\%

0, A()[_,=1, H()|_,=03m+0005m(sin(

t=0

The forcing in the benchmark problem consists of a rotational ocean forcing

(%) 0.0lm-s~ ! [ 2x, —512km
VO X)) = —7—7-—
512km | 512km — 2x3

and a rotational divergent wind field with a center m(¢) that is moving along the diagonal of the domain

|X1_o(1)111<£i)|2> ronte) - smle) (x—m(t)), m(t)=(256km+¢-51.2km-day ") '

Va(x) = ——exp (1 N —sin(a) cos(a) 1

The different parameters of the VP model and the mEVP iteration are given in Table 1.
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Figure 9. Shear deformation (log; ) for the benchmark at time 7" = 2 days. We compare different combinations of c¢G velocity discretizations
(linear and quadratic) with dG advection discretization (constant, linear and quadratic). All computations are run on meshes with the grid

spacing h = 2km.

Fig. 9 shows the shear S(€) := /(€11 — €22)% + 4€2, at final time 7 = 2days on a mesh with h = 2km spacing. Results
are presented for all combinations of the velocity discretization (low order cG(1) and high order ¢G(2)) and advection schemes
dG(0), dG(1) and dG(2). The results are in very good agreement with earlier results for the benchmark (Mehlmann and Richter,
2017) and also with recent numerical studies that consider some of the most widely used sea ice models (Mehlmann et al.,
2021b).

For all combinations of velocity and dG degrees, linear kinematic features are well resolved and the deformation field is
stable (for a detailed discussion, we refer to Sect. 5.3.1). The results of Fig. 9 suggest that the role of the advection scheme is
minor in comparison to the discretization of the velocities. This will be discussed in Sect. 5.2.2. While the ¢G(1) results in the
top row of Fig. 9 are comparable to the B-grid staggerings (cG(1) is the finite element equivalent of this) given in (Mehlmann
et al., 2021b, Fig. 6), the high order cG(2) results show patterns that are at least as resolved as the CD-grid results in (Mehlmann
et al., 2021b, Fig. 6, Fig. 7).
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Figure 10. Total length and number of linear kinematic features detected for the low order ¢G(1)/dG(0) and high order ¢G(2)/dG(2)-
schemes. For comparison, we show selected simulation results on quadrilateral meshes from various models taken from Mehlmann et al.

(2021b).

5.2.1 Resolution of LKF’s

To further investigate the ability of the cG/dG framework to resolve linear kinematic features, we use code provided by Hutter
et al. (2019)' that identify LKFs from the shear deformation rate field. The original scripts have been slightly modified in
the following manner: the resolution of the uniform quadrilateral mesh onto which the outputs are initially projected has been
increased from 256 x 256 to 512 x 512 to account for the fact that the higher order dG-discretizations carry subgrid information
that would otherwise be lost. The length of LKFs, which the scripts measure in pixels, was adjusted accordingly. Fig. 10 shows
the results for a selection of the originally published data sets (Mehlmann et al., 2021b, a) together with the results of the
low order cG(1)/dG(0) and high order cG(2)/dG(2) simulations performed with the proposed discretization. The low-order
results are consistent with the data published by Mehlmann et al. (2021b). In particular, the results agree with those obtained
with Gascoigne (B-grid) (Braack et al., 2021), which is based on the same discretization. The high-order cG(2) scheme of our
discretization can resolve substantially more (and longer) features on coarser meshes, demonstrating the advantage of higher
order schemes.

We note that the exact number and length of features is affected by the chosen mEVP parameters. We have not applied any
fine-tuning here but use the values given in Table 1 for all meshes and all discretizations. Moreover, a direct comparison of
results obtained on quadrilaterals and triangles is difficult, so we refrain from a more detailed analysis. We refer to Mehlmann

et al. (2021b, Sect. 6) for an in-depth discussion as these aspects.

I'The scripts are available in the repository (Mehlmann et al., 2021a).
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Figure 11. Visualization of the ice concentration on meshes with a spacing of h = 8 km for dG(0) (finite volumes), dG(1) and dG(2).

Table 2 indicate computational times for simulating the benchmark problem on the 4km mesh for all different ¢G/dG
combinations for velocity and tracers. The simulations are run on an AMD EPYC 7662 64-Core Processor at 3.20 GHz using
32 cores. The given times are the total times for the complete benchmark run and they include everything apart from the I/O
operations. The impact of the degree of the tracers is negligible as the advection scheme only takes a small fraction of the
overall runtime. The runtime degradation from linear to quadratic velocities is less severe than expected. This is due to the
larger fraction of local work at higher order and associated with this a better possibility of vectorization by Eigen as well as

better efficiency of parallelization.
5.2.2  The role of the advection scheme

In the literature, the role of the advection scheme in the VP model and in particular for the LKF resolution is not entirely
clear (again, see (Mehlmann et al., 2021b, Sect. 6)). We therefore compare for the above benchmark results for a high order
momentum discretization (biquadratic velocities) and dG(0), dG(1) and dG(2) advection to shed further light on the effect of
the advection.

Fig. 11 shows the ice concentration at time 7" = 2days for the benchmark problem run on a mesh with spacing A = 8km.
The velocity is discretized bi-quadratically with cG(2) and the tracers are represented as discontinuous dG(0), dG(1) and dG(2)
functions. The elevated surfaces in the middle and on the right in Fig. 11 shows the additional information that is gained by
higher-order approaches. The finite volume dG(0) discretization only gives average values in each element while the dG(1)
discretization includes the slope of the tracers and starting with dG(2) further information on the subgrid-scale, e.g. on the

curvature, is also represented. The effect of the dG degree on the representation of the sea ice drift (and derived values like

Table 2. Computational time for the benchmark test case using the 4km mesh. The spec-

| dG(0) dG(1)  dG(2)

ified times include the advection and the momentum equation for the complete simulation

cG(1) | 47.15s  51.43s 59.64s spanning from ¢ = 0 to ¢ = 2days. Times for i/o are not included. 32 parallel threads are
cG(2) | 88.91s 91.17s 102.45s used.
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Figure 12. Effect of the advection scheme on resolving linear kinematic features. Left: total length of detected LKFs. Right: number of

LKFs.

the shear deformation) is less drastic, as shown in Fig. 9. In comparison to the choice of the velocity discretization, the effect
of the tracer discretization on the representation of LKFs is small. This is also the conclusion of Mehlmann et al. (2021b).
Fig. 12 shows the results of the LKF detection code by Hutter et al. (2019) for different advection schemes. While the low
order discretization with cG(1)-velocities is hardly affected by the advection discretization, the impact on the cG(2) high-order

scheme is larger. Here, the lowest order upwind scheme dG(0) yields the most and longest LKFs.
5.2.3 Stability of the mixed finite element formulation

Section 3.4 introduced the mEVP iteration as a mixed finite element formulation and in particular Remark 1 discussed the
optimal choice of the velocity and stress spaces. In this section, we demonstrate the effect of this choice on the results. We again
consider the benchmark problem of Sec. using a mesh with i = 2km. The tracers are discretized with dG(1), all parameter
values are as given in Table 1.

Fig. 13 shows a snapshot of the shear deformation rate at time 7" = 2 days for all different combinations of velocity and stress

) the results based on

spaces. The plots clearly show the need to use large-enough stress spaces. For the low order velocity Vh(1
piece-wise constant stresses o € [W,gl)}““ym (upper left) appears to give reasonable results, in particular when compared to
the highly diffusive combination Vh(l) / W,E?’) (lower left). Vh(l) / W,El), however, is unstable and does not satisfy (22). It shows
oscillations on the level of the mesh elements, while the combination Vh(l) / W,ES) is stable. Stress spaces that are too small do
not provide sufficient control of the term (o (v), ®) in (19) and lead to oscillatory stresses, see the upper right plot in Fig. 13.

We refer to the discussion in Section 3.4.
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Figure 13. Shear at final time 7" = 2 for different choices of the velocity space th and stress space [W,ES)]“Q’“"“” (detail from the

simulation domain). Top: unstable finite element pair with stresses one degree below the velocity space. Bottom: stable combinations.

5.3 Computational efficiency
5.3.1 Shared memory node-level parallelization

The complete code is parallelized using OpenMP to benefit from shared memory parallelism available on individual nodes. To
evaluate the parallel performance of the code, we run a strong scalability test. The benchmark problem described in Sect. is
run for 7' = 1hour on a mesh with » = 2km spacing which amounts to N = 2562 = 65536 elements. Using a time step size
of At =60s a total of 60 advection time steps and mEVP subiterations with 100 steps each are computed. We discretize the
velocity with quadratic cG(2) elements and use dG(2) with six local unknowns for ice height and sea ice concentration.

The simulation is run on an AMD EPYC 7662 64-Core Processor at 3.20 GHz. Fig. 14 shows the strong scalablity results.
The overall runtime drops from 245sec on 1 core to 6.5sec on 64 cores. The parallel efficiency stays very high at about 0.9
when run on up to 16 cores and then slightly drops. The parallel efficiency of the advection scheme is not as good as the
efficiency of the mEVP iteration. In this benchmark problem, this is not significant since only two tracers are advected and

since there are 100 sub-steps of the mEVP solver in each advection step. For more complex thermodynamics, the situation will
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Figure 14. Scaling (left) and parallel efficiency (right) of the OpenMP parallelization for the benchmark test case on the 2km mesh. The
mesh has 65536 elements, a total of 60 advection steps with 100 momentum substeps within the mEVP iteration are covered by the total

time.

be different and further optimizations appear to be necessary. However, the parallelization effort so far has been restricted to

enabling OpenMP. A GPU implementaiton also provides significant opportunities for better parallel scaling.
5.3.2 Vectorization

Our implementation described in Sect. 4 benefits from the vectorization capabilities of Eigen (Guennebaud et al., 2010). Eigen
can in particular exploit the additional computations that arise in a higher order discontinuous Galerkin methods as the dG
space W,gs) naturally leads to many s x s matrices. Furthermore, the use of parametric meshes makes numerical quadrature
with Gauss rules necessary and leads to operations involving n, x n.g-matrices, where n, is the number of Gauss points in an
element (usually 9) and n.g is the local number of cG basis functions (4 for cG(1) and 9 for cG(2)). The following table shows

the effect of CPU-level vectorization.?

‘cG(2)/dG(2) cG(2)/dG(1) cG(1)/dG(1)

no vectorization 21.20s 18.06s 6.42s
with vectorization 16.43s 15.38s 4.85s
acceleration ‘ 23% 18% 24 %

2Vectorization can be activated or deactivated by a simple compiler flag, for instance -march=nat ive, which turns on all hardware-specific optimization

and in particular vectorization support.
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mesh size Nei | 4096 | 16384 | 65536

memory usage | 11.8MB  2.88kB/Ng | 26.2MB  1.64kB/Ng | 81.9MB  1.25kB/Ng

comp. time 5.77s 1.41ms/Ng 27.11s 1.65ms/Ne | 109.96s  1.67ms/Ne
(a) Parametric meshes, on-the-fly computation of the mapping.
mesh size N, | 4096 | 16384 | 65536

memory usage | 21.4MB  5.22kB/Ng | 70.2MB  4.28kB/Ng | 259MB  3.95kB/Ng

comp. time 1.40s 0.35ms/Ne1 5.76s 0.35ms/Ne | 22.47s  0.34ms/Ne
(b) Parametric meshes, precomputed matrices for fast mapping.
mesh size Nei | 4096 | 16384 | 65536

11.4MB  2.78kB/Ng
1.48s 0.36ms/Ne;

245MB  1.50kB/Ne
4.44s 0.27ms/Nei

743MB  1.13kB/Ng
15.69s 0.24ms/Ney

memory usage

comp. time

(c) Uniform meshes, precomputed static matrices.

Table 3. Comparison of different mesh structures. Evaluation of the benchmark problem with ¢G(2)/dG(2) discretization on meshes of size
h = 8km, h = 4km and h = 2km. The benchmark is simulated for 7" = 1 hour. Tables 3a and 3b refer to the parametric meshes, where the
variational formulation must be evaluated using Gauss quadrature, 3c corresponds to the uniform mesh, where the exact evaluation of the

variational form is hard-coded. 3b in comparison to 3a precomputes and stores the matrices required for the parametric mapping.

The effect is significant and purely based on the design principle in our implementation to use Eigen as much as possible.
Computations are run using 16 cores of the AMD EPYC 7662 64-Core CPU running at 3.20 GHz and reported is the average

of three consecutive calls.
5.3.3 Computational overhead of parametric meshes

As detailed in Sect. 3, with a parametric mesh the variational formulation needs to be mapped back onto the reference element
for numerical quadrature. This has substantial computational overhead compared to fully uniform grids where all essential
quantities can be precomputed. However, we described in Sect. 4 that also in the parametric case substantial precomputations
are possible.

Table 3 show memory usage and computation times as a function of the mesh type and for three successively refined meshes.
We also provide computational time and memory consumption per element of the mesh. We again solve the benchmark problem

of Sect. 5.3.1 but only in the short interval [0, 1 hour] using 16 CPU cores and a high order discretization, i.e. cG(2) with dG(2)
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advection. The results in Table 3 clearly show the superiority of the uniform mesh approach both in terms of computational
time and memory consumption. It shows, however that parametric meshes can be realised either with a comparable memory
footprint but with substantial computational overhead or with comparable computational efficiency but with increased memory
requirements.

The trade-off that is chosen in an implementation will likely depend on the hardware that is targeted. On common multi-core
CPUs with a moderate number of cores, the parametric approach with precomputed matrices seems to be superior. When using
many-core systems or moving to GPUs or TPUs, the balance between compute-memory performance may differ. This remains

a task for further research in the future.

6 Conclusion

We presented the numerics and implementation of the neXtSIM-DG dynamical core, a new discretization of sea ice dynamics
aimed at Earth system models. A key feature is the use of higher order in terms of local discretization and the consistent use of
efficient data structures and modern programming paradigms.

The new framework has been validated in the context of Hibler’s established viscous-plastic sea ice model but the dynamical
core is flexible and can accommodate different rheology models.

All advection equations are discretized using discontinuous Galerkin methods. Currently, the methods dG(0), dG(1), and
dG(2) have been implemented and validated, but the flexible software concept based on code-generation and pre-assembled
matrices for efficient implementation of the variational formulations easily allows an extension to even higher orders. This
could become relevant in connection with alternative sea ice rheologies, see e.g. Dansereau et al. (2016); Olason et al. (2022).
The momentum equation is discretized using second order continuous finite elements.

We validated the advection discretization and showed that the theoretically expected orders of convergence are realized
in practice. Thereby, by using parametric grids, we achieve great flexibility on the spatial discretization. On the other hand,
the underlying structured grid topology allows for an efficient numerical implementation. The momentum equation with an
mEVP approximation of the visco-plastic model and was tested using an established benchmark problem Mehlmann and
Richter (2017). In particular, we showed that the high-order discretization can resolve more LKFs than the established mod-
els Mehlmann et al. (2021b), albeit with a larger number of degrees of freedom.

We also described the implementation of the dynamical core on a shared-memory compute node and parallelization using
OpenMP. In our future work, we will add coarser parallelization on distributed clusters with MPI and also parallelization on
GPUs.

While MPI parallelization is standard and can be easily accomplished by using topologically simple, structured rectangular
grids, we enter new territory with GPU parallelization. However, this is already prepared by using a structured memory design.
Moreover, the current implementation of neXtSIM-DG allows an easy choice between a pre-assembly of matrices and an

on-the-fly computation of all sizes, which could be beneficial on GPUs to reduce memory bandwidth, see Section 5.3.3.
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7 Code availability

The software project neXtSIM-DG is under active development and hosted on GitHub, https://github.com/nextsimdg. A snap-
shot including the scripts to reproduce the examples of this manuscript is published as Zenodo repository (Richter et al., 2023).
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