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Using the Classical Model for 1 

structured expert judgment to 2 

estimate extremes: a case study of 3 

discharges in the Meuse River 4 

Accurate estimation of extreme discharges in rivers, such as the Meuse, is 5 

crucial for effective flood risk assessment. However, hydrological models 6 

that estimate such discharges often lack transparency regarding the 7 

uncertainty of their predictions. This was evidenced by the devastating 8 

flood that occurred in July 2021 which was not captured by the existing 9 

model for estimating design discharges. This article proposes an approach 10 

to obtain uncertainty estimates for extremes with structured expert 11 

judgment, using the Classical Model. A simple statistical model was 12 

developed for the river basin, consisting of correlated GEV distributions for 13 

discharges from upstream tributaries. The model was fitted to seven 14 

experts’ estimates and historical measurements using Bayesian inference. 15 

Results fitted to only the measurements were solely informative for more 16 

frequent events, while fitting to only the expert estimates reduced 17 

uncertainty solely for extremes. Combining both historical observations and 18 

estimates of extremes provided the most plausible results. The Classical 19 

Model reduced the uncertainty by appointing most weight to the two most 20 

accurate experts, based on their estimates of less extreme discharges. The 21 

study demonstrates that with the presented Bayesian approach that 22 

combines historical data and expert-informed priors, a group of 23 

hydrological experts can provide plausible estimates for discharges, and 24 

potentially also other (hydrological) extremes, with a relatively manageable 25 

effort. 26 

1 Introduction 27 

Estimating the magnitude of extreme flood events comes with considerable 28 

uncertainty. This became clear once more on the 18th of July 2021: A flood 29 

wave on the Meuse River, following a few days of rain in the Eiffel and 30 

Ardennes, caused the highest peak discharge ever measured at Borgharen. 31 

Unprecedented rainfall volumes fell in a short period of time (Dewals et al. 32 

2021). These caused flash floods with large loss of life and extensive 33 

damage in Germany, Belgium, and to a lesser extent also in the Netherlands 34 

(TFFF 2021; Mohr et al. 2022). The discharge at the Dutch border exceeded 35 

the flood events of 1926, 1993, and 1995. Contrary to those events, this 36 

flood occurred during summer, a season that is (or was) often considered 37 
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less relevant for extreme discharges on the Meuse. A statistical analysis of 38 

annual maxima from a fact-finding study done recently after the flood, 39 

estimates the return period to be 120 years based on annual maxima, and 40 

600 years when only summer half years (April to September) are 41 

considered (TFFF 2021). These return periods were derived including the 42 

July 2021 event itself. Prior to the event, it would have been assigned higher 43 

return periods. The season and rainfall intensity made the event 44 

unprecedented with regard to historical extremes. Given enough time, new 45 

extremes are inevitable, but with the Dutch flood safety standards being as 46 

high as once per 100,000 years (Ministry of Infrastructure and 47 

Environment 2016) one would have hoped this type of event to be less 48 

surprising. The event underscores the importance of understanding the 49 

variability and uncertainty that comes with estimating extreme floods. 50 

Extreme value analysis often involves estimating the magnitude of events 51 

that are greater than the largest from historical (representative) records. 52 

This requires establishing a model that described the probability of 53 

experiencing such events within a specific period, and subsequently 54 

extrapolating this to specific exceedance probabilities. For the Meuse, the 55 

traditional approach is fitting a probability distribution to periodic maxima 56 

and extrapolate from it (Langemheen and Berger 2001). However, a 57 

statistical fit to observations is sensitive to the most extreme events in the 58 

time series available. Additionally, the hydrological and hydraulic response 59 

to rainfall during extreme events might be different for more frequently 60 

occurring events, and therefore be incorrectly described by statistical 61 

extrapolation. 62 

GRADE (Generator of Rainfall And Discharge Extremes) is a model-based 63 

answer to these shortcomings. It is used to determine design conditions for 64 

the rivers Meuse and Rhine in the Netherlands. GRADE is a variant on a 65 

conventional regional flood frequency analysis. Instead of using only 66 

historical observations, it resamples these into long synthetic time series of 67 

rainfall that express the observed spatial and temporal variation. It then 68 

uses a hydrological model to calculate tributary flows and a hydraulic 69 

model to simulate river discharges (Leander et al. 2005; Hegnauer et al. 70 

2014). Despite the fact that GRADE can create spatially coherent results and 71 

can simulate changes in the catchment or climate, it is still based on 72 

resampling available measurements or knowledge. Hence, it cannot 73 

simulate all types of events that are not present in the historical sample. 74 

This is illustrated by the fact that the July 2021 discharge was not exceeded 75 

once in the 50,000 years of summer discharges generated by GRADE. 76 

GRADE is an example where underestimation of uncertainty is observed, 77 

but certainly not the only model. For example, Boer-Euser et al. (2017; 78 

Bouaziz et al. 2020) compared different hydrological modelling concepts 79 

for the Ourthe catchment (considered in this study as well) and showed the 80 

large differences that different models can give when comparing more 81 
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characteristics than only stream flow. Regardless of the conceptual choices, 82 

all models have severe limitations when trying to extrapolate to an event 83 

that has not occurred yet. We should be wary to disqualify a model in 84 

hindsight after a new extreme has occured. Alternatively, data-based 85 

approaches try to solve the shortcomings of a short record by extending the 86 

historical records with sources that can inform on past discharges. For 87 

example, paleoflood hydrology uses geomorphological marks in the 88 

landscape to estimate historical water levels (Benito and Thorndycraft 89 

2005). Another approach is to utilize qualitative historical written or 90 

depicted evidence to estimate past floods (Brázdil et al. 2012). The 91 

reliability of historical records can be improved as well, for example by 92 

combining this with climatological information derived from more 93 

consistent sea level pressure data De Niel, Demarée, and Willems (2017). 94 

In this context, structured expert judgment (SEJ) is another data-based 95 

approach. Expert Judgment (EJ) is a broad term for gathering data from 96 

judgments based on expertise in a knowledge area or discipline. It is 97 

indispensable in every scientific application as a way of assessing the truth 98 

or value of new information. Structured expert judgment formalizes EJ by 99 

eliciting expert judgments in such a way that judgments can be treated as 100 

scientific data. One structured method for this is the Classical Model, also 101 

known as Cooke’s method (Roger M. Cooke and Goossens 2008). The 102 

Classical Model assigns a weight to each expert within a group (usually 5 to 103 

10 experts) based on their performance in estimating the uncertainty in a 104 

number of seed questions. These weights are then applied to the experts’ 105 

uncertainty estimates for the variables of interest, with the underlying 106 

assumption that the performance for the seed questions is representative 107 

for the performance in the questions of interest. (Roger M. Cooke and 108 

Goossens 2008) shows an overview of the different fields in which the 109 

Classical Model for structured expert judgment is applied. In total, data 110 

from 45 expert panels (involving in total 521 experts, 3688 variables, and 111 

67,001 elicitations) are discussed, in applications ranging from nuclear, 112 

chemical and gas industry, water related, aerospace sector, occupational 113 

sector, health, banking, and volcanoes. Marti, Mazzuchi, and Cooke (2021) 114 

used the same database of expert judgments and observed that using 115 

performance-based weighting gives more accurate DMs than assigning 116 

weights at random. Regarding geophysical applications, expert elicitation 117 

has recently been applied in different studies aimed at informing the 118 

uncertainty in climate model predictions (e.g., Oppenheimer, Little, and 119 

Cooke 2016; Bamber et al. 2019; Sebok et al. 2021). More closely related to 120 

this article, Kindermann et al. (2020) reproduced historical water levels 121 

using structured expert judgment (SEJ), and G. Rongen, Morales-Nápoles, 122 

and Kok (2022a) applied SEJ to estimate the probabilities of dike failure for 123 

the Dutch part of the Rhine River. 124 
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While examples of using specifically the Classical Model in hydrology are 125 

not abundantly available, there are many examples of expert judgment as 126 

prior information to decrease uncertainty and sensitivity. Four examples in 127 

which a Bayesian approach, similar to this study, was applied to limit the 128 

uncertainty in extreme discharge estimates are given by (Coles and Tawn 129 

1996; Parent and Bernier 2003; Renard, Lang, and Bois 2006; Viglione et al. 130 

2013). The mathematical approach varies between the different studies, but 131 

the rationale for using EJ is the same: adding uncertain prior information to 132 

the likelihood of available measurements to help achieve more plausible 133 

posterior estimates of extremes. 134 

This study applies structured expert judgment to estimate the magnitude of 135 

discharge events for the Meuse River up to an annual exceedance 136 

probability of on average once per 1,000 years. We aim to get uncertainty 137 

estimates for these discharges. Their credibility is assessed by comparing 138 

them to GRADE, the aforementioned model-based method for deriving the 139 

Meuse River’s design flood frequency statistics. A statistical model is 140 

quantified both with observed annual maxima and seven experts’ estimates 141 

for the 10-year and 1000-year discharge on the main Meuse tributaries. The 142 

10-year discharges (unknown to experts at the moment of the elicitation) 143 

are used to derive a performance-based expert weight that is used to 144 

inform the 1000-year discharges. Participants use their own approach to 145 

come up with uncertainty estimates. To investigate how the method that 146 

combines 1a) data and expert judgments compares to 2b) the data-only or 147 

3c) the expert estimates-only approach, we quantify the model based on all 148 

three options. The differences show the added value of each component. 149 

This indicates the method’s performance both when measurements are 150 

available and when they are not, for example in data scarce areas. 151 

2 Study area and data used 152 

Figure 1 shows an overview of the catchment of the Meuse River. The 153 

catchments that correspond to the main tributaries are outlined in red. The 154 

three locations for which we are interested in extreme discharge estimates, 155 

Borgharen, Roermond, and Gennep, are colored blue. We call these 156 

‘downstream locations’ throughout this study. The river continues further 157 

downstream until it flows into the North Sea near Rotterdam. This part of 158 

the river becomes increasingly intertwined with the Rhine River and more 159 

affected by the downstream sea water level. Consequently, the water levels 160 

can be ascribed decreasingly to the discharge from the upstream catchment. 161 

For this reason, we do not assess discharges further downstream than 162 

Gennep in this study. 163 

The numbered dots indicate the locations along the tributaries where the 164 

discharges are measured. These locations’ names and the tributaries’ names 165 

are shown on the lower left. 166 
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 167 

Figure 1: Map of the Meuse catchment considered in this study, with main 168 

river, tributaries, streams, and catchment bounds. 169 
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Elevation is shown with the grey-scale. Elevation data were obtained from 170 

EU-DEM (Copernicus Land Monitoring Service 2017) and used to derive 171 

catchment delineation and tributary steepness. These data were provided 172 

to the experts together with other hydrological characteristics, like: 173 

• Catchment overview: A map with elevation, catchments, tributaries, 174 

and gauging locations 175 

• Land use: A map with land use from Copernicus Land Monitoring 176 

Service (2018) 177 

• River profiles and time of concentration: A figure with longitudinal 178 

river profiles and a figure with time between the tributary peaks 179 

and the peak at Borgharen for discharges at Borgharen greater 180 

than 750 m3/s. 181 

• Tabular catchment characteristics, such as: Area per catchment, as 182 

well as the catchment’s fraction of the total area upstream of the 183 

downstream locations. Soil composition from Food and Agriculture 184 

Organization of the United Nations (2003), specifying the fractions 185 

of sand, silt, and clay in the topsoil and subsoil. Land use fractions 186 

(paved, agriculture, forest & grassland, marshes, water bodies). 187 

• Statistics of precipitation: Daily precipitation per month and 188 

catchment. Sum of annual precipitation per catchment. Intensity 189 

duration frequency curves for the annual recurrence intervals: 1, 2, 190 

5, 10, 25, 50, and the maximum. All calculated from gridded E-OBS 191 

reanalysis data provided by Copernicus Land Monitoring Service 192 

(2020). 193 

• Hyetographs and hydrographs: Temporal rainfall patterns and 194 

hydrographs for all catchments/tributaries during the 10 largest 195 

discharges measure at Borgharen (sources described below). 196 

This information, included in the supplementary information, was provided 197 

to the experts to support them in making their estimates. The discharge 198 

data needed to fit the model to the observations were obtained from 199 

(Service public de Wallonie 2022) for the Belgian gauges, (Waterschap 200 

Limburg 2021; Rijkswaterstaat 2022) for the Dutch gauges, and (Land NRW 201 

2022) for the German gauge. These discharge data are mostly derived from 202 

measured water levels and rating curves. During floods, water level 203 

measurements can be incomplete and rating curves inaccurate. 204 

Consequently, discharge data during extremes can be unreliable. Measured 205 

discharge data were not provided to the experts, except in normalized form 206 

as hydrograph shapes. 207 
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3 Method for estimating extreme discharges 208 

with experts 209 

3.1 Probabilistic model 210 

To obtain estimates for downstream discharge extremes, experts needed to 211 

quantify individual components in a model that gives the downstream 212 

discharge as the sum of the tributary discharges, times a factor correcting 213 

for covered area and hydrodynamics: 214 

𝑄𝑑 = 𝑓𝛥𝑡 ⋅∑𝑄𝑢
𝑢

, 215 

where 𝑄𝑑  is the peak discharge of a downstream location during an event, 216 

and 𝑄𝑢 the peak discharge of the 𝑢’th (upstream) tributary during that 217 

event. Location 𝑑 can be any location along the river where the discharge is 218 

assumed to be dependent mainly on rainfall in the upstream catchment. 219 

The random variable 𝑄𝑢 is modelled with the generalized extreme value 220 

(GEV) distribution (Jenkinson 1955). We chose this family of distributions 221 

firstly because it is widely used to estimate the probabilities of extreme 222 

events. Secondly, it provides flexibility to fit different rainfall-runoff 223 

responses by varying between Frechet (heavy tailed), Gumbel (exponential 224 

tail) and Weibull distributions (light tailed). We fitted the GEV distributions 225 

to observations, expert estimates, or both, using Bayesian inference 226 

(described in Sect. 3.3). The factor or ratio 𝑓𝛥𝑡 in Eq. [eq:main_model] 227 

compensates for differences between the sum of upstream discharges and 228 

the downstream discharge. These result from, for example, hydraulic 229 

properties such as the time difference between discharge peaks and peak 230 

attenuation as the flood wave travels through the river (which would 231 

individually lead to a factor < 1.0), or rainfall in the Meuse catchment area 232 

that is not covered by one of the tributaries (which would individually lead 233 

to a factor > 1). When combined, the factor can be lower or higher than 1. 234 

The 1,000-year discharge is meant to inform the tail of the tributary 235 

discharge probability distributions. This tail is represented by the GEV tail 236 

shape parameter that is most difficult to estimate from data. We chose to 237 

elicit discharges, rather than a more abstract parameter like the tail shape 238 

itself, such that experts make estimates on quantities that may be observed 239 

and at "a scale on which the expert has familiarity" (Coles and Tawn 1996, 240 

467). 241 

The tributary peak discharges 𝑄𝑢 are correlated because a rainfall event is 242 

likely to affect an area larger than a single tributary catchment and nearby 243 

catchments have similar hydrological characteristics. This dependence is 244 

modelled with a multivariate Gaussian copula that is realized through 245 

Bayesian Networks estimated by the experts (Hanea, Morales Napoles, and 246 

Ababei 2015). The details of this concern the practical and theoretical 247 
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aspects of eliciting dependence with experts and are beyond the scope of 248 

this article. They will be presented in a separate article that is yet to be 249 

published. We did use the resulting correlation matrices for calculating the 250 

discharge statistics in this study. They are presented in appendix 8. 251 

In summary, using the method of SEJ described in Sect. 3.2, the experts 252 

estimate 253 

1. the tributary peak discharges 𝑄𝑢 that are exceeded on average once 254 

per 10 years and once per 1,000 years (for brevity called the 10-255 

year and 1,000-year discharge hereafter), 256 

2. the factor 𝑓𝛥𝑡, and 257 

3. the correlation between tributary peak discharges (as explained 258 

below). 259 

With these, the model in Eq. [eq:main_model] is quantified. The model was 260 

deliberately kept simple to ensure that the effect of the experts’ estimates 261 

on the result remains traceable for them. Section 3.4 explains how 262 

downstream discharges were generated from these model components (i.e., 263 

the different terms in Eq. [eq:main_model]), including uncertainty bounds. 264 

The model is also described in more detail in (G. Rongen, Morales-Nápoles, 265 

and Kok 2022b) as well, where it was used in a data-driven context. 266 

3.2 Assessing uncertainties withusing the Classical Model 267 

for expert judgmentjudgments 268 

The experts’ estimates are elicited using the Classical Model. This is a 269 

structured approach to elicit uncertainty for unknown quantities. It 270 

combines expert judgments based on empirical control questions, with the 271 

aim to find a single combined estimate for the variables of interest (a 272 

rational consensus). The Classical Model is typically employed when 273 

alternative approaches for quantifying uncertain variables are lacking or 274 

unsatisfying (e.g., due to costs or ethical limitations). It is extensively 275 

described in (Roger M. Cooke 1991) while applications are discussed in 276 

(Roger M. Cooke and Goossens 2008). Here, we discuss the basic elements 277 

of the method. We applied the Classical Model because of its strong 278 

mathematical base, track record (Colson and Cooke 2017), and the authors’ 279 

familiarity with this method. 280 

In the Classical Model, a group of participants, often researchers or 281 

practitioners in the field of interest, provides uncertainty estimates for a set 282 

of questions. These can be divided into two categories; seed and target 283 

questions. Seed questions are used to assess the participants’ ability to 284 

estimate uncertainty within the context of the study. The answers to these 285 

questions are known by the researchers but not by the participants at the 286 

moment of the elicitation. Seed questions are often sourced from similar 287 
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studies or cases and are as close as possible to the variables of interest. In 288 

any case, they are related to the field of expertise of the participant pool, 289 

but unknown to the participants. Target questions concern the variables of 290 

interest, for which the answer is unknown to both researchers as 291 

participants. 292 

Because the goal is to elicit uncertainty, experts estimate percentiles rather 293 

than a single value. Typically, these are the 5th, 50th, and 95th percentile. 294 

Two scores are calculated from an expert’s three-percentile estimates; the 295 

statistical accuracy (SA) and information score. The three percentiles create 296 

a probability vector with 4 inter-quantile intervals, 𝑝 =297 

(0.05,0.45,0.45,0.05). The fraction of realizations within each of expert 𝑒’s 298 

inter-quantile interval also forms a four -element vector 𝑠(𝑒). 𝑠(𝑒) and 𝑝 are 299 

expected to be more similar for an expert 𝑒 that correctly estimates 300 

uncertainty in the seed questions. The statistical accuracy is calculated by 301 

comparing each inter-quantile probability 𝑝𝑖  to 𝑠𝑖(𝑒). The SA is based on the 302 

relative information 𝐼(𝑠(𝑒)|𝑝), which equals ∑ 𝑠𝑖𝑖=1,...,4 log(𝑠𝑖/𝑝𝑖). Using the 303 

chi-square test, (the quantity 2 ⋅ 𝑁 ⋅ ∑ 𝑠𝑖𝑖=1,...,4 log(𝑠𝑖/𝑝𝑖) is asymptotically 304 

𝜒3
2), the goodness-of-fit between the vectors 𝑝 and 𝑠 can be expressed as a 305 

p-value. This p-value is used as SA score. The SA is highest if the expert’s 306 

probability-vector 𝑠 matches 𝑝. For twenty questions, this means the expert 307 

overestimates one seed question (i.e., the actual answer was below the 5th 308 

percentile), underestimates one question, and has nine questions in both 309 

the [5%, 50%] and [50%, 95%] interval. The further away the interquantile 310 

ratios 𝑠𝑖/𝑝𝑖  are from 1.0, the lower the SA. Figure 4 is presented to visualize 311 

the disagreement between 𝑠𝑖  and 𝑝𝑖  for this study. This figure will be 312 

further discussed in subsection 4.1. For now, it is sufficient to note that the 313 

agreement between 𝑠𝑖  and 𝑝𝑖  is highest for expert D. The statistical accuracy 314 

expresses the ability of an expert to estimate uncertainty. Because a 315 

variable of interest is uncertain, its realization is considered to be a value 316 

sampled from the uncertainty distribution. According to the expert, this 317 

realization corresponds to a quantile on the expert-estimated distribution. 318 

If an expert manages to reproduce the ratio of realizations within the 319 

interquantile intervals (such as in the example with 20 questions above), 320 

the probability of the expert being statistically accurate is high, hence they 321 

will receive a high p-value. Of course, this match could be coincidental, like 322 

any significant p-value from a statistical test. However, in general, a 323 

different sample of realizations (in this study, different observed 10-year 324 

discharges) is expected to give a p-value (i.e., statistical accuracy) of a 325 

similar order. 326 

Additional to the SA, the information score compares the degree of 327 

uncertainty in an expert’s answer compared to other experts. Percentile 328 

estimates that are close together (compared to the other participants) are 329 

more informative and get a higher information score. The product of the 330 

statistical accuracy and information score gives the expert’s weight 𝑤𝛼(𝑒): 331 
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𝑤𝛼(𝑒) = 1𝛼 × statistical accuracy(𝑒) × information score(𝑒). 332 

The statistical accuracy dominates the expert weight, where the 333 

information score modulates between experts with a similar SA. Experts 334 

with a SA lower than 𝛼 can be excluded from the pool by using a threshold, 335 

expressed by the 1𝛼 in Eq. [eq:cookes]. This threshold is usually 5%. The 336 

(weighted) combination of the experts’ estimates is called the decision 337 

maker (DM). The experts contribute to the 𝑖th item’s DM estimate by their 338 

normalized weight: 339 

DM𝛼(𝑖) =∑𝑤𝛼
𝑒

(𝑒)𝑓𝑒,𝑖/∑𝑤𝛼
𝑒

(𝑒). 340 

This is called the global weight (GL) DM.  341 

Alternatively, the experts can be given the same weight, which results in the 342 

equal weight (EQ) DM. This does not require eliciting seed variables, but 343 

neither does it distinguish experts based on their performance, a key aspect 344 

of the Classical Model. (CM). Roger M. Cooke, Marti, and Mazzuchi (2021) 345 

compare GL weights to EQ weights in an out-of-sample cross validation, and 346 

show that using performance-based weights increased the informativeness 347 

of the decision maker estimates by assigning weight to a few experts, 348 

without compromising the DM statistical accuracy (i.e., the performance of 349 

the DM in ‘estimating’ uncertainty). 350 

To construct the DM, probability density functions (PDFs) such as 𝑓𝑒,𝑖  in Eq. 351 

[eq:DM], need to be created from the percentile estimates. We used the 352 

Metalog distribution for this (Keelin 2016). This distribution is capable of 353 

exactly fitting any three-percentile estimate. For symmetric estimates, it is 354 

bell-shaped. For asymmetric onesNotice that for this research, the Metalog 355 

distribution represents the uncertainty distribution of each expert over a 356 

particular discharge with a given return period. While it is related to the 357 

underlying distribution of discharge it does not make any assumption about 358 

this underlying distribution other that the ones expressed by experts 359 

through their percentile estimates. For symmetric estimates, the Metalog is 360 

bell-shaped. For asymmetric estimates, it becomes left- or right-skewed. 361 

Typically, the Classical Model assumes a uniform distribution in between 362 

the percentiles (minimum information). This leads to a stepped PDF where 363 

the Metalog gives a smooth PDF. An example of using the Metalog 364 

distribution in an expert elicitation study is described by (Dion, Galbraith, 365 

and Sirag 2020). All calculations related to the Classical Model were 366 

performed using the open-source software ANDURYL (Leontaris and 367 

Morales-Nápoles 2018; Hart, Leontaris, and Morales-Nápoles 2019; Guus 368 

Rongen et al. 2020). 369 

In this study, the seed questions involve the 10-year discharges for the 370 

tributaries of the river Meuse. An example of a seed question is: "What is 371 

the discharge that is exceeded on average once per 10 years, for the Vesdre 372 



11 
 

at Chaudfontaine?" The target questions concern the 1000-year discharges, 373 

as well as the ratio between the upstream sum and downstream discharge. 374 

Discharges with a 10-year recurrence interval are exceptional but can in 375 

general be reliably approximated from measured data. Seven experts 376 

participated in the in-person elicitation that took place on the 4th of July 377 

2022. The study and model were discussed before the assessments to make 378 

sure that the concepts and questions were clear. After this, an exercise for 379 

the Weser catchment was done in which the experts answered four 380 

questions that were subsequently discussed. In this way, the experts could 381 

compare their answers to the realizations and view the resulting scores 382 

using the Classical Model. 383 

Apart from the training exercise, the experts answered 26 questions: 10 384 

seed questions regarding the 10-year discharge (one for each tributary), 10 385 

target questions, regarding the 1,000-year discharge, and 6 target questions 386 

for the ratios between upstream sum and downstream discharge (10-year 387 

and 1,000-year, for three locations). A list of the seven participants’ names, 388 

their affiliations, and their field of expertise is shown in Table [tab:experts]. 389 

While the participants are pre-selected on their expertise, experts are 390 

scored post hoc in terms of their ability to estimate uncertainty in the 391 

context of the study. We note that the alphabetical order of the experts in 392 

the table does not correspond to their labels in the results. An overview of 393 

the data provided to the participants is given in Sect. 2, while the data itself, 394 

as well as the questionnaire, are presented in the supplementary 395 

information. 396 

Name Affiliation Field of expertise 

Alexander 

Bakker 

Rijkswaterstaat & 

Delft University of 

Technology 

Risk analysis for storm surge 

barriers, extreme value analyses, 

climate change and climate 

scenario’sscenarios. 

Eric 

Sprokkereef 

Rijkswaterstaat Coordinator crisis advisory group 

Rivers. Operational forecaster for 

Rhine and Meuse 

Ferdinand 

Diermanse 

Deltares Expert advisor and researcher 

flood risk. 

Helena 

Pavelková 

Waterschap 

Limburg 

Hydrologist 

Jerom Aerts Delft University of 

Technology 

Hydrologist, focussed on 

hydrologic modelling on a global 

scale. PhD candidate. 

Nicole 

Jungermann 

HKV consultants Advisor water and climate 
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Siebolt 

Folkertsma 

Rijkswaterstaat Advisor in the Team Expertise for 

the River Meuse 

   

3.3 Determining model coefficients with Bayesian 397 

inference 398 

The model for downstream discharges (Eq. [eq:main_model]) consists of 399 

generalized extreme value (GEV) distributions per tributary. The GEV-400 

distribution has three parameters, the location (𝜇), scale (𝜎), and shape 401 

parameter (𝜉). Consider 𝑧 = (𝑥 − 𝜇)/𝜎. The probability density function 402 

(PDF) of the GEV is then, 403 

𝑓(𝑥) =

{
 
 

 
 
1

𝜎
exp(−exp(−𝑧))exp(−𝑧), if 𝜉 = 0

1

𝜎
exp(−(1 − 𝜉𝑧)1/𝜉)(1 − 𝜉𝑧)1/𝜉−1, if 𝑧 ≤ 1/𝜉 and 𝜉 > 0

 404 

For each tributary, a (joint) distribution of the model parameters was 405 

determined using Bayesian inference, based on expert estimates and 406 

observed tributary discharge peaks during annual maxima at Borgharen. 407 

Bayesian methods explicitly incorporate uncertainty, a key aspect of this 408 

study, and provide a natural way to integrate expert judgment with 409 

observed data. 410 

Bayes theorem gives the posterior distribution 𝑝(𝜃|q) of the (hypothesized) 411 

GEV-parameters 𝜃 given the observed peaks q, as a function of the 412 

likelihood 𝑝(q|𝜃) and the prior distribution 𝜋(𝜃): 413 

𝑝(𝜃|q) =
𝑝(q|𝜃)𝜋(𝜃)

𝑝(q)
. 414 

The likelihood can be calculated using Eq. [eq:GEV_shape_not0] from the 415 

product of the probability density of all (independent) annual maxima: 416 

𝑝(q|𝜃) = ∏ (𝑓(𝑞𝑖|𝜃))𝑖 . The calculation of the prior is discussed below. That 417 

leaves 𝑝(q), which is not straightforward to calculate. However, the 418 

posterior distribution can still be estimated using the Bayesian sampling 419 

technique Markov-Chain Monte Carlo (MCMC). MCMC algorithms compare 420 

different propositions of the numerator in Eq. [eq:bayes], leaving the 421 

denominator as a normalization factor that crosses out. In this study, we 422 

used the affine invariant MCMC ensemble sampler as described by 423 

Goodman and Weare (2010), available through the Python module ‘emcee’ 424 

(Foreman-Mackey et al. 2013). This sampler generates a trace of 425 

distribution parameters that forms the empirical joint probability 426 

distribution of, in our case, the three GEV parameters for each tributary. 427 

These are subsequently used to calculate the downstream discharges (see 428 

Sect. 3.4). 429 
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The prior consists of two parts, the expert estimates for the 10-year and 430 

1,000-year discharge, and a prior for the GEV tail shape parameter 𝜉. Since 431 

the experts do not know the values of the discharges they are estimating, 432 

their estimates can be considered prior information. The prior probability 433 

𝜋(𝜃) of the expert’s estimates is calculated in a similar way as described by 434 

Viglione et al. (2013): Given a GEV-distribution 𝑓(𝑄|𝜃), the discharge 𝑞 for a 435 

specific annual exceedance probability 𝑝 is calculated from the quantile 436 

function or inverse CDF (𝐹−1), 437 

𝑞𝑝𝑗 = 𝐹
−1(1 − 𝑝𝑗|𝜃), 438 

with 𝑝𝑗  being the 𝑗’th elicited exceedance probability. This discharge is 439 

compared to the expert’s or DM’s estimate for this 10- or 1,000-year 440 

discharge, 𝑔 (𝑞𝑝𝑗). Fig. 2 illustrates this procedure. The top curve 𝑓(𝑄|𝜃) 441 

represents a proposed GEV-distribution for the random variable 𝑄 442 

(tributary peak discharge) with parameter vector 𝜃. This GEV gives 443 

discharges corresponding to the 0.9 and 0.999th quantile (i.e., the 10-year 444 

and 1,000-year discharge). These discharges can then be compared to the 445 

expert estimates, illustrated by the two bottom graphs. Additionally, the 446 

figure shows the likelihood of observations with the vertical arrows (𝑝(q|𝜃) 447 

in Eq. [eq:bayes]). 448 

 449 

Figure 2: Conceptual visualization of elements in the likelihood-function of a 450 

tributary GEV-distribution. 451 
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Apart from the expert estimates, we prefer a weakly informative prior for 𝜃 452 

(i.e., uninformative, but within bounds that ensure a stable simulation), 453 

such that only the data and expert estimates inform the final result. 454 

However, an informative prior was added to the shape parameter 𝜉 because 455 

with only expert estimates and no data, two discharge estimates are not 456 

sufficient for fitting the three parameters of the GEV-distribution. 457 

Additionally, the variance in the shape-parameter decreases with 458 

increasing number of years (or other block maxima) in a time series 459 

(Papalexiou and Koutsoyiannis 2013). The 30 to 70 annual maxima per 460 

tributary in this study are not sufficient to reach convergence. Similar 461 

observations have been presented before for extreme precipitation in 462 

(Koutsoyiannis 2004a, 2004b) Therefore, we employ the geophysical prior 463 

as presented by Martins and Stedinger (2000); a beta distribution with 464 

hyperparameters 𝛼 = 6 and 𝛽 = 9 for 𝑥 ∈ [−0.5,0.5], for which the PDF is: 465 

ℎ(𝑥) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 466 

with 𝑥 = 𝜉 + 0.5, and 𝛤 being the gamma-function. This PDF is slightly 467 

skewed towards negative values of the shape parameter, preferring the 468 

heavy tailed Frechet distribution over the light tailed reversed Weibull. In 469 

their analysis of a very large number of rainfall records worldwide, 470 

Papalexiou and Koutsoyiannis (2013) came to a similar distribution for the 471 

GEV-shape parameter. For 𝜇 and 𝜎, we assigned equal probability to all 472 

values greater than 0. This corresponds to a weakly informative prior for 𝜇 473 

(positive discharges), and an uninformative prior for 𝜎 (only positive values 474 

are mathematically feasible). 475 

With both expert estimates 𝑔 and the constrained tail shape, the prior 476 

distribution becomes 477 

𝜋(𝜃) =∏ (𝑔𝑗 (𝐹𝜃
−1(1 − 𝑝𝑗)))

𝑗

⋅ ℎ(𝜉 + 0.5) 478 

for −0.5 < 𝜉 < 0.5, 𝜎 > 0, and 𝜇 > 0. 𝜋(𝜃) = 0 for any other combination. 479 

This gives all the components to calculate the posterior distribution in Eq. 480 

[eq:bayes] using MCMC. 481 

The posterior distribution comprises the prior tail-shape distribution, the 482 

prior expert estimates of the 10-year and 1,000-year discharges, and the 483 

likelihood of the observations. As described in Sect. 1 we compare the 484 

performance of using data, EJ, and the combination of both. If only data are 485 

used, the expert estimates drop out. If only expert judgments are used, the 486 

likelihood drops out and both expert estimates are used. If both data and 487 

expert judgment are used, only the 1,000-year expert estimate is used. 488 

With the just described procedure, the (posterior) distributions for the 489 

tributary discharges (𝑄𝑢 in Eq. [eq:main_model]) are quantified. This leaves 490 
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the ratio between the upstream sum and downstream discharge (𝑓𝛥𝑡) and 491 

the correlations between the tributary discharges to be estimated. For the 492 

ratios, we distinguished between observations and expert estimates as well. 493 

A log-normal distribution was fitted to the observations. This corresponds 494 

to a practical choice for a distribution of positive values with sufficient 495 

shape flexibility. The ratio itself does not represent streamflow, so there is 496 

no need to assume a heavy tailed distribution as would be expected for 497 

streamflow (Dimitriadis et al. 2021). The experts estimated a distribution 498 

for the factor as well, which was used directly for the experts-only fit. For 499 

the combined model fit, the observation-fitted log-normal distribution was 500 

used up to the 10-year range, and the expert estimate (fitted with a Metalog 501 

distribution) for the 1,000-year factor. Values of 𝑓𝛥𝑡 for return periods 𝑇 502 

greater than 10 were interpolated (up to 1000-years) or extrapolated, 503 

𝑓𝛥𝑡|𝑇 = 𝑓𝛥𝑡|10𝑦 +
log(𝑇) − log(10)

log(1,000) − log(10)
⋅ (𝑓𝛥𝑡|1,000𝑦 − 𝑓𝛥𝑡|10𝑦), 504 

with 𝑓𝛥𝑡|10𝑦 being sampled from the lognormal and 𝑓𝛥𝑡|1000𝑦 from the expert 505 

estimated Metalog distribution. During the expert session, one participant 506 

requested to make different estimates for the factor at the 10-year event 507 

and 1,000-year event, a distinction that initially was not planned. Following 508 

this request, we changed the questionnaire such that a factor could be 509 

specified at both return periods. One expert used the option to make two 510 

different estimates for the factors. 511 

Regarding the correlation matrix that describes the dependence between 512 

tributary extremes, the observed correlations were used for the data-only 513 

option and the expert-estimated correlations for the expert-only option. For 514 

the combined option, we took the average of the observed correlation 515 

matrix and the expert-estimated correlation matrix. Other possibilities for 516 

combining correlation matrices are available (see for example Al-Awadhi 517 

and Garthwaite 1998, for a Bayesian approach), however an in -depth 518 

research of these options areis beyond the scope of this study. 519 

3.4 Calculating the downstream discharges 520 

The three components from Eq. [eq:main_model] needed to calculate the 521 

downstream discharges are: 522 

• Tributary (marginal) discharges, represented by the GEV-523 

distributions from the Bayesian inference. 524 

• The interdependence between tributaries, represented by a 525 

multivariate normal copula. 526 

• The ratio between the upstream sum and downstream discharges 527 

(𝑓𝛥𝑡). 528 
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In line with the objective of this article, an uncertainty estimate is derived 529 

for the downstream discharges. This section describes the method in a 530 

conceptual way. Appendix 7 contains a formal step-by-step description. 531 

To calculate a single exceedance frequency curve for a downstream 532 

location, 10,000 events (annual discharge maxima) are drawn from the 9 533 

tributaries’ GEV-distributions. Note that 10 tributaries are displayed in Fig. 534 

1. The Semois catchment is however part of the French Meuse catchment 535 

and therefore only used to assess expert performance. The 9 tributary peak 536 

discharges are summed per event and multiplied with 10,000 factors (one 537 

per event) for the ratio between upstream sum and downstream discharge. 538 

The 10,000 resulting downstream discharges are assigned an annual 539 

exceedance probability through empirical plot positions, resulting in an 540 

exceedance frequency curve. This process is repeated 10,000 times with 541 

different GEV-realizations from the MCMC-trace, resulting in 10,000 curves 542 

(each based on 10,000 discharges) from which the uncertainty bandwidth 543 

is determined. This is illustrated in Fig. 3. The grey lines depict 50 of the 544 

10,000 curves (these can be both tributary GEV-curves, or downstream 545 

discharge curves). The (blue) histogram gives the distribution of the 1,000-546 

year discharges. The colored dots indicate the 2.5th, 50th, and 97.5th 547 

percentiles in this histogram. Calculating these percentiles for all annual 548 

exceedance probabilities results in the black percentile curves, creating the 549 

uncertainty interval. 550 

 551 

Figure 3: Individual exceedance frequency curves for each GEV-realization or 552 

downstream discharge, and the different percentiles derived from these. 553 

The dependence between tributaries is incorporated in two ways. First, the 554 

10.000 events underlying each downstream discharge curve are correlated. 555 

This is achieved by drawing the [9 × 10,000] sample from the (multivariate 556 
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normal) correlation model, transforming these samples to uniform space 557 

(with the normal CDF), and then to each tributary’s GEV-distribution space 558 

(with the GEV’s quantile function). This is the usual approach when 559 

working with a multivariate normal copula. The second way of 560 

incorporating the tributary dependence is by choosing GEV-combinations 561 

from the MCMC-results while considering the dependence between 562 

tributaries (i.e., picking high or low curves from the uncertainty bandwidth 563 

for multiple tributaries). As illustrated in Fig. 3, a tributary’s GEV-564 

distribution can lead to relatively low or high discharges. This uncertainty 565 

is largely caused by a lack of realizations in the tail (i.e., not having 566 

thousands of years of independent and identically distributed discharges). 567 

If one tributary would fit a GEV distribution resulting in a curve on the 568 

upper end of the bandwidth, it is likely because it experienced a high 569 

discharge event that affected its neighbouring tributary as well. 570 

Consequently, the neighbouring tributary is more likely to also have a ‘high-571 

discharge’ GEV-combination. To account for this, we first sort the GEV-572 

combinations based on their 1,000-year discharge (i.e., the curves’ 573 

intersections with the blue dashed line), and draw a 9-sized sample from 574 

the dependence model. Transforming this to uniform space gives a value 575 

between 0 and 1 that is used as rank to select a (correlated) GEV-576 

combination for each tributary. Doing this increases the likeliness that 577 

different tributaries will have relatively high or low sampled discharges. 578 

4 Experts’ performance and resulting discharge 579 

statistics 580 

This result section first presents the experts’ scores for the Classical Model 581 

(Sect. 4.1) and the experts’ rationale for answering the questions (Sect. 4.2). 582 

After this, the extreme value results for the tributaries (Sect. 4.3) and 583 

downstream locations (Sect. 4.4) are presented. 584 

4.1 Results for the Classical Model 585 

The experts estimated three-percentiles (5th, 50th and 95th) for the 10- 586 

and 1,000-year discharge for all larger tributaries in the Meuse catchment. 587 

An overview of the answers is given in the supplementary material. Based 588 

on these estimates, the scores for the Classical Model are calculated as 589 

described in Sect. 3.2. The resulting statistical accuracy, information score, 590 

and combined score (which, after normalizing, become weights) are shown 591 

in table 1. 592 

Scores for the Classical Model, for the experts (top 7 rows) and decision 593 

makers (bottom 3 rows). 594 

 Statistical accuracy Information score Comb. score 



18 
 

  All Seed  

Exp A 0.000799 1.605 1.533 0.00123 

Exp B 0.000456 1.576 1.633 0.000745 

Exp C 2.3 ⋅10-8 1.900 1.868 4.4 ⋅10 -8 

Exp D 0.683 0.711 0.626 0.427 

Exp E 0.192 1.395 1.263 0.242 

Exp F 0.000456 1.419 1.300 0.000593 

Exp G 0.00629 1.302 1.232 0.00775 

GL (opt) 0.683 0.659 0.670 0.458 

GL 0.683 0.648 0.661 0.452 

EQ 0.493 0.537 0.551 0.271 

     

 595 

The statistical accuracy varies between 2.3 ⋅ 10−8 for expert C to 0.683 for 596 

expert D. Two experts have a score above a significance level of 0.05. Figure 597 

4 shows the position of each realization (answer) within the experts’ three-598 

percentile estimate for each of the 10-year discharges. A high statistical 599 

accuracy means realizations to these seed variables are distributed 600 

accordingly to (or as close to) the mass in each inter-quantile bin: one 601 

realization below the 5th percentile, 4 in between the 5th and the median, 602 

four between the median and the 95th and one above the 95th. Expert D’s 603 

estimates closely resemble this distribution (
1

10
,
5

10
,
4

10
,
0

10
 for each inter-604 

quantile respectively), hence the high statistical accuracy score. A 605 

concentration of dots on both ends indicates overconfidence (too close 606 

together estimates, resulting in realizations outside of the 90% bounds). We 607 

observe that most experts tend to underestimate the measured discharges, 608 

since most realizations are higher than their estimated 95th percentile. 609 

Note that the highest score is not received for the (median) estimates 610 

closest to the realization but to evenly distributed quantiles, as the goal is 611 

estimating uncertainty rather than estimating the observation (see Sect. 612 

3.2). 613 

The information scores show, as usual, less variation. The expert with the 614 

statistical accuracy (expert D) also has the lowest information score. Expert 615 

E, who has a high statistical accuracy as well, estimated more concentrated 616 

percentiles, resulting in a higher information score. 617 
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 618 

Figure 4: Seed questions realizations’question realizations compared to each 619 

expert’s estimates. The position of each realization is displayed as percentile 620 

point in the expert’s distribution estimate. 621 

The variation between the three decision makers (DMs) in the table is 622 

limited. Optimizing the DM (i.e., excluding experts based on statistical 623 

accuracy to improve the DM-score) has a limited effect. In this case, only 624 

expert D and E would have a non-zero weight, resulting in more or less the 625 

same results compared to including all experts, even when some of them 626 

contribute with ‘marginal’ weights. The equal weights DM in this case 627 

results in an outcome that is comparable to that of the performance -based 628 

DM, i.e., a high statistical accuracy with a slightly lower information score 629 

compared to the other two DMs. 630 

We present the model results as discussed earlier through three cases 1a) 631 

only data, 2b) only expert estimates, and 3c) the two combined as described 632 

in Section 3.3. We used the global weights DM for the data and experts 633 

option (3c). This means the experts’ estimates for the 10-year discharges 634 

were used to assess the value of the 1,000-year answer. For the experts-635 

only option, we used the equal weights DM, because using the global 636 

weights emphasizes estimates matching the measured data in the 10-year 637 

range. This would indirectly lead to including the measured data in the fit. 638 

By using equal weights, we ignore the relevant seed questions and the 639 

corresponding differential weights. 640 
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4.2 Rationale for estimating tributary discharges 641 

We requested the experts to briefly describe the procedure they followed 642 

for making their estimates. Overall, three approaches were distinguished. 643 

The first was using a simple conceptual hydrological model, in which the 644 

discharge follows from catchment characteristics like (a subset of) area, 645 

rainfall, evaporation and transpiration, rainfall-runoff response, land-use, 646 

subsoil, slope, or the presence of reservoirs. Most of this information was 647 

provided to the experts, and if not, they made estimates for it themselves. A 648 

second approach was to compare the catchments to other catchments 649 

known by the expert, and possibly adjusting the outcomes based on specific 650 

differences. A third approach was using rules of thumb, such as the 651 

expected discharge per square kilometer of catchment or a ‘known’ factor 652 

between an upstream tributary discharge and a downstream discharge (of 653 

which the statistics are better known). For estimating the 1,000-year 654 

discharge, the experts had to do some kind of extrapolation. Some experts 655 

scaled with a fixed factor, while others tried to extrapolate the rainfall, for 656 

which empirical statistics where provided. The hydrological data 657 

(described in Sect. 2) was provided to the experts in spreadsheets as well, 658 

making it easier for them to do computations. However, the time frame of 659 

one day (for the full elicitation) limited the possibilities for making detailed 660 

model simulations. 661 

Figure 5 gives an impression ofshows how the different approaches led to 662 

different answers per tributary. It compares the 50th percentile of the 663 

discharge estimates per tributary of each expert, by dividing them through 664 

the catchment area. From the figure we can seeThe 10-year and 1,000-year 665 

discharges from fitting the observations (i.e., the data only approach) are 666 

indicated with the starts. The figure shows that most experts estimated 667 

higher discharges for the steeper tributaries (Ambleve, Vesdre, Lesse). The 668 

experts estimated the median 1,000-year discharges to be 1.7 to 3.8 times 669 

as high as the median 10-year discharge, with an average of on average 2.3 670 

for all experts and tributaries. The statistically most accurate expert, Expert 671 

D, estimated factors in between 1.6 and 7.0. Contrarily, expert E, with the 672 

second highest score, estimated a ratio of 2.0 for all tributaries. 673 
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 674 
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 675 

Figure 5: Discharge per area for each tributary and experts, based on the 676 

estimate for the 50th percentile. (a) for the 10-year, and (b) for the 1,000-677 

year discharge. Observed or fitted discharges are indicated with stars. The 678 

lines are displayed to help distinguish overlapping markers. 679 

For estimating the factor between the tributaries’ sum and the downstream 680 

discharge (𝑓𝛥𝑡 in Eq. [eq:main_model]), experts mainly took into 681 

consideration that not 100% of the area is covered by the tributary 682 

catchments for which the discharge-estimates were made, and that the 683 

tributary hydrograph peaks have different lag times. Additional aspects 684 

noted by the experts were the effects of flood peak attenuation and spatial 685 

dependence between tributaries and rainfall. 686 

4.3 Extreme discharges for tributaries 687 

We calculated the extreme discharge statistics for each of the tributaries 688 

based on the procedures described in Sect. 3.3. Figure 689 

[fig:extreme_discharges_Borgharen] shows the results for Chooz and 690 

Chaudfontaine (left and middle column). Chooz is a larger not too steep 691 

tributary, while Chaudfontaine is a smaller steep tributary (see figure 1). 692 

The right column shows the discharges for Borgharen, the location where 693 

we want to estimate the discharges through Eq. [eq:main_model], which is 694 
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further discussed in Sect. 4.4. The results for the other tributaries are 695 

shown in the supplementary information for all experts and DMs. 696 

 697 

The top row (a, d, g) in Fig. [fig:extreme_discharges_Borgharen] shows the 698 

uncertainty interval of these distributions when fitted only to the discharge 699 

measurements. The outer colored area is the 95% interval, the more 700 

opaqueopaquer inner area the 50% interval, and the thick line the median 701 

value. The second row (b, e, h) shows the fitted distributions when only 702 

expert estimates are used. The bottom row (c, f, i) shows the combination of 703 

expert estimates and data. The data-only option closely matches the data in 704 

the return period range where data are available, but the uncertainty 705 

interval grows for return periods further outside sample. Contrarily, the 706 

experts-only option shows much more variation in the ‘in sample’ range, 707 

while the out of sample return periods are more constrained. The combined 708 

option is accurate in the ‘in sample’ range, while the influence of the DM 709 

estimates is visible in the 1,000 -year return period range. 710 

4.4 Extreme discharges for Borgharen 711 

Combining all the marginal (tributary) statistics with the factor for 712 

downstream discharges and the correlation models estimated by the 713 

experts, we get the discharge statistics for Borgharen. The results for this 714 

are shown in Fig. [fig:extreme_discharges_Borgharen] (g, h, i). 715 

As with the statistics of the tributaries, we observe high accuracy for the 716 

data-only estimates in the ‘in sample’ range, constrained uncertainty 717 

bounds for EJ-only in the range with higher return periods, and both when 718 
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combined. The combined results match the historical observations well. 719 

Note that this is not self-evident as the distributions were not fitted directly 720 

to the observed discharges at Borgharen but rather obtained through the 721 

dependence model for individual catchments and equation 722 

[eq:main_model]. Contrarily, the data-only results deviate from the 723 

observations in the 10- to 100-year range. Sampling from the fitted model 724 

components (GEVs, dependence model, and factors) does not accurately 725 

reproduce the downstream discharges in this range because they were 726 

individually fitted and not as a whole. We do not consider this a problem, as 727 

the study is oriented towards showing the effects of expert quantification in 728 

combination with more traditional hydrological modelling. The EJ-only 729 

estimates give a much wider uncertainty estimate. The experts’ combined 730 

median matches the observations surprisingly well, but the large 731 

uncertainty within the observed range cautions against drawing general 732 

conclusions on this. 733 

Zooming in on the discharge statistics for the downstream location 734 

Borgharen, we consider the 10, 100, and 1,000-year discharge. Figure 6 735 

shows the (conditional) probability distributions (smoothed with a kernel 736 

density estimate) for these discharges at the location of interest. 737 
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 738 

Figure 6: Kernel density estimates for the 10-year (a), 100-year (b), and 739 

1,000-year (c) discharge for Borgharen. The dots indicate the 5th, 50th and 740 

95th percentile. 741 

Comparing the three modelling options discussed thus far, we see that the 742 

data-only option is very uncertain, with a 95% uncertainty interval of 4,000 743 

to around 9,000 m3/s for the 1,000-year discharge. A Meuse-discharge of 744 

4,000 m3/s will likely flood large stretches along the Meuse in the Dutch 745 

province Limburg, while a discharge of 5,000 m3/s also floods large areas 746 

further downstream (GWF Rongen 2016). For discharges higher than 6,000 747 

m3/s the applied model (Eq. [eq:main_model]) should be reconsidered, as 748 

the hydrodynamic properties of the system change due to upstream 749 

flooding. 750 

The combined results are surprisingly close to the currently used GRADE-751 

statistics for dike assessment; the uncertainty is slightly larger, but the 752 

median is very similar. The EJ-only results are less precise, but the median 753 

values are similar to the combined results and GRADE-statistics. The large 754 
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uncertainty is mainly the results of equally weighting all experts, instead of 755 

assigning most weight to experts D and E (as done for the global weight 756 

DM). For the combined data and EJ approach, the results for the tributary 757 

discharges roughly cover the intersection of the EJ-only and data-only 758 

results (see Fig. [fig:extreme_discharges_Borgharen] a-f). Figure 6 does not 759 

show this pattern, with the EJ-only results positioned in between the data-760 

only and combined results. This is mainly due to equal weight DM used for 761 

the EJ-only results, which gives a higher factor between upstream and 762 

downstream discharges (𝑓𝛥𝑡 in Eq. [eq:main_model]), and therefore higher 763 

resulting downstream discharges. Overall, the combined effect of data and 764 

EJ is more difficult to identify in the downstream discharges (Fig. 765 

[fig:extreme_discharges_Borgharen] g-i) than it is in the tributary discharge 766 

GEVs (Fig. [fig:extreme_discharges_Borgharen] a-f). This is due to the 767 

additional model components (i.e., the factor between upstream and 768 

downstream, and the correlation model) affecting the results. Additional 769 

plots similar to Fig. [fig:extreme_discharges_Borgharen] that illustrate this 770 

are presented in the supplementary information. There, the results for the 771 

other two downstream locations, Roermond and Gennep, are presented as 772 

well. These results behave similar to those for Borgharen and are therefore 773 

not presented here. 774 

5 Discussion 775 

This study proposed a method to estimate credible discharge extremes for 776 

the Meuse River (1,000-year discharges in the case of this research). 777 

Observed discharges were combined with expert estimates through the 778 

GEV-distribution, using Bayesian inference. The GEV-distribution has 779 

typically less predictive power in the extrapolated range. Including expert 780 

estimates, weighted by their ability to estimate the 10-year discharges, 781 

improved the precision in this range of extremes. 782 

Several model choices were made to obtain these results. Their implications 783 

warrant further discussion and substantiation. This section addresses the 784 

choice for the elicited variables, the predictive power of 10-year discharge 785 

estimates for 1000-year discharges, the overall credibility of the results, 786 

and finally, some comments on model choices and uncertainty. 787 

5.1 Method and model choices 788 

We chose to elicit tributary discharges, rather than the downstream 789 

discharges (our ultimate variable of interest) themselves. We believe that 790 

experts’ estimates for tributary discharges correspond better to catchment 791 

hydrology (rainfall-runoff response). Additionally, this choice enables us to 792 

validate the final result with the downstream discharges. With the chosen 793 

set-up we thus test the experts’ capabilities for estimating system discharge 794 

extremes from tributary components, while still considering the catchment 795 
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hydrology, rather than just informing us with their estimates for the end 796 

results. However, this does not guarantee that the downstream discharges 797 

calculated from the experts’ answers match the discharges they would have 798 

given if elicited directly. 799 

We fitted the GEV-distribution based on the elicited 10-year and 1000-year 800 

discharges. In particular the GEV’s uncertain tail shape parameter is 801 

informed through this, as the location and scale parameter can be estimated 802 

from data with relative certainty. Alternatively, we could have estimated 803 

the tail shape parameter directly or estimated a related parameter such as 804 

the ratio or difference between discharges. The latter was done by Renard, 805 

Lang, and Bois (2006) who elicited the 10-year discharge and the 806 

differences between the 10- and 100-year and 100- and 1,000-year 807 

discharges. This approach reduces the dependence between expert 808 

estimates for different quantiles, and therefore between the priors (when 809 

more than one quantile is used) (Coles and Tawn 1996). Additionally, it 810 

shifts the experts’ focus to assessing how surprising or extreme rare events 811 

can be. Because we were ultimately interested in the 1000-year discharges, 812 

we chose eliciting this discharge directly. This will give a more accurate 813 

representation of this specific value than composing it of two random 814 

variables with a dependence that is unknown to us. We appreciate however 815 

that if experts would have estimates ratios or differences, and been 816 

evaluated by this, different weights would have resulted than the ones 817 

presented in this research (refer to the markedly different ratios between 818 

the 10-year and 1,000-year discharge for the two best experts D and E in 819 

Fig. 5). A study focusing on how surprising large events can be, and whether 820 

one method renders consistently larger estimates than the other, would 821 

make an interesting comparison. Finally, we note that Renard, Lang, and 822 

Bois (2006) combine different extreme value distributions with non-823 

stationary parameters in a single Bayesian analysis, which makes their 824 

method a good example of incorporate climate change effects (often 825 

considered a driver of for new extremes) in the method as well. This was 826 

however out of the scope of our research, which shows that extreme 827 

discharge statistics can be improved when combining them with structured 828 

expert judgment procedures. 829 

Regarding the goodness-of-fit of the chosen GEV distribution, we note that 830 

some of the experts estimated 1,000-year discharges much higher of lower 831 

than would be expected from observations. This might indicate that the 832 

GEV-distribution is not the right model to observations and expert 833 

estimates. However, a significantly lower estimate indicates that the 834 

estimated discharge is wrong, as it is unlikely that the 1,000-year discharge 835 

is lower than the highest on record. A significantly higher estimate, on the 836 

other hand, might be valid, due to a belief in a change in catchment 837 

response under extreme rainfall (e.g., due to a failing dam). This would 838 

violate the GEV-distribution’s ‘identically distributed’ assumption. 839 
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However, the GEV has sufficient shape flexibility to facilitate substantially 840 

higher 1,000-year discharges, so we do not consider this a realistic 841 

shortcoming. Accordingly, rather than viewing the GEV as a limiting factor 842 

for fitting the data, we use it as a validation for the Classical Model scores, 843 

as described in Sect. 5.2. 844 

Finally, we note the model’s omission of seasonality. The July 2021 event 845 

was mainly extraordinary because of its magnitude in combination with the 846 

fact that it happened during summer. Including seasonality would have 847 

been a valuable addition to the model but it would also have (at least) 848 

doubled the number of estimates provided by each expert, which was not 849 

feasible for this study. The exclusion of seasonality from our research does 850 

not alter our main conclusion, which is the possibility of enhancing 851 

estimation of extreme discharges through structured expert judgments. 852 

5.2 Validity of the results 853 

The experts participating in this study were asked to estimate 10-year and 854 

1000-year discharges. While both discharges are unknown to the expert, 855 

the underlying processes leading to the different return period estimates 856 

can be different. An implicit assumption is that the experts’ ability to 857 

estimate the seed variables (a 10-year discharge) reflects their ability to 858 

estimate the target variables (a 1000-year discharge). This assumption is in 859 

fact one of the most crucial assumptions in the Classical Model and. The 860 

objective of this research is not to investigate this assumption. For an 861 

example of a recent discussion on the effect of seed variables on the 862 

performance of the Classical Model the reader is referred to (Eggstaff, 863 

Mazzuchi, and Sarkani 2014). The representativeness of the seed variables 864 

for calibration variables has extensively been discussed in, for example, 865 

(Roger M. Cooke 1991). Seed questions have to be as close as possible to the 866 

variables of interest, and mostly concern similar questions from different 867 

cases or studies. Precise 1000-year discharge estimates are however 868 

unknown for any river system, making this option infeasible for this study. 869 

In comparison, with a conventional model-based approach, the ability of a 870 

model to predict extremes is also estimated from (and tailored to) the 871 

ability to estimate historical observations (through calibration). Advantages 872 

of relying in the extrapolation of a group of experts are that they can 873 

explicitly consider uncertainty and are assessed on their ability to do so 874 

through the Classical Model. In Sect. 5.1 we described how inconsistencies 875 

between the observations and expert estimates can lead to a sub-optimal 876 

GEV-fit. The fact that this is most prevalent in the low-scoring experts and 877 

least for experts D and E supports the credibility of the results. Moreover, 878 

this means that the ‘bad’ fits have little weight in the final global weight DM 879 

results, and secondly that the GEV is considered a suitable statistical 880 

distribution to fit observations and expert estimates. 881 
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The GRADE results from (Hegnauer and Van den Boogaard 2016) were 882 

used to validate the 1,000-year downstream discharge results. These 883 

GRADE-statistics at Borgharen (currently used for dike assessment) give a 884 

lower and less uncertain range for the 1,000-year discharge than the 885 

estimates obtained through our methodology. The estimates obtained in 886 

this study present larger uncertainty bands and indicate higher extreme 887 

discharges. This might be a consequence of the fact that we did not show 888 

the measured tributary discharges to the experts, such that we could clearly 889 

distinguish the effect of observations and ‘prior’ expert judgments. 890 

Moreover, GRADE (at the time) did not include the July 2021 event. If the 891 

GRADE statistics had been derived with the inclusion of the July 2021 event, 892 

it would likely assign more probability to higher discharges. The 893 

expertsexperts’ estimates on the contrary were elicited after the July 2021 894 

event which likely did affect their estimates. Therefore, the comparison 895 

between GRADE and the expert estimates should not be used to assess 896 

correctness, but as an indication of whether the results are in the right 897 

range. Finally, note that the full GRADE-method is not published in a peer-898 

reviewed journal (the weather generator is, (Leander et al. 2005)). 899 

However, because the results are widely used in the Dutch practice of flood 900 

risk assessment (and known to the experts as well) we considered them the 901 

best source for comparing the results in the present study. 902 

To evaluate the value of the applied approach that uses data combined with 903 

expert estimates, we compared the results that were fitted to only data or 904 

only expert judgment to the results of the combination. For the last option 905 

we used an equal weight decision maker, a conservative choice as the 906 

experts’ statistical accuracy could potentially still be determined based on a 907 

different river where data for seed questions are available. While the 908 

marginal distributions of the EJ-only case present wide bandwidths (see 909 

Fig. [fig:extreme_discharges_Borgharen] b and e), the final results for 910 

Borgharen still gave a statistically accurate result but with a few caveats, 911 

namely that the uncertainty is very large and that the 10-year and 1,000-912 

year estimates in itself are insufficient to inform the GEV without adding 913 

prior information (otherwise we have 2 estimates for 3 parameters). 914 

Consequently, when only using expert estimates, eliciting the random 915 

variable (discharges) directly through a number of quantiles of interest, 916 

might be a suitable alternative. 917 

5.3 Final remarks on model choices 918 

Finally, we note that using expert judgment to estimates discharges through 919 

a model (like we did) still gives the analyst a large influence in the results. 920 

We try to keep the model transparent and provide the experts with 921 

unbiased information, but by defining the model on beforehand and 922 

providing specific information we steer the participants towards a specific 923 

way of reasoning. Every step in the method, such as the choice for a GEV-924 

distribution, the dependence model, or the choice for the Classical Model, 925 
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affects the end result. By presenting the method and providing background 926 

information explicitly, we hope to have made this transparent and show the 927 

usefulness of the method for similar applications. 928 

6 Conclusions 929 

This study sets out to establish a method for estimation of statistical 930 

extremes through structured expert judgment and Bayesian inference, in a 931 

case-study for extreme river discharges on the Meuse River Meuse. Experts’ 932 

estimates of tributary discharges that are exceeded in a once per 10 year 933 

and once per 1,000 -year event are combined with high river discharges 934 

measured over the past 30-70 years. We combine the discharges from 935 

different tributaries with a multivariate correlation model describing their 936 

dependence and compare the results for three approaches, a) data only, b) 937 

expert judgment only, and c) the combination. The expert elicitation is 938 

formalized with the Classical Model for structured expert judgment. 939 

The results of applying our method show credible extreme river discharges 940 

resulting from the combined expert-and-data approach. A comparison to 941 

GRADE, the prevailing method for estimating discharge extremes on the 942 

Meuse, gives similar ranges for the 10-, 100-, 1,000-year discharges as 943 

GRADE. Moreover, the two experts with the highest scores from the 944 

Classical Model had discharge estimates that correspond well with those 945 

discharges that might be expected from the observations. This indicates 946 

that using the Classical Model to assess expert performance is a suitable 947 

way of using expert judgment to limit the uncertainty in the “out of sample” 948 

range of extremes. The experts-only approach performs satisfactory as well, 949 

albeit with a considerably larger uncertainty than the EJ-data option. The 950 

method may also be applied to river systems where measurement data are 951 

scarce or absent, but adding information on less extreme events is desirable 952 

to increase the precision of the estimates. 953 

On a broader level, this study has demonstrated the potential of combining 954 

structured expert judgment and Bayesian analysis in informing priors and 955 

reducing uncertainty in statistical models. When estimates on uncertain 956 

extremes isare needed, which cannot satisfactorily be derived (exclusively) 957 

from a (limited) data-record, the presented approach provides a means (not 958 

the only mean) of supplementing this information. Structured expert 959 

judgment provides an approach of deriving defensible priors, while the 960 

Bayesian framework offers flexibility for incorporating these into 961 

probabilistic results by adjusting the likelihood of input or output 962 

parameters. In our application to the Meuse River, we successfully elicited 963 

credible extreme discharges. However, a case studies for different rivers 964 

should verify these findings. Our research does not discourages the use of 965 

more traditional approaches such as rainfall-runoff or other hydrodynamic 966 

or statistical models. Considering the credible results and the relatively 967 
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manageable effort required, the approach presents(when well 968 

implemented) can present an attractive alternative for complex 969 

hydrological studies where theto models that approach uncertainty in 970 

extremes needs to be constrainedin a less transparent way. 971 
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Appendix A. Calculation of downstream discharges 972 

Section 3.4 explained the method applied and choices made for calculating 973 

downstream discharges. This appendix explains this in more detail, 974 

including the mathematical equations. 975 

Three model components are elicited from the experts and data: 976 

• Marginal tributary discharges, in the form of a MCMC GEV-977 

parameter trace. Each combination 𝜃 consists of a location (𝜇), 978 

scale (𝜎), and tail-shape parameter (𝜉). 979 

• A ratio between the sum of upstream peak discharges and the 980 

downstream peak discharge, represented by This is a single 981 

probability distribution. 982 

• The interdependence between tributary discharges, in the form of 983 

a multivariate normal distribution. 984 

The exceedance frequency curves for the downstream discharges are 985 

calculated based on 9 tributaries (𝑁𝑇), a trace of 10,000 MCMC parameter 986 

combinations (𝑁𝑀), and 10,000 discharge events (𝑁𝑄) per curve. 987 

The 𝑁𝑀 parameter combinations for each tributary are sorted based on the 988 

(1,000-year) discharge with an exceedance probability of 0.001: 989 

𝐹𝐺𝐸𝑉
−1 (1 − 0.001|𝜃), in which 𝐹𝐺𝐸𝑉

−1  is the inverse cumulative density function, 990 

or percentile point function, of the tributary GEV. Sorting the discharges 991 

like this enables us to select parameter combinations that lead to low or 992 

high discharges in multiple tributaries, and in this way express the 993 

tributary correlations. The sorting order might be different for the 10-year 994 

discharge than it is for the 1000-year discharge. The latter is however 995 

chosen as it is most interesting for this study. 996 

For calculating a single curve, 𝑁𝑇 realizations are drawn from the 997 

dependence model. These normally distributed realizations (x) are 998 

transformed to the [1, 𝑁𝑀] interval, and are then used as index j to select a 999 

GEV-parameter combination for each of the 𝑁𝑇 tributaries: 1000 

j = 𝑅𝑜𝑢𝑛𝑑(𝐹𝑛𝑜𝑟𝑚(x) ⋅ (𝑁𝑀 − 1) + 1)). 1001 

This is the first of two ways in which the interdependence between 1002 

tributary discharges is expressed. The second is the next step, drawing a 1003 

(𝑁𝑇 × 𝑁𝑄) sample Y from the dependence model. These events (on a 1004 

standard normal scale) are transformed to the discharge realizations Q for 1005 

each tributaries’tributary’s GEV parameter combination: 1006 

Q = 𝐹𝐺𝐸𝑉,j
−1 (𝐹𝑛𝑜𝑟𝑚(Y)) 1007 
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An 𝑁𝑄  sized sample for the ratio between upstream sum and downstream 1008 

discharges (f) is drawn as well. The (𝑁𝑇 × 𝑁𝑄) discharges Q are summed per 1009 

event (for all tributaries), and multiplied with the factor f, 1010 

q = f ⋅ ∑(Q). 1011 

Note that this notation corresponds to Eq. [eq:main_model]. The 𝑁𝑄  1012 

discharges q are subsequently sorted and assigned a plot positions: 1013 

p =
k− 𝑎

𝑁𝑄 + 𝑏
, 1014 

with 𝑎 and 𝑏 being the plot positions, 0.3 and 0.4, respectively (from 1015 

Bernard and Bos-Levenbach 1955). k indicates the order of the events in 1016 

the set (1 being the largest, 𝑁𝑄  the smallest), The plot positions (p) are the 1017 

‘empirical’ exceedance probabilities of the model. With 10,000 discharges 1018 

and our exceedance probability of interest of 1/1,000, the results are 1019 

insensitive to the choice of plot positions. 1020 

This procedure results in one exceedance frequency curve for the 1021 

downstream discharge. The procedure is repeated 10,000 times to generate 1022 

aan uncertainty interval for the discharge estimate. Note that the full Monte 1023 

Carlo simulation comprises 10,000 × 10,000 = 100,000,000 ‘events’ for the 1024 

9 tributaries. 1025 
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Appendix B. Expert and DM correlation matrices 1026 

Figure 7 shows the correlation matrices estimated by the experts. The DM 1027 

correlation matrices are weighted combinations of the expert matrices, 1028 

based on the weights from Table 1. See subsection 3.2 and equation 1029 

[eq:DM]. 1030 
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Figure 7: Correlation matrices estimated by the expert 1032 
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