
 

 

Using structured expert judgment to 

Estimate extreme river 

dischargesestimate extremes: a case 

study of discharges in the Meuse River 

Accurate estimation of extreme discharges in rivers, such as the Meuse, is 

crucial for effective flood risk assessment. However, existing statistical and 

hydrological models that estimate thesesuch discharges often lack 

transparency regarding the uncertainty of their predictions, as. This was 

evidenced by the devastating flood event that occurred in July 2021 which 

was not captured by the existing model for estimating design discharges. 

This article proposes an alternative approach to obtain uncertainty 

estimates for extremes with a central role forstructured expert judgment, 

using Cooke’s method. A simple statistical model was developed for the 

river basin, consisting of correlated GEV- distributions for discharges 

infrom upstream sub-catchments.tributaries. The model was fitted to 

expert judgments,seven experts’ estimates and historical measurements, 

and the combination of both, using Markov chain Monte Carlo.Bayesian 

inference. Results from the model fitted to only tothe measurements were 

accurate solely informative for more frequent events, but less certain for 

extreme events. Usingwhile fitting to only the expert judgmentestimates 

reduced uncertainty solely for these extremes but was less accurate for 

more frequent events. The combined approach . Combining both historical 

observations and estimates of extremes provided the most plausible 

results, with. Cooke’s method reducingreduced the uncertainty by 

appointing most weight to the two of the seven most accurate experts., 

according to their estimates of less extreme discharges. The study 

demonstrates that utilizingwith the presented Bayesian approach that 

combines historical data and expert-informed priors, a group of 

hydrological experts in this manner can provide plausible resultsestimates 

for discharges, and potentially also other (hydrological) extremes, with a 

relatively limitedmanageable effort, even in situations where 

measurements are scarce or unavailable. 

1 Introduction 

Quantifying the uncertainty that comes with estimatingEstimating the 

magnitude of extreme flood events is a difficult matter.comes with 

considerable uncertainty. This became clear once more on the 18th of July 

2021, when thea flood wave on the Meuse River, following that followed 



 

 

from a few days of rain in the Eiffel and Ardennes, reached itscaused the 

highest peak discharge ever measured at Borgharen. Unprecedented 

rainfall volumes fell withinin a short period of time (Dewals et al. 2021). 

These caused flash floods with large loss of life and extensive damage in 

Germany, Belgium, and to a lesser extent also in the Netherlands(Task 

Force Fact-finding hoogwater 2021 (TFFF 2021; Mohr et al. 2022). The 

discharge at the Dutch border exceeded the flood events of 1926, 1993, and 

1995. Contrary to those events, this flood occurred during summer, a 

season that is (or was) often considered irrelevant for extreme discharges 

on the Meuse.less relevant for extreme discharges on the Meuse. A 

statistical analysis of annual maxima from a fact-finding study done 

recently after the flood, estimates the return period to be 120 years based 

on annual maxima, and 600 years when only summer half years (April to 

September) are considered (TFFF 2021). These return periods were 

derived including the July 2021 event itself. Prior to the event, it would 

have been assigned higher return periods. The event was thus surprising in 

multiple ways. This might happen when we experience a new extreme, but 

given that Dutch flood risk has safety standards up to once per 100,000 

years (Ministry of Infrastructure and Environment 2016) one would have 

hoped this to be less of a surprise. ThisThe event underlinesunderscores 

the importance of understanding the uncertainty that comes with estimates 

of extreme flood events. 

QuantifyingEstimating the magnitude of events that are more 

extremegreater than ever measured (i.e., with return levels that are longer 

than the time period of the largest from historical (representative 

measurements), ) records is a nontrivial task. It requires establishing a 

model that describes the occurrence of such events and subsequently 

extrapolating from available data or knowledge.to specific exceedance 

probabilities from this model. For the Meuse, the traditional approach to 

this is traditionally done by fittingto fit a probability distribution to extreme 

events and extrapolatingextrapolate from it (Langemheen and Berger 

2001). However, aA statistical fit of extremes is often veryto observations 

is, however, sensitive to the most extreme events in the measured time 

series available. Additionally, the hydrological and hydraulic response 

during extreme events might be of a different type (statistical population) 

compared to regular eventsfrom that of events that occur more frequently, 

and therefore badlyincorrectly described by a model that is statistical 

extrapolation. 

GRADE (Generator of Rainfall And Discharge Extremes) is a model-based 

answer to these shortcomings. It is used to determine design conditions for 

the river Meuse (and the Rhine) in the Netherlands. GRADE is a variant on 

historical measurements a conventional regional flood frequency analysis 

procedure. Instead of using only. Advances in computational power allow to 

narrow this (hydrological) uncertainty by, in the first place, generating 



 

 

historical observations, it resamples these into long synthetic time series of 

rainfall or that contain the observed spatial and temporal variation. In then 

uses a hydrological model to calculate tributary flows and a hydraulic 

model to subsequently simulate river discharges (Leander et al. 2005; 

Diederen et al. 2019). These can then be used to simulate a chain of models 

to approximate values of river discharges and potential flooding (e.g. Falter 

et al. 2015; Borgomeo, Farmer, and Hall 2015). For the Dutch rivers Meuse 

and Rhine, the GRADE instrument is used for this. It generates 50,000 years 

of rainfall and discharges (Hegnauer et al. 2014). Advantages of such 

methods areDespite the fact that itGRADE can create spatially coherent 

results, which and can correct forsimulate changes in the catchment or 

climate. It, it is however still based on "re-samplingresampling" available 

measurements or knowledge. Moreover, the computational resources 

required to simulate longer time series make it tedious or costly to quantify 

uncertainty in the method, let alone the uncertainty that comes with 

modelling choices.Hence, it cannot simulate all types of events that are not 

present in the historical ‘sample’. This is illustrated by the fact that the July 

2021 discharge was not exceeded once in the 50,000 years of summer 

discharges generated by GRADE. The event could have been more extreme 

than a once in 50,000 year event, but a more likely cause is that the re-

sampling approach uses (only) historic rainfall measurements to create 

new rain events. Underestimating uncertainty is however not  

GRADE is only one example where the underestimation of uncertainty is 

observed. However, it is certainly not the only an issue of GRADE. Meresa 

and Romanowicz (2017) show that hydrological model uncertainty can be 

larger than climate projection uncertainty and Winter et al. (2018) indicate 

that flood model uncertainties can lead up to a factor 3 difference in 

outcome (1.4 for flood frequency distribution).one. Boer-Euser et al. (2017; 

Bouaziz et al. 2020)), for example, compared different hydrological 

modelling concepts for the Ourthe catchment (considered in this study as 

well),) and showed the large differences that different models can give 

when comparing more characteristics than only stream-flow. flow. But 

regardless of the conceptual choices, all models would have severe 

limitations when trying to extrapolate to an event that has not occurred yet. 

We should be wary to disqualify a model in hindsight after a new extreme 

has occured. Alternatively, data-based approaches try to solve the 

shortcomings of a short record by extending the historical records with 

sources that can inform on past discharges. For example, paleoflood 

hydrology uses geomorphological marks in the landscape to estimate 

historical water levels (Benito and Thorndycraft 2005). Another approach 

utilizes qualitative historical written or depicted evidence to estimate past 

floods (Brázdil et al. 2012). The reliability of historical records can be 

improved as well, for example by combining this with climatological 

information derived from more consistent sea level pressure data De Niel, 

Demarée, and Willems (2017). 



 

 

While mostAnother alternative to the data-based approach is the use of 

structured expert judgment (SEJ). Expert judgment (EJ), in terms of making 

estimates or verifying observations based on prior knowledge, is often 

unknowingly applied in everyday practice by researchers and practitioners. 

It is a way of assessing the truth or value of new information, and therefore 

indispensable in every scientific application. However, quantifying it is not 

straightforward. Structured expert judgment formalizes this process by 

eliciting expert judgments in such a way that they can be treated as 

scientific data. One structured method for this is Cooke’s method, also 

called the classical model (Roger M. Cooke and Goossens 2008). Cooke’s 

method assigns a weight to each expert within a group (usually 5 to 10 

experts) based on their performance as uncertainty assessors in a number 

of seed questions. These weights are then applied to the experts’ 

uncertainty estimates for the variables of interest, with the underlying 

assumption that the performance for the seed questions is representative 

for the performance in the questions of interest. (Roger M. Cooke and 

Goossens 2008) shows an overview of the different fields in which Cooke’s 

method for structured expert judgment is applied. In total, data from 45 

expert panels (involving in total 521 experts, 3688 variables, and 67,001 

elicitations) are discussed, in applications ranging from nuclear, chemical 

and gas industry, water related, aerospace sector, occupational sector, 

health, banking, and volcanoes. Marti, Mazzuchi, and Cooke (2021) used the 

same database of expert judgments and observed that using performance-

based weighting gives more accurate DMs than assigning weights at 

random. Regarding geophysical applications, expert elicitation has recently 

been applied in different studies aimed at obtaining better estimates of 

discharge extremes use hydrological or statistical modeling, some follow 

the approach of using expert judgment (EJ). (Sebok et al. 2021) recently 

applied expert elicitation to reduceinforming the uncertainty in climate 

model predictions. ( (e.g., Oppenheimer, Little, and Cooke 2016; Bamber et 

al. 2019; Sebok et al. 2021). More closely related to this article, Kindermann 

et al. (2020) reproduced historical water levels using structured expert 

judgment (SEJ), and (G. Rongen, Morales-Nápoles, and Kok (2022a) recently 

applied SEJ to estimate the probabilities of dike failure probabilities for the 

Dutch part of the river Rhine.  River. 

While examples of using Cooke’s method in hydrology are not abundantly 

available, usingthey are for applications that use prior information to 

decrease the uncertainty and sensitivity for extrapolation, is not new. 

Mostly this. This information often comes from EJexpert judgments. Three 

examples in which a similar, Bayesian, approach was applied to limit the 

uncertainty in extreme discharge estimates are given by (Coles and Tawn 

1996; Parent and Bernier 2003; Viglione et al. 2013). The mathematical 

approaches vary between the different studies, but the rationale for using 

EJ is the same: adding "soft" or uncertain prior information to available 



 

 

measurements canto help in achievingachieve more plausible extreme 

estimates. In this 

This study, we applied applies structured expert judgment as well, to 

estimate the magnitude of discharge events for the Meuse River up to an 

annual exceedance probability of on average once per 1,000 years. We 

aimedaim to get credibleuncertainty estimates of extreme discharge events 

for these discharges. Their credibility is assessed by comparing them to 

GRADE, the aforementioned model-based method for deriving the Meuse 

that would otherwise require statistical extrapolation or complex 

modelling.River’s design flood frequency statistics. A relatively simple 

model wasis quantified both with observed data and with expert estimates, 

in which the latter serves to decrease uncertainty inannual maxima and 

seven experts’ estimates for the 10-year and 1000-year discharge on the 

main Meuse tributaries. The 10-year discharges (unknown to experts at the 

moment of the elicitation) are used to derive a performance-based 

combined opinion, while the 1000-year discharges are used to inform the 

extrapolated range. By using Cooke’s method for structured expert 

judgment (SEJ) (Cooke and Goossens 2008), participants canParticipants 

use their own approach to make their estimates, which are then combined 

based on the experts’ performance in questions for which the analysts 

know the answer or will know the answer post hoc. Next, we investigate if 

this expert judgment-based method gives plausible results. For this, we 

compared the model results based on come up with uncertainty estimates. 

To investigate how the method that combines data and expert judgments 

compares to the data-only or the expert estimates only, on measured data 

only and on both.-only approaches, we quantify the model based on all 

three options. The differences show the added value of each component. 

This indicates how good the method works,method’s performance both 

when measurements are available and when they are not, for example in 

data scarce areas. 

This study shows that the proposed method for estimating extreme river 

discharges with expert judgment leads to credible estimates for extremes. 

While the method that combines discharge measurements and expert 

estimates works best, the approach with equally weighted expert 

judgments only leads to plausible estimates as well, albeit with higher 

uncertainty in the extrapolated range. 

2 Study area and available data used 

Figure 1 shows an overview of the catchment of the Meuse River. The 

catchment areascatchments that discharge troughcorrespond to the 

majormain tributaries are outlined within red. theThe three locations for 

which we are interested in extreme discharge estimates, Borgharen, 

Roermond, and Gennep, are shown incolored blue. We call these the 



 

 

‘downstream locations’ throughout this study. The river continues further 

downstream until it flows into the North Sea atnear Rotterdam. This part of 

the river becomes increasingly intertwined with the Rhine River and more 

affected by the downstream sea water level. TheConsequently, the water 

levels consequently can be ascribed decreasingly to the discharge from the 

upstream catchment. For this reason, we do not goassess discharges further 

downstream than Gennep in this study. 

The numbered dots indicate the locations along the tributaries where the 

discharge of the upstream sub-catchmentsdischarges are measured. The 

gaugeThese locations’ names and catchments’the tributaries’ names are 

shown on the lower left. The Semois catchment is part of the French Meuse 

catchment. The discharge estimates for this catchment are therefore only 

used for expert calibration, as the flow is part of the French Meuse flow. 



 

 

 

Figure 1: Map of the Meuse catchment considered in this study, with main 

river, tributaries, streams, and catchment bounds. 



 

 

Elevation is shown with the grey-scale. Data for thisElevation data were 

obtained from EU-DEM (((Copernicus Land Monitoring Service 2017))) and 

used to derive catchment delineation and tributary steepness. MoreThese 

data were provided to the experts together with other hydrological 

characteristics, such aslike: 

• Catchment overview: A map with elevation, catchments, tributaries, 

and gauging locations 

• Land use: A map with land use (from: ( Copernicus Land 

Monitoring Service (2018)), subsoil () 

• River profiles and time of concentration: A figure with longitudinal 

river profiles and a figure with time between the tributary peaks 

and the peak at Borgharen for discharges at Borgharen greater 

than 750 m3/s. 

• Tabular catchment characteristics, such as: Area per catchment, as 

well as the catchment’s fraction of the total area upstream of the 

downstream locations. Soil composition from Food and Agriculture 

Organization of the United Nations (2003), specifying the fractions 

of sand, silt, and clay in the topsoil and subsoil. Land use fractions 

(paved, agriculture, forest & grassland, marshes, water bodies). 

• Statistics of precipitation: Daily precipitation per month and 

catchment. Sum of annual precipitation per catchment. Intensity 

duration frequency curves for the annual recurrence intervals: 1, 2, 

5, 10, 25, 50, and the maximum. All calculated from gridded E-OBS 

reanalysis data provided by Copernicus Land Monitoring Service 

(2020). 

• Hyetographs and hydrographs: Temporal rainfall statistics 

(Copernicus Land Monitoring Service 2020) and hydrograph 

shapes (from discharge data, seepatterns and hydrographs for all 

catchments/tributaries during the 10 largest discharges measure 

at Borgharen (sources described below), that were provided to the 

experts, are shown). 

This information, included in the supplementary information. This 

information, was provided to the experts to helpsupport them makein 

making their estimates. The discharge data needed for fittingto fit the 

model to the observations were obtained from (Service public de Wallonie 

2022) for the Belgian gauges, (Waterschap Limburg 2021; 

Waterinfo?)Rijkswaterstaat 2022) for the Dutch gauges, and (Land NRW 

2022) for the German gauge. These discharge data are mostly derived from 

measured water levels and rating curves. During floods, water level 

measurements can be incomplete and rating curves inaccurate. 

Consequently, discharge data during extremes can be unreliable. Measured 



 

 

discharge data were not provided to the experts, except in 

qualitativenormalized form as hydrograph shapes. 

3 Method for estimating extreme discharges 

with experts 

3.1 Probabilistic model for estimating extreme 

discharges 

To obtain estimates for downstream discharge extremes, experts needed to 

quantify a simple model that states thatgives the downstream discharge 

isas the sum of the tributary discharges, times a factor correcting for 

covered area and hydrodynamics: 

𝑄𝑑 = 𝑓𝛥𝑡,𝑢 ⋅∑𝑄𝑢
𝑗

𝑓𝛥𝑡 ⋅∑𝑄𝑢
𝑢

, 

where 𝑄𝑑  is the peak discharge of a downstream location during an event, 

and 𝑄𝑢 the peak discharge of the 𝑢’th (upstream) tributary during that 

event. With the factor 𝑓𝛥𝑡,𝑢 experts can compensate for inaccuracies in 

estimation. These are, for example, the time difference between discharge 

peaks and peak attenuation as the flood wave travels through the river 

(resulting in a lower factor), or rainfall on the Meuse catchment area that is 

not covered by one of the tributaries (leading to a higher factor). The factor 

can therefore be lower or higher than 1.0. The model is deliberately kept 

simple, so that the consequences of the experts’ estimates remain traceable 

for them. Location 𝑑 can be any location along the river where the discharge 

is assumed to be dependent mainly on rainfall in the upstream catchment. 

During an event, the tributary peak discharges 𝑄𝑢 are related; a rainfall 

event will likely span an area larger than the tributary, and therefore cause 

a lower or higher discharge in multiple tributaries. Additionally, 

hydrological characteristics of the catchments are similar for neighboring 

tributaries. These dependencies are modelled with a multivariate Gaussian 

distribution that is realized through Bayesian Networks estimated by the 

experts.The random variable 𝑄𝑢 is modelled with the generalized extreme 

value (GEV) distribution (Jenkinson 1955). We chose this family of 

distributions firstly because it is widely used to estimate the probabilities of 

extreme events. Secondly, it provides flexibility to fit different rainfall-

runoff responses by varying between Frechet (heavy tailed), Gumbel 

(exponential tail) and Weibull distributions (light tailed). We fitted the GEV 

distributions to observations, expert estimates, or both, using Bayesian 

inference (described in Sect. 3.3). The factor or ratio 𝑓𝛥𝑡 in Eq. 

[eq:main_model] compensates for differences between the sum of upstream 

discharges and the downstream discharge. These result from, for example, 

hydraulic properties such as the time difference between discharge peaks 



 

 

and peak attenuation as the flood wave travels through the river (which 

would individually lead to a factor < 1), or rainfall in the Meuse catchment 

area that is not covered by one of the tributaries (which would individually 

lead to a factor > 1). When combined, the factor can be lower or higher 

than 1.0. We elicited the discharges that are exceeded on average once per 

10 years and once per 1,000 years (for brevity called the 10-year and 1,000-

year discharge hereafter) from the experts, as well as the factor 𝑓𝛥𝑡, using 

structured expert judgment (SEJ), as described in Sect. 3.2. The 1,000-year 

discharge is meant to inform the tail of the tributary discharge probability 

distributions. This tail is represented by the GEV tail shape parameter that 

is most difficult to estimate from data. We chose to elicit discharges, rather 

than a more abstract parameter like the tail shape itself, such that experts 

make estimates on quantities that may be observed and at "a scale on which 

the expert has familiarity" (Coles and Tawn 1996, 467). 

The tributary peak discharges 𝑄𝑢 are correlated because a rainfall event is 

likely to affect an area larger than a single tributary catchment and nearby 

catchments have similar hydrological characteristics. This dependence is 

modelled with a multivariate Gaussian copula that is realized through 

Bayesian Networks estimated by the experts (Hanea, Morales Napoles, and 

Ababei 2015). The details of this concern the practical and theoretical 

aspects of eliciting dependence with experts and are beyond the scope of 

this article. They will therefore be presented in a separate article that is yet 

to be published. The We did use the resulting correlation matrices, 

presented in appendix 6.3.0.0.2, are nonetheless used for calculating the 

discharge statistics in this study. They are presented in appendix 8. 

Each random variable of this multivariate model is a univariate (marginal) 

distribution. We useThe model from Eq. [eq:main_model] was deliberately 

kept simple to ensure that the generalized extreme value distribution (GEV) 

as a statistical modeleffect of the experts’ estimates on the result remains 

traceable for extreme discharges (Jenkinson 1955). This family of 

distributions is used because it is suitable to estimate the probabilities of 

extreme events and gives flexibility by varying between Frechet, Gumbel 

and Weibull distributions (i.e., heavy tailed, exponentially tailed, and light 

tailed, respectively) to fit specific catchment properties.them. Section 3.4 

explains how downstream discharges arewere generated from these model 

components, (i.e., the different terms in Eq. [eq:main_model]), including 

uncertainty bounds. 

 The model wasis also described in more detail in (G. Rongen, Morales-

Nápoles, and Kok 2022b) as well, where it was used in a solely data-driven 

context. 



 

 

3.2 Assessing uncertainties with expert judgment 

We useThe experts’ estimates are elicited using Cooke’s method for. This is 

a structured expert judgment. Cooke’s model is a method to elicit and 

combineapproach to elicite uncertainty for unknown quantities. It 

combines expert judgments based on empirical control questions, with the 

aim to find a single, combined, estimate for the variablevariables of interest 

(rational consensus). The approach Cooke’s method is typically employed 

when alternative approaches for quantifying uncertain variables are lacking 

or unsatisfying (e.g., due to costs or ethical limitations). It is extensively 

described in (Roger M. Cooke 1991) while applications are discussed in 

(Roger M. Cooke and Goossens 2008), here). Here, we discuss some of the 

basic elements of the method. 

The expert makes an uncertainty estimate for each question by estimating a 

number of percentiles. In this study (and in most others) these are the 5th, 

50th and 95th percentile, that are combined into a probability density 

function (PDF) 𝑓𝑒𝑥𝑝  for each expert for each variable of interest. With 

expert’s answers to seed or calibration variables (unknown to the experts 

at the moment of the elicitation), We applied Cooke’s method assigns a 

weight to each participating expert. The expert weight, 𝑤𝛼(𝑒), is calculated 

by multiplying the calibration and information scores, if the experts 

calibration score is above the chosen significance level:because of its strong 

mathematical base, track record (Colson and Cooke 2017) and the authors’ 

familiarity with this method. 

In Cooke’s method, a group of participants, often researchers or 

practitioners in the field of interest, provides uncertainty estimates for a set 

of 𝑤𝛼(𝑒) = 1𝛼 × calibration score(𝑒) × information score(𝑒). 

The calibration score is calculated from the questions for which the answer 

is known by the researcher. These can be divided into two categories; seed 

and target questions. Seed questions are used to assess the participants’ 

ability to estimate uncertainty within the context of the study. The answers 

to these questions are known by the researchers but not by the participants 

at the moment of the elicitation. These are referred to as seed or calibration 

variables. Calibration is a measure ofSeed questions are often sourced from 

similar studies or cases unknown to the participants. They are as close as 

possible to the variables of interest and in any case related to the field of 

expertise of the participant pool. Target questions concern the variables of 

interest, for which the answer is unknown to both researchers as 

participants. 

The uncertainty for each item is expressed by estimating percentiles (rather 

than a single value), from which two scores are calculated, the statistical 

accuracy of the expert. The information score expresses the precision of an 

expert’s answers.and information scores. Typically, the 5th, 50th, and 95th 



 

 

percentiles are elicited. This creates a probability vector with 4 inter-

quantile intervals, 𝑝 = (0.05,0.45,0.45,0.05). The statistical accuracy is 

calculated by comparing the inter-quantile probability 𝑝𝑖  to 𝑠𝑖(𝑒), the 

fraction of realizations within expert 𝑒’s inter-quantile interval. The score is 

based on the relative information 𝐼(𝑠(𝑒)|𝑝), which equals ∑𝑖=1,...,4

𝑠𝑖 log(𝑠𝑖/𝑝𝑖). In case of 20 questions, the statistical accuracy is highest if the 

expert overestimates 1 seed question (i.e., the actual answer was below the 

5th percentile), underestimates 1 question, and has 9 questions in both the 

[5%, 50%] and [50%, 95%] interval. This would result in 𝑠 equaling 𝑝 and 

ratios of 1. The farther away these interquantile ratios are from 1, the lower 

the statistical accuracy. Note that the maximum statistical accuracy is not 

achieved when all answers are close to the median, but it would give a high 

score nonetheless. The information score measures the degree of 

uncertainty of an expert’s answers compared to other experts. Percentile 

estimates that are close together (compared to the other participants) are 

more precise, more informative, and get a higher information score. The 

product of the statistical accuracy and information score gives the expert’s 

weight 𝑤𝛼(𝑒): 

𝑤𝛼(𝑒) = 1𝛼 ×In this study, the seed variables are the discharges that are 

exceeded on average once per 10 years, according to the measurements. An 

example of a seed question is: "What is the discharge that is exceeded on 

average once per 10 years, for the Vesdre at Chaudfontaine?". Discharges 

with a 10 year recurrence interval are exceptional, but can in general still 

be well approximated from the available data. The information score is 

calculated from all questions, and is a measure of the degree of uncertainty 

of the experts answer. The decision maker (DM) is 

astatistical accuracy(𝑒) × information score(𝑒). 

Experts with a statistical accuracy lower than 𝛼 can be excluded from the 

pool by using a threshold, expressed by the 1𝛼 in Eq. [eq:cookes]. This 

threshold is usually 5%. The (weighted) combination of the experts’ 

estimates. is called the decision maker (DM). The expert contributesexperts 

contribute to the 𝑖th item’s DM by the assigned weight, the product of the 

calibration score and information scoretheir normalized weight: 

DM𝛼(𝑖) =∑𝑤𝛼

𝑒

(𝑒)𝑓𝑒,𝑖/∑𝑤𝛼

𝑒

(𝑒). 

This is called the global weight (GL) DM. Alternatively, the experts can be 

given the same weight, which results in the equal weight (EQ) DM. This 

does not require eliciting seed variables, but neither does it distinguish 

experts based on their performance, a key aspect of Cooke’s method. Other 

methods for expert elicitation could have been used as well. A well-known 

alternative to Cooke’s method is the Delphi method (Brown 1968), in which 

experts estimate and discuss in rounds, until consensus is reached on the 

estimates. Another option is a Bayesian approach, as described in Hartley 



 

 

and French (2021). We chose Cooke’s method because of its strong 

mathematical base and track record (Colson and Cooke 2017), and the 

authors’ familiarity with this method. 

We To construct the DM, probability density functions (PDFs) such as 𝑓𝑒,𝑖  in 

Eq. [eq:DM], need to be created PDFs from the experts’ quantile percentile 

estimates by fitting a . We used the Metalog distribution trough the 

percentilesfor this (Keelin 2016). This distribution allows to fit is capable of 

exactly fitting any three -percentile estimate without changing the 

estimates.. For symmetric estimates, the distribution it is bell-shaped. For 

asymmetric ones, it becomes left- or right -skewed. Normally, inTypically, 

Cooke’s method, the PDF is created by assuming assumes a uniform 

distribution in between the percentiles (minimum information). This leads 

to a piece-wise linear cumulative distribution, stepped PDF where the 

Metalog gives a smooth fitPDF. An example of using the Metalog 

distribution in an expert elicitation study wasis described by (Dion, 

Galbraith, and Sirag 2020). All calculations related to Cooke’s method were 

performed using the open-source software ANDURYL (Leontaris and 

Morales-Nápoles 2018; Hart, Leontaris, and Morales-Nápoles 2019; Guus 

Rongen et al. 2020). 

7In this study, the seed questions involve the 10-year discharges for the 

tributaries of the river Meuse. An example of a seed question is: "What is 

the discharge that is exceeded on average once per 10 years, for the Vesdre 

at Chaudfontaine?" The target questions concern the 1000-year discharges, 

as well as the ratio between upstream sum and downstream discharge. 

Discharges with a 10-year recurrence interval are exceptional but can in 

general be reliably approximated from measured data. Seven experts 

participated in the in-person elicitation that took place on the 4th of July 

2022. The study and model wherewere discussed before making the 

assessments to make sure that the study concepts and questions were clear. 

After this, an training exercise for the Weser catchment was done in which 

the experts needed to answer answered four questions that were 

subsequently discussed afterwards. This. In this way, the experts could see 

howcompare their answers compared to the realizations, and subsequently 

what theirview the resulting scores inusing Cooke’s method were. . 

Apart from the training exercise, the experts answered 26 questions,: 10 

seed questions forregarding the 10-year discharge that is exceeded on 

average once per 10 years (1(one for each tributary), 10 target questions 

for, regarding the 1,000-year discharge exceeded on average once per 1000 

years, and 6 target questions for the factorsratios between upstream sum 

and downstream discharge (2 return periods × 3 locations). Note that we 

will use the shorthand 10-year and 1,000-year notation in the remainder of 

this article, when indicating the ‘return period’ of average recurrence 

interval of discharges. , for three locations). A list of the 7 participants 

andseven participants’ names, their affiliations, and their field of expertise 



 

 

is shown in table Table [tab:experts]. The alphabetic order in which 

theWhile the participants are pre-selected on their expertise, experts are 

listed holds no relation to the number in whichscored post hoc in terms of 

their ability to estimate uncertainty in the context of the study. We note that 

the alphabetical order of the experts are labelledin the table does not 

correspond to their labels in the analysis carried outresults. An overview of 

the data provided to the participants is given in this articleSect. 2, while the 

data itself, as well as the questionnaire, are presented in the supplementary 

information. 

Name Affiliation SpecialismField of expertise 

Alexander 

Bakker 

Rijkswaterstaat & 

Delft University of 

Technology 

Risk analysis for storm surge 

barriers, extreme value 

analyses, climate change and 

climate scenario’s. 

Eric 

Sprokkereef 

Rijkswaterstaat Coordinator crisis advisory 

group Rivers. Operational 

forecaster for Rhine and Meuse 

Ferdinand 

Diermanse 

Deltares Expert advisor and researcher 

flood risk. 

Helena 

Pavelková 

Waterschap Limburg Hydrologist 

Jerom Aerts Delft University of 

Technology 

Hydrologist, focussed on 

hydrologic modelling on a 

global scale. PhD candidate. 

Nicole 

Jungermann 

HKV consultants Advisor water and climate 

Siebolt 

Folkertsma 

Rijkswaterstaat Advisor in the Team Expertise 

for the River Meuse 

   

3.3 Determining model coefficients with Bayesian 

inference 

WeThe model for downstream discharges (Eq. [eq:main_model]) is 

quantified using Bayesian inference. Firstly, because Bayesian methods 

explicitly incorporate uncertainty, which is a key aspect of this study. 

Secondly, because these methods provide a natural way to integrate expert 

judgment with data. Because the experts do not know the exact values of 

the discharges they are estimating, their estimates can be seen as prior 

information. This can subsequently be updated to a posterior distribution 

using available data. Note that the experts did not estimate the prior 

distributions of the GEV-parameters directly but they estimated the 10-year 

and 1000-year discharge from which the parameters were estimated. 



 

 

To evaluate the performance of the combined data and EJ approach, we 

compared it to using each of these sources of information individually. 

Hence, we distinguished three approaches for fitting the model from Eq. 

[eq:main_model],: 

• theThe ‘data-only’ approach, in whichutilizing only measured 

discharges (the annual maxima per tributary that lead to a peak 

discharge at Borgharen) were used,.) 

• theThe ‘EJ-only’ approach, in which onlysolely relying on the 

expert’s estimate for the 10-year and 1,000-year discharge is used, 

and. 

• theThe combined ‘data and EJ’ approach, in whichcombining the 

measured discharges are combined with the expert estimate for 

the 1,000-year discharge (notexcluding the 10-year discharge). 

The fitting A probability distribution for extreme discharges was fit for each 

one of the three options is performedapproaches using the Bayesian 

inference technique Markov-Chain Monte Carlo (MCMC). This results in an 

inference), a Bayesian inference technique commonly used to sample from 

a PDF. The MCMC algorithm generates a trace of thedistribution parameters 

of the GEV distribution (i.e., the PDF for the tributary discharges). This . 

After removing the spin-up and thinning it to remove autocorrelation, the 

trace isbecomes the empirical joint probability distribution of, in our case, 

the three GEV model parameters (the GEV has three parameters) that is for 

each tributary. These are subsequently used for samplingto calculate the 

downstream discharges (see Sect. 3.4). MCMC is the name commonlyThe 

Python module ‘emcee’ (Foreman-Mackey et al. 2013) was used for 

Bayesian inference. This module implements the affine invariant MCMC 

ensemble sampler as described by Goodman and Weare (2010). 

The MCMC procedure relies on a grouplikelihood-based criterion to assess 

the goodness of algorithms used to sample fromfit for a PDF. One 

exampleproposed combination (𝜃) of such algorithmsthe GEV distribution 

parameters, comprising the location (𝜇), scale (𝜎), and shape parameter (𝜉). 

Consider 𝑧 = (𝑥 − 𝜇)/𝜎. The probability density function (PDF) of the GEV 

is then, 

𝑓(𝑥) = {

1

𝜎
exp(−exp(−𝑧))exp(−𝑧), if 𝜉 = 0

1

𝜎
exp(−(1 − 𝜉𝑧)1/𝜉)(1 − 𝜉𝑧)1/𝜉−1, if 𝑧 ≤ 1/𝜉 and 𝜉 > 0

 

This posterior likelihood function consists of three parts. The first 

component is the Metropolis-Hastings algorithm (Hastings 1970).prior 

likelihood of the GEV-parameters. We prefer this to be weakly informative 

(i.e., uninformative, but within bounds that ensure a stable simulation), 

such that only the data and expert estimates inform the final result. 



 

 

However, we did add an informative prior to the shape parameter (𝜉) for 

two reasons. Firstly, when only using expert estimates and no data, two 

discharge estimates are not sufficient for fitting the three parameters of the 

GEV-distribution. Secondly, the standard deviation of the shape-parameter 

decreases with increasing number of years (or other block maxima) in a 

time series (Papalexiou and Koutsoyiannis 2013). Our 30 to 70 annual 

maxima per tributary are not sufficient to reach convergence. Therefore, we 

employ the geophysical prior as presented by Martins and Stedinger 

(2000); a beta distribution with 𝛼 = 6 and 𝛽 = 9 for 𝑥 ∈ [−0.5,0.5], for 

which the PDF is: 

𝑓(𝑥) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 

with 𝑥 = 𝜉 + 0.5, and 𝛤 being the gamma-function. This Bayesian technique 

combines a-priori distributions with observations to estimate a-posteriori 

distributions. We used a weakly informed prior for the GEV distribution, 

which is described in Appendix 6.0.0.0.1 in more detail. These were then 

updated with observations, with expert estimates, or PDF is slightly skewed 

towards negative values of the shape parameter, preferring the heavy tailed 

Frechet distribution over the light tailed reversed Weibull. In their analysis 

of a very large number of rainfall records worldwide, Papalexiou and 

Koutsoyiannis (2013) came to a similar distribution for the GEV-shape 

parameter. 

We assigned equal probability to all values of 𝜇 and 𝜎 greater than 0. This 

corresponds to a weakly informative prior for 𝜇 (positive discharges), and 

an uninformative prior for 𝜎 (only positive values are mathematically 

feasible). Together with boththe beta-distribution for 𝜉, the prior likelihood 

function 𝜋(𝜃) equals 𝑓𝛽(𝜉 + 0.5) for −0.5 < 𝜉 < 0.5, 𝜎 > 0, and 𝜇 > 0. 

𝜋(𝜃) = 0 for any other combination. 

Just like most curve fitting algorithms, MCMC uses a (log-) likelihood-based 

criterion to find a good fit. Figure After the prior, the second and third part 

of the posterior likelihood function are the likelihood of a GEV given the 

observed discharges and expert estimates. Figure 2 illustrates this. The top 

curve 𝑓(𝑄|𝜃)  shows how the likelihood of a specific GEV distribution is 

calculated, based on the observations and expert estimates. This calculation 

is implemented as a custom likelihood function in the used Python-package 

for Bayesian statistical modelling PyMC3 (Salvatier, Wiecki, and 

Fonnesbeck 2015). 

 

represents a proposed GEV-distribution for the random variable 𝑄 

(tributary peak discharge) with parameter vector 𝜃. 



 

 

 

Figure 2: Conceptual visualization of elements in the likelihood-function of a 

tributary GEV-distribution. 

The top curve 𝑓(𝑄|𝜃) represents a fitted GEV-distribution with parameter 

vector 𝜃. The log-likelihood of the parameters that give this specific GEV 

can be𝜃 is calculated withas the productsum of the log-probability density 

function of the observations (i.e., the product ofeach observation 𝑞 given 𝜃, 

or, 

ℓ(𝜃|q) = ∑log

𝑖

(𝑓(𝑞𝑖|𝜃)). 

𝑓(𝑞𝑖|𝜃) corresponds to the length of the arrows in the figure): 

ℓ(𝜃|𝑞) =∑log

𝑖

(𝑓𝜃(𝑞𝑖)). 

The best fit of the curve is the set of parameters 𝜃 for which the log-

likelihood ℓ, given the observations, 𝑞 is maximal. The MCMC sampling 

algorithm gives a (joint) probability density function of 2. The log-

likelihood of 𝜃, instead of a single value as a maximum likelihood estimate 

would. 

The log-likelihood of given the expert’s estimateestimates is calculated and 

added to the total likelihood, in a similar way as follows: 



 

 

described by Viglione et al. (2013): Given a GEV-distribution 𝑓𝜃(𝑄)𝑓(𝑄|𝜃), 

the dischargesdischarge 𝑞 for one or twoa specific annual exceedance 

probabilities areprobability 𝑝 is calculated (1/from the inverse CDF, 

𝑞𝑝𝑗 = 𝐹−1(1 − 𝑝𝑗|𝜃), 

1. with 𝑝𝑗  being the 𝑗’th elicited exceedance probability. This 

discharge is compared to the expert’s or DM’s estimate for this 10 

and 1/- or 1,000 for EJ-only, 1/1,000 for data and EJ combined).-

year discharge, 𝑔 (𝑞𝑝𝑗). These discharges correspond to an average 

recurrence interval of 10 and 1,000 year. 

1. The expert is asked for an estimate of the discharge estimates are 

illustrated with this exceedance frequency resulting in the 

distribution 𝑓𝑒𝑥𝑝 . These estimates are displayed by the curves on 

the bottom of Fig. 2. 

 The likelihood of the GEV-quantile according to the expert or DM can then 

be calculated in the expert estimated distribution:with, 

ℓ(𝜃|𝑒𝑥𝑝) = ∑log

𝑗

(𝑓𝑒𝑥𝑝,𝑗 (𝑞𝑝𝑗))

= ∑log

𝑗

(𝑓𝑒𝑥𝑝,𝑗 (𝐹𝜃
−1(1 − 𝑝𝑗)))

 

  where 𝑝𝑗  is the exceedance probability for quantile 𝑗, and 𝑞𝑝𝑗  the 

discharge corresponding to that exceedance probability based on 

the GEV-distribution 𝑓𝜃 . 𝐹𝜃 is the cumulative distribution function 

(CDF), so its inverse, 𝐹𝜃
−1, is the quantile function. 

By summing the likelihood in equations [eq:obs_likelihood] and 

[eq:exp_likelihood], the likelihood of the distribution given both the 

observations and expert opinions is calculated. This is an unbalanced sum 

because there are many more observations contributing to that part of the 

likelihood, than there are expert estimates (only one when combining data 

and EJ). We therefore add a factor 10/𝑁𝑜𝑏𝑠 to the likelihood function that 

weights the observations as if only 10 were measured. Note that 10 is still 

much more than the single expert estimate. The estimate is however made 

for the 1,000-year discharge, which gives it more weight due to the 

cantilever effect (i.e., a small parameter variation results in a large 

difference for the 𝑞1000, and therefore the ℓ(𝜃|𝑒𝑥𝑝) as well). We found that 

10 gave a good balance between observations and expert estimates but we 

realize that it is somewhat subjective. Appendix 6.3.0.0.1 shows a 

sensitivity analysis of the MCMC-fit to substantiate the choice for this factor. 

The complete likelihood function that is used to fit a distribution to both 

data and expert estimates, is: 



 

 

ℓ(𝜃|𝑞, 𝑒𝑥𝑝) =

 
10

𝑁𝑖

⋅∑ log

𝑖

(𝑓𝜃(𝑞𝑖)) + log (𝑓𝑒𝑥𝑝 (𝐹𝜃
−1(0.999))) 

For the factor between the tributaries’ sum and the downstream 

discharge
ℓ(𝜃|g) = ∑ log𝑗 (𝑔 (𝑞𝑝𝑗))

= ∑ log𝑗 (𝑔 (𝐹𝜃
−1(1 − 𝑝𝑗))) .

 

By summing the log-likelihood in equations [eq:prior_likelihood], 

[eq:obs_likelihood], and [eq:exp_likelihood], we get the total posterior 

likelihood function: 

ℓ(𝜃|q,g) =

 log(𝜋(𝜃)) + log(𝑓(q|𝜃)) + log (g(𝐹−1(1 − p|𝜃)))
 

The posterior likelihood comprises the prior likelihood, the likelihood of 

the observations, and the likelihood of the expert judgment. If only data are 

used, the last term drops out. If only expert judgments are used, the second 

term drops out, and the last term contains two expert estimates. If both 

data and expert judgment are used, the last term contains only a single 

expert estimate. Equation [eq:combined_likelihood] is used to compare the 

likelihoods of specific proposed parameter-combinations in the MCMC-

sampling. Notice that the expert judgment term does not take into account 

any information in the observed discharges q and can therefore be 

considered prior information. 

With the procedure summarized in Eq. [eq:combined_likelihood], the 

probability distributions for the tributary discharges (𝑄𝑢  in Eq. 

[eq:main_model]) are quantified. This leaves the ratio between the 

upstream sum and downstream discharge (𝑓𝛥𝑡) and the correlations 

between the tributary discharges to be estimated. For the ratios, we 

distinguished between observations and expert estimates as well. A log-

normal distribution was fitted to the observations. This 

respondscorresponds to a practical choice for a distribution of positive 

values with sufficient shape flexibility. The experts estimated a distribution 

for the factor as well, which iswas used directly for the experts-only fit. For 

the combined model fit, the observation-fitted log-normal distribution was 

used up to the 10-year range, and the expert estimate (fitted with a Metalog 

distribution) for the 1,000-year factor. In between, the factor wasValues of 

𝑓𝛥𝑡 for return periods 𝑇 greater than 10 were interpolated, and for 

recurrence intervals larger than 1,000  (up to 1000-years, the factor was) or 

extrapolated., 

𝑓𝛥𝑡|𝑇 = 𝑓𝛥𝑡|10𝑦 +
log(𝑇) − log(10)

log(1,000) − log(10)
⋅ (𝑓𝛥𝑡|1,000𝑦 − 𝑓𝛥𝑡|10𝑦), 



 

 

with 𝑓𝛥𝑡|10𝑦 thus being sampled from the lognormal, and 𝑓𝛥𝑡|1000𝑦 from the 

expert estimated Metalog distribution. During the expertsexpert session, a 

participant askedrequested to make a different estimateestimates for the 

factor at the 10-year event and 1,000-year event, a distinction that initially 

was not planned. Following thethis request, we changed the questionnaire 

such that a factor could be specified at both return periods. One expert used 

the option to make the distinctiontwo different estimates. 

Finally, forFor the correlation matrix describing the dependence between 

tributary extremes, we have the observed correlations, were used for the 

data-only option, and the expert-estimated correlations, used for the 

expert-only option. For the combined option, we simply taketook the 

average of the observed correlation matrix and the expert-estimated 

correlation matrix. Other possibilities for combining correlation matrices 

are available (e.g.,see for example Al-Awadhi and Garthwaite 1998, for a 

Bayesian approach), however an in depth research of these gooptions are 

beyond the goalscope of this study. Notice also that in this study we 

investigate a "50-50" contribution from data and experts. 

3.4 Calculating the downstream discharges 

With the fitted model components described in Section 3.1, we calculated 

the discharge at a downstream location. To calculate a single exceedance 

frequency curve, we used a Monte Carlo approach in which the following 

samples for the 𝑁𝑇 = 9 tributaries, 𝑁𝑄 = 10,000 discharge events, and 

𝑁𝑀 = 8,000 MCMC parameter combinations were combined: 

3. 𝑁𝑇 draws from the dependence model transformed to the [1, 𝑁𝑀] 

interval. These are used as index to pick a GEV parameter 

combination from each tributary’s inference trace after these 

sorting these based on the once per 1,000 year discharge. Doing 

this leads to relatively similar (1,000-year) discharges for 

tributaries with a strong dependence. 

4. 𝑁𝑇 × 𝑁𝑄 draws from the dependence model. These events (on a 

standard normal scale) are transformed to the discharge 

realizations for each tributaries GEV parameter combination. 

𝑁𝑄  draws from the factor between The last section explained the three 

quantification alternatives of the components from Eq. [eq:main_model], 

needed to calculate the downstream discharges. These components are: 

• Tributary (marginal) discharges, represented by the GEV-

distributions from the Bayesian inference. 

• The interdependence between tributaries, represented by a 

multivariate normal copula. 



 

 

5. The ratio between the upstream sum and downstream discharge, 

used to multiply the sum of the upstream discharges to get the 

downstream discharge. 

• Assigning exceedance frequencies to the 𝑁𝑄  discharges using plot 

positions gives an exceedance frequency curve (plot positions from 

(Bernard and Bos-Levenbach 1955) were used). Repeating this 

procedure 2000 times, and calculating the percentiles per 

exceedance frequency, results in the uncertainty intervals of the 

exceedance frequency curves.(𝑓𝛥𝑡). 

Note that in the sampling approach, the correlation model is not only used 

to model tributary dependence within individual events but also to model 

the dependence between different tributaries’ GEV parameter 

combinations. With this we express our assumption that the correlation 

between tributaries is present as well in the uncertainty intervals. After all, 

the uncertainty in the fitted distributions is mainly the result from the 

largest observed events. Having a time series with (or without) high 

discharge(s) in multiple tributaries affects the fitted distributions in a 

similar way for these different tributaries. 

In line with the objective of this article, an uncertainty estimate is derived 

for the downstream discharges. This section describes the method in a 

conceptual way. Appendix 7 contains a formal step-by-step description. 

To calculate a single exceedance frequency curve for a downstream 

location, 10,000 events (annual discharge maxima) are drawn from the 9 

tributaries’ GEV-distributions. Note that 10 tributaries are displayed in Fig. 

1. However, the Semois catchment is part of the French Meuse catchment 

and therefore only used to assess expert performance. The 9 tributary peak 

discharges are summed per event and multiplied with 10,000 factors (one 

per event) for the ratio between upstream sum and downstream discharge. 

The 10,000 resulting downstream discharges are assigned an annual 

exceedance probability through plotting positions, resulting in an 

exceedance frequency curve. This process is repeated 10,000 times with 

different GEV-realizations from the MCMC-trace. This results in 10,000 

curves (each based on 10,000 discharges), from which the uncertainty 

bandwidth is determined. This is illustrated in Fig. 3. The grey lines depict 

50 of the 10,000 curves (these can be both tributary GEV-curves, or 

downstream discharge curves). The (blue) histogram gives the distribution 

of the 1,000-year discharges. The colored dots indicate the 2.5th, 50th, and 

97.5th percentiles in this histogram. Calculating these percentiles for all 

annual exceedance probabilities results in the black percentile curves, 

creating the uncertainty interval. 



 

 

 

Figure 3: Individual exceedance frequency curves for each GEV-realization or 

downstream discharge, and the different percentiles derived from these. 

The dependence between tributaries is incorporated in two ways. First, the 

10.000 events underlying each downstream discharge curve are correlated. 

This is achieved by drawing the [9 x 10,000] sample from the (multivariate 

normal) correlation model, transforming these samples to uniform space 

(with the normal CDF), and then to each tributary’s GEV-distribution space 

(with the GEV’s inverse CDF). This is the usual approach when working 

with a multivariate normal copula. The second way of incorporating the 

tributary dependence is by choosing GEV-combinations from the MCMC-

results while considering the dependence between tributaries (i.e., picking 

high or low curves from the uncertainty bandwidth for multiple 

tributaries). As illustrated in Fig. 3, a tributary’s GEV-distribution can lead 

to relatively low or high discharges. This uncertainty is largely caused by a 

lack of realizations in the tail (i.e., not having thousands years of 

independent and identically distributed discharges). If one tributary would 

fit a GEV distribution resulting in a curve on the upper end of the 

bandwidth, it is likely because it experienced a high discharge event that 

affected its neighbouring tributary as well. Consequently, the neighbouring 

tributary is more likely to also have a ‘high-discharge’ GEV-combination. To 

account for this, we first sort the GEV-combinations based on their 1,000-

year discharge (i.e., the curves’ intersections with the blue dashed line), and 

draw a 9-sized sample from the dependence model. Transforming this to 

uniform space gives a value between 0 and 1 that is used as rank to select a 

(correlated) GEV-combination for each tributary. Doing this increases the 

likeliness that different tributaries will have relatively high or low sampled 

discharges. 



 

 

4 Experts’ performance and resulting discharge 

statistics 

In thisThis result section, we first presentpresents the expertexperts’ scores 

for Cooke’s method, (Sect. 4.1) and the experts’ rationale for answering the 

questions. (Sect. 4.2). After this, the extreme value results for the tributaries 

(Sect. 4.3) and downstream locations (Sect. 4.4) are presented. 

4.1 Results for Cooke’s method 

The experts estimateestimated three-percentiles (5th, 50eth50th and 95th) 

for the 10- and 1,000-year discharges,discharge for all larger tributaries in 

the Meuse catchment. The 10-year estimate is used for calibration. An 

overview of the answers is given in the supplementary material. Based on 

these estimates, the scores for Cooke’s method are calculated. The results as 

described in Sect. 3.2. The resulting statistical accuracy, information score, 

and combined score (which, after normalizing, become weights) are shown 

in table 1. 

Scores for Cooke’s method, for the experts (top 7 rows) and decision makers 

(bottom 3 rows). 

 Calibration scoreStatistical 

accuracy 

Information score Comb. 

score 

  All Calibr.Seed  

Exp A 0.000799 1.605 1.533 0.00123 

Exp B 0.000456 1.576 1.633 0.000745 

Exp C 2.3 ⋅10-8 1.900 1.868 4.4 ⋅ 10 -8 

Exp D 0.683 0.711 0.626 0.427 

Exp E 0.192 1.395 1.263 0.242 

Exp F 0.000456 1.419 1.300 0.000593 

Exp G 0.00629 1.302 1.232 0.00775 

GL 

(opt) 

0.683 0.659 0.670 0.458 

GL 0.683 0.648 0.661 0.452 

EQ 0.493 0.537 0.551 0.271 

     

 

The calibration score, a measure for the expert’s statistical accuracy, varies 

between 2.3 ⋅ 10−8 for expert C to 0.683 for expert D. Two experts have a 

score above a significance level of 0.05. Figure 34 shows the position of 

each realization (answer) within the experts’ estimates. There were 10 



 

 

calibration variables assessedthree-percentile estimate for each with three 

percentiles.of the 10-year discharges. A well calibrated score would capture 

the realizations to these seed variables accordingly to (or as close to) the 

mass in each inter-quantile bin. Thus,: one realization below the 5th 

percentile, 4 in between the 5th and the median, four between the median 

and the 95th and one above the 95th. Expert D’s estimates closely resemble 

this distribution (
1

10
,
5

10
,
4

10
,
0

10
 for each inter-quantile respectively), hence 

the high statistical accuracy score. A concentration of dots on both ends 

indicates overconfidence (too narrowclose together estimates, resulting in 

realizations outside of the 90% bounds.)). We can seeobserve that most 

experts tend to underestimate the measured discharges, since most 

realizations are higher than their estimated 95th percentile. 

The information scores show less variation, as is usually the case. The 

expert with the highest calibration (or statistical accuracy) score (expert D) 

also has the lowest information score. Expert E, who has a high 

calibrationstatistical accuracy as well, providedestimated more 

concentrated answerspercentiles, resulting in a higher information score. 

 

 

Figure 34: Seed questions realizations’ compared to each expert’s estimates. 

The position of each realization is displayed as percentile point in the expert’s 

distribution estimate. 

The variation inbetween the three decision makers (DMs) shownin the 

table is limited. Optimizing the DM (i.e., excluding experts based on 

calibration scorestatistical accuracy to improve the DM-score) has a limited 



 

 

effect: Only. In this case, only expert D and E remainwould have a non-zero 

weight, resulting in more or less the same results as whencompared to 

including all experts, even when some of them contribute with 

"marginal"‘marginal’ weights. The equal weights DM results in a goodthis 

case results in an outcome;  that is comparable to that of the performance 

based DM, i.e., a high calibration scorestatistical accuracy with a slightly 

lower information score compared to the other two DMs. The item weights 

DM, which allocates more weight to precise answers, results in the same 

DM calibration score as the global weights DM. We chose not to use it as it 

assumes more precise (i.e., confident) answers are better, something we did 

not want to assume for this case study. 

We present the model results by fitting it toas discussed earlier through 

three cases i) only data, ii) only expert estimates, and iii) the two combined 

as described in Section 3.3. We used the global weights DM for the data and 

experts option (iii). This means the experts’ estimates for the 10-year 

discharges were used to assess the value of the 1,000-year answer. For the 

experts-only option, we used the equal weights DM, because using the 

global weights emphasizes estimates matching the measured data in the 10-

year range. This would indirectly lead to including the measured data in the 

fit. By using equal weights, we ignore the relevant calibrationseed 

questions, a situation that could ultimately be used when and the 

corresponding differential weighting of expert judgments is not 

consideredweights. 

4.2 Rationale for estimating tributary discharges 

We asked the experts to briefly describe the procedure they followed for 

making their estimates. From their responses we distinguished three 

approaches. The first was making, or thinking, of a simple conceptual 

hydrological model, in which the discharge follows from catchment 

characteristics like (a subset of) area, rainfall, evaporation and 

transpiration, precipitation-hydrographrainfall-runoff response, land-use, 

subsoil, slope, or the presence of reservoirs. Most of this information was 

provided to the experts, and if not so, they made estimates for it 

themselves. A second approach that experts followed was to compare the 

catchments to others that are known by the expert, and possibly adjusting 

the outcomes based on specific differences. A third approach was using 

rules of thumb, such as the expected discharge per square kilometer of 

catchment or a ‘known’ factor between an upstream tributary discharge 

and a downstream discharge (of which the statistics are better known). For 

estimating the 1,000-year discharge, the experts had to do some kind of 

extrapolation. Some experts scaled with a fixed factor, while others tried to 

extrapolate the rainfall, for which empirical statistics where provided. The 

hydrological data (described in Sect. 2) was provided to the experts in 

spreadsheets as well, making it easier for them to do computations. 



 

 

However, the time frame of one day (for the full elicitation) limited the 

possibilities for making detailed model simulations. 

Figure 45 gives an impression of how the different approaches leadled to 

different answers per tributary. It compares the 50th percentile of the 

discharge estimates per tributary of each expert, by dividing them through 

the catchment area. From the figure we can see that most experts estimated 

higher discharges for the steeper tributaries (Ambleve, Vesdre, Lesse). The 

experts estimated the median 1,000-year discharges to be 1.7 to 3.8 times 

as high as the median 10-year discharge, with an average of on average 2.3 

for all experts and tributaries. The statistically most accurate expert, Expert 

D, estimated factors in between 1.6 and 7.0. Contrarily, expert E, with the 

second highest score, estimated a ratio of 2.0 for all tributaries. 

 

Figure 45: Discharge per area for each tributary and experts, based on the 

estimate for the 50th percentile. (a) for the 10-year, and (b) for the 1,000-

year discharge. The lines are displayed to help distinguish overlapping 

markers. 

For estimating the factor between the tributaries’ sum and the downstream 

discharge, (𝑓𝛥𝑡 in Eq. [eq:main_model]), experts mainly took into 

consideration that not 100% of the area is covered by (i.e., it flows through) 

the locationsthe tributary catchments for which the discharge-estimates 



 

 

were made, and that there is a time difference between the downstream 

‘arrival’ of the tributary peaks. Additional aspects noted by the experts 

were the effects of flood peak attenuation and spatial dependence between 

tributaries and rainfall. 

The last part of the estimations required in order to calculate discharges at 

Borgharen is the dependence structure (correlations) between the 

tributaries. Experts estimated a correlation matrix for this by using a Non-

parametric Bayesian Network. The resulting correlation matrices are 

shown in appendix 6.3.0.0.2. 

4.3 Extreme discharges for tributaries 

Based on the procedures described in this paper including experts’ 

estimates weWe calculated the extreme discharge statistics for each of the 

tributaries. based on the procedures described in Sect. 3.3. Figure 

[fig:extreme_discharges_Borgharen] shows the results for Chooz and 

Chaudfontaine (left and middle column), a larger not to steep tributary, and 

a smaller steep tributary.). Chooz is a larger not too steep tributary, while 

Chaudfontaine is a smaller steep tributary (see figure 1). The right column 

shows the discharges for Borgharen, the location where we want to 

estimate the discharges through Eq. [eq:main_model], which is further 

discussed in Sect. 4.4. The results for the other tributaries are shown in the 

supplementary information for all experts and DMs. 

 



 

 

 

The top row (a, d, g) in Fig. [fig:extreme_discharges_Borgharen] shows the 

uncertainty interval of these distributions when fitted only to the discharge 

measurements. The outer colored area is the 95% interval, the more 

opaque inner, darker, area the 50% interval, and the thick line the median 

value. The second row (b, e, h) shows the fitted distributions when only 

expert estimates are used. The bottom row (c, f, i) shows the combination of 

expert estimates and data. The data-only option closely matches the data in 

the return period range where data are available, but the uncertainty 

interval grows for return periods further outside sample. Opposite to 

thisContrarily, the experts-only option shows much more variation in the 

“‘in sample"sample’ range, while the out of sample return periods are more 

constrained. The combined option is accurate in the “‘in sample"sample’ 

range, while the influence of the DM estimates is visible in the 1,000 year 

return period range. 

4.4 Extreme discharges for Borgharen 

Combining all the marginal (tributary) statistics with the factor for 

downstream discharges and the correlation models estimated by the 

experts, we get the discharge statistics for Borgharen. The results for this 

are shown in Fig. [fig:extreme_discharges_Borgharen] (g, h, i). 

As with the statistics of the tributaries, we observe high accuracy for the 

data-only estimates in the ‘in samplesample’ range, constrained uncertainty 

bounds for EJ-only in the range with higher return periods, and both when 

combined. The data-only results deviate from the observations for frequent 

events as well. This is the result of the wide uncertainty in the marginal 



 

 

distributions; a single large event at one of the larger tributaries (e.g. the 

French part of the Meuse) can by itself cause a large discharge event. 

Sampling from these wide uncertainty bounds will therefore (too) often 

result in a high discharge event. The combined results match the historical 

observations very well.The combined results match the historical 

observations well. Note that this is not self-evident as the distributions 

were not fitted directly to the observed discharges at Borgharen but rather 

obtained through the dependence model for individual catchments and 

equation [eq:main_model]. The EJ-only estimate gives a much wider 

uncertainty estimate, but the median (‘best estimate’) matches the 

observations surprisingly well given that the model was not directly fitted 

to the dataContrarily, the data-only results deviate from the observations in 

the 10- to 100-year range. Sampling from the fitted model components 

(GEVs, dependence model, and factors) does not accurately reproduce the 

downstream discharges in this range because they were individually fitted 

and not as a whole. We do not consider this a problem, as the study is 

oriented towards showing the effects of expert quantification in 

combination with more traditional hydrological modelling. The EJ-only 

estimates give a much wider uncertainty estimate. The experts’ combined 

median matches the observations surprisingly well, but the large 

uncertainty within the observed range cautions against drawing general 

conclusions on this. 

Zooming in on the discharge statistics for the downstream location 

Borgharen, we consider the 10, 100, and 1,000-year discharge. Figure 56 

shows the (conditional) probability distributions (smoothed with a kernel 

density estimate) for thethese discharges at thisthe location of interest. 



 

 

 



 

 

 

Figure 56: Kernel density estimates for the 10-year (a), 100-year (b), and 

1,000-year (c) discharge for Borgharen. The dots indicate the 55th, 50th and 

95th percentile. 

Comparing the same three variantsmodelling options discussed thus far, we 

see that the data-only option is much toovery uncertain, with a 95% 

credibilityuncertainty interval of 64,000 to around 119,000 m3/s for the 

1,000-year discharge. A Meuse-discharge of 4,000 m3/s will likely flood 

large stretches along the Meuse in the Dutch province Limburg, while a 

discharge of 5,000 m3/s also floods large areas further downstream (GWF 

Rongen 2016). For discharges higher than 6,000 m3/s the simple sum-

applied model (Eq. [eq:main_model]) should be reconsidered, as the 

hydrodynamic properties of the system change due to upstream flooding.  

The combined results are surprisingly close to the currently used GRADE-

statistics for dike assessment; the uncertainty is slightly larger but the 

median is closevery similar. The EJ-only results are less precise, but the 

median values (‘best estimate’) are similar to the combined results and 



 

 

GRADE-statistics. The large uncertainty is largelymainly the results of 

equally weighting all experts, instead of assigning most weight to 

expertexperts D and E (the global weight DM). The experts’For the 

combined data and EJ approach, the results for the tributary discharges 

roughly cover the intersection of the EJ-only and data-only results (see Fig. 

[fig:extreme_discharges_Borgharen] a-f). Figure 6 does not show this 

pattern, with the EJ-only results positioned in between the data-only and 

combined results. This is mainly due to equal weight DM used for the EJ-

only results, which gives a higher factor between upstream and 

downstream discharges (𝑓𝛥𝑡 in Eq. [eq:main_model]), and therefore higher 

resulting downstream discharges. Overall, the combined effect of data and 

EJ is more difficult to identify in the downstream discharges (Fig. 

[fig:extreme_discharges_Borgharen] g-i) than it is in the tributary discharge 

GEVs (Fig. [fig:extreme_discharges_Borgharen] a-f). This is due to the 

additional model components (i.e., the factor between upstream and 

downstream, and the correlation model) affecting the results. Additional 

plots similar to Fig. [fig:extreme_discharges_Borgharen] that illustrate this 

are presented in the supplementary information. There, the results for the 

other two downstream locations, Roermond and Gennep are , are presented 

as well. These results behave similar to those for Borgharen, and are 

therefore not presented here. They are however displayed in the 

supplementary material. 

5 Discussion 

The discharge estimates that result from this study show the value of fitting 

a relatively simple statistical model to both data and expert estimates. The 

predictive power of such models usually diminishes in the extrapolated 

range, but this is greatly improved by combining it with expert estimates. 

The data themselves help to increase the precision in the frequent range 

and it can point out the statistically accurate experts to improve the 

extrapolated range. 

To test the model without data, we used an equal weight decision maker 

and left out the data in the fitting procedure. Note that the equal weight DM 

is a conservative choice, as the experts’ statistical accuracy could still be 

determined based on another catchment where data are available. While 

the marginal distributions present wide bandwidths, the final results for 

Borgharen gave an accurate result, albeit with a large bandwidth (low 

precision). 

The discharge statistics at Borgharen currently used for dike assessment 

give a lower and less uncertain range for the 1,000-year discharge 

(Hegnauer and Van den Boogaard 2016). The estimates givenThis study 

proposed a method to estimate credible discharge extremes for the Meuse 

River (1,000-year discharges in the case of this research). Observed 



 

 

discharges were combined with expert estimates through the GEV-

distribution, using Bayesian inference. The GEV-distribution has typically 

less predictive power in the extrapolated range. Including expert estimates, 

weighted by their ability to estimate the 10-year discharges, improved the 

precision in this range of extremes. 

Several model choices were made to obtain these results. Their implications 

warrant further discussion and substantiation. This section addresses the 

choice for the elicited variables, the predictive power of 10-year discharge 

estimates for 1000-year discharges, the overall credibility of the results, 

and finally, some comments on model choices and uncertainty. 

5.1 Method and model choices 

We chose to elicit tributary discharges, rather than the downstream 

discharges (our ultimate variable of interest) themselves. We believe that 

experts’ estimates for tributary discharges correspond better to catchment 

hydrology (rainfall-runoff response). Additionally, this choice enables us to 

validate the final result with the downstream discharges. With the chosen 

set-up we thus tests the experts’ capabilities for estimating system 

discharge extremes from tributary components, while still considering the 

catchment hydrology, rather than just informing us with their estimates for 

the end results. However, this does not guarantee that the downstream 

discharges calculated from the experts’ answers match the discharges they 

would have given if elicited directly. 

We fitted the GEV-distribution based on the elicited 10-year and 1000-year 

discharges. In particular the uncertain tail shape parameter is informed 

through this, as the location and scale parameter can with relative certainty 

be estimated from data. Alternatively, we could have estimated the tail 

shape parameter directly (however this is not an observed quantity like 

discharges are), or estimated a related parameter such as the ratios 

between, for example, the 10-year and 100-year discharge. Because we are 

ultimately interested in the 1000-year discharges, we preferred eliciting 

absolute discharges directly. This is in line with guidelines for structured 

expert judgment, where eliciting observable quantities is recommended 

over the elicitation of model parameters which are not necessarily 

observed. We weight expert judgments based on their performance in 

estimating 10-year discharges and use this information to combine the 

experts’ 1,000-year estimates with data. This should increase the 

plausibility of a correct estimate of the shape parameter of the GEV or a 

ratio of extreme discharges with particular return periods. However, it is 

almost sure that if experts would have been assessed by their ability to 

estimate ratios of extreme discharges, different weights would have 

resulted than the ones presented in this research (refer to the markedly 

different ratios between the 10-year and 1,000-year discharge for the two 

best experts D and E in Fig. 5). A study focusing on how surprising large 



 

 

events can be, and whether one method renders consistently larger 

estimates than the other, would make an interesting comparison. This kind 

of study is however out of the scope of our research. Our research however 

shows that extreme discharge statistics can be improved when combining 

them with structured expert judgment procedures. 

Regarding the goodness-of-fit of the chosen GEV distribution, we note that 

some of the expert estimated 1,000-year discharges much higher of lower 

than would be expected from observations. We might considered this an 

indication that the GEV is not an adequate model to fit to this data. A 

significantly lower estimate indicates that the estimated discharge is wrong 

as it is unlikely that the 1,000-year discharge is lower than the highest 

observed in 30 to 70 years. A significantly higher estimate, on the other 

hand, might be valid, due to a belief in a change in catchment response 

under extreme rainfall (e.g., due to a failing dam). This would violate the 

GEV’s ‘identically distributed’ assumption. The GEV-distribution does 

however have sufficient shape flexibility to facilitate substantially higher 

1,000-year, so we do not consider this a realistic shortcoming. Accordingly, 

rather than viewing the GEV as a limiting factor for fitting the data, we use it 

as a validation for Cooke’s method scores, as described in Sect. 5.2. 

A final remark regarding the model is the omission of seasonality. The July 

2021 event was mainly extraordinary because of its magnitude in 

combination with the fact that it happened during summer. Including 

seasonality in the model estimates would have been a valuable addition, 

and it would likely be the first addition we would consider. However, it 

would also have (at least) doubled the number of estimates provided by 

each expert, which was not feasible for this study. The exclusion of 

seasonality effects from our research does not alter our main conclusion 

which is the possibility of enhancing estimation of extreme discharges 

through structured expert judgments. 

5.2 Validity of the results 

The experts participating in this study were asked to estimate 10-year and 

1000-year discharges. While both discharges are unknown to the expert, 

the underlying processes leading to the different return period estimates 

can be different. An implicit assumption is that the experts’ ability to 

estimate the seed variables (a 10-year discharge) reflects their ability to 

estimate the target variables (a 1000-year discharge). This assumption is in 

fact one of the most crucial assumptions in Cooke’s method and has 

extensively been discussed (Roger M. Cooke 1991). Seed questions have to 

be as close as possible to the variables of interest, and mostly concern 

similar questions from different cases or studies. Precise 1000-year 

discharge estimates are however unknown for any river system, making 

this option infeasible for this study. In comparison, with a conventional 

model-based approach, the ability of a model to predict extremes is also 



 

 

estimated from (and tailored to) the ability to estimate historical 

observations (through calibration). Advantages of relying in the 

extrapolation of a group of experts are that they can explicitly consider 

uncertainty and are assessed on their ability to do so through Cooke’s 

method. In Sect. 5.1 we described how inconsistencies between the 

observations and expert estimates can lead to a sub-optimal GEV-fit. The 

fact that this is most prevalent in the low-scoring experts and least for 

experts D and E supports the credibility of the results. Moreover, this means 

that the ‘bad’ fits have little weight in the final global weight DM results, and 

secondly that the GEV is considered a suitable statistical distribution to fit 

observations and expert estimates. 

The GRADE results from (Hegnauer and Van den Boogaard 2016) were 

used to validate the 1,000-year downstream discharge results. These 

GRADE-statistics at Borgharen (currently used for dike assessment) give a 

lower and less uncertain range for the 1,000-year discharge than the 

estimates obtained through our methodology. The estimates obtained in 

this study present larger uncertainty bands and indicate higher extreme 

discharges. This might be a consequence of the fact that we did not show 

the measured tributary discharges to the experts. This was a choice made in 

order to still be able to draw conclusions regarding the method without 

data. These measurements, such that we could have helpedclearly 

distinguish the effect of observations and ‘prior’ expert judgments. 

Moreover, GRADE (at the experts in making “less uncertain" estimates. On 

the other hand, iftime) did not include the July 2021 event. If the currently 

used GRADE statistics would behad been derived again includingwith the 

inclusion of the July 2021 event, it is not unlikely that they would 

appointlikely assign more probability to slightly higher discharges. The 

experts estimates on the contrary were elicited after the July 2021 event 

which likely did affect their estimates. Therefore, the comparison between 

GRADE and the expert estimates should not be used to assess correctness, 

but as an indication of whether the results are in the right range. 

Using expert judgment to provide answers for a model (like we did) can still 

giveTo evaluate the value of the applied approach that uses data combined 

with expert estimates, we compared the results that were fitted to only data 

or only expert judgment to the results of the combination. For the last 

option , we used an equal weight decision maker, a conservative choice as 

the experts’ statistical accuracy could potentially still be determined based 

on a different river where data for seed questions are available. While the 

marginal distributions of the EJ-only case present wide bandwidths (see 

Fig. [fig:extreme_discharges_Borgharen] b and e), the final results for 

Borgharen still gave a statistically accurate result but with a few caveats, 

namely that the uncertainty is very large and that the 10-year and 1,000-

year estimates in itself are insufficient to inform the GEV without adding 

prior information (otherwise we have 2 estimates for 3 parameters). 



 

 

Consequently, when only using expert estimates, eliciting the random 

variable (discharges) directly through a number of quantiles of interest, 

might be a suitable alternative. 

5.3 Final remarks on model choices 

Finally, we note that using expert judgment to estimates discharges through 

a model (like we did) still gives the analyst a large influence in the results. 

We try to keep the model transparent and provide the experts with 

unbiased information, but by defining the model on beforehand and 

choosing whichproviding specific information we provide,steer the 

participants are steered towards a certainspecific way of reasoning. Every 

step in the method;, such as the choice for a GEV-distribution, the 

dependence model, or the choice for Cooke’s method’, affects the end result. 

By presenting the method and providing background information explicitly, 

we hope to makehave made this transparent and show the useusefulness of 

the method for similar applications. 

6 Conclusions 

This study sets out to estimate establish a method for estimation of 

statistical extremes through structured expert judgment and Bayesian 

inference, in a case-study for extreme river discharges with expert 

judgment in a case study of on the River Meuse. Experts’ estimates of 

tributary discharges for large return periods were combined with 

measured high river discharges in ranges that are commonly “in sample". 

We combined the different tributary discharges exceeded in a once per 10 

year and once per 1,000 year event are combined with high river 

discharges measured over the past 30-70 years. We combine the discharges 

from different tributaries with a multivariate correlation model describing 

their dependence, and comparedcompare the results for three approaches, 

i) data only, ii) expert judgment only, and iii) the combination. We used The 

expert elicitation is formalized with Cooke’s method for structured expert 

judgment, in which the experts estimated the discharge that is exceeded on 

average once per 10 and 1,000 years. The once per 10 year estimate is in 

the observed range and was therefore used as calibration question for 

Cooke’s method. 

The results showed that of applying our method show credible extreme 

river discharges resulting from the combined expert-and-data approach are 

most plausible. Using only data gives relatively small uncertainty bounds in 

the range of lower return periods, while using only experts does constrains 

the uncertainty in the range of higher return periods. Note that results with 

smaller uncertainty bands does not mean they are also correct (in order to 

assess correctness we would need to observe thousands of years of 



 

 

measurements in an unchanging environment), but they seem credible 

when compared to the most extreme discharges we have observed. 

In conclusion, we found that with the method presented in this study we 

were successfully able to derive credible extreme discharges for the River 

Meuse. The combined data-EJ approach performed best . A comparison to 

GRADE, the prevailing method for estimating extreme river discharges, 

while the experts-only approach performeddischarge extremes on the 

Meuse, gives similar ranges for the 10-, 100-, 1,000-year discharges as 

GRADE. Moreover, the two experts with the highest scores from Cooke’s 

method had discharge estimates that correspond well with those 

discharges that might be expected from the observations. This indicates 

that using Cooke’s method to assess expert performance is a suitable way of 

using expert judgment to limit the uncertainty in the “out of sample” range 

of extremes. The experts-only approach performs satisfactory as well, albeit 

with a considerably larger uncertainty. This indicates that than the EJ-data 

option. The method can thus also be applied as well to river systems where 

measurement data are scarce or absent. A case study for a different river 

could verify these findings. The credible results, together with the relatively 

limited effort needed, makes the presented method an attractive alternative 

for a more complex hydrological model-study. 

Appendix A. Prior distribution for GEV inference 

1. A weakly informed prior 

Section 3.3 described how Markov-Chain Monte Carlo (MCMC) was used to 

derive credibility bounds for the GEV fit. MCMC is an algorithm for Bayesian 

inference, meaning it updates a-priori distribution with observations to an 

a-posteriori distribution. The central theme of this paper is using structured 

expert judgment to quantify a discharge model, so we wanted the prior to 

be unbiased regarding the expert estimates. We chose that this meant using 

a prior for the GEV that gives a uniform distribution between 0 and 10,000 

m3/s for the 1,000-year discharge. This range is wide enough to cover the 

plausible range for any expert or data fit (remember that we are only fitting 

tributary discharges). As this is not truly uninformative, we call it a weakly 

informative prior. 

2. Deriving the prior joint distribution 

The GEV-distribution needs three parameters, a location parameter 𝜇, 

scale-parameter 𝜎, and shape parameter 𝜉. Ambivalence about the three 

parameters (i.e, a uniform distribution 𝒰 with range (−∞,∞) for 𝜇 and 𝜉, 

and with range (0,∞) for 𝜎) does not lead to a uniform 1,000-year 

discharge, so we needed to derive the joint distribution of the three 

parameters that does give the required discharge distribution. We did this 

by using MCMC just like we fitted the expert , but adding information on 



 

 

less extreme events is recommended to increase the precision of the 

estimates (i.e., with the likelihood function of Eq. [eq:exp_likelihood]), but 

then with a uniform probability density between 0 and 10,000 m3/s:. 

ℓ(𝜃|𝑒𝑥𝑝) = ∑log

𝑗

(𝑓𝒰[0,10000]
(𝑞𝑝𝑗))

= ∑log

𝑗

(𝑓𝒰[0,10000]
(𝐹𝜃

−1(1 − 𝑝𝑗)))
 

By using the weakly informed priors 𝜇 = 𝒰[0,2000] , 𝜎 = 𝒰[0,10000], and 𝜉 =

𝒰[−2,2] and doing the inference, we get the distribution for the 1,000-year 

discharge shown in Fig. 6 (a). 

 

Figure 6: Histograms of 1,000-year discharges resulting from the MCMC prior 

traces. (a) With a uniform probability density as likelihood function, (b) with 

the inverse of the left densities as likelihood function. 

The probability density is limited in between 0 and 10,000 m3/s, but the 

probability density is not uniform. Therefore, we repeat the above 

procedure, but now with an empirical probability density, of 1 divided by 

the densities shown in Fig. 6 (a). This results in a sufficiently uniform 

pattern, Fig. 6 (b) shows. 

The inference-trace can now be used as empirical prior. However, it still has 

a problem: The degrees a freedom within the (𝜇, 𝜎, 𝜉)-combinations lead to 

too much prevalence of light-tailed distributions in the prior (i.e., a 

horizontal curve). Figure 7 (a) shows this. 



 

 

 

Figure 7: Example curves drawn from the priors. (a) Drawn from the prior 

with uninformed shape parameter 𝜉. (b) Using an informed shape parameter 

𝜉. 

When using this prior to fit the expert estimates without data, the results 

become unfeasible, because the two expert distributions leave to much 

freedom for fitting the GEV shape. To solve this, we first did the inference 

for the data-only fits (Sect. 3.3, Eq. [eq:obs_likelihood]), and fitted a beta-

distribution to the shape parameters. This distribution was then used as 

prior for 𝜉, with which we repeated the just described procedure. The wide 

tail shape that follows from the data (see for example Fig. 

[fig:extreme_discharges_Borgharen] a. or d.) leaves enough freedom for 

fitting differently shaped GEV-distributions to data and expert estimates. A 

sample of GEV-curves that results from this final prior, is shown in Fig. 7 b.. 

To summarize, we followed these steps for deriving the GEV-prior: 

1. Fit the GEV-distribution with the likelihood function from Eq. 

[eq:obs_likelihood] to the observed tributary discharges, using the 

weakly informed priors 𝜇 = 𝒰[0,2000], 𝜎 = 𝒰[0,10000], and 𝜉 =

𝒰[−2,2]. 

1. Fit a beta-distribution through the resulting shape parameters 𝜉. 



 

 

2. Sample from 𝜇 = 𝒰[0,2000], 𝜎 = 𝒰[0,10000], and the fitted 𝜉 =

Beta(5.35,3.72), ranging from −0.85 to 0.75, with a log-likelihood 

ℓ = log (𝑓𝒰[0,10000]
(𝑄1000𝑦)) for the 1,000-year discharge. 

3. Sample again from the same priors, with an adjusted log-likelihood 

ℓ = log(1/𝑓𝑜𝑏𝑠(𝑞)) 

4. Sample again from these priors, with an adjusted log-likelihood 

function, to obtain a uniform probability density for the 1,000-year 

discharge. 

5. Use this sample as prior for all GEV-fits. 

3. Sampling from the prior 

The MCMC-inference gives a trace that is used as prior. A heatmap of the 

parameter-combinations is shown in Fig. 8. 

 

Figure 8: Joint prior distribution of the (𝜇, 𝜎, 𝜉) combinations, plotted for each 

pair. 



 

 

To use this empirical distribution with MCMC, we sample from a uniform 

distribution for each of the parameters 𝜇, 𝜎, and 𝜉 and transform these to 

the parameter-space, taking into account the dependencies: 

𝑥𝜇 = 𝐹𝑋𝜇
−1(𝑢𝜇)

𝑥𝜎 = 𝐹𝑋𝜎
−1(𝑢𝜎|𝑋𝜇 = 𝑥𝜇)

𝑥𝜉 = 𝐹𝑋𝜉
−1(𝑢𝜉|𝑋𝜇 = 𝑥𝜇 , 𝑋𝜎 = 𝑥𝜎)

 

𝐹𝑋𝜇
−1 is the inverse empirical CDF (i.e., the percentile point function) for 

parameter the location parameter 𝑋𝜇 . 𝑥𝜇  is the realization of 𝑋𝜇  in 

parameter space, and 𝑢𝜇 its realization in 𝒰[0,1] space. 

Numerically, 𝑥𝜇 , 𝑥𝜎 , and 𝑥𝜉  are determined by discretizing the sampled 

values into 100 equally spaced bins per variable. The cumulative sum of the 

count per bin, divided by the total number of variables (i.e., normalized), 

gives the empirical CDF. 𝑥𝜇  is determined by interpolating 𝑢𝜇 within the 

normalized, cumulative bin count, and returning the bin 𝑥-values. 

Subsequently, 𝑥𝜎  is determined in a similar way, but now the empirical CDF 

is created from the values where 𝑋𝜇 ∈ 𝑏𝑖𝑛(𝑥𝜇) (𝑏𝑖𝑛(𝑥𝜇) is the bin that 

contains 𝑥𝜇). Finally, 𝑥𝜉  is determined by interpolating 𝑢𝜉  in the empirical 

CDF created from the values where 𝑋𝜇 ∈ 𝑏𝑖𝑛(𝑥𝜇) and 𝑋𝜎 ∈ 𝑏𝑖𝑛(𝑥𝜎). 

Appendix B. Sensitivity of observation to expert judgment 

factor 

When fitting a GEV-distribution to both observations and expert judgments, 

like we do in this study, the contribution of each to the likelihood function 

affects the resulting fit. Normally, the more evidence (i.e., observations) are 

available, the closer the solution should follow these observations. We 

however strive for a balance between the two, irrespective of the number of 

observations, because the two sources are used for fitting the distribution 

to different ranges of return periods. 

Equation [eq:combined_likelihood] shows the combined likelihood 

function, in which the factor 10/𝑁𝑖  gives the weight of the observations 

relative to the expert judgment. The 10 in this fraction means that the 

observations have a weight like (only) ten events were considered. Without 

the factor, the fraction would be 1.0, or 𝑁𝑖/𝑁𝑖 , while an equal weight 

between observation and expert judgment would give a factor 1/𝑁𝑖 . Fig. 9 

shows the resulting solution for the five options 1/𝑁𝑖 , 5/𝑁𝑖 , 10/𝑁𝑖 , 20/𝑁𝑖 , 

and 𝑁𝑖/𝑁𝑖 , for expert F’s estimates for the tributaries Semois and Niers. 

Most experts underestimated and overestimated these two tributaries’ 

discharges respectively. The comparison shows that 10/𝑁𝑖  gives a middle 

ground between observations and expert estimates in these two illustrative 

cases. 



 

 

 

Figure 9: Sensitivity of the fitted GEV for different observations-to-EJ weights. 

A underestimated tributary, Semois (left), as well as an overestimated 

tributary, Niers (right), are shown. 



 

 

The sensitivity of the outcome to the factor becomes less when expert 

judgment and observations are more in line with a single GEV distribution. 

This is expected to be the case for the high scoring experts but not 

necessarily, as the expert weights were determined from the on average 

once per 10-year discharge estimate rather than the 1000-year estimate 

shown in Fig. 9. 

On a broader level, this study has demonstrated the potential of combining 

structured expert judgment and Bayesian analysis in informing priors and 

reducing uncertainty in statistical models. When estimates on uncertain 

extremes is needed, which cannot satisfactorily be derived (exclusively) 

from a (limited) data-record, the presented approach provides a means of 

supplementing this information. Structured expert judgment provides an 

approach of deriving defensible priors, while the Bayesian framework 

offers flexibility for incorporating these into probabilistic results by 

adjusting the likelihood of input or output parameters. In our application to 

the Meuse River, we successfully elicited credible extreme discharges. 

However, a case studies for different rivers should verify these findings. 

Considering the credible results and the relatively manageable effort 

required, the approach presents an attractive alternative for complex 

hydrological studies where the uncertainty in extremes needs to be 

constrained. 

Appendix A. Calculation of downstream discharges 

Section 3.4 explained the method applied and choices made for calculating 

downstream discharges. This appendix explains this in more detail, 

including the mathematical equations. 

Three model components are elicited from the experts and data: 

• Marginal tributary discharges, in the form of a MCMC GEV-

parameter trace. Each combination 𝜃 consists of a location (𝜇), 

scale (𝜎), and tail-shape parameter (𝜉). 

• A ratio between the sum of upstream peak discharges and the 

downstream peak discharge, represented by This is a single 

probability distribution. 

• The interdependence between tributary discharges, in the form of 

a multivariate normal distribution. 

The exceedance frequency curves for the downstream discharges are 

calculated based on 9 tributaries (𝑁𝑇), a trace of 10,000 MCMC parameter 

combinations (𝑁𝑀), and 10,000 discharge events (𝑁𝑄) per curve. 

The 𝑁𝑀 parameter combinations for each tributary are sorted based on the 

(1,000-year) discharge with an exceedance probability of 0.001: 



 

 

𝐹𝐺𝐸𝑉
−1 (1 − 0.001|𝜃), in which 𝐹𝐺𝐸𝑉

−1  is the inverse cumulative density function, 

or percentile point function, of the tributary GEV. Sorting the discharges 

like this enables us to select parameter combinations that lead to low or 

high discharges in multiple tributaries, and in this way express the 

tributary correlations. The sorting order might be different for the 10-year 

discharge than it is for the 1000-year discharge. The latter is however 

chosen as it is most interesting for this study. 

For calculating a single curve, 𝑁𝑇 realizations are drawn from the 

dependence model. These normally distributed realizations (x) are 

transformed to the [1, 𝑁𝑀] interval, and are then used as index j to select a 

GEV-parameter combination for each of the 𝑁𝑇 tributaries: 

j = 𝑅𝑜𝑢𝑛𝑑(𝐹𝑛𝑜𝑟𝑚(x) ⋅ (𝑁𝑀 − 1) + 1)). 

This is the first of two ways in which the interdependence between 

tributary discharges is expressed. The second is the next step, drawing a 

(𝑁𝑇 × 𝑁𝑄) sample Y from the dependence model. These events (on a 

standard normal scale) are transformed to the discharge realizations Q for 

each tributaries’ GEV parameter combination: 

Q = 𝐹𝐺𝐸𝑉,j
−1 (𝐹𝑛𝑜𝑟𝑚(Y)) 

An 𝑁𝑄  sized sample for the ratio between upstream sum and downstream 

discharges (f) is drawn as well. The (𝑁𝑇 × 𝑁𝑄) discharges Q are summed per 

event (for all tributaries), and multiplied with the factor f, 

q = f ⋅ ∑(Q). 

Note that this notation corresponds to Eq. [eq:main_model]. The 𝑁𝑄  

discharges q are subsequently sorted and assigned a plot positions: 

p =
k − 𝑎

𝑁𝑄 + 𝑏
, 

with 𝑎 and 𝑏 being the plot positions, 0.3 and 0.4, respectively (from 

Bernard and Bos-Levenbach 1955). k indicates the order of the events in 

the set (1 being the largest, 𝑁𝑄  the smallest), The plot positions (p) are the 

‘empirical’ exceedance probabilities of the model. With 10,000 discharges 

and our exceedance probability of interest of 1/1,000, the results are 

insensitive to the choice of plot positions. 

This procedure results in one exceedance frequency curve for the 

downstream discharge. The procedure is repeated 10,000 times to generate 

a uncertainty interval for the discharge estimate. Note that the full Monte 

Carlo simulation comprises 10,000 × 10,000 = 100,000,000 ‘events’ for the 

9 tributaries. 



 

 

Appendix C.Appendix B. Expert and DM correlation 

matrices 

Figure 107 shows the correlation matrices estimated by the experts. The 

DM correlation matrices are weighted combinations of the expert matrices, 

based on the weights from Table 1. See subsection 3.2 and equation 

[eq:DM]. 



 

 

 

 

Figure 107: Correlation matrices estimated by the expert 
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