Using structured expert judgment to
Esti :
dischargesestimate extremes: a case
study of discharges in the Meuse River

Accurate estimation of extreme discharges in rivers, such as the Meuse, is
crucial for effective flood risk assessment. However, existing statistical-and
hydrological models that estimate thesesuch discharges often lack
transparency regarding the uncertainty of their predictions;as. This was
evidenced by the devastating flood event that occurred in July 2021 which
was not captured by the existing model for estimating design discharges.
This article proposes an alternative-approach to obtain uncertainty
estimates for extremes with a-eentralreleforstructured expert judgment,
using Cooke’s method. A simple statistical model was developed for the

river basin, consisting of correlated GEV- distributions for discharges
infrom upstream sub-eatehments:tributaries. The model was fitted to
expertjudgments;seven experts’ estimates and historical measurements;
sncthecombinationotboth using Mesleschain Mente Carle.
inference. Results frem-the-medelfitted to only tethe measurements were
aeeurate-solely informative for more frequent events, butless-eertainfor

extreme-events—Hsingwhile fitting to only the expert judgmentestimates
reduced uncertainty solely for these-extremes-butwasless-acecuratefor

morefrequentevents-Thecombinedappreach-. Combining both historical

observations and estimates of extremes provided the most plausible
results;with. Cooke’s method redueingreduced the uncertainty by
appointing most weight to the two efthe-seven-most accurate experts:,

according to their estimates of less extreme discharges. The study

demonstrates that atilizingwith the presented Bayesian approach that
combines historical data and expert-informed priors, a group of
hydrological experts in-this-manner-can provide plausible resultsestimates
for discharges, and potentially also other (hydrological) extremes, with a
relatively limitedmanageable effort-evenin-situations-where
measurements-are scarce or-unavailable.

1 Introduction

Quantbinethewneertainbrthatcomeswith-estimating . the
magnitude of extreme flood events is-a-diffierltmatter-comes with

considerable uncertainty. This became clear once more on the 18th of July
2021; when thea flood wave on the Meuse River;fellewing that followed




from a few days of rain in the Eiffel and Ardennes, reached-itscaused the
highest peak discharge ever measured at Borgharen. Unprecedented
rainfall volumes fell withinin a short period of time (Dewals et al. 2021).
These caused flash floods with large loss of life and extensive damage in
Germany, Belgium, and to a lesser extent also in the Netherlands{Task
FEorce Faet-finding-hoogwater 2021 (TFFF 2021; Mohr et al. 2022). The
discharge at the Dutch border exceeded the flood events of 1926, 1993, and
1995. Contrary to those events, this flood occurred during summer, a
season that is (or was) often considered irrelevantforextreme-discharges
on-theMeuse:less relevant for extreme discharges on the Meuse. A
statistical analysis of annual maxima from a fact-finding study done

recently after the flood, estimates the return period to be 120 years based

on annual maxima, and 600 years when only summer half years (April to

September) are considered (TFFF 2021). These return periods were

derived including the July 2021 event itself. Prior to the event, it would

have been assigned higher return periods. The event was thus surprising in
multiple ways. This might happen when we experience a new extreme, but
given that Dutch flood risk has safety standards up to once per 100,000
years (Ministry of Infrastructure and Environment 2016) one would have
hoped this to be less of a surprise. ThisThe event underlinesunderscores
the importance of understanding the uncertainty that comes with estimates
of extreme flood events.

QuantifyringEstimating the magnitude of events thataremere
extreme  than evermeasured-(i.e;-with returnlevelsthatare longer
than the time peried-ofthe largest from historical (representative
measurements);) records is a nontrivial task. It requires establishing a
model that describes the occurrence of such events and subsequently
extrapolating fremavailable-data-erknoewledge-to specific exceedance
probabilities from this model. For the Meuse, the traditional approach to
this is traditionally-dene byfittingto fit a probability distribution to extreme
events and extrapelatingextrapolate from it (Langemheen and Berger
2001). Hewever;aA statistical fit efextremesis-efteneryto observations
is, however, sensitive to the most extreme events in the measured-time
series available. Additionally, the hvdrological and hydraulic response
during extreme events might be efa-different type{statistical pepulation}
compared-toregulareventsfrom that of events that occur more frequently,
and therefore badlyincorrectly described by amedelthatis-statistical

extrapolation.

GRADE (Generator of Rainfall And Discharge Extremes) is a model-based
answer to these shortcomings. It is used to determine design conditions for
the river Meuse (and the Rhine) in the Netherlands. GRADE is a variant on
historicalmeasurements-a conventional regional flood frequency analysis
procedure. Instead of using only-Advaneesincomputational pewerallow-te
his-thydrological inty by in the first place, .




historical observations, it resamples these into long synthetic time series of
rainfall erthat contain the observed spatial and temporal variation. In then

uses a hydrological model to calculate tributary flows and a hydraulic
model to subseguently simulate river discharges (Leander etal. 2005;

ef—eamﬁal—l—and—d—xseha—eges—{Hegnauer etal. 20 14) Adva&tage&ef—sueh
methodsareDespite the fact that ##§GRADE can create spatially coherent

results;whieh and can eerreetfersimulate changes in the catchment or
climate-1t, it is hewever-still based on "re-samplingresampling” available

measurements or knowledge Me#eever—theeemp&ta&mmesew:ees

modellingeheices-Hence, it cannot simulate all types of events that are not
present in the historical ‘sample’. This is illustrated by the fact that the July

2021 discharge was not exceeded once in the 50,000 years of summer
discharges generated by GRADE.-Fhe-eventecould-have beenmeoreextreme
| 1.50.000 | likel i thatt]
L | (only) historic rainfall
. Und Lo v ic ]

GRADE is only one example where the underestimation of uncertainty is
observed. However, it is certainly not the only anissue-of GRADEMeresa

outcome{1-4-for flood-frequeney-distribution}one. Boer-Euser et al. (2017;
Bouaziz et al. 20203}), for example, compared different hydrological

modelling concepts for the Ourthe catchment (considered in this study as
well};) and showed the large differences that different models can give
when comparing more characteristics than only stream-flew flow. But
regardless of the conceptual choices, all models would have severe
limitations when trying to extrapolate to an event that has not occurred yet.
We should be wary to disqualify a model in hindsight after a new extreme
has occured. Alternatively, data-based approaches try to solve the
shortcomings of a short record by extending the historical records with
sources that can inform on past discharges. For example, paleoflood

hydrology uses geomorphological marks in the landscape to estimate
historical water levels (Benito and Thorndycraft 2005). Another approach
utilizes qualitative historical written or depicted evidence to estimate past
floods (Brazdil et al. 2012). The reliability of historical records can be

improved as well, for example by combining this with climatological

information derived from more consistent sea level pressure data De Niel
Demarée, and Willems (2017).




WhilemestAnother alternative to the data-based approach is the use of
structured expert judgment (SE]). Expert judgment (E]), in terms of making
estimates or verifying observations based on prior knowledge, is often
unknowingly applied in everyday practice by researchers and practitioners.
It is a way of assessing the truth or value of new information, and therefore

indispensable in every scientific application. However, quantifying it is not
straightforward. Structured expert judgment formalizes this process by

eliciting expert judgments in such a way that they can be treated as

scientific data. One structured method for this is Cooke’s method, also

called the classical model (Roger M. Cooke and Goossens 2008). Cooke’s

method assigns a weight to each expert within a group (usually 5 to 10
experts) based on their performance as uncertainty assessors in a number
of seed questions. These weights are then applied to the experts’
uncertainty estimates for the variables of interest, with the underlying
assumption that the performance for the seed questions is representative
for the performance in the questions of interest. (Roger M. Cooke and

Goossens 2008) shows an overview of the different fields in which Cooke’s

method for structured expert judgment is applied. In total, data from 45

expert panels (involving in total 521 experts, 3688 variables, and 67,001

elicitations) are discussed, in applications ranging from nuclear, chemical

and gas industry, water related, aerospace sector, occupational sector,
health, banking, and volcanoes. Marti, Mazzuchi, and Cooke (2021) used the
same database of expert judgments and observed that using performance-
based weighting gives more accurate DMs than assigning weights at
random. Regarding geophysical applications, expert elicitation has recently
been applied in different studies almed at ebtﬁmng%eﬁepesﬁma%e&eﬁ

applied-expertelicitationtoredueeinforming the uncertainty in climate
model predictions— (e.g., Oppenheimer, Little, and Cooke 2016; Bamber et

al. 2019; Sebok et al. 2021). More closely related to this article, Kindermann

etal. (2020) reproduced historical water levels using structured expert
judgment (SEJ]), and {G. Rongen, Morales-Napoles, and Kok (2022a) reeently
applied SE] to estimate the probabilities of dike failure prebabilities-for the
Dutch part of the river-Rhine- River.

While examples of using Cooke’s method in hydrology are not abundantly

available, usingthey are for applications that use prior information to
decrease the-uncertainty and sensitivity-fer-extrapelation;isnetnew:

Mesthy-this. This information often comes from Efexpert judgments. Three
examples in which a similar, Bayesian, approach was applied to limit the

uncertainty in extreme discharge estimates are given by (Coles and Tawn
1996; Parent and Bernier 2003; Viglione et al. 2013). The mathematical
approaches vary between the different studies, but the rationale for using
E] is the same: adding “seft“er-uncertain prior information to available



measurements eanto help inachievingachieve more plausible extreme
estimates.tn-this

This study;-we-applied applies structured expert judgment-as-well; to
estimate the magnitude of discharge events for the Meuse River up to an

annual exceedance probability of on average once per 1,000 years. We

almedaim to get eredibleuncertainty estimates efextreme-discharge-events
for these discharges. Their credibility is assessed by comparing them to

GRADE, the aforementioned model-based method for deriving the Meuse

| 1d ot ) . ctical lati |
moedelingRiver’s design flood frequency statistics. A relatively simple
model wasis quantified both with observed data-and-with-expertestimates;
in-whichthe latter serves-to-deerease-uneertainty-inannual maxima and
seven experts’ estimates for the 10-year and 1000-year discharge on the
main Meuse tributaries. The 10-year discharges (unknown to experts at the
moment of the elicitation) are used to derive a performance-based
combined opinion, while the 1000-year discharges are used to inform the
extrapolated range. By-using-Cooke’smethod-for structured-expert

fodmmen s ORI [ooele and Cooernee D000 saetieisapieens
use their own approach to make%hemes%mates—whelwe%he&eembmeé

eempa%ed—the—medel—msai—ts—based—e& ome up with uncertainty estimates.
To investigate how the method that combines data and expert judgments
compares to the data-only or the expert estimates-enly-en-measured-data

enlyand-enbeth--only approaches, we quantify the model based on all
three options. The differences show the added value of each component.

This indicates hew-geod-the methed-werks;method’s performance both
when measurements are available and when they are not, for example in

data scarce areas.

2 Study area and available-data used

Figure 1 shows an overview of the catchment of the Meuse River. The
eatchmentareascatchments that diseharge-treughcorrespond to the
majermain tributaries are outlined writhin red. theThe three locations for
which we are interested in extreme discharge estimates, Borgharen,
Roermond, and Gennep, are shewn-incolored blue. We call these-the



‘downstream locations’ throughout this study. The river continues further
downstream until it flows into the North Sea atnear Rotterdam. This part of
the river becomes increasingly intertwined with the Rhine River and more
affected by the downstream sea water level. TheConsequently, the water
levels-eonsequently can be ascribed decreasingly to the discharge from the
upstream catchment. For this reason, we do not geassess discharges further

downstream than Gennep in this study.

The numbered dots indicate the locations along the tributaries where the

discharge-of the-upstreamsub-catchmentsdischarges are measured. The

gaugeThese locations’ names and eatehments'the tributaries’ names are

shown on the lower leftépheé‘»eme%eatehamﬂt—}s—papt—ef—me—llpeﬂeh—Mease
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Figure 1: Map of the Meuse catchment considered in this study, with main
river, tributaries, streams, and catchment bounds.



Elevation is shown with the grey-scale. Batafer-thisElevation data were
obtained from EU-DEM {{(Copernicus Land Monitoring Service 2017}}) and
used to derive catchment delineation and tributary steepness. MereThese
data were provided to the experts together with other hydrological
characteristics, such-aslike:

o Catchment overview: A map with elevation, catchments, tributaries,

and gauging locations

. Land use: A map with land use {from:{ Copernicus Land

Monitoring Service (20183}, subseil-{)

o River profiles and time of concentration: A figure with longitudinal
river profiles and a figure with time between the tributary peaks

and the peak at Borgharen for discharges at Borgharen greater
than 750 m3/s.

o Tabular catchment characteristics, such as: Area per catchment, as

well as the catchment’s fraction of the total area upstream of the

downstream locations. Soil composition from Food and Agriculture
Organization of the United Nations (2003), specifying the fractions
of sand, silt, and clay in the topsoil and subsoil. Land use fractions
(paved, agriculture, forest & grassland, marshes, water bodies).

) Statistics of precipitation: Daily precipitation per month and
catchment. Sum of annual precipitation per catchment. Intensity

duration frequency curves for the annual recurrence intervals: 1, 2,

5,10, 25, 50, and the maximum. All calculated from gridded E-OBS

reanalysis data provided by Copernicus Land Monitoring Service

(2020).

o Hyetographs and hydrographs: Temporal rainfall statisties

" icus Land Monitoring Service 2020} and hyd |
shapes{from-dischargedata, seepatterns and hydrographs for all
catchments/tributaries during the 10 largest discharges measure
at Borgharen (sources described below},that-were-previded-to-the
ermerisareshenmy

This information, included in the supplementary information—Fhis
infermatien, was provided to the experts to helpsupport them makein
making their estimates. The discharge data needed ferfittingto fit the
model to the observations were obtained from (Service public de Wallonie
2022) for the Belgian gauges, (Waterschap Limburg 2021;
WaterinfoZJRijkswaterstaat 2022) for the Dutch gauges, and (Land NRW
2022) for the German gauge. These discharge data are mostly derived from

measured water levels and rating curves. During floods, water level
measurements can be incomplete and rating curves inaccurate.
Consequently, discharge data during extremes can be unreliable. Measured



discharge data were not provided to the experts, except in
qualitativenormalized form as hydrograph shapes.

3 Method for estimating extreme discharges
with experts

3.1 Probabilistic modelfor-estimating extreme
discharges

To obtain estimates for downstream discharge extremes, experts needed to
quantify a simple model that states-thatgives the downstream discharge
isas the sum of the tributary discharges, times a factor correcting for
covered area and hydrodynamics:

Qu = fam— Ol ) Qu
7 u

where Q, is the peak discharge of a downstream location during an event,
and Q,, the peak discharge of the u’th (upstream) tributary during that

event.

fer-them-Location d can be any location along the river where the discharge
is assumed to be dependent mainly on rainfall in the upstream catchment.

experts:-The random variable @, is modelled with the generalized extreme

value (GEV) distribution (Jenkinson 1955). We chose this family of
distributions firstly because it is widely used to estimate the probabilities of

extreme events. Secondly, it provides flexibility to fit different rainfall-

runoff responses by varying between Frechet (heavy tailed), Gumbel
(exponential tail) and Weibull distributions (light tailed). We fitted the GEV
distributions to observations, expert estimates, or both, using Bayesian

inference (described in Sect. 3.3). The factor or ratio f;; in Eq.

[eq:main model] compensates for differences between the sum of upstream

discharges and the downstream discharge. These result from, for example,

hydraulic properties such as the time difference between discharge peaks




and peak attenuation as the flood wave travels through the river (which

would individually lead to a factor < 1), or rainfall in the Meuse catchment

area that is not covered by one of the tributaries (which would individually
lead to a factor > 1). When combined, the factor can be lower or higher

than 1.0. We elicited the discharges that are exceeded on average once per

10 years and once per 1,000 years (for brevity called the 10-year and 1,000-

year discharge hereafter) from the experts, as well as the factor f,,, using

structured expert judgment (SE]), as described in Sect. 3.2. The 1,000-year

discharge is meant to inform the tail of the tributary discharge probability
distributions. This tail is represented by the GEV tail shape parameter that
is most difficult to estimate from data. We chose to elicit discharges, rather
than a more abstract parameter like the tail shape itself, such that experts
make estimates on quantities that may be observed and at "a scale on which
the expert has familiarity" (Coles and Tawn 1996, 467).

The tributary peak discharges @, _are correlated because a rainfall event is

likely to affect an area larger than a single tributary catchment and nearby
catchments have similar hydrological characteristics. This dependence is

modelled with a multivariate Gaussian copula that is realized through
Bayesian Networks estimated by the experts (Hanea, Morales Napoles, and
Ababei 2015). The details of this concern the practical and theoretical
aspects of eliciting dependence with experts and are beyond the scope of

this article. They will therefore-be presented in a separate article that is yet
to be published. Fhe-We did use the resulting correlation matrices;

presented-inappendix6-3-0-0-2,are-nonethelessused for calculating the

discharge statistics in this study. They are presented in appendix 8.

distribution-WeuseThe model from Eg eq:main model] was dellberately
kept simple to ensure that the generalized-extreme value distribution {GEVY
as-a-statisticalmedeleffect of the experts’ estimates on the result remains
- for esemedisebarses Hepldnoen [OEEL This il of

taﬂed—mspeetwely}—te—ﬂt—spe&ﬁeeatehment—pmpeme&them Sectlon 3 4

explains how downstream discharges arewere generated from these model

components; (i.e., the different terms in Eq. [eq:main model]), including

uncertainty bounds.

_The model wasis also described in more detail in (G. Rongen, Morales-
Napoles, and Kok 2022b) as well, where it was used in a selely~data-driven
context.



3.2 Assessing uncertainties with expert judgment

WeuseThe experts’ estimates are elicited using Cooke’s method-fer. This is

- structured =zpersivdoent Coslelomadelis aekhod fo alicitand

eembineapproach to elicite uncertainty for unknown quantities. It
combines expert judgments based on empirical control questions, with the

aim to find a single; combined; estimate for the wvariablevariables of interest
(rational consensus). The-appreach-Cooke’s method is typically employed
when alternative approaches for quantifying uncertain variables are lacking
or unsatisfying (e.g., due to costs or ethical limitations). It is extensively

described in (Roger M. Cooke 1991) while applications are discussed in
(Roger M. Cooke and Goossens 2008}here). Here, we discuss seme-ofthe

basic elements of the method.

ealibrationseore-is-abeve the chosensignificancelevel:because of its strong

mathematical base, track record (Colson and Cooke 2017) and the authors’

familiarity with this method.

In Cooke’s method, a group of participants, often researchers or
practitioners in the field of interest, provides uncertainty estimates for a set
of w,(e) = 1, X calibrationscore{e)<information-scorele)

Phoealiboodion cocpeds colonlated oy che questions—ferhishheansvzes

isknownby-theresearcher. These can be divided into two categories; seed
and target questions. Seed questions are used to assess the participants’
ability to estimate uncertainty within the context of the study. The answers

to these questions are known by the researchers but not by the participants
at the moment of the elicitation. These-are referred-to-asseed-orealibration

variables-Calibrationis-ameasure-ofSeed questions are often sourced from

similar studies or cases unknown to the participants. They are as close as
possible to the variables of interest and in any case related to the field of

expertise of the participant pool. Target questions concern the variables of
interest, for which the answer is unknown to both researchers as

participants.

The uncertainty for each item is expressed by estimating percentiles (rather

than a single value), from which two scores are calculated, the statistical

accuracy sf-thecsmpent Thednlomyation cecne crmspessnc the aceicion ofan
expert’sanswers.and information scores. Typically, the 5th, 50th, and 95th




percentiles are elicited. This creates a probability vector with 4 inter-
quantile intervals, p = (0.05,0.45,0.45,0.05). The statistical accuracy is
calculated by comparing the inter-quantile probability p; to s;(e), the
fraction of realizations within expert e’s inter-quantile interval. The score is

.....

s;log(s;/p;).In case of 20 questions, the statistical accuracy is highest if the

expert overestimates 1 seed question (i.e., the actual answer was below the

5th percentile), underestimates 1 question, and has 9 questions in both the

5%, 50%] and [50%, 95%] interval. This would result in s equaling p and

ratios of 1. The farther away these interquantile ratios are from 1, the lower

the statistical accuracy. Note that the maximum statistical accuracy is not

achieved when all answers are close to the median, but it would give a high
score nonetheless. The information score measures the degree of

uncertainty of an expert’s answers compared to other experts. Percentile
estimates that are close together (compared to the other participants) are
more preeise,more-informative; and get a higher information score. The
product of the statistical accuracy and information score gives the expert’s
weight w, (e):

w,(e) = 1, xInthisstudy, the seed variables-are the discharges thatare

7
a oo oncene a mo tothe me amean
v a O P y

astatistical accuracy(e) x information score(e).

Experts with a statistical accuracy lower than «_can be excluded from the
pool by using a threshold, expressed by the 1, in Eq. [eq:cookes]. This

threshold is usually 5%. The (weighted) combination of the experts’
estimates: is called the decision maker (DM). The experteentributesexperts

contribute to the ith item’s DM by the-assigned-weight-the productofthe
ealibrationseore-and-infermatienseoeretheir normalized weight:

DM (1) = D e (&)fai/ ) we (©)

This is called the global weight (GL) DM. Alternatively, the experts can be
given the same weight, which results in the equal weight (EQ) DM. This
does not require eliciting seed variables, but neither does it distinguish
experts based on their performance, a key aspect of Cooke’s-method-—Other




MM%M@WW%H&W d i
authors-familarity-with-this method.

We-To construct the DM, probability density functions (PDFs) such as f ; in
Eq. [eq:DM], need to be created PBEs-from the experts—quantile-percentile

estimates-by-fittinga-. We used the Metalog distribution treugh-the
pereentilesfor this (Keelin 2016). This distribution allews-te-fitis capable of

exactly fitting any three--percentile estimate-witheutchanging the
estimates.. For symmetric estimates, the-distributien-it is bell-shaped. For
asymmetric ones, it becomes left- or right--skewed. Nermall-inTypically
Cooke’s method;the PBEis-ereated by-assuming assumes a uniform
distribution in between the percentiles (minimum information). This leads
to a piece-wiselinear-eumulative-distribution;-stepped PDF where the
Metalog gives a smooth £itPDF. An example of using the Metalog
distribution in an expert elicitation study wasis described by (Dion,
Galbraith, and Sirag 2020). All calculations related to Cooke’s method were

performed using the open-source software ANDURYL (Leontaris and

Morales-Napoles 2018; Hart, Leontaris, and Morales-Napoles 2019; Guus
Rongen et al. 2020).

ZIn this study, the seed questions involve the 10-year discharges for the
tributaries of the river Meuse. An example of a seed question is: "What is
the discharge that is exceeded on average once per 10 years, for the Vesdre
at Chaudfontaine?" The target questions concern the 1000-year discharges
as well as the ratio between upstream sum and downstream discharge.
Discharges with a 10-year recurrence interval are exceptional but can in
general be reliably approximated from measured data. Seven experts
participated in the in-person elicitation that took place on the 4th of July
2022. The study and model wherewere discussed before makingthe
assessments to make sure that the studs-concepts and questions were clear.
After this, an training-exercise for the Weser catchment was done in which
the experts needed-to-answeranswered four questions that were
subsequently discussed-afterwards—This. In this way, the experts could see

hoewcompare their answers eempared-to the realizations; and subsequently
what-theirview the resulting scores inusing Cooke’s method-were-.

Apart from the training exercise, the experts answered 26 questions;: 10
seed questions ferregarding the 10-year discharge thatis-exeeeded-on
average-once-per10-years{1(one for each tributary), 10 target questions
for, regarding the 1,000-year discharge-exeeeded-on-average-enceper10060
years, and 6 target questions for the faetersratios between upstream sum

and downstream discharge (2-return-periodsx<-3locations}Nete thatwe

willuse-the shorthand-10-year and 1,000-year-netationin-the remainderof
] . . ] . ] . !- . ] « N ) E ;‘IE]:;gE FEEHF-FEH Ee

i i -, for three locations). A list of the Zparticipants

andseven participants’ names, their affiliations, and their field of expertise




is shown in table-Table [tab:experts]. The-alphabeticorderin-which

theWhile the participants are pre-selected on their expertise, experts are
listed-holdsnorelationto-the numberin-whiehscored post hoc in terms of
their ability to estimate uncertainty in the context of the study. We note that
the alphabetical order of the experts arelabelledin the table does not
correspond to their labels in the analysis-earried-eutresults. An overview of
the data provided to the participants is given in this-artieleSect. 2, while the
data itself, as well as the questionnaire, are presented in the supplementary

information.

Name Affiliation SpeeialismField of expertise

Alexander Rijkswaterstaat & Risk analysis for storm surge

Bakker Delft University of barriers, extreme value

Technology analyses, climate change and

climate scenario’s.

Eric Rijkswaterstaat Coordinator crisis advisory

Sprokkereef group Rivers. Operational
forecaster for Rhine and Meuse

Ferdinand Deltares Expert advisor and researcher

Diermanse flood risk.

Helena Waterschap Limburg  Hydrologist

Pavelkova

Jerom Aerts Delft University of Hydrologist, focussed on

Technology hydrologic modelling on a

global scale. PhD candidate.

Nicole HKYV consultants Advisor water and climate

Jungermann

Siebolt Rijkswaterstaat Advisor in the Team Expertise

Folkertsma for the River Meuse

3.3 Determining model coefficients with Bayesian

inference

WeThe model for downstream discharges (Eq. [eq:main model]) is

quantified using Bayesian inference. Firstly, because Bayesian methods

explicitly incorporate uncertainty, which is a key aspect of this study.

Secondly, because these methods provide a natural way to integrate expert

judgment with data. Because the experts do not know the exact values of

the discharges they are estimating, their estimates can be seen as prior

information. This can subsequently be updated to a posterior distribution

using available data. Note that the experts did not estimate the prior

distributions of the GEV-parameters directly but they estimated the 10-year

and 1000-year discharge from which the parameters were estimated.




To evaluate the performance of the combined data and EJ approach, we
compared it to using each of these sources of information individually.
Hence, we distinguished three approaches-fer-fitting the- model-fromEq:
legprain—medel

. theThe ‘data-only’ approach, in-whichutilizing only measured
discharges (the annual maxima per tributary that lead to a peak

discharge at Borgharen}-were-used;.)

. theThe ‘EJ-only’ approach, in-whieh-enlysolely relying on the
expert’s estimate for the 10-year and 1,000-year discharge-is-used;
and

. theThe combined ‘data and EJ’ approach, in-whichcombining the
measured discharges are-cembined-with the expert estimate for
the 1,000-year discharge (retexcluding the 10-year discharge).

Thefitting-A probability distribution for extreme discharges was fit for each

one of the three eptiens-is-perfermedapproaches using the Bayesian
inference-technigue-Markov-Chain Monte Carlo (MCMC)-TFhisresultsinan

inferenee), a Bayesian inference technique commonly used to sample from
a PDF. The MCMC algorithm generates a trace of thedistribution parameters
After removing the spin-up and thinning it to remove autocorrelation, the
trace isbecomes the empirical joint probability distribution of, in our case
the three GEV model parameters {the-GEV-has-threeparameters)-thatisfor
each tributary. These are subsequently used fersamplingto calculate the
downstream discharges (see Sect. 3.4). MEMC-is-the name-commenlyThe

Python module ‘emcee’ (Foreman-Mackey et al. 2013) was used for

Bayesian inference. This module implements the affine invariant MCMC
ensemble sampler as described by Goodman and Weare (2010).

The MCMC procedure relies on a greuplikelihood-based criterion to assess

the goodness of algerithmsused-to-sample-fromfit for a PBE-One
exampleproposed combination (0) of sueh-algerithmsthe GEV distribution

parameters, comprising the location (), scale (), and shape parameter ().

Consider z = (x — u)/o. The probability density function (PDF) of the GEV

is then

1

o Eexp(—exp(—z))exp(—z), ifé=0
X) =

%exp(—(l — &NV (1 - E)Y41, ifz<1/fand& >0

This posterior likelihood function consists of three parts. The first
component is the Metropelis-Hastings-algerithm(Hastings 1970)-prior

likelihood of the GEV-parameters. We prefer this to be weakly informative

(i.e., uninformative, but within bounds that ensure a stable simulation)

such that only the data and expert estimates inform the final result.




However, we did add an informative prior to the shape parameter (§) for
two reasons. Firstly, when only using expert estimates and no data, two
discharge estimates are not sufficient for fitting the three parameters of the

GEV-distribution. Secondly, the standard deviation of the shape-parameter
decreases with increasing number of years (or other block maxima) in a

time series (Papalexiou and Koutsoyiannis 2013). Our 30 to 70 annual
maxima per tributary are not sufficient to reach convergence. Therefore, we

employ the geophysical prior as presented by Martins and Stedinger

(2000); a beta distribution with @« = 6_.and f = 9 for x € [-0.5,0.5], for
which the PDF is:

I'la+p)

rorg AT

f&) =

with x = £ 4+ 0.5, and I" being the gamma-function. This Bayesian-technique
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updated-with-ebservations,with-expertestimates,or PDF is slightly skewed
towards negative values of the shape parameter, preferring the heavy tailed

Frechet distribution over the light tailed reversed Weibull. In their analysis
of a very large number of rainfall records worldwide, Papalexiou and

Koutsoyiannis (2013) came to a similar distribution for the GEV-shape
parameter.

We assigned equal probability to all values of 4 and o _greater than 0. This
corresponds to a weakly informative prior for u (positive discharges), and

an uninformative prior for o_(only positive values are mathematically

feasible). Together with beththe beta-distribution for &, the prior likelihood
function (@) equals f5(§ + 0.5) for —0.5 < ¢ < 0.5,0 > 0,and u > 0.

m(0) = 0_for any other combination.

eriterion-to-find-agood-fitFigure-After the prior, the second and third part
of the posterior likelihood function are the likelihood of a GEV given the
observed discharges and expert estimates. Figure 2 illustrates this. The top

curve f(Q[0).

represents a proposed GEV-distribution for the random variable Q

(tributary peak discharge) with parameter vector 4.




Fitted GEV

/

Likelihood of observation

Probability density

Discharge

| Likelihood of GEV
; given expert's estimates

Observed

annual maxima Expert estimate for

1/10th discharge ... and 1/1000th

Figure 2: Conceptual visualization of elements in the likelihood-function of a
tributary GEV-distribution.

veetor§-The log likelihood oftheﬁapﬁn%eﬁ—tha&weﬂ%speeée%
eanbed is calculated withas the preduetsum of the log-probability density

funetion-of the-ebservations{i-ethe produectofeach observation g given 6,

or,

£@la) = ) log(f(4l0))

f(q;10) corresponds to the length of the arrows in the-figure}:

e lbeprbretthe momrndo the sk o loonapantane [ ton cabiol fhe oo
Hleelibepelomiren cdhe chonmantione ofo mansdonal Tlhe W00 onmaslines
algorithm-gives-a{fjoint) probability density funetion-of 2. The log-
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Thelog-likelihood-of given the expert’s estimateestimates is calculated and
added to the total likelihood, in a similar way as fellews:




described by Viglione et al. (2013): Given a GEV-distribution £(@3f (Q|6),
the disehargesdischarge q for ene-ertwea specific annual exceedance
prebabilitiesareprobability p_is calculated {4£from the inverse CDF,

qp]' = F_l(l - p]lg)l

1—with p; being the j’'th elicited exceedance probability. This
discharge is compared to the expert’s or DM’s estimate for this 10

sne—tt o 1,000t ek AL 000 e clobn snal D acssbdnac
year discharge, g (qu)= These disebarmes composnenc toap arronase
recurrence-interval-of 10-and-15000-year:

e eperticaslad fornn aotimate of tho disebapee.
illustrated with this-exceedancefrequeneyresultinginthe

distributionfozp—These-estimates-are-displayed-by-the curves on

the bottom of Fig. 2.

_The likelihood of the GEV-guantile according to the expert or DM can then
be calculated inthe-expertestimated-distribution:with,

Hbtexpr= o7 \ 4Py




— Hbfgrexp)r=
10 / YD AN
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i

t(0lg) = X,log <9 (qu>>
= ¥,log <g (Fet(1- Pf))>'

By summing the log-likelihood in equations [eq:prior likelihood

iealapee

[eq:obs likelihood], and [eq:exp likelihood], we get the total posterior

likelihood function:

£(0]q.8) =
log(m(8)) + log(f (al6)) + log (g(F~*(1 — p|6)))

The posterior likelihood comprises the prior likelihood, the likelihood of
the observations, and the likelihood of the expert judgment. If only data are
used, the last term drops out. If only expert judgments are used, the second
term drops out, and the last term contains two expert estimates. If both
data and expert judgment are used, the last term contains only a single

expert estimate. Equation [eq:combined likelihood] is used to compare the

likelihoods of specific proposed parameter-combinations in the MCMC-

sampling. Notice that the expert judgment term does not take into account

any information in the observed discharges q.and can therefore be
considered prior information.

With the procedure summarized in Eq. [eqg:combined likelihood], the

probability distributions for the tributary discharges (Q,, in Eq.

eq:main model]) are quantified. This leaves the ratio between the

upstream sum and downstream discharge (f,;) and the correlations

between the tributary discharges to be estimated. For the ratios, we
distinguished between observations and expert estimates as well. A log-

normal distribution was fitted to the observations. This
respendscorresponds to a practical choice for a distribution of positive
values with sufficient shape flexibility. The experts estimated a distribution
for the factor as well, which iswas used directly for the experts-only fit. For
the combined model fit, the observation-fitted log-normal distribution was
used up to the 10-year range, and the expert estimate (fitted with a Metalog
distribution) for the 1,000-year factor. In-between, thefacter-wasValues of
faefor return periods T greater than 10 were interpolated,and-fer

recurrence-intervalslargerthan1000- (up to 1000-years;thefacter-was) or

extrapolated:,

log(T) — log(10)
fAtIT = fAtIlOy + 10g(1,000) — 10g(10) : (fAt'l,OOOy - fAt|10y)v




with fs¢]10, thus being sampled from the lognormal, and f4|;000,from the

expert estimated Metalog distribution. During the expertsexpert session, a

participant askedrequested to make a-different estimateestimates for the
factor at the 10-year event and 1,000-year event, a distinction that initially
was not planned. Following thethis request, we changed the questionnaire
such that a factor could be specified at both return periods. One expert used
the option to make the-distinetiontwo different estimates.

EinallypferFor the correlation matrix describing the dependence between
tributary extremes, we-have-the observed correlations; were used for the

data-only option; and the expert-estimated correlations;used for the
expert-only option. For the combined option, we simply-taketook the
average of the observed correlation matrix and the expert-estimated
correlation matrix. Other possibilities for combining correlation matrices
are available (e-gssee for example Al-Awadhi and Garthwaite 1998, for a

Bayesian approach), however an in depth research of these geoptions are
beyond the gealscope of this study-Netice-alse-thatinthisstudywe

3.4 Calculating the downstream discharges

Ab—d—mws—ﬁmm—t—h&ﬁaete%beﬂvee&The last section explained the three

quantification alternatives of the components from Eq. [eq:main model],

needed to calculate the downstream discharges. These components are:

o Tributary (marginal) discharges, represented by the GEV-

distributions from the Bayesian inference.

o The interdependence between tributaries, represented by a

multivariate normal copula.




5——The ratio between the upstream sum and downstream discharge;
] Leiplv o} £4l liscl |
deovenstream-discharpe:

Assigning-exceedancefrequenciesto-the-Ng-disc

In line with the objective of this article, an uncertainty estimate is derived
for the downstream discharges. This section describes the method in a
conceptual way. Appendix 7 contains a formal step-by-step description.

To calculate a single exceedance frequency curve for a downstream
location, 10,000 events (annual discharge maxima) are drawn from the 9

tributaries’ GEV-distributions. Note that 10 tributaries are displayed in Fig.
1. However, the Semois catchment is part of the French Meuse catchment

and therefore only used to assess expert performance. The 9 tributary peak
discharges are summed per event and multiplied with 10,000 factors (one

per event) for the ratio between upstream sum and downstream discharge.

The 10,000 resulting downstream discharges are assigned an annual
exceedance probability through plotting positions, resulting in an

exceedance frequency curve. This process is repeated 10,000 times with
different GEV-realizations from the MCMC-trace. This results in 10,000
curves (each based on 10,000 discharges), from which the uncertainty
bandwidth is determined. This is illustrated in Fig. 3. The grey lines depict
50 of the 10,000 curves (these can be both tributary GEV-curves, or
downstream discharge curves). The (blue) histogram gives the distribution

of the 1,000-year discharges. The colored dots indicate the 2.5th, 50th, and
97.5th percentiles in this histogram. Calculating these percentiles for all

annual exceedance probabilities results in the black percentile curves,
creating the uncertainty interval.




50 of the 10,000 Individual
GEV-realizations/curves

] 2.5th, 50th, and 97.5th

— percentiles s
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10° 107! 102 1073 104
Annual exceedance probability

Figure 3: Individual exceedance frequency curves for each GEV-realization or

downstream discharge, and the different percentiles derived from these.

The dependence between tributaries is incorporated in two ways. First, the
10.000 events underlying each downstream discharge curve are correlated.
This is achieved by drawing the [9 x 10,000] sample from the (multivariate
normal) correlation model, transforming these samples to uniform space
(with the normal CDF), and then to each tributary’s GEV-distribution space
(with the GEV’s inverse CDF). This is the usual approach when working

with a multivariate normal copula. The second way of incorporating the

tributary dependence is by choosing GEV-combinations from the MCMC-

results while considering the dependence between tributaries (i.e., picking

high or low curves from the uncertainty bandwidth for multiple
tributaries). As illustrated in Fig. 3, a tributary’s GEV-distribution can lead

to relatively low or high discharges. This uncertainty is largely caused by a
lack of realizations in the tail (i.e., not having thousands years of
independent and identically distributed discharges). If one tributary would
fita GEV distribution resulting in a curve on the upper end of the

bandwidth, it is likely because it experienced a high discharge event that

affected its neighbouring tributary as well. Consequently, the neighbouring
tributary is more likely to also have a ‘high-discharge’ GEV-combination. To
account for this, we first sort the GEV-combinations based on their 1,000-

year discharge (i.e., the curves’ intersections with the blue dashed line), and

draw a 9-sized sample from the dependence model. Transforming this to

uniform space gives a value between 0 and 1 that is used as rank to select a

(correlated) GEV-combination for each tributary. Doing this increases the

likeliness that different tributaries will have relatively high or low sampled
discharges.




4 Experts’ performance and resulting discharge
statistics

TathisThis result section;we first presentpresents the expertexperts’ scores
for Cooke’s method; (Sect. 4.1) and the experts’ rationale for answering the
questions: (Sect. 4.2). After this, the extreme value results for the tributaries
(Sect. 4.3) and downstream locations (Sect. 4.4) are presented.

4.1 Results for Cooke’s method

The experts estimateestimated three-percentiles (5th, 56¢%50th and 95th)
for the 10- and 1,000-year discharges;discharge for all larger tributaries in
the Meuse catchment. Fhe-10-year-estimate-isused-forealibration—An
overview of the answers is given in the supplementary material. Based on
these estimates, the scores for Cooke’s method are calculated-Theresults as
described in Sect. 3.2. The resulting statistical accuracy, information score,

and combined score (which, after normalizing, become weights) are shown
in table 1.

Scores for Cooke’s method, for the experts (top 7 rows) and decision makers
(bottom 3 rows).

Calibration-scereStatistical Information score  Comb.

accuracy score

All Calibr:Seed
ExpA  0.000799 1.605 1.533 0.00123
ExpB  0.000456 1.576 1.633 0.000745
ExpC 2.3-108 1.900 1.868 4.4--10-8
ExpD  0.683 0.711 0.626 0.427
ExpE  0.192 1395 1.263 0.242
ExpF  0.000456 1.419 1.300 0.000593
ExpG  0.00629 1.302 1.232 0.00775
GL 0.683 0.659 0.670 0.458
(opt)
GL 0.683 0.648 0.661 0.452
EQ 0.493 0.537 0.551 0.271

The ealibration-secore,ameasurefor-the-expert's-statistical accuracy; varies

between 2.3 - 1078 for expert C to 0.683 for expert D. Two experts have a
score above a significance level of 0.05. Figure 34 shows the position of
each realization (answer) within the experts’ estimates-There-were 16



ealibrationvariablesassessedthree-percentile estimate for each with-three
pereentiles.of the 10-year discharges. A well calibrated score would capture
the realizations to these seed variables accordingly to (or as close to) the
mass in each inter-quantile bin-Thus;: one realization below the 5th

percentile, 4 in between the 5th and the median, four between the median

and the 95th and one above the 95th. Expert D’s estimates closely resemble

e 1 5 4 0 . . .
this distribution (E’ 0’1o for each inter-quantile respectively), hence

the high statistical accuracy score. A concentration of dots on both ends
indicates overconfidence (too rarrewclose together estimates, resulting in
realizations outside of the 90% bounds-}). We ean-seeobserve that most

experts tend to underestimate the measured discharges, since most

realizations are higher than their estimated 95th percentile.

The information scores show less variation, as is usually the case. The
expert with the highest calibration (or statistical accuracy) score (expert D)

also has the lowest information score. Expert E, who has a high
ealibratienstatistical accuracy as well, previdedestimated more
concentrated answerspercentiles, resulting in a higher information score.

1 1 1 1 1
a1 _ . /___l . [
Exp A #1416 & & o—iay
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05 50 95100

Percentile point

Figure 34: Seed questions realizations’ compared to each expert’s estimates.
The position of each realization is displayed as percentile point in the expert’s
distribution estimate.

The variation inbetween the three decision makers (DMs) shewsin the
table is limited. Optimizing the DM (i.e., excluding experts based on
ealibratien-seerestatistical accuracy to improve the DM-score) has a limited




effect-Only. [n this case, only expert D and E remainwould have a non-zero

weight, resulting in more or less the same results as-whercompared to
including all experts, even when some of them contribute with
“marginal” marginal’ weights. The equal weights DM results-in ageedthis
case results in an outcome;-that is comparable to that of the performance
based DM, i.e., a high ealibratienseerestatistical accuracy with a slightly

lower information score compared to the other two DMs. ihe—rtem—weirghts

We present the model results byfittingittoeas discussed earlier through
three cases i) only data, ii) only expert estimates, and iii) the two combined
as described in Section 3.3. We used the global weights DM for the data and
experts option (iii). This means the experts’ estimates for the 10-year
discharges were used to assess the value of the 1,000-year answer. For the
experts-only option, we used the equal weights DM, because using the
global weights emphasizes estimates matching the measured data in the 10-
year range. This would indirectly lead to including the measured data in the
fit. By using equal weights, we ignore the relevant ealibratienseed

questions;asituation-thatcould-ultimately be used-when and the

corresponding differential weighting ef expertjudgmentsisnot
consideredweights.

4.2 Rationale for estimating tributary discharges

We asked the experts to briefly describe the procedure they followed for
making their estimates. From their responses we distinguished three
approaches. The first was making, or thinking, of a simple conceptual
hydrological model, in which the discharge follows from catchment
characteristics like (a subset of) area, rainfall, evaporation and
transpiration, preeipitation-hydregraphrainfall-runoff response, land-use,
subsoil, slope, or the presence of reservoirs. Most of this information was
provided to the experts, and if not so, they made estimates for it
themselves. A second approach that experts followed was to compare the

catchments to others that are known by the expert, and possibly adjusting
the outcomes based on specific differences. A third approach was using
rules of thumb, such as the expected discharge per square kilometer of
catchment or a ‘known’ factor between an upstream tributary discharge
and a downstream discharge (of which the statistics are better known). For
estimating the 1,000-year discharge, the experts had to do some kind of
extrapolation. Some experts scaled with a fixed factor, while others tried to
extrapolate the rainfall, for which empirical statistics where provided. The
hydrological data (described in Sect. 2) was provided to the experts in

spreadsheets as well, making it easier for them to do computations.




However, the time frame of one day (for the full elicitation) limited the

possibilities for making detailed model simulations.

Figure 45 gives an impression of how the different approaches leadled to
different answers per tributary. It compares the 50th percentile of the
discharge estimates per tributary of each expert, by dividing them through
the catchment area. From the figure we can see that most experts estimated

higher discharges for the steeper tributaries (Ambleve, Vesdre, Lesse). The

experts estimated the median 1,000-year discharges to be 1.7 to 3.8 times
as high as the median 10-year discharge, with an average of on average 2.3

for all experts and tributaries. The statistically most accurate expert, Expert

D, estimated factors in between 1.6 and 7.0. Contrarily, expert E, with the

second highest score, estimated a ratio of 2.0 for all tributaries.
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Figure 45: Discharge per area for each tributary and experts, based on the
estimate for the 50th percentile. (a) for the 10-year, and (b) for the 1,000-
year discharge. The lines are displayed to help distinguish overlapping
markers.

For estimating the factor between the tributaries’ sum and the downstream
discharge; (f,,.in Eq. [eq:main model]), experts mainly took into
consideration that not 100% of the area is covered by {i-eitflows-threugh}
theleeationsthe tributary catchments for which the discharge-estimates




were made, and that there is a time difference between the downstream
‘arrival’ of the tributary peaks. Additional aspects noted by the experts
were the effects of flood peak attenuation and spatial dependence between
tributaries and rainfall.

estimates-weWe calculated the extreme discharge statistics for each of the
tributaries: based on the procedures described in Sect. 3.3. Figure
[figrextreme_discharges_Borgharen| shows the results for Chooz and

Chaudfontaine (left and middle column};-alargernotto-steep-tributaryand
asmallersteep-tributary:). Chooz is a larger not too steep tributary, while

Chaudfontaine is a smaller steep tributary (see figure 1). The right column

shows the discharges for Borgharen, the location where we want to
estimate the discharges through Eq. [eqg:main model], which is further

discussed in Sect. 4.4. The results for the other tributaries are shown in the
supplementary information for all experts and DMs.
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The top row (a, d, g) in Fig. [fig:extreme_discharges_Borgharen| shows the
uncertainty interval of these distributions when fitted only to the discharge
measurements. The outer colored area is the 95% interval, the more
opague inner;-darker; area the 50% interval, and the thick line the median
value. The second row (b, e, h) shows the fitted distributions when only
expert estimates are used. The bottom row (¢, f, i) shows the combination of
expert estimates and data. The data-only option closely matches the data in
the return period range where data are available, but the uncertainty
interval grows for return periods further outside sample. Oppesitete
thisContrarily, the experts-only option shows much more variation in the
“in sample“sample’ range, while the out of sample return periods are more
constrained. The combined option is accurate in the “'in “sample’
range, while the influence of the DM estimates is visible in the 1,000 year
return period range.

4.4 Extreme discharges for Borgharen

Combining all the marginal (tributary) statistics with the factor for
downstream discharges and the correlation models estimated by the
experts, we get the discharge statistics for Borgharen. The results for this
are shown in Fig. [fig:extreme_discharges_Borgharen] (g, h, i).

As with the statistics of the tributaries, we observe high accuracy for the

data-only estimates in the ‘in samplesample’ range, constrained uncertainty

bounds for EJ-only in the range with higher return periods, and both when

combined. “taedaaenlpenulis desdote Seonn the obonmentione fon fenonan s
1L This st} It of 4] i it in ¢l inal



1t inahich discl 7 bined | h the historical
observationsvery-well.The combined results match the historical

observations well. Note that this is not self-evident as the distributions

were not fitted directly to the observed discharges at Borgharen but rather
obtained through the dependence model for individual catchments and
equation [eq:main_model]. The-EJ-only-estimate givesamuch-wider

0 . '] ] 1- E‘] l l' |E’) ;l;lqgstqe

to-the-dataContrarily, the data-only results deviate from the observations in

the 10- to 100-year range. Sampling from the fitted model components

(GEVs, dependence model, and factors) does not accurately reproduce the

downstream discharges in this range because they were individually fitted

and not as a whole. We do not consider this a problem, as the study is
oriented towards showing the effects of expert quantification in
combination with more traditional hydrological modelling. The EJ-only
estimates give a much wider uncertainty estimate. The experts’ combined
median matches the observations surprisingly well, but the large

uncertainty within the observed range cautions against drawing general
conclusions on this.

Zooming in on the discharge statistics for the downstream location
Borgharen, we consider the 10, 100, and 1,000-year discharge. Figure 56
shows the (conditional) probability distributions (smoothed with a kernel
density estimate) for thethese discharges at thisthe location of interest.
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Figure 56: Kernel density estimates for the 10-year (a), 100-year (b), and
1,000-year (c) discharge for Borgharen. The dots indicate the 55th, 50th and
95th percentile.

Comparing the same-three variantsmodelling options discussed thus far, we

see that the data-only option is muehteevery uncertain, with a 95%
eredibilityuncertainty interval of 64,000 to around 449,000 m3/s for the
1,000-year discharge. A Meuse-discharge of 4,000 m3 /s will likely flood
large stretches along the Meuse in the Dutch province Limburg, while a
discharge of 5,000 m3/s also floods large areas further downstream (GWF
Rongen 2016). For discharges higher than 6,000 m3 /s the simple-sum-
applied model (Eq. [eq:main_model]) should be reconsidered, as the
hydrodynamic properties of the system change due to upstream flooding.

The combined results are surprisingly close to the currently used GRADE-
statistics for dike assessment; the uncertainty is slightly larger but the
median is elesevery similar. The EJ-only results are less precise, but the
median values {‘bestestimate-are similar to the combined results and



GRADE-statistics. The large uncertainty is largelymainly the results of
equally weighting all experts, instead of assigning most weight to
expertexperts D and E (the global weight DM). The-experts’For the

combined data and EJ approach, the results for the tributary discharges
roughly cover the intersection of the EJ-only and data-only results (see Fig.

fig:extreme discharges Borgharen] a-f). Figure 6 does not show this
pattern, with the EJ-only results positioned in between the data-only and

combined results. This is mainly due to equal weight DM used for the EJ-
only results, which gives a higher factor between upstream and
downstream discharges (f;,.in Eq. [eq:main model]), and therefore higher
resulting downstream discharges. Overall, the combined effect of data and
E] is more difficult to identify in the downstream discharges (Fig.

[fig:extreme discharges Borgharen] g-i) than it is in the tributary discharge
GEVs (Fig. [fig:extreme discharges Borgharen] a-f). This is due to the
additional model components (i.e., the factor between upstream and

downstream, and the correlation model) affecting the results. Additional

lots similar to Fig. [fig:extreme discharges Borgharen] that illustrate this
are presented in the supplementary information. There, the results for the

other two downstream locations, Roermond and Gennep-are-, are presented

as well. These results behave similar to those for Borgharen; and are

therefore not presented here-They-are-howeverdisplayedinthe
supplementary-material.

5 Discussion

proposed a method to estimate credible discharge extremes for the Meuse

River (1,000-year discharges in the case of this research). Observed




discharges were combined with expert estimates through the GEV-
distribution, using Bayesian inference. The GEV-distribution has typically
less predictive power in the extrapolated range. Including expert estimates,
weighted by their ability to estimate the 10-year discharges, improved the

precision in this range of extremes.

Several model choices were made to obtain these results. Their implications

warrant further discussion and substantiation. This section addresses the
choice for the elicited variables, the predictive power of 10-year discharge
estimates for 1000-year discharges, the overall credibility of the results,
and finally, some comments on model choices and uncertainty.

5.1 Method and model choices

We chose to elicit tributary discharges, rather than the downstream
discharges (our ultimate variable of interest) themselves. We believe that
experts’ estimates for tributary discharges correspond better to catchment
hydrology (rainfall-runoff response). Additionally, this choice enables us to

validate the final result with the downstream discharges. With the chosen
set-up we thus tests the experts’ capabilities for estimating system
discharge extremes from tributary components, while still considering the
catchment hydrology, rather than just informing us with their estimates for
the end results. However, this does not guarantee that the downstream

discharges calculated from the experts’ answers match the discharges they
would have given if elicited directly.

We fitted the GEV-distribution based on the elicited 10-year and 1000-year

discharges. In particular the uncertain tail shape parameter is informed
through this, as the location and scale parameter can with relative certainty
be estimated from data. Alternatively, we could have estimated the tail
shape parameter directly (however this is not an observed quantity like
discharges are), or estimated a related parameter such as the ratios
between, for example, the 10-year and 100-year discharge. Because we are
ultimately interested in the 1000-year discharges, we preferred eliciting
absolute discharges directly. This is in line with guidelines for structured

expert judgment, where eliciting observable quantities is recommended
over the elicitation of model parameters which are not necessarily

observed. We weight expert judgments based on their performance in

estimating 10-year discharges and use this information to combine the
experts’ 1,000-year estimates with data. This should increase the
plausibility of a correct estimate of the shape parameter of the GEV or a
ratio of extreme discharges with particular return periods. However, it is
almost sure that if experts would have been assessed by their ability to

estimate ratios of extreme discharges, different weights would have
resulted than the ones presented in this research (refer to the markedly

different ratios between the 10-year and 1,000-year discharge for the two
best experts D and E in Fig. 5). A study focusing on how surprising large




events can be, and whether one method renders consistently larger
estimates than the other, would make an interesting comparison. This kind
of study is however out of the scope of our research. Our research however

shows that extreme discharge statistics can be improved when combining
them with structured expert judgment procedures.

Regarding the goodness-of-fit of the chosen GEV distribution, we note that

some of the expert estimated 1,000-year discharges much higher of lower
than would be expected from observations. We might considered this an
indication that the GEV is not an adequate model to fit to this data. A
significantly lower estimate indicates that the estimated discharge is wrong
as it is unlikely that the 1,000-year discharge is lower than the highest
observed in 30 to 70 years. A significantly higher estimate, on the other
hand, might be valid, due to a belief in a change in catchment response
under extreme rainfall (e.g., due to a failing dam). This would violate the
GEV’s ‘identically distributed” assumption. The GEV-distribution does
however have sufficient shape flexibility to facilitate substantially higher
1,000-year, so we do not consider this a realistic shortcoming. Accordingly,

rather than viewing the GEV as a limiting factor for fitting the data, we use it
as a validation for Cooke’s method scores, as described in Sect. 5.2.

A final remark regarding the model is the omission of seasonality. The July

2021 event was mainly extraordinary because of its magnitude in
combination with the fact that it happened during summer. Including
seasonality in the model estimates would have been a valuable addition,
and it would likely be the first addition we would consider. However, it
would also have (at least) doubled the number of estimates provided by
each expert, which was not feasible for this study. The exclusion of
seasonality effects from our research does not alter our main conclusion
which is the possibility of enhancing estimation of extreme discharges

through structured expert judgments.

5.2 Validity of the results

The experts participating in this study were asked to estimate 10-year and

1000-year discharges. While both discharges are unknown to the expert,
the underlying processes leading to the different return period estimates

can be different. An implicit assumption is that the experts’ ability to

estimate the seed variables (a 10-year discharge) reflects their ability to
estimate the target variables (a 1000-year discharge). This assumption is in
fact one of the most crucial assumptions in Cooke’s method and has
extensively been discussed (Roger M. Cooke 1991). Seed questions have to
be as close as possible to the variables of interest, and mostly concern
similar questions from different cases or studies. Precise 1000-year
discharge estimates are however unknown for any river system, making
this option infeasible for this study. In comparison, with a conventional
model-based approach, the ability of a model to predict extremes is also




estimated from (and tailored to) the ability to estimate historical
observations (through calibration). Advantages of relying in the
extrapolation of a group of experts are that they can explicitly consider
uncertainty and are assessed on their ability to do so through Cooke’s
method. In Sect. 5.1 we described how inconsistencies between the

observations and expert estimates can lead to a sub-optimal GEV-fit. The
fact that this is most prevalent in the low-scoring experts and least for

experts D and E supports the credibility of the results. Moreover, this means

that the ‘bad’ fits have little weight in the final global weight DM results, and
secondly that the GEV is considered a suitable statistical distribution to fit

observations and expert estimates.

The GRADE results from (Hegnauer and Van den Boogaard 2016) were

used to validate the 1,000-year downstream discharge results. These
GRADE-statistics at Borgharen (currently used for dike assessment) give a
lower and less uncertain range for the 1,000-year discharge than the

estimates obtained through our methodology. The estimates obtained in
this study present larger uncertainty bands and indicate higher extreme

discharges. This might be a consequence of the fact that we did not show
the measured tributary discharges to the experts-—Fhis-was-a-choicemadein

data—These-measurements, such that we could have-helpedclearly
distinguish the effect of observations and ‘prior’ expert judgments.
Moreover, GRADE (at the expertsin-making “less-unecertain"estimates-—On
the-etherhand;iftime) did not include the July 2021 event. If the eurrently
used-GRADE statistics weuld-behad been derived againineladingwith the
inclusion of the July 2021 event, it isnetunlikelythatthey-would
appeintlikely assign more probability to slighthhigher discharges. The
experts estimates on the contrary were elicited after the July 2021 event
which likely did affect their estimates. Therefore, the comparison between
GRADE and the expert estimates should not be used to assess correctness,

but as an indication of whether the results are in the right range.

giveTo evaluate the value of the applied approach that uses data combined
with expert estimates, we compared the results that were fitted to only data

or only expert judgment to the results of the combination. For the last
option , we used an equal weight decision maker, a conservative choice as

the experts’ statistical accuracy could potentially still be determined based

on a different river where data for seed questions are available. While the
marginal distributions of the EJ-only case present wide bandwidths (see

Fig. [fig:extreme discharges Borgharen] b and e), the final results for

Borgharen still gave a statistically accurate result but with a few caveats,

namely that the uncertainty is very large and that the 10-year and 1,000-

year estimates in itself are insufficient to inform the GEV without adding
prior information (otherwise we have 2 estimates for 3 parameters).




Consequently, when only using expert estimates, eliciting the random

variable (discharges) directly through a number of quantiles of interest,

might be a suitable alternative.

5.3 Final remarks on model choices

Finally, we note that using expert judgment to estimates discharges through

amodel (like we did) still gives the analyst a large influence in the results.

We try to keep the model transparent and provide the experts with
unbiased information, but by defining the model on beforehand and
ehoeosingwhichproviding specific information we previde;steer the
participants are-steered-towards a eertainspecific way of reasoning. Every
step in the method;, such as the choice for a GEV-distribution, the
dependence model, or the choice for Cooke’s method’, affects the end result.
By presenting the method and providing background information explicitly,

we hope to makehave made this transparent and show the useusefulness of
the method for similar applications.

6 Conclusions

This study sets out to estimate-establish a method for estimation of
statistical extremes through structured expert judgment and Bayesian

inference, in a case-study for extreme river discharges with-expert
jodgmentina-casestudy-ofon the River Meuse. Experts’ estimates of
tributary discharges ferlarge returnperiods-were-combined-with
Srepsuredbich plper dicebanene Do sopees that are cermnen—tasamslel
We-combined-the different tributary-discharges-exceeded in a once per 10

year and once per 1,000 year event are combined with high river
discharges measured over the past 30-70 yvears. We combine the discharges

from different tributaries with a multivariate correlation model describing

their dependence; and eemparedcompare the results for three approaches,

i) data only, ii) expert judgment only, and iii) the combination. We-used-The
expert elicitation is formalized with Cooke’s method for structured expert

judgment—ia—ichichthecmperis cotbnnred fhe dicebapen that i noconadad oo

The results shewed-that-of applying our method show credible extreme
river discharges resulting from the combined expert-and-data approach-are




Mease#he«eembmed—data—%ﬂppmaeh—pe#eatmed—best— A comparison to
GRADE, the prevailing method for estimating extremeriver-discharges;
while-the-experts-only-approachperformeddischarge extremes on the

Meuse, gives similar ranges for the 10-, 100-, 1,000-year discharges as

GRADE. Moreover, the two experts with the highest scores from Cooke’s

method had discharge estimates that correspond well with those

discharges that might be expected from the observations. This indicates
that using Cooke’s method to assess expert performance is a suitable way of

using expert judgment to limit the uncertainty in the “out of sample” range

of extremes. The experts-only approach performs satisfactory as well, albeit

with a considerably larger uncertainty—Fhisindicates-that than the E]-data
option. The method can thus also be applied as-well-to river systems where

measurement data are scarce or absent—A—ease—sie&dy—ﬁer—aréﬁeFeﬂt—FweF

by—usmg—MGMC—]—ust—lﬂée—w&ﬁ%ted—theﬂepeﬂ— but addmg information on




less extreme events is recommended to increase the precision of the
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On a broader level, this study has demonstrated the potential of combining

structured expert judgment and Bayesian analysis in informing priors and
reducing uncertainty in statistical models. When estimates on uncertain

extremes is needed, which cannot satisfactorily be derived (exclusively)

from a (limited) data-record, the presented approach provides a means of

supplementing this information. Structured expert judgment provides an

approach of deriving defensible priors, while the Bayesian framework
offers flexibility for incorporating these into probabilistic results by
adjusting the likelihood of input or output parameters. In our application to
the Meuse River, we successfully elicited credible extreme discharges.
However, a case studies for different rivers should verify these findings.
Considering the credible results and the relatively manageable effort
required, the approach presents an attractive alternative for complex

hydrological studies where the uncertainty in extremes needs to be
constrained.

Appendix A. Calculation of downstream discharges

Section 3.4 explained the method applied and choices made for calculating
downstream discharges. This appendix explains this in more detail,
including the mathematical equations.

Three model components are elicited from the experts and data:

o Marginal tributary discharges, in the form of a MCMC GEV-

parameter trace. Each combination 6 _consists of a location (1),
scale (o), and tail-shape parameter (£).

o A ratio between the sum of upstream peak discharges and the
downstream peak discharge, represented by This is a single

probability distribution.

o The interdependence between tributary discharges, in the form of

a multivariate normal distribution.

The exceedance frequency curves for the downstream discharges are

calculated based on 9 tributaries (N), a trace of 10,000 MCMC parameter

combinations (N,), and 10,000 discharge events (N,) per curve.

The N,, parameter combinations for each tributary are sorted based on the
(1,000-year) discharge with an exceedance probability of 0.001:



Fz,(1 —0.001|8),in which F;}, is the inverse cumulative density function,

or percentile point function, of the tributary GEV. Sorting the discharges

like this enables us to select parameter combinations that lead to low or
high discharges in multiple tributaries, and in this way express the
tributary correlations. The sorting order might be different for the 10-year

discharge than it is for the 1000-year discharge. The latter is however
chosen as it is most interesting for this study.

For calculating a single curve, N realizations are drawn from the

dependence model. These normally distributed realizations (x) are

transformed to the [1, N,].interval, and are then used as index j to select a

GEV-parameter combination for each of the N _tributaries:

j = Round (Fyorm (%) - (Ny — 1) + 1)).

This is the first of two ways in which the interdependence between

tributary discharges is expressed. The second is the next step, drawing a
(N7 X Ny) sample Y from the dependence model. These events (on a
standard normal scale) are transformed to the discharge realizations Q for

each tributaries’ GEV parameter combination:

Q = FG_ElV,j(Fnorm(Y))

An N, sized sample for the ratio between upstream sum and downstream

discharges (f) is drawn as well. The (N X Nj) discharges Q are summed per
event (for all tributaries), and multiplied with the factor f,

q="f-%(Q).

Note that this notation corresponds to Eq. [eg:main model]. The N,
discharges g are subsequently sorted and assigned a plot positions:

with a and b being the plot positions, 0.3 and 0.4, respectively (from

Bernard and Bos-Levenbach 1955). k indicates the order of the events in

the set (1 being the largest, N, the smallest), The plot positions (p) are the

‘empirical’ exceedance probabilities of the model. With 10,000 discharges

and our exceedance probability of interest of 1/1,000, the results are

insensitive to the choice of plot positions.

This procedure results in one exceedance frequency curve for the

downstream discharge. The procedure is repeated 10,000 times to generate

a uncertainty interval for the discharge estimate. Note that the full Monte
Carlo simulation comprises 10,000 x 10,000 = 100,000,000 _‘events’ for the

9 tributaries.




AppendixCAppendix B. Expert and DM correlation
matrices

Figure 407 shows the correlation matrices estimated by the experts. The
DM correlation matrices are weighted combinations of the expert matrices,
based on the weights from Table 1. See subsection 3.2 and equation

eq:DM].
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