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Abstract. We investigate the use of atmospheric oxygen (O2) and carbon dioxide (CO2) measurements for the estimation of

the fossil fuel component of atmospheric CO2 in the UK. Atmospheric potential oxygen (APO) – a tracer that combines O2

and CO2, minimising the influence of terrestrial biosphere fluxes – is simulated at three sites in the UK, two of which make

atmospheric APO measurements. We present a set of model experiments that estimate the sensitivity of APO simulations to

key inputs: fluxes from the ocean, fossil fuel flux magnitude and distribution, the APO baseline, and the exchange ratio of5

O2 to CO2 fluxes from fossil fuel combustion and the terrestrial biosphere. To estimate the influence of uncertainties in ocean

fluxes, we compared three ocean O2 flux estimates, from the NEMO – ERSEM and ECCO-Darwin ocean models, and the Jena

CarboScope APO inversion. The sensitivity of APO to fossil fuel emission magnitudes and to terrestrial biosphere and fossil

fuel exchange ratios was investigated through Monte Carlo sampling within literature uncertainty ranges, and by comparing

different inventory estimates. We focus our model-data analysis on the year 2015 as ocean fluxes are not available for later10

years. As APO measurements are only available for one UK site at this time, our analysis focuses on the Weybourne station.

Model-data comparisons for two additional UK sites (Heathfield and Ridge Hill) in 2021, using ocean flux climatologies,

are presented in the Supplement. Of the factors that could potentially compromise simulated APO-derived fossil fuel CO2

estimates, we find that the ocean O2 flux estimate has the largest overall influence at the three sites in the UK. At times,

this influence is comparable in magnitude to the contribution of simulated fossil fuel CO2 to simulated APO. We find that15

simulations using different ocean fluxes differ from each other substantially, with no single model estimate, or a simulation with
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zero ocean flux, providing a significantly closer fit to the observations. Furthermore, the uncertainty in the ocean contribution

to APO could lead to uncertainty in defining an appropriate regional background from the data. Our findings suggest that the

contribution of non-terrestrial sources needs to be better accounted-for in model simulations of APO in the UK, in order to

reduce the potential influence on inferred fossil fuel CO2 using APO.20

1 Introduction

Variations in atmospheric carbon dioxide (CO2) concentrations are due to atmospheric transport and the influence of fluxes

from the terrestrial biosphere, the ocean and human activities. With the ultimate aim of evaluating national emission estimates,

a major goal of several recent studies has been the isolation of only those variations due to anthropogenic fossil fuel CO2 emis-

sions. Radiocarbon (14C) has been widely used as a tracer for this purpose (e.g. Levin et al., 2003; Graven et al., 2009, 2018;25

Wenger et al., 2019; Zazzeri et al., 2023). As fossil fuel emissions are devoid in 14C, they can be distinguished from biospheric

and oceanic processes. However, atmospheric 14C measurements are expensive, they cannot be made continuously to the re-

quired precision, and in some regions there may be significant interference of 14C emissions from gas-cooled nuclear power

stations (Graven and Gruber, 2011; Bozhinova et al., 2016; Wenger et al., 2019). An alternative tracer is carbon monoxide

(CO), which is produced by incomplete combustion. Atmospheric measurements of CO are much less expensive than those of30
14C and can be made continuously (e.g. Andrews et al., 2014; Levin and Karstens, 2007; Levin et al., 2020). However, there is

large uncertainty in both the ratio of CO to CO2 emissions from fossil fuel combustion, and the CO flux from non-fossil fuel

sources and sinks (Vardag et al., 2015).

Pickers (2016a) and Pickers et al. (2022) show that atmospheric oxygen (O2) and CO2 measurements, combined into Atmo-

spheric Potential Oxygen (APO) (Stephens et al., 1998), can be used as a novel tracer for fossil fuel derived CO2. In their study,35

Pickers et al. (2022) show that their APO-derived CO2 emission changes during the COVID-19 lockdowns in the UK corre-

spond well to the changes found from bottom-up inventories. Their method, combining observations and machine-learning

techniques, shows the potential of APO as a fossil fuel CO2 (ffCO2) tracer. The basis of this method is that the ratio of O2

to CO2 fluxes from the terrestrial biosphere, which are by definition removed from the O2 signal through the use of the APO

tracer (Stephens et al., 1998), is relatively well-constrained and invariant in space and time. For the land-based sources, O2 and40

CO2 fluxes to the atmosphere from photosynthesis, respiration, and combustion are strongly anti-correlated: CO2 is taken up

through photosynthesis whilst O2 is released, and the reverse is true for respiration and combustion.

When considering ocean fluxes, the situation is more complex. Differences in solubility (Keeling, 1988a) and carbonate

chemistry (Keeling and Shertz, 1992; Keeling and Severinghaus, 2000) mean that the O2 and CO2 fluxes from the ocean are

largely decoupled. However, previous work has indicated that the influence of ocean fluxes on the atmospheric ratio of O245

to CO2 are generally smaller than the influence of fossil fuel combustion on short timescales (Pickers, 2016a; Pickers et al.,

2017; Chevalier and WP4 CHE partners, 2021). Pickers et al. (2017) found short-term variability in APO, O2 and CO2 mole

fractions with a very small magnitude from the ocean when taking ship measurements.
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There have been a number of promising attempts to incorporate O2 modelling as a tracer for ffCO2. Kuijpers et al. (2018)

modelled O2 for the autumn of 2014 finding good agreement with observations at two sites in the UK and the Netherlands.50

APO modelling was investigated to derive European ffCO2 fluxes by several groups within the CO2 Human Emissions project

(CHE, work package 4, Marshall et al., 2019; Chevalier and WP4 CHE partners, 2021). Comparing with results from ∆14CO2

and CO modelling, they found that APO-derived ffCO2 gave the strongest correlation to direct ffCO2 models using STILT and

TNO fluxes. The APO models were affected by oceanic fluxes at some coastal sites, although for most coastal sites the ocean

influence, modelled using ocean fluxes from NEMO - PlankTOM5, was considerably smaller than that of the ffCO2.55

Two measurement sites equipped with high-frequency CO2 and O2 instruments have been established in the UK, one at

Weybourne Atmospheric Observatory (WAO) in the east of England and one at Heathfield telecommunications tower (HFD) in

the south of England. In this paper, we perform simulations of CO2 and O2 primarily focusing on model-data comparisons at

WAO for the year 2015, with further comparisons at HFD and WAO for the year 2021 presented in the supplement along with

a third station at Ridge Hill (RGL) telecommunications tower. Although atmospheric O2 measurements are not available from60

RGL, it is included to examine the modelled APO further inland. We test the sensitivity of the APO simulation to changes in a

set of uncertain model input parameters, to determine whether a robust tracer of national scale fossil fuel CO2 can be derived.

1.1 Modelling Atmospheric Potential Oxygen

As O2 is abundant in the atmosphere, dilution by trace gases can have a non-negligible effect on its mole fraction which may

erroneously be attributed to an O2 flux. To minimise this influence, atmospheric oxygen measurements are commonly reported65

as a ratio with respect to the atmospheric nitrogen mole fraction as δ(O2/N2) (Keeling and Shertz, 1992):

δ(O2/N2) =
(O2/N2)sample − (O2/N2)reference

(O2/N2)reference
× 106, (1)

where (O2/N2)sample is the O2/N2 ratio of a sample, and (O2/N2)reference is from a reference gas cylinder. δ(O2/N2) is

expressed in “per meg”.

We can define the tracer APO (e.g. Stephens et al., 1998; Gruber et al., 2001; Battle et al., 2006) that is largely unaffected70

by exchanges with the terrestrial biosphere, but sensitive to fossil fuel (and cement production) and ocean fluxes. This is a

weighted combination of O2 and CO2 which isolates the oceanic and fossil fuel (and cement production) components:

APO =O2 +αB × (CO2 − 350), (2)

where APO is a mole fraction; αB is the O2:CO2 exchange ratio for the land biosphere; O2 and CO2 are the atmospheric

mole fractions of O2 and CO2 respectively; and 350 (µmol mol−1) is an arbitrary reference.75

Equations 1 and 2 can be combined, expressing δAPO in per meg (Stephens et al., 1998):

δAPO = δ(O2/N2)+

(
αB

XO2

)
× (CO2 − 350), (3)

where XO2
is the standard mole fraction of O2 in air, equal to 0.20946 (Machta and Hughes, 1970).
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1.1.1 The regional contribution to atmospheric APO

The regional contribution of atmospheric APO can be estimated by combining the mole fraction contributions of O2, CO2, and80

N2. Following the derivation in Manning and Keeling (2006), baseline deviations of APO, expressed in per meg, can be written

as:

∆(δAPO) =
(αF −αB)F +αBO+Z

XO2

− N

XN2

, (4)

=
FO −αBF +αBO+Z

XO2

− N

XN2

, (5)

where Z and O respectively are the O2 and CO2 mole fraction contributions from the ocean; F and FO are the contributions85

of CO2 and O2 respectively from fossil fuel combustion and cement production; N is the N2 contribution; αF and αB are the

fossil fuel and biospheric exchange ratios; and XN2
is the mole fraction of N2 in dry air, given as 0.78084 (Weast and Astle,

1982), where this and XO2 are used to convert from ppm (µmol/mol) to per meg.

When estimating the exchange of N2 we need only to consider the ocean contribution as the other components are assumed

to be negligible (Ciais et al., 2007). We assume a constant value for αB for the UK of -1.07± 0.04 (Marshall et al. (2019); P. A.90

Pickers 2021, personal communication). αF varies for different fuel types, having values of -1.17 for coal, -1.44 for oil, -1.95

for gas, and 0 for cement production (Keeling, 1988b; Steinbach et al., 2011), and can be estimated for the UK by combining

fossil fuel emissions estimates and fuel usage statistics, as outlined in Section 2.2.2. However, variations in αF are not well

studied or constrained. Therefore we follow Jones et al. (2021) in assuming an uncertainty of ±3 per cent.

2 Methodology95

2.1 Observations

At both the measurement stations, WAO and HFD, atmospheric O2 measurements are made using ‘Oxzilla’ lead fuel cell

analysers (Sable Systems International Inc.) placed in series with non-dispersive infrared (NDIR) CO2 ‘Ultramat 6E’ analysers

(Siemens Corp.). The gas handling for each system is similar to that of Adcock et al. (2023), Pickers et al. (2017) and Stephens

et al. (2007), to ensure stable pressures and flow rates are maintained and to avoid O2/N2 fractionation effects. A two-stage100

drying system (Wilson, 2013; Barningham, 2018; Adcock et al., 2023) reduces the dew point of the sample air to approximately

-90 ◦C. Calibration gases, consisting of secondary standards that are stored horizontally in thermally insulated enclosures, are

used to characterise analyser responses on the World Meteorological Organization (WMO) CO2 scale maintained by The

National Oceanic and Atmospheric Administration (NOAA) and the Scripps Institution of Oceanography scale for O2, by

employing routines and protocols similar to those of Kozlova and Manning (2009).105

Weybourne Atmospheric Observatory (WAO; https://weybourne.uea.ac.uk/) is a coastal measurement station in Norfolk, in

the east of England (52◦57’02”N, 1º07’19”E) which has been routinely sampling CO2 and O2 since May 2010. Established in

1992, WAO is a Global Atmospheric Watch (GAW) Regional station, an National Centre for Atmospheric Sciences (NCAS)
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Atmospheric Measurement Facility (AMF), and an Integrated Carbon Observation System (ICOS) Class 2 station. Air is

alternately sampled from two identical aspirated inlets at 15 magl (Blaine et al., 2006).110

Heathfield (HFD) is a tall-tower measurement site that is part of the UK Deriving Emissions linked to Climate Change

(DECC) network (Stanley et al., 2018) which has been sampling CO2 and O2 since June 2021. The site is in an agricultural

area in the south of England (50◦58’36.3”N, 0◦13’49.728”E), around 25 km north of the English Channel. Air is alternately

sampled from two identical aspirated inlets (Blaine et al., 2006) at 100 magl.

Ridge Hill is also a tall-tower measurement site in the UK DECC network in Herefordshire (51◦59’50.766”N, 2◦32’23.64”W).115

Although CO2 is sampled here, O2 is not. We include Ridge Hill in the analysis to test the model at a more inland UK site.

The repeatability of the O2 measurements from Weybourne, which is determined from regular measurements of a target tank,

typically ranges from 1.68±1.09 per meg to 3.31±5.46 per meg (Adcock et al., 2023). This exceeds WMO repeatability goals

(WMO, 2019) for O2, but is nevertheless amongst the most precise globally. The repeatability is calculated using the method

explained in Pickers et al. (2017) and is reported with ±1σ uncertainty to represent how the measurement system repeatability120

varies over time. During the period February to November 2015, the O2 measurement repeatability was significantly larger

(10.71± 10.45) than usual, caused by poor performance of the Oxzilla analyser. As described in Section 2.2, we model the

year 2015 as it is the most recent year for which outputs exist for all of the ocean models used. This larger repeatability

does not significantly affect the accuracy of the O2 measurements, but does compromise the detection limit, meaning that

smaller synoptic variations in APO (<10 – 20 per meg) may be masked during this period by the measurement imprecision.125

CO2 repeatability was not affected, and is 0.005± 0.023 ppm on average at Weybourne, calculated from over 8000 target tank

measurements made from 2010 – 2021.

2.2 Modelling APO

We use a Lagrangian particle dispersion model (LPDM) to simulate APO at the three measurement sites in the south of the

UK. The key components of our simulation are the LPDM “footprints”, a set of flux estimates, and boundary conditions at the130

edge of our domain. The following sections outline how each component was produced and used in the model.

For our analysis we focus on the year 2015, chosen because time-resolved ocean model outputs are available for all ocean

models considered here, described in Section 2.2.2. Weybourne measurements are available for 2015 and are compared to the

simulation in Section 3. Heathfield observations are only available from June 2021, when time-resolved ocean fluxes are not

available, so model outputs, derived using climatological fluxes, are compared to the observational data for this site and shown135

in the Supplement. Simulations at Ridge Hill are shown in the Supplement.

We also model the total CO2 and O2 mole fraction at Weybourne to compare the correlations with those observations to the

equivalent for APO.

2.2.1 The Atmospheric Model

Simulations of atmospheric transport and dispersion are carried out using the Numerical Atmospheric-dispersion Modelling140

Environment (NAME III, version 7.2), the UK Met Office’s LPDM (Jones et al., 2007). NAME was run in time-reversed
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Figure 1. Calculation of UK fossil fuel O2 fluxes from CO2 flux estimates and fuel usage statistics from the UK National Atmospheric

Emissions Inventory (NAEI), where flux estimates are downscaled to an hourly resolution using the UKGHG (UK Greenhouse Gas) flux

model (Levy, 2020).

mode, in which we tracked thousands of model particles back in time for 30 days from observation sites (see e.g. Manning

et al., 2011). The motion of hypothetical “particles” is simulated based on meteorological fields from the Met Office Unified

Model analyses (Cullen, 1993). The “footprint” of each measurement was estimated by recording locations and times at which

particles interacted with the Earth’s surface (defined as being the lowest 40 m of the atmosphere in this case). These footprints145

define the sensitivity of mole fractions at a measurement site to the flux from each grid cell in the domain. Our domain covered

most of Europe, the east coast of North and Central America, and North Africa, extending across the longitude/latitude range:

10.729 - 79.057◦N and 97.9◦W - 39.38◦E (shown in Supplementary Figure S1). The footprints have the resolution 0.234◦ by

0.352◦ (roughly 25 km by 25 km over the UK).

The NAME footprints used for this study are disaggregated in time with the method described by White et al. (2019). To150

account for the influence of rapid variations in CO2 flux on the mole fractions, footprints are generated hourly for the 24 hours

preceding a simulated data point. Time-integrated footprints are then used for the remaining 29 days of the simulation. The

modelled regional contribution to the mole fraction of a species, Yt, at a time-step, t, can then be estimated by combining the

flux field with the high-time-resolution NAME footprint, as shown by equation 6 (White et al., 2019):

Yt =

H∑
h=0

n∑
j=0

fpt−h,j × qt−h,j +

n∑
j=0

fpremainderj × qmonthj
(6)155

where H is the number of hours back in time over which the footprint is disaggregated, for which we use 24; h is the number

of hours back in time before the particle release time, t; j is the grid cell and n is the maximum number of grid cells; fpt−h,j

is one grid cell of the footprint for that time; qt−h,j is one grid cell of the flux field; fpremainderj is the remaining 29-day

footprint; and qmonthj
is the monthly average flux for the grid cell (by calendar month). White et al. (2019) discusses this

method in more detail, including the effects of varying the level of time-disaggregation of the footprint, H .160
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2.2.2 Flux products

We model the regional contribution to APO separately for each of the components of Equation 5 (Z, FO, F , O), using Equa-

tion 6 to combine the flux estimates and NAME footprints. Here we describe how the fluxes for each component are estimated.

Anthropogenic CO2 flux estimates for the UK are taken from the UK National Atmospheric Emissions Inventory (NAEI),

where estimates at a downscaled hourly resolution are derived using the UKGHG model (Levy, 2020). Outside of the UK,165

anthropogenic flux estimates from EDGAR (Emissions Database for Global Atmospheric Research) are used. As NAEI in-

cludes the anthropogenic CO2 flux estimates from both fossil fuel and non-fossil fuel sources (e.g. peat and biomass), we use

the method described in Figure 1 and Equations 7 and 8 to remove emissions associated with non-fossil fuel sources, and thus

estimate the fossil fuel UK CO2 and O2 flux:

CO2ff =
∑
s

∑
e

CO2sRse (7)170

O2ff =
∑
s

∑
e

CO2sRseαfe (8)

where s is the SNAP sector (Selected Nomenclature for reporting of Air Pollutants, see e.g. Tsagatakis et al., 2022), e is the

fuel or source type (coal, oil, gas, non-combustion, or cement production), CO2s is the CO2 flux for the sector, Rse is the

proportion of CO2 emissions within the SNAP sector associated with the fuel type, and αfe is the fossil fuel exchange ratio175

for the fuel type. We use NAEI statistics of the annual fuel usage for each SNAP sector1 to determine Rse, assuming that the

ratio of fuels used within each sector is constant throughout the year. When determining the fuel type associated with NAEI

emissions estimates we follow the assumptions given by Jones et al. (2021), that emissions from the non-energy use of fuels

and solvent sector relate to non-combustion use of oil, and emissions from the production of non-metallic minerals relate to

cement clinker production. Using the exchange ratio for each fuel, αfe, we then convert from CO2 to O2 flux for each fuel180

within each sector, and take the sum to give the total hourly O2 flux throughout the year. The O2 flux from outside of the UK

is estimated using EDGAR CO2 fields and αF estimates from GridFED (Jones et al., 2021).

We compare ocean CO2 and O2 fluxes derived from NEMO – ERSEM simulations (NE, Butenschön et al., 2016; Madec and

NEMO System Team, 2022), the ECCO – Darwin model (ED, Carroll et al., 2020) and the Jena CarboScope APO inversion

(JC, Rödenbeck et al., 2008), as well as a model with ocean fluxes excluded. All of the ocean fluxes have daily time resolution185

and raw spatial resolutions of 0.199◦ × 0.333◦, 2.0◦ × 2.5◦, and 0.066◦ × 0.110◦ for ED, JC, and NE respectively, which are

regridded to match the NAME spatial resolution for our analysis.

ED determines ocean-atmosphere transfer of O2 and CO2 by combining the CO2 partial pressure difference across the air-sea

interface with the relationship between wind speed and gas transfer, as described by Wanninkhof (1992). The Darwin Project

biogeochemical model resolves the cycling of CO2 and O2 and its ocean ecology includes phytoplankton and zooplankton190

(Brix et al., 2015; Carroll et al., 2020). JC estimates CO2 and APO fluxes using a Bayesian atmospheric inversion and mea-

surements from 23 CO2 stations and up to 10 O2 stations (including Weybourne, Rödenbeck et al., 2003, 2008, 2018). For
1https://naei.beis.gov.uk/data/data-selector
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the JC APO inversion oceanic CO2 fluxes are estimated from the interpolation of pCO2 data, Air-sea fluxes of O2 and CO2

in NE are calculated starting from the gradient of those gases between the atmosphere and the water and using Nightingale

et al. (2000) to estimate the gas transfer coefficient. The concentration of O2 and CO2 in the water are the results of dynamical195

processes in the ecosystem represented in the model, and in particular photosynthesis from phytoplankton and respiration of all

planktonic community as well as benthic organisms. More details on the dynamics of these gases can be found in Butenschön

et al. (2016). For all of our APO models we use a nitrogen flux field estimated from NEMO heat fluxes by Equation 9:

qoceanN
=−dCeq

dT

Q̇

Cp
(9)

where dCeq/dT is the temperature derivative of the solubility, Q̇ is the ocean heat flux (positive for transfer from the ocean to200

the atmosphere), and Cp is the heat capacity of seawater (Keeling et al., 1993). dCeq/dT is estimated using:

lnC =A0 +A1TS +A2T
2
S +A3T

3
S +S(B0 +B1TS +B2T

2
S) (10)

with

TS = ln

(
571.3−T

T

)
(11)

where C is the gas concentration, T is the temperature (K), S is the salinity and the A and B coefficients are defined in Hamme205

(2004). The surface heat flux is calculated by NEMO as the balance between the non-solar heat (sum of sensible, latent and

long wave heat fluxes) and the incoming solar radiation (Madec and NEMO System Team, 2022). Both the ocean temperature

and salinity are derived from the NE simulation.

When modelling CO2 and O2 mole fractions separately, we must include a terrestrial flux component. For this we use CO2

flux estimates from the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE, Krinner et al., 2005) model.210

ORCHIDEE is a dynamic vegetation model which simulates the principal biospheric processes influencing the global carbon

cycle, including photosynthesis, autotrophic and heterotrophic respiration. To estimate the terrestrial O2 flux we multiply the

CO2 flux by αB , which we assumed is equal to 1.07 ± 0.04 (see Section 1.1).

2.2.3 APO boundary conditions

With the method of Lunt et al. (2016), we model the contribution from the boundary conditions at the edge of our domain215

using global atmospheric fields of APO mole fractions from the JC global APO inversion (Rödenbeck et al., 2008, version

apo99X_WAO_v2021). Whilst the JC APO fields include data from WAO in their derivation, any circular influence on our

results should be small, because the domain boundaries are far from the UK (∼1000 km) and therefore, the WAO data should

not strongly influence the gradients simulated there. These boundary conditions are propagated to the measurement site by

tracking the location at which NAME model particles leave the domain, thus providing a baseline estimate at the site. The220

baseline estimated from the boundary conditions is adjusted for consistency with the observations. To do this, we adjust the

JC background for each month such that the simulated APO during periods of minimal terrestrial influence (defined as the 90
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Figure 2. The ffCO2 flux estimated by NAEI, embedded in EDGAR (panels a and c), and the difference between the NAEI and the EDGAR

fields (panels b and d) for August (panels a and b) and December 2015 (panels c and d). By definition panels b and d are zero outside of the

UK. The crosses show the locations of the sites included in this study: HFD, RGL, and WAO.

percentile of APO in a simulation with no ocean fluxes) are consistent with the observations at the same times. The original

and adjusted JC backgrounds are shown in Figure S2 in the Supplement.

2.3 Sensitivity experiments225

Model simulations of APO are sensitive to uncertainties in several inputs of Equation 5. In this section, we outline how we

investigate the sensitivities to the biospheric and anthropogenic exchange ratios (αB and αF ), ocean fluxes, fossil fuel CO2

emissions, baseline, and atmospheric model. The sensitivity tests (for APO and ffCO2) are summarized in Table 1

2.3.1 Sensitivity to the exchange ratios: αB and αF

To investigate our sensitivity to αB and αF in Equation 5 we employ a Monte Carlo method, randomly generating a value for230

each from a Gaussian distribution with a standard deviation of 0.04 mol/mol (Marshall et al., 2019) and 3 per cent (Jones et al.,

2021) for αB and αF respectively. Doing so, we generate 1000 values for the APO time-series.

As αF varies for different fuels we must take this into account when studying the sensitivity to αF . As described in sec-

tion 2.2.2, the fossil fuel O2 flux for each sector is calculated using αF based on the proportion of fuels consumed within that

9



Figure 3. The daily mean O2 ocean flux fields from the ED model (panel a), the JC Inversion (panel b) and NE model (panel c), and the

NAME footprint (panel d) on the 13/08/2015 at WAO, at a time at which the ED and NE ocean fluxes dominate the simulated APO and

when there is a large difference between the estimated O2 contribution from the three flux estimates. The flux fields have the 0.002 and 0.005

(mol/mol)/(mol/m2/s) footprint contour overlaid.

Table 1. Summary of sensitivity tests. The left-hand column indicates the parameter being investigated and whether the sensitivity to APO or

ffCO2 is being investigated. The middle column briefly describes the method employed to determine the sensitivity, and the relevant results

section is shown to the right.

Sensitivity test Method Section

APO: Biosphere exchange ratio (αB) Monte Carlo ensemble 3.2

APO: Fossil fuel exchange ratio (αF ) Monte Carlo ensemble. Comparison of GridFED and NAEI-derived ratios 3.2

APO: Ocean flux estimate Comparison of NEMO, ECCO-Darwin, Jena Carboscope flux estimates 3.3

APO: Fossil fuel flux magnitude and distribution Monte Carlo ensemble. Comparison of NAEI and EDGAR distributions 3.4

APO: Background Comparison of JC and REBS 3.5

ffCO2: Ocean flux estimates Comparison of NEMO, ECCO-Darwin, Jena Carboscope ocean fluxes 3.6

ffCO2: Background Comparison of JC and REBS 3.6

sector. We therefore initially investigate the sector-wise sensitivity of the O2 flux to αF for each fossil fuel: coal, oil, and gas.235

Then we combine this information to determine the overall sensitivity of the fossil fuel O2 flux and the APO simulation to αF .

2.3.2 Sensitivity to fossil fuel flux magnitude and distribution

We estimate the sensitivity of the modelled APO to changes in the distribution and magnitude of fossil fuel CO2. We investigate

the influence of the spatial distribution by comparing APO simulations for the NAEI and EDGAR, which are overall very

similar in magnitude, but have a different distribution (Figure 2). As discussed in Section 2.2, our APO model uses NAEI240

ffCO2 emissions estimates for the UK, which are embedded in those of EDGAR and combined with NAEI fuel usage statistics

to calculate ffO2 uptake. We compare these estimates to EDGAR CO2 emissions with GridFED αF .
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We investigate the sensitivity of the APO model to the magnitude of ffCO2 using a Monte Carlo ensemble in which the

overall CO2 flux in the entire domain is allowed to vary by ±10%. This range is considerably larger than the difference

between EDGAR and the NAEI, which is approximately 0.7%, but chosen so that the effect on APO can be readily identified.245

2.3.3 Sensitivity to ocean flux

Figure 3 shows the ocean flux fields from the ED and NE models and the JC inversion. For illustration, this figure is shown for

a period (13th August 2015) when the footprint for WAO is predominantly across the ocean. On this date, and in general, there

is a much larger flux in coastal regions in the NE ocean model compared with both the ED and JC estimates. Unlike exchange

ratios, the sensitivity of simulated APO to ocean fluxes cannot readily be described by an uncertainty on a single parameter.250

Therefore, to examine the sensitivity to this term we produce APO timeseries using the three different flux estimates such that

we can qualitatively compare the effect on APO magnitude and variability, and compare the correlation of each model with the

observations. We also produce a timeseries with the ocean component excluded to examine whether the fit to the observations

can be improved by assuming a negligible ocean contribution.

2.3.4 Sensitivity to the background estimate255

A0s our APO simulations only account for the influence of fluxes within our regional domain, an estimate must be made of the

APO entering the domain. Therefore, in this section, we describe how different background estimates might influence the com-

parison between the APO simulation and the observations. The background represents the APO variability that is representative

of the well–mixed atmosphere at the UK’s latitude, excluding local influences. We compare the modelled ∆(δAPO) (calculated

using equation 5) with background-subtracted observations at Weybourne throughout 2015. We compare two methods to sub-260

tract the background from the observations. First we estimate a baseline from the APO observations using the ‘REBS’ statistical

fitting routine (Robust Extraction of Baseline Signal, Ruckstuhl et al., 2012; Pickers et al., 2022) with a span value of 0.03,

equivalent to a smoothing window of approximately one week. This smoothing window was thought to be the most appropriate

for incorporating wider-scale APO signals from outside Europe into the background term while simultaneously excluding local

influences. For our second background subtraction we use the JC background estimate, estimated from boundary conditions265

propagated to the measurement site using NAME (Section 2.2.3). A monthly adjustment is made to the JC background to

account for offsets observed in some months, as described in Section 2.2.3. This gives us two estimates of observation-derived

ffCO2, using which we can compare the background subtraction method.

These background estimates are inherently different: for example the REBS baseline incorporates regional ocean season-

ality whereas the JC estimate represents contributions from outside of the domain. However, comparing both background270

subtractions gives us an idea of the impact of differences between background estimates, such as their variability.
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2.3.5 Sensitivity to the Atmospheric Model

As discussed in Section 2.2, in this study we use the NAME atmospheric transport model. Although NAME has been exten-

sively inter-compared to other transport models in several publications (e.g. Brunner et al., 2017; Rigby et al., 2019; Monteil

et al., 2020), systematic errors in NAME will influence the comparison with observations. Whilst an extensive model inter-275

comparison exercise is beyond the scope of this paper, to provide a simple comparison with another widely used modelling

system, we compare the NAME fossil fuel CO2 time series to that of CarbonTracker Europe (CTE2022, van der Laan-Luijkx

et al., 2017; Friedlingstein et al., 2022). CTE2022 uses the TM5 transport model (Krol et al., 2005) driven by ERA-5 meteorol-

ogy to transport prior fluxes globally, and surface CO2 fluxes are optimized on a weekly timestep over the period 2000 – 2021.

The prior fluxes are from the SiB4 biosphere model (Haynes et al., 2019), GFAS fire emissions (Kaiser et al., 2012), GridFED280

fossil fuel emissions (Jones et al., 2021) and JC ocean fluxes. CO2 mole fractions based on the optimized CTE2022 at WAO

are used here, with separate tracers are available for each of the described flux components.

2.4 Fossil fuel CO2 mole fraction

Previous studies have indicated that we can assume that ocean fluxes do not contribute strongly to the overall APO at a

measurement site over short time scales (Pickers, 2016a; Pickers et al., 2017; Chevalier and WP4 CHE partners, 2021). Based285

on this assumption, it has been proposed that we can estimate regional ffCO2 mole fractions from APO, following Pickers

(2016a):

ffCO2 =
δAPO− δAPObg

RδAPO:CO2

(12)

where APObg is a background APO estimate, and RδAPO:CO2 is the APO:ffCO2 ratio which can be estimated from RAPO:CO2 =

αf −αB .290

To estimate the time-varying ratio RδAPO:CO2
in the air intercepted at the measurement site, we use the footprint-weighted

fossil fuel exchange ratio:

Rt,δAPO:CO2
=

1∑n
j=0 fpt,j

n∑
j=0

(αFt,j −αB)fpt,j (13)

where t is the time, j is the grid cell and n is the maximum number of grid cells, αFt,j is αF for one grid cell at that time, fpt,j

is one grid cell of the hourly footprint at that time, and
∑n

j=0 fpt,j is the sum of the footprint across all grid cells at that time.295

Here we investigate how well we can retrieve ffCO2 mole fraction contributions from our APO models and we also estimate

ffCO2 from our observation using Equation 12. These estimates are directly compared to modeled ffCO2 by multiplying the

NAEI–within–EDGAR flux by NAME footprints, as described in Section 3.1. Equation 12 requires an estimate of the APO

background, δAPObg . When deriving ffCO2 from the model we compare two methods to estimate this term: in one case by

fitting a baseline to the APO model using the REBS statistical fitting routine; for comparison we use the adjusted JC background300
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estimate. The baselines for the whole of 2015 are shown in Supplementary Figure S9. We then derive ffCO2 from the below-

baseline APO, comparing the effect of using of a constant value for RδAPO:CO2
and that using Equation 13 to calculate a time

varying exchange ratio.

3 Results and discussion

3.1 Simulated APO at UK measurement sites305

Here we show our APO model results for 2015. As examples, one summer (August) and one winter month (December) are

shown throughout. These months were selected based on data availability, statistical goodness-of-fit and having two months

that represent sufficiently distinct parts of the APO seasonal cycle. Simulations for all months of 2015 and 2021 are provided

in the Supplement (Figures S3 and S6).

The simulated CO2 and O2 mole fraction and APO contribution due to each source and sink is shown in Figure 4 for August310

and December 2015 at the three sites. In August, the ocean and fossil fuel mole fraction contributions have similar magnitudes

and there are sustained periods during which the ocean APO component dominates over the fossil fuel. We find that there are

O2 excursions from background which are considerably larger than those inferred by Pickers et al. (2017). However, there is

large disagreement between the three models of ocean APO contribution, and frequently the difference between them is of a

similar magnitude to that of their contribution. Whereas over the summer the ED and JC models suggest net oxygen release315

from the ocean, over the winter we see overall uptake due to the difference in temperature and solubility, as well as the balance

of respiration and productivity. In December, the magnitude of the fossil CO2 and O2 mole fractions are significantly larger

than that of the ocean, although there are still large differences between the ocean models. However, when converted to the

fossil fuel and ocean components of APO, the magnitudes are similar for Weybourne and for much of December the fossil

fuel component is small compared with the ocean at Heathfield and Ridge Hill, despite these sites being further inland than320

WAO. For all three sites, variation between the ocean models is comparable to the magnitude of their flux and there are large

periods of December during which the ocean is dominant as an O2 sink. This is in contrast to the findings of Chevalier and

WP4 CHE partners (2021), who found that the fossil fuel APO contribution was dominant at all sites, including Weybourne and

Heathfield. That study used a combination of fluxes from NEMO – PlankTOM5 and the atmospheric transport model STILT

(Lin et al., 2003). However, Chevalier and WP4 CHE partners (2021) do not provide details on the magnitude of variability in325

these flux estimates.

Combining the APO components using Equation 5 gives a modelled APO for Weybourne as shown in Figure 5 (for all three

sites in 2015 see Supplementary Figure S3, and for Weybourne and Heathfield in 2021 see Supplementary Figure S6). Com-

paring with the observations we find that, although the magnitude of the variability is similar, there are substantial differences

between the simulations and the observations. Figure 6 shows the (R2) and root mean squared error (RMSE), comparing each330

set of APO simulations and the observations at Weybourne for each month throughout 2015. The mean of all the APO simu-

lations for December gives a closer fit to the observations at Weybourne than the mean of all the APO simulations in August

(average R2 of 0.34 vs 0.10 and average RMSE of 7.1 vs 8.4 per meg for December and August, respectively). We see a clear
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Figure 4. The gas-specific sectoral contributions of the ocean and fossil fuel components of APO to the mole fraction of each species at

Weybourne, Heathfield, and Ridge Hill (panels a, b, and c) and the APO ocean and fossil fuel contributions to the APO model at the three

sites (panels d, e, and f ) throughout August 2015. The blue, green, and purple line show the contribution calculated from the ED, JC, and NE

fluxes respectively, and the orange lines show the fossil fuel contributions. Solid lines represent O2 in the top panels and APO in the bottom

panels, dashed lines show the CO2, and dash-dotted lines show the N2.
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Figure 4. continued: the regional contribution of the ocean and fossil fuel components of APO to the mole fraction of each species at

Weybourne, Heathfield, and Ridge Hill (panels g, h, and, i) and the overall regional ocean and land contribution to the APO model at the

three sites (panels j, k, and l) throughout December 2015. The blue, green, and purple line show the contribution calculated from the ED,

JC, and NE fluxes respectively, and the orange line show the fossil contributions. Solid lines represent O2 in the top panels and APO in the

bottom panels, dashed lines show the CO2, and dash-dotted lines show the N2.
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Figure 5. The modelled and observed APO at Weybourne throughout August (panel a) and December (panel b) 2015, where we model APO

using three different ocean flux estimates from: the global ED ocean model (blue), the global JC inversion (green), and the regional NE ocean

model (purple). We also show the APO model with no ocean contribution (grey dashed line). The dotted grey line shows the baseline derived

from JC boundary conditions, which has been adjusted as described in Section 2.2.3. The magenta dots show the observations and the purple

dotted line shows the baseline fit to the observations using the statistical fitting routine REBS.

seasonal trend, that the correlation is lowest throughout the summer and winter and increased during the spring and autumn.

This is demonstrated further in Supplementary Figure S4, where there is larger scatter over the summer months. As discussed335

above and shown in Figure 5, we also find that the model is more sensitive to the ocean flux over the summer, when the differ-

ence between the three APO simulations using different ocean fluxes is substantially larger (a monthly average of 7.0 per meg

difference between the smallest and largest estimate in August, compared with 3.8 per meg in December). However, although

our model agreement may be affected by ocean fluxes, we do not see a substantially better or worse fit when we exclude the

ocean fluxes entirely, as shown in Figure 6. The R2 and RMSE for the CO2 and O2 models are shown in Figure S5 of the340

Supplement, where we generally see higher correlations with the data for the CO2 and O2 simulations (R2 generally above

0.4) than we do for APO. We also find that our 2021 model, shown in Figure S6 in the Supplement, does not display such large

variability. In that simulation, we use ocean climatologies, finding that localised ocean emission or uptake events are smoothed

as they are averaged across a number of years.

Next we try filtering our model in two ways to see the effects on the correlation with the observations. First we study only345

daytime hours (between 11:00 and 15:00), as the boundary layer is generally more well-mixed during the day than at night and

so it is often assumed that the model-data mismatch will be smaller. Separately, we filter for times at which the footprint has at
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Figure 6. R2(panel a) and the root mean squared error (RMSE, panel b) of the modelled APO, compared with the observations at Weybourne

in 2015. The blue, green, purple, and grey lines show the results from the models derived using the NAME simulations and either ED, JC,

NE, or no ocean fluxes, respectively. The solid, dashed, and dotted lines respectively show the correlations when we do not apply any filter,

and when we filter for just daytime hours, and for times when the footprint has at least 40 % sensitivity to the land.

least 40 % sensitivity to the land, to investigate the effects of reducing the influence of ocean-dominated time steps. With both

tests we see a small improvement in the correlation in some months, although overall, the difference with the simulations with

no filtering is small (Figure 6). We further discuss the sensitivity to the ocean fluxes in Section 3.4.350

3.2 Sensitivity to exchange ratios

The 3-σ sensitivity of APO to αB and αF is shown in Figure 7 (3-σ is shown so that changes can be readily seen). In general,

the model is more sensitive to αF than αB (average 1-σ interval of 0.27 and 0.41 per meg for αB in August and December

2015 respectively, compared to 0.30 and 0.52 per meg for αF ). For both variables, the influence on APO of a 1-σ change is

generally small compared with the difference between the observations and the model that we see in Figure 5. We see larger355

sensitivity to both values of α when the mole fraction is dominated by fossil fuel fluxes. Chevalier and WP4 CHE partners

(2021) also identified an influence on the simulated APO due to potential misspecification of αB .

3.3 Sensitivity to fossil fuel CO2 flux

Figure 8 shows APO at Weybourne, with fossil fuel sources modelled using a combination of fluxes and exchange ratios

as follows: NAEI (within EDGAR) with NAEI exchange ratios (labeled “NAEI”), EDGAR with GridFED exchange ratios360

(“EDGAR-GridFED”), and NAEI with GridFED exchange ratios (“NAEI-GridFED”). We find that, although there are vari-

ations in the magnitude at some time steps, the variability of the EDGAR and NAEI fossil fuel APO models is very similar.

For the most part, the two models agree, with high R2 in both August and December 2015, as shown in Table 2. This suggests
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Figure 7. The APO at Weybourne during August (panels a and b) and December 2015 (panels c and d) and the sensitivity to αB and αF .

The magenta points are the observations, the purple line is the model using NE ocean O2 fluxes, and the shaded region is the threeσ range

derived from a Monte Carlo ensemble in which αB (purple, panels a and c) and αF (grey, panels b and d) are sampled.
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Table 2. R2for August and December 2015, comparing the modelled APO using NAEI CO2 fluxes and exchange ratios, EDGAR CO2 fluxes

with GridFED exchange ratios, and NAEI CO2 fluxes with GridFED exchange ratios. For these APO models we use the NE O2 ocean flux

estimates.

August 2015 December 2015

NAEI EDGAR NAEI-GridFED NAEI EDGAR NAEI-GridFED

NAEI - 0.957 0.999 - 0.910 0.994

EDGAR 0.957 - 0.962 0.910 - 0.911

NAEI-GridFED 0.999 0.962 - 0.994 0.911 -

that the choice of inventory does not have a significant impact on the simulations compared with the other components that we

investigate. Additionally, in agreement with the findings of section 3.2, the model does not seem highly sensitive to αF : the365

application of different fossil fuel exchange ratios to estimate the O2 uptake does not cause strong disagreement between the

two fossil fuel O2 models in Figure 8, which have a high R2.

Figure 8 shows the modelled APO timeseries and the associated 3-σ range when sampling fossil fuel emissions magnitude

with a 10% standard deviation. The sensitivity is highest when the air comes from populated areas. However, these periods of

high sensitivity do not necessarily coincide with times when the discrepancy between the model and observations is highest,370

suggesting that errors in fossil fuel fluxes alone could not explain some of the differences between the model and observations.

3.4 Sensitivity to ocean flux

When comparing APO models and observations in Figure 6 (and Figures S3 and S4 of the Supplement), we find the biggest

disagreement during the summer. At this time of year there is increased ocean productivity compared to over the winter, thus the

variations between the models are larger and the APO models vary more widely. Conversely, the highest correlation between375

all models and the observations is seen in October (see Figure S7 of the Supplement), when the ocean acts as a small O2 sink,

and the O2 ocean flux is smallest of any month. We see in Figures 4, 5, and Supplementary Figure S3 that the models using

the ED and NE fluxes exhibit large events of O2 release throughout the summer, which are more exaggerated in NE. At some

of these times we see large differences between the ED and NE models compared with the model with no ocean component,

as the ocean models indicate large APO excursions. Between April and June especially there are excursions in the NE APO380

model which have a much larger magnitude (up to ∼85 per meg) than any in the observations. On the other hand, JC shows

much smaller O2 fluxes with generally smoother variations, and even suggests some negative APO contribution from the ocean

during the summer. At some points during the summer we therefore see increased variability with NE compared with the other

models. This difference may be due to the handling of coastal fluxes and the influence of rivers, which are more finely resolved

in NE with its higher spatial resolution (∼7km vs ∼18 km), and explicit nutrient input from rivers, and by a more detailed385

representation of phytoplankton physiological processes (e.g. variable stoichiometry). Another factor that could contribute to

the differences between the estimates of O2 air-sea fluxes between the ocean models is the differences in the wind products

used to drive the air-sea exchange and their spatial and temporal resolution.
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Figure 8. The APO model at Weybourne in August (panel a) and December (panel b) 2015 using NAME footprints and O2 fluxes from

the NE ocean model, comparing the model using with NAEI fluxes and exchange ratios (purple), with that using NAEI fluxes and GridFED

exchange ratios (grey), and that using EDGAR fluxes and GridFED exchange ratios (orange). The observations are shown in magenta, the

shaded regions represent the 3σ uncertainty in the model assuming a 10 per cent 1σ uncertainty on the fossil fuel component, and the grey

dotted line is the background derived from JC boundary conditions.

Based on our investigation we cannot determine which, if any, of the ocean flux estimates represent the APO contribution

at sites in the UK. Furthermore, we do not see a substantial difference in correlation between the observations and either390

the simulations that include ocean fluxes or those that do not. Chevalier and WP4 CHE partners (2021) also noted an ocean

influence in their simulations using different transport models to those used here. Our result requires further investigation since

the magnitude of some of the short-term ocean variability during the summer in NE and ED simulations is inconsistent with

what is seen in the observations at WAO. Furthermore, it needs to be determined the extent to which these findings are due

to the coastal location of WAO, since some shipboard measurements do not show a large sensitivity to ocean fluxes (Pickers,395

2016b). Rödenbeck et al. (2023) suggest that a dense continental network of stations measuring APO could minimize the

potential influence of oceanic fluxes, meaning that robust estimates of fossil fuel CO2 fluxes could be made by using observed

APO gradients within a continent.

20



Figure 9. The modelled regional APO contribution and the background-subtracted APO observations at Weybourne throughout August

(panel a) and December (panel b) 2015, where we model APO using three different ocean flux estimates from: the global ED ocean model

(blue), the global JC inversion (green), and the regional NE ocean model (purple). We also show the APO model with no ocean contribution

(grey line). We show two versions of background subtraction using a statistical routine (REBS, purple crosses), and using the JC background

(pink points).

3.5 Sensitivity to the background estimate

Figure 9 shows the modelled regional ∆(δAPO) and the background-subtracted observations. We compare the background400

subtraction from the statistical (REBS) filter with the adjusted model-estimated baseline from the JC global fields. For most of

the time series, the two baseline estimates lead to similar regional signals. In December there is more of a difference between

the two signals, where the at some regions the REBS subtracts a smaller background and leaves positive APO excursions. We

expect that this difference arises because there is more variability within the JC background estimate. We saw in Figure S2 of

the Supplement that this variability is increased in the winter compared to summer. We see in Figure 10 that the correlation405

between the background-subtracted observations and the models is similar for both methods of background subtraction. Neither

choice leads to a substantial difference in model-data mismatch.

3.6 Estimation of fossil fuel CO2

Here we test how well we can retrieve the regional contribution of ffCO2 from our modelled APO, using the method described

in Section 2.4. Figure 11 and Supplementary Figure S10 show the comparison between ffCO2 derived from our modelled APO410

and the direct simulation of ffCO2 using NAME (i.e., ffCO2 fluxes multiplied by NAME footprints). The comparison for

all months throughout 2015 and the correlations are shown in Supplement Figure S10. Comparisons are shown when three
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Figure 10. The square of the Pearson correlation coefficient (R2, panel a) and the RMSE (panel b) of the modelled regional contribution of

APO, compared with the background subtracted observations at Weybourne in 2015. The blue, green, purple, and grey lines show the results

from the models derived using the NAME simulations and either ED, JC, NE, or no ocean fluxes respectively. The solid and dashed lines

respectively show the results when we subtract the REBS statistical background from the observations, and when we subtract the JC derived

background.

different ocean flux estimates are used, or two different methods for subtracting the baseline. Differences between the APO-

derived ffCO2 and the direct ffCO2 simulation will be due to the influence of ocean fluxes on the APO simulation (which is

assumed negligible in Equation 12) and mis-specification of the background. All other factors, including atmospheric transport,415

are consistent between the two sets of simulations. Therefore, the APO-derived ffCO2 using the adjusted JC background exactly

matches the direct ffCO2 simulation, if ocean fluxes are zero.

Firstly, we will consider the APO-derived ffCO2 using the adjusted JC backgrounds. Throughout the summer, when there

are large O2 release events in the modelled ocean fluxes, the APO simulation using NE generally underestimates ffCO2,

even indicating negative mole fractions for large parts of the month. The ED and JC APO simulations show closer overall420

agreement with ffCO2 in August, although some discrepancy remains for all three.All three models overestimate the ffCO2 for

the majority of the winter compared to the direct ffCO2 simulation. In this case the background APO, estimated as described in

Section 2.4, is underestimated for large parts of the month, which may be due to modelled oceanic uptake of oxygen around the

UK throughout the winter. Chevalier and WP4 CHE partners (2021) found high correlations between their APO-derived ffCO2

and direct STILT model. However, it is unclear from that work as to the time period over which this correlation was found, and425

it should be noted that our correlation is greatly improved when averaging over larger time periods, due to the seasonality in

APO.

For the simulations in which the REBS baseline has been fit to the APO simulations and then subtracted, the derived ffCO2

from ED and NE is higher during the summer and lower during the winter than when the adjusted JC background is used. For

the model that used JC ocean fluxes, which are considerably smaller than either ED or NE, there is a much smaller difference430
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Figure 11. The modelled ffCO2 for August (panels a, b, and c) and December (panels d, e, and f ) 2015 derived from the APO model for

Weybourne using the results from three different ocean flux fields (blue): ED (panels a and d), JC (panels b and e), and NE (panels c and

f ). We compare with the model calculated directly from the NAEI-within-EDGAR fluxes and NAME footprints (pink). The direct model is

equivalent to the ffCO2 in the top panels of Figure 4 and the APO models are shown in Figure 5.
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Figure 12. The regional contribution of ffCO2 to the atmospheric abundance at Weybourne for August (panel a) and December (panel b)

2015. The pink triangles and crosses show the ffCO2 model derived from the APO observations with the JC background subtracted using a

time-varying and a constant exchange ratio respectively, the purple triangles and pluses show the same but with the REBS baseline subtracted,

the orange line shows the model calculated directly from the NAEI-within-EDGAR fluxes and NAME footprints (equivalent to that in the

top panels of Figure 4) and the brown line shows the model derived from CarbonTracker Europe (CTE2022).

between the two estimates. The large difference between the simulations using these two baseline estimates likely stems from

the influence of ocean fluxes. The REBS fit incorporates seasonal oceanic trends and thus removes long-timescale oceanic

fluxes from the model. However, it is also susceptible to fitting to large APO excursions in the model which occur due to

modelled short-term variability from the ocean, this is particularly clear throughout June in Figure S9 of the Supplement.

On the other hand, as JC is independent of the model it does not encapsulate any regional ocean influence, and any ocean435

contribution is treated as ffCO2.

In Section 2.4 we make the assumption that the ocean component of the APO measurements is negligible when deriving

ffCO2. This is based on previous studies of short-term ocean-related APO variability, which in turn are based on observations.

Yet these models all indicate a persistent ocean contribution at all sites, which biases our calculation of ffCO2 from the APO

simulations. As shown in Section 3.1, there is large variation in O2 flux estimates between ocean models. However, we cannot440

conclude which model, if any, gives a more accurate representation of the ocean O2 flux. Furthermore, the CO2 and O2 ocean
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Figure 13. The R2(panel a) and the root mean squared error (RMSE, panel b) of the modelled-derived and observation-derived ffCO2at

Weybourne in 2015. The blue and purple lines show the correlation when using a time-varying and constant APO:ffCO2 ratio respectively,

the solid lines show the correlation between the NAME-NAEI model and the JC-background-subtracted observations, and the dotted lines

show the same but with the REBS-background-subtracted observations. The dashed lines show the correlation between the CTE model and

the JC-background-subtracted observations, and the dash-dotted lines show the same but with the REBS-background-subtracted observations.

fluxes are decoupled and therefore, the exchange ratio varies as the footprint intercepts different parts of the ocean. Based on

our analysis using these three ocean flux estimates, a correction for oceanic fluxes would be subject to substantial uncertainty.

Next we apply the same method to estimate ffCO2 from the observed APO at Weybourne (Pickers et al., 2022) as described

in Section 2.4. Figure 12 shows observation-derived ffCO2 compared with the direct ffCO2 simulations. Here, we have used445

the NAME simulation with NAEI and EDGAR fluxes, and also the outputs of the CTE system. The correlations (R2) between

the observation-derived ffCO2 and the ffCO2 model are shown in Figure 13. As we found in Section 2.2, we generally see low

correlations over the summer, with stronger agreement in March, April, and November. There is not a large difference in the

correlation for the JC and REBS background subtractions. This is contrary to our findings above shown in Figure 11, where we

saw that there was sometimes large differences in ffCO2 estimates for different methods of background subtraction due to the450

large ocean contribution which was assumed to be encapsulated in the background estimate. Throughout December we see that

when using the REBS background-subtracted observations we estimate frequent negative ffCO2 contributions, which are not

as apparent when subtracting the JC background. This could be a result of increased variability of the JC background estimate.

Based on the synthetic data results presented in the previous paragraphs, discrepancies may be because of the influence of non-

negligible ocean flux contributions, or errors in assigning baseline values. At certain times we see a ∼5 – 8 µmol/mol difference455

between the direct model and the observation-derived ffCO2 using the REBS background subtraction. This translates to an

ocean contribution of ∼10 – 20 per meg. This would be a large contribution, although the majority of the differences between

the estimates are much smaller than this.
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We also test the conversion of the APO observations to ffCO2 using a constant APO:ffCO2 ratio, assuming αF=−1.5, as

shown by the blue points in Figure 12. Throughout the year, the correlation between this estimate of ffCO2 and the direct model460

are slightly lower than when using a time-varying APO:ffCO2 ratio. Thus we find that using a time-varying APO:ffCO2 ratio

gives a slightly closer fit to the direct ffCO2 simulation.

4 Future outlook

Here, we have found model-data discrepancies for APO that are relatively large compared to model-data discrepancies for O2

and CO2 at Weybourne in the UK. This work has used model simulations to understand the factors that could most strongly465

influence these differences, which can hopefully now inform further observation-based studies. In particular, a better under-

standing of oceanic CO2 and O2 fluxes in coastal regions were the most important of the factors in our simulations. If a

substantial oceanic influence is confirmed, continental sites far from ocean influence may currently be more viable for fossil

fuel CO2 estimation using APO, and/or substantially more dense APO measurement networks will be required to account for

these fluxes (Rödenbeck et al., 2023, e.g.). In future, the development of alternative tracers that are sensitive to ocean fluxes470

and insensitive to terrestrial sources may help to better understand their relative influences. We also found that the choice of

baseline affects our APO model and derived ffCO2, although errors in assigning regional baselines may also be due in part to

the influence of non-terrestrial fluxes.

Alongside APO, other tracers such as radiocarbon and CO can give extra insight into ffCO2 emissions. Several studies have

shown that radiocarbon is a promising tool for this (e.g. Levin et al., 2003; Graven et al., 2009; Zazzeri et al., 2023). However,475

unlike APO, most radiocarbon programs rely on flask measurements which are not continuous and require time-consuming

analysis. This makes radiocarbon a comparatively expensive method which cannot presently provide such insight into high-

frequency variability. Radiocarbon measurements are also susceptible to contamination of 14C emissions from the nuclear

power industry, correcting for which requires access to data which is not currently publicly available in the UK. Although

CO measurements are much cheaper than radiocarbon and can be made continuously (e.g. Andrews et al., 2014; Levin and480

Karstens, 2007; Levin et al., 2020), the conversion from CO to ffCO2 is uncertain.

Given the challenges of each, further work is required to improve each of these tracers for ffCO2 emissions evaluation. Here,

we have identified key areas of focus which may improve the use of APO for this purpose in the future.

5 Conclusions

We have simulated the tracer APO throughout the years 2015 and 2021 at three sites in the UK: Weybourne, Heathfield, and485

Ridge Hill. Generally, the correlation with the observations is smaller for APO than for simulations of CO2 and O2. We find

modelled ocean signals which sometimes dominate the APO model, and that correlations tend to be higher for APO during the

spring and autumn when ocean fluxes are smallest.
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We have presented a sensitivity analysis of the factors that most strongly influence modelled atmospheric APO. Our simula-

tions suggest that uncertainties in ocean fluxes contribute substantially to modelled APO and APO-derived ffCO2 at measure-490

ment sites in the UK. Our analysis cannot determine which ocean model (or indeed, zero ocean flux) or baseline estimation

method leads to closest agreement with the observations. However, a robust estimate of ffCO2 is likely to depend strongly on

these factors being well-known, or proven to have little influence using observation-based methods. We do not find evidence

from our three UK stations that the substantial (yet uncertain) influence of oceanic fluxes on simulated APO is reduced fur-

ther inland. But since the UK is surrounded by ocean, simulated APO at continental European locations may be less strongly495

affected. More robust ffCO2 may be possible in general if a sufficiently dense network of sites were available, which could

account for fossil fuel influences jointly with that of any oceanic sources. In comparison to the ocean fluxes and baseline, the

sensitivity of APO to uncertainties in fossil fuel and terrestrial biosphere exchange ratios was relatively small. Our analysis

shows that further work should focus on improving ocean O2 and CO2 flux estimates which could improve the agreement

between modelled and observation APO-derived estimates of UK ffCO2.500

6 Code Availability

The code for the analysis presented is available at https://github.com/hanchawn/APO_modelling (Chawner, 2023). We also

use code developed by the ACRG Modelling team at the University of Bristol, which is available at https://github.com/ACRG-

Bristol/acrg.

7 Data Availability505

The datasets generated and analysed during this study are available at https://zenodo.org/record/7681834 (Chawner et al.,

2023). The observational datasets are available on CEDA at:

– Heathfield CO2 and O2: https://catalogue.ceda.ac.uk/uuid/bfc2483537a744dca8e3239278b6e522

– Weybourne CO2: https://catalogue.ceda.ac.uk/uuid/87fc265aab6b4aeb961e62da2cd6ca91

– Weybourne O2: https://catalogue.ceda.ac.uk/uuid/b3f9714c956f428a840211e0184e23eb510
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