1	Supporting Information for
2	Technical note: Intercomparison Study of the EC Radiocarbon
3	Analysis Methods Using Synthetic Known Samples
4	Xiangyun Zhang ^{1,2,3} , Jun Li ^{1,2,3} ,* Sanyuan Zhu ^{1,2,3} , Junwen Liu ⁴ , Ping Ding ⁵ , Shutao Gao ^{1,2,3} ,
5 6	Chongguo Tian ⁶ , Yingjun Chen ⁷ , Ping'an Peng ^{1,2,3} , Gan Zhang ^{1,2,3} *
7	¹ State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of
8	Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
9	Chinese Academy of Sciences, Guangzhou, 510640, China
10	² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
11	³ Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,
12	Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
13	⁴ Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
14 15	⁵ State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese
15 16	Academy of Sciences, Guangzhou 510640, China ⁶ Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute
17 18	of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China ⁷ Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438,
18 19	China
19	China
20	*Corresponding author: Jun Li (junli@gig.ac.cn), Gan Zhang (zhanggan@gig.ac.cn)
21	
22 23	
25 24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	

37	Contents of this file
38	
39	1. Analytical Methods
40	2. Supplemental Tables:
41	Table S1. C%, OC/EC, EC/TC (TOT) %, δ^{13} C of the typical combustion samples.
42	Table S2. Composition ratio information (C% weight) of the six hybrid samples.
43	Table S3. The calculated and measured TC results of C% and δ^{13} C‰, f_M for the six hybrid
44	samples.
45	Table S4.The EC/TC results of samples, including four combustion source samples and six
46	synthetic known samples, isolated by four purification methods.
47	Table S5. Solid-state ¹³ C NMR structural parameters for Corn straw combustion, Pine wood
48	combustion, Vehicle exhaust and Coal combustion.
49	Table S6. The deviation between the results of different separation methods and the theoretical
50	values, according to the ratio of herbaceous to woody combustion.
51	Table S7. f_M and δ^{13} C measurements in SRM 1649 a/b.
52	
53	3. Supplemental Figures:
54	Figure S1. Composition ratio information (C% weight) of the six synthetic known samples.
55	Figure S2. Solid-state ¹³ C NMR spectrum of Corn straw combustion, Pine wood combustion,
56	Vehicle exhaust and Coal combustion
57	Figure S3. The field emission scanning electron microscopy (FESEM) results of Corn straw
58	combustion, Pine wood combustion, Vehicle exhaust and Coal combustion.
59	
60	
61	
62	
63	
64	
65	
66	
67	
68 69	
70	
71	
72	
73	
74	
75	
76	
77	

1. Analytical Methods

80 OC/EC and TOC analysis:

The OC and EC in the three combustion source samples were analyzed by the TOT method, performed with a laboratory OC/EC analyzer (Sunset Laboratory, USA) using the NIOSH2 thermal protocol.(Salma et al., 2004; Maenhaut et al., 2005) Details regarding the method can be found in the SI. The total organic carbon (TOC) concentration of the aerosols was also determined. For each sample, 4 punches (4.8 mm diameter) were placed in precombusted Ag capsules, and the inorganic carbon was removed by acidification, as described above. After drying, the TOC was quantified by using a high-temperature catalytic CHN elemental analyzer.

88

89

Carbon isotope analysis (Liu et al., 2013; Liu et al., 2017; Xu, et al., 2007):

The samples were analyzed for ¹³C using a FLASH2000 Elemental Analyzer connected to a Thermo MAT-253 isotope ratio mass spectrometer. The results are reported using standard delta notation in permil units (‰): δ (‰) = (R_{sample} – R_{reference})/R_{reference} × 1000, where δ (‰) stands for δ^{13} C (‰), and R_{sample} and R_{reference} are the isotopic ratios of the sample and reference material, respectively. For carbon, the reference standard is Vienna Pee Dee Belemnite (VPDB). The analytical precision for the international and in-house reference materials was generally better than ±0.5‰ for δ^{13} C. Replicate measurements of samples yielded similar standard deviations.

97 Preparation of graphite targets for accelerator mass spectrometry (AMS) analysis was 98 performed using the graphitization line at Guangzhou Institute of Geochemistry of the Chinese 99 Academy of Sciences (CAS) via the hydrogen and zinc reduction method (Xu et al., 2007). The 100 $^{14}C/^{12}C$ ratios in the graphite samples were determined using a compact AMS instrument (NEC, 101 National Electrostatics Corporation, USA) at the Guangzhou Institute of Geochemistry, CAS. AMS 102 calibration was performed using standards (Oxalic Acid Standards I and II) and blanks. The δ^{13} C 103 value was obtained during AMS measurements and applied to correct the ¹⁴C measurements for 104 isotopic fractionation. The fraction modern ($f_{\rm m}$) was determined by comparing the measured ${}^{14}{\rm C}/{}^{12}{\rm C}$ ratio in a sample with that in a modern standard (NBS Oxalic Acid I in AD 1950). All of the reported 105 $f_{\rm m}$ values were corrected for δ^{13} C fractionation and for ¹⁴C decay over the time period between 1950 106 107 and the year of measurement.

108

109 ¹³C solid state NMR experiments:

All the ¹³C solid state NMR experiments were performed using an AVANCE III 400-MHz NMR 110 spectrometer (Bruker, Billerica, MA, USA). The resonance frequency of ¹³C is 100.613/MHz, and 111 112 glycine was used as a standard for chemical shift calibration. The selected samples were tested with 113 direct-polarization/magic-angle-spinning (DP/MAS) ¹³C NMR experiments (Mao and Schmidt-Rohr, 2004) using a Bruker 4-mm double-resonance probe head and a ZrO₂ rotor. DP/MAS ¹³C 114 115 NMR experiments were run at a spinning speed of 14 kHz and the number of scans ranged from 116 4,000 to 40,000. The acquisition time was 5.12 μ s, the spectral width was 100 kHz, and the 90 $^{\circ 13}$ C pulse length was 4 µs. The recycle delay for DP/MAS ¹³C NMR of the sample was based on 117 CP/T₁/TOSS experiments (Mao and Schmidt-Rohr, 2004). The data were processed with Bruker 118 119 Topspin 3.1 software.

120

121

Field emission scanning electron microscopy (FESEM):

122 **FESEM** was used to observe the particle characteristics of typical carbon aerosol samples. The field emission scanning electron microscope (Hitachi su8010, Hitachi, Japan) has higher resolution 123 124 than the traditional scanning electron microscope, and its resolution can be as high as 2 nanometers under high voltage. It can be used to observe the micro surface morphology and composition 125 126 distribution of various material particles, and has higher imaging quality. The scanning electron 127 microscope was used to observe the morphology and particle size of amorphous organic matter in carbonaceous aerosol samples, as well as the relationship between amorphous organic matter and 128 129 quartz membrane fiber under electron microscope. The low voltage mode (accelerating voltage of about 1-2 kV, beam current of 10 μ a, working distance of about 3-8 mm) was selected, or the 130 131 deceleration mode under low voltage condition (working distance less than 3 The backscattering 132 image was taken in a typical field of view with a magnification of 3000-100000 times.

133

- 134
- 135

136 137

- 139
- ____
- 140
- 141

2. Supplemental Tables:

Table S1. C%, OC/EC, EC/TC (TOT) %, δ^{13} C of the typical combustion samples.

Sample	C%	OC/EC	EC/TC(tot)%	δ ¹³ C ‰
	(±3.0%)			(±0.5 ‰)
Corn straw combustion	24.64	18.47	5.14	-14.02
Pine wood combustion	22.99	17.10	5.52	-24.41
Vehicle exhaust	14.49	2.42	29.21	-27.10
Coal combustion	11.60	3.85	20.62	-24.32

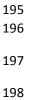

. .

Table S2. Composition ratio information (C% weight) of the six hybrid samples.

173								
	Sampl	C%	C%	C%	Sampl	C%	C%	C%
	e	(Corn straw combustion	(Vehicl e	(Coal combustion	e	(Pine wood combustion	(Vehicl e	(Coal combustion
)	exhaust))	exhaust)
		,)	,		,)	,
	S 1	56.29	14.99	28.72	S4	56.27	15.02	28.71
	S2	65.92	19.81	14.27	S5	65.93	19.74	14.34
174	S 3	70.77	19.71	9.52	S 6	70.80	19.69	9.50
174 175								
176								
177								
177								
178								
179								
179								
180								
104								
181								
182								
183								
184								
185								
186								
187								
188								
100								
189								
100								
190								
191								

Table S3. The calculated and measured TC results of C% and δ^{13} C‰, f_M for the six hybrid samples.

Sample	C% (TC)	C% (TC)	δ^{13} C‰(TC)	δ ¹³ C ‰(TC)	<i>f</i> м(TC)	<i>f</i> м(TC)
	(calculated)	(measured)	(calculated)	(measured)	(calculated)	(measured)
		(±3.0 %)		(±0.5 ‰)		
S1	17.26	17.70	-18.94	-18.71	0.5629	0.5930±0.0021
S2	18.97	19.10	-18.08	-17.74	0.6592	0.6831 ± 0.0021
S 3	19.79	19.39	-17.58	-17.40	0.7077	0.7220±0.0021
S 4	17.76	18.18	-24.56	-24.66	0.5869	0.6117±0.0030
S5	19.17	19.31	-24.65	-24.67	0.6818	0.7157±0.0039
S 6	19.82	20.08	-24.63	-24.63	0.7290	0.7705±0.0038

216 Table S4.The EC/TC results of samples, including four combustion source samples and six

Sample	EC/TC(TOT)	EC/TC(Hypy)	EC/TC(CT	EC/TC(EC _{He/}	EC/TC(EC _{LARA}
	%	%	O-375) %	02-475) %) %
Corn straw	5.14	2.49	0.38	8.54	1.92
combustion	5.52	11.40	0.47	35.30	37.57
Pine wood					
combustion					
Vehicle	29.21	22.94	5.74	12.37	15.38
exhaust					
Coal	20.62	20.76	1.34	13.64	9.84
combustion					
S 1	13.19	17.32	0.87	4.29	8.10
S2	12.11	14.16	0.52	3.86	8.44
S 3	11.35	10.60	0.48	4.31	6.88
S4	14.09	16.68	0.09	29.00	23.59
S5	13.75	13.65	0.22	29.55	25.64
S6	12.56	11.52	0.18	28.32	27.87

217 synthetic known samples, isolated by four purification methods.

Sample		fa	fa ^C	fa'	fa ^H	fa ^N	fa ^P	fa ^s	fa ^B	fal	fal ^H	fal*	fal ^O	С	FAA	FMA	Cn'	faC+ 0.5*(faP+ falO)* 100
Corn	straw	0.48	0.03	0.46	0.21	0.25	0.05	0.08	0.32	0.52	0.22	0.14	0.22	64	0.28	0.27	6.5	13.53
combustion	combustion																	
Pine	wood	0.51	0.01	0.50	0.22	0.28	0.04	0.1	0.35	0.49	0.18	0.16	0.2	68	0.28	0.33	4.9	12.01
combustion																		
Vehicle exh	aust	0.41	0.03	0.38	0.09	0.29	0.03	0.07	0.28	0.59	0.3	0.15	0.18	86	0.26	0.25	8.43	10.53
Coal combu	istion	0.73	0.06	0.67	0.29	0.38	0.08	0.14	0.45	0.27	0.11	0.09	0.08	56	0.33	0.33	1.93	8.06

Table S5. Solid-state ¹³C NMR structural parameters for Corn straw combustion, Pine wood combustion, Vehicle exhaust and Coal combustion.

Structural parameter	Chemical shift range (ppm)	Carbon type	Parameter	Definition	Description
fa	90-240	Aromatic-carboxyl-carbonyl-amide	С		Average carbons per aromatic cluster ⁴⁹
fa ^C	165-240	Carboxyl-carbonyl-amide	FAA	(fa ^P + fa ^S)/fa'	Fraction of aromatic carbons with attachments
fa'	90-165	Aromatic	FMA	fal*/fal	Fraction of methyl in aliphatic
fa ^H	90-165	Protonated aromatic (w/o DD)	Cn'	fal/fa ^s	Average aliphatic carbon chain length
fa ^N	90-165	Non-protonated aromatic (w/ DD)		$fa^{C} + 0.5(fa^{P} + fal^{O})*100$	A lower limit estimate for organic oxygen
fa ^P	150-165	Phenoxy-phenolic			
fa ^s	135-150	Alkyl-substituted aromatic			
fa ^B	90-135	Bridgehead aromatic			
fal	0-90	Aliphatic			
fal ^H	22-50	Methylene/methine			
fal*	0-22 & 50-60	Methyl/methoxy			
fal ^O	50-90	Alcohol/ether			

	Biomass	*	Нуру	CTO-375	EC _{He/O2-475}	EC _{LARA}
	Herbaceous	Woody	-			
Africa	0.79	0.21	-37.38±1.36	93.88±20.79	57.85 ±6.84	14.80 ±6.84
Asia	0.55	0.45	-21.15±3.28	85.12±16.08	73.51 ±4.33	44.76 ±5.22
Australia/Oceania	0.91	0.09	-45.49±3.35	98.27±23.21	50.02 ±8.12	-0.19 ±7.74
Central	0.10	0.90	9.27±11.26	68.68 ±8.61	102.88 ±1.97	100.94±3.90
America/Caribbean						
Europe	0.27	0.73	-2.22±8.23	74.89±11.06	91.79 ±1.93	79.72 ±4.00
North America	0.10	0.90	9.27±11.26	68.68 ±8.61	102.88 ±1.97	100.94±3.90
South America	0.39	0.61	-10.34±6.10	79.27±13.11	83.96 ±2.80	64.74 ±4.40
Global average	0.58	0.42	-23.18±2.76	86.21±16.66	71.56 ±4.64	41.01 ±5.41

Table S6. The deviation between the results of different separation methods and the theoretical values, according to the ratio of herbaceous to woody combustion.

* The ratio of herbaceous and woody was calculated according to the reference (Bond et al., 2004; Zhang et al., 2004; Streets et al., 2003; Stevens et al., 2017)

Sample	fм	$M_{\rm C}(\mu {\rm g})$	δ^{13} C (‰ vs VPDB)	EC/TC	reference
1649b TC	$0.525 \pm 0.002 (n = 1)$	220	-25.6±0.5 (n =2)	$0.275 \!\pm\! 0.050$	this work
1649a TC	$0.522 \pm 0.018 (n = 5)$	12-87	$-25.5 \pm 0.6 (n = 2)$	$0.280\ \pm 0.080$	ref (Szidat et al., 2004)
1649a TC	$0.510 \pm 0.011 (n = 3)$	not given	-25.3±0.3 (n =2)	0.080 ± 0.010	ref (Reddy et al., 2002)
1649a TC	0.610±0.040	not given	not given	not given	ref (Currie et al., 2002)
1649a TC	0.505 ± 0.003	not given	not given	$0.458 \!\pm\! 0.025$	ref (Currie et al., 2002)
1649a TC	0.517±0.004	not given	not given	not given	ref (Currie et al., 2002)
1649b EC	$0.108 \pm 0.002 (n = 1)$	270	-24.9 ± 0.5 (n = 2)	0.275 ± 0.050	this work
1649b EC	$0.112 \pm 0.080^*$ (n = 1)	~460	-24.9 ± 0.5 (n = 2)	0.275 ± 0.050	this work
1649a EC	$0.066 \pm 0.020 (n = 4)$	37–70	-24.8 ± 0.5 (n = 4)	0.280 ± 0.080	ref (Szidat et al., 2004)
1649a EC	$0.065 \pm 0.014 (n = 3)$	~2800	-26.55 ± 0.04	0.080 ± 0.010	ref (Reddy et al., 2002)
1649a EC	$0.140 \pm 0.050 (n = 1)$	459	not given	~0.280	ref (Liu et al., 2013)
1649a EC	0.150 ± 0.080	not given	not given	not given	ref (Heal et al., 2011)
1649a EC	$0.065 \pm 0.003 (n = 1)$	not given	not given	0.077 ± 0.002	ref (Currie et al., 2002)
1649a EC	0.153±0.002	not given	not given	$0.458 \!\pm\! 0.025$	ref (Currie et al., 2002)
1649a EC	0.038±0.012	not given	not given	0.109 ± 0.005	ref (Currie et al., 2002)

Table S7. $f_{\rm M}$ and δ^{13} C measurements in SRM 1649 a/b.

* The same 1649b EC obtained by the Hypy method was sent to BETA for 14 C analysis.

3. Supplemental Figures:

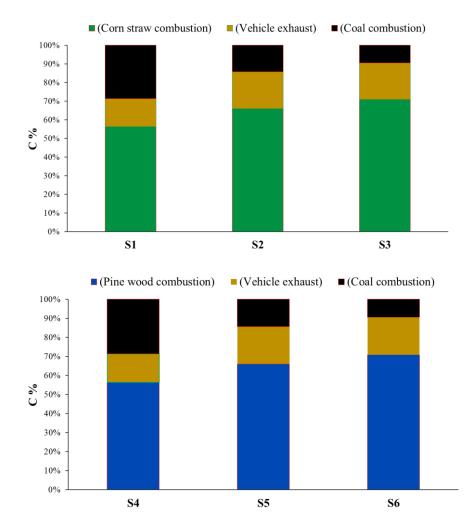
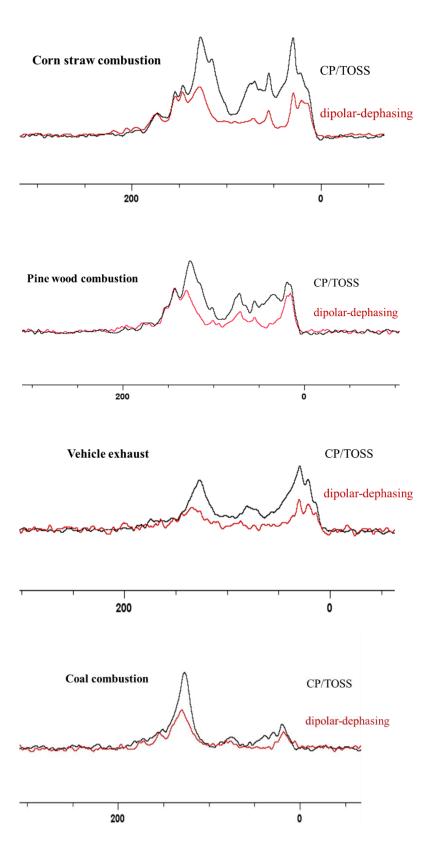
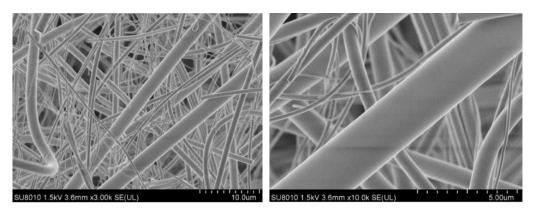




Figure S1. Composition ratio information (C% weight) of the six synthetic known samples.

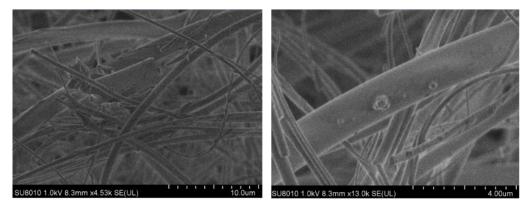
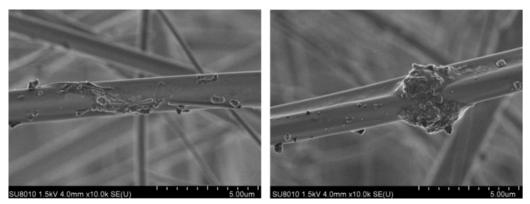
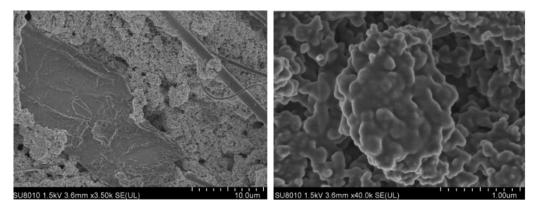
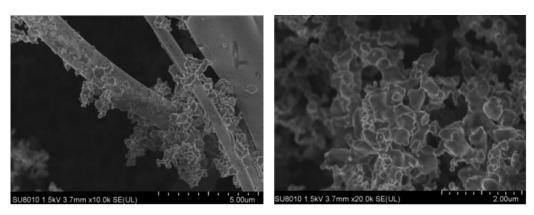


Figure S2. Solid-state ¹³C NMR spectrum of Corn straw combustion, Pine wood combustion, Vehicle exhaust and Coal combustion.


¹³C CP/TOSS and CP/TOSS/DD NMR for the identification of functional groups in the samples. Black lines: CP/TOSS/DD NMR, unselective CP/TOSS spectra. Red lines: CP/TOSS/DD NMR, CP/TOSS with dipolar dephasing to select non-protonated carbons and mobile groups.


BLANK


Corn stem combustion

Pine wood combustion

Vehicle exhaust

Coal combustion

Figure S3. The field emission scanning electron microscopy (FESEM) results of Corn straw combustion, Pine wood combustion, Vehicle exhaust and Coal combustion.

REFERENCES CITED

- Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H. and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109(D14), 43, doi:10.1029/2003jd003697, 2004.
- Currie, L. A., et al.: A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a, J. Res. Natl. Inst. Stand. Technol., 107(3), 279-298, doi:10.6028/jres.107.022, 2002.
- Heal, M. R., Naysmith, P., Cook, G. T., Xu, S., Duran, T. R., Harrison, R. M.: Application of C-14 analyses to source apportionment of carbonaceous PM2.5 in the UK, Atmos. Environ. 45, (14), 2341-2348, 2011.
- Liu, D., Li, J., Zhang, Y. L., Xu, Y., Liu, X., Ding, P., Shen, C. D., Chen, Y. J., Tian, C. G. and Zhang, G.: The Use of Levoglucosan and Radiocarbon for Source Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East China, Environ. Sci. Technol., 47(18), 10454-10461, doi:10.1021/es401250k, 2013.
- Liu, J. W., Li, J., Ding, P., Zhang, Y. L., Liu, D., Shen, C. D. and Zhang, G.: Optimizing isolation protocol of organic carbon and elemental carbon for C-14 analysis using fine particulate samples, Atmos. Environ., 154, 9-19, doi:10.1016/j.atmosenv.2017.01.027, 2017.
- Maenhaut, W., Raes, N., Chi, X. G., Cafmeyer, J., Wang, W. and Salma, I.: Chemical composition and mass closure for fine and coarse aerosols at a kerbside in Budapest, Hungary, in spring 2002, X-Ray Spectrom., 34(4), 290-296, doi:10.1002/xrs.820, 2005.
- Mao, J.D. and Schmidt-Rohr, K.: Accurate quantification of aromaticity and nonprotonated aromatic carbon fraction in natural organic matter by C-13 solid-state nuclear magnetic resonance, Environmental Science & Technology, 38(9): 2680-2684, 2004.
- Reddy, C. M., Pearson, A., Xu, L., McNichol, A. P., Benner, B. A., Wise, S. A., Klouda, G. A., Currie, L. A., Eglinton, T. I.: Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples, Environ. Sci. Technol. 2002, 36, (8), 1774-1782, 2022.
- Salma, I., Chi, X. G. and Maenhaut, W.: Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary, Atmos. Environ., 38(1), 27-36, doi:10.1016/j.atmosenv.2003.09.047, 2004.
- Stevens, N., Lehmann, C. E. R., Murphy, B. P. and Durigan, G.: Savanna woody encroachment is widespread across three continents, Glob. Change Biol., 23(1), 235-244, doi:10.1111/gcb.13409, 2017.
- Streets, D. G., Yarber, K. F., Woo, J. H. and Carmichael, G. R.: Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Glob. Biogeochem. Cycle, 17(4), 20, doi:10.1029/2003gb002040, 2003.
- Szidat, S., Jenk, T. M., Gaggeler, H. W., Synal, H. A., Hajdas, I., Bonani, G. and Saurer, M.: THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (C-14) in the environment, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 223, 829-836, doi:10.1016/j.nimb.2004.04.153, 2004b.
- Xu, X.M., Trumbore, S.E., Zheng, S.H., Southon, J.R., McDuffee, K.E., Luttgen, M. and Liu, J.C.: Modifying a sealed tube zinc reduction method for preparation of

AMS graphite targets: Reducing background and attaining high precision, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259(1): 320-329, 2007.

Zhang, W. M., Brandt, M., Penuelas, J., Guichard, F., Tong, X. Y., Tian, F. and Fensholt, R.: Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas, Nat. Commun., 10, 7, doi:10.1038/s41467-019-08602-6, 2019a.