

1 **Technical note: Intercomparison Study of the EC Radiocarbon Analysis**

2 **Methods Using Synthetic Known Samples**

3
4 **Xiangyun Zhang^{1,2,3}, Jun Li^{1,2,3*}, Sanyuan Zhu^{1,2,3}, Junwen Liu⁴, Ping Ding⁵,**
5 **Shutao Gao^{1,2,3}, Chongguo Tian⁶, Yingjun Chen⁷, Ping'an Peng^{1,2,3}, Gan**
6 **Zhang^{1,2,3*}**

7
8 ¹ State Key Laboratory of Organic Geochemistry and Guangdong province Key
9 Laboratory of Environmental Protection and Resources Utilization, Guangzhou
10 Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.

11 ² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.

12 ³ Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
13 Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science,
14 Guangzhou 510640, China.

15 ⁴ Institute for Environmental and Climate Research, Jinan University, Guangzhou,
16 511443, China.

17 ⁵ State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of
18 Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

19 ⁶ Key Laboratory of Coastal Environmental Processes and Ecological Remediation,
20 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai,
21 264003, China.

22 ⁷ Department of Environmental Science and Engineering, Fudan University, Shanghai,
23 200438, China.

24 ***Correspondence:** Jun Li (junli@gig.ac.cn), Gan Zhang (zhanggan@gig.ac.cn)

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 **Abstract**

47
48 The accurate identification of elemental carbon (EC) source in aerosol based on
49 radiocarbon (^{14}C) depends on the method of EC isolation. The lack of aerosol EC
50 reference materials with "true" ^{14}C values makes it impossible to evaluate the
51 accuracy of various methods for the analysis of ^{14}C -EC in aerosols. In this study, EC
52 isolation methods were evaluated by using samples of mixed biomass burning, vehicle
53 exhaust and coal-combustion. The results show that ^{14}C -EC was not only related to
54 the isolation method but also to the types and proportions of biomass sources in the
55 sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly
56 stable portion of EC_{Hypy} and avoid charring, is a more effective and stable approach
57 for the matrix-independent ^{14}C quantification of EC in aerosols. The ^{13}C -EC_{Hypy} and
58 non-fossil EC_{Hypy} values of SRM1649b were -24.9‰ and 11%, respectively.

59
60
61 **1. Introduction**

62
63 The elemental carbon (EC) or black carbon (BC) fraction of carbonaceous aerosols
64 (CAs) is derived from the incomplete combustion of fossil fuels or biomass and is
65 responsible for an overall warming effect of the Earth by either absorbing incoming
66 solar radiation in the atmosphere or reducing the albedo of surface materials (i.e.,
67 snow and ice) (Fuzzi et al., 2006; Schwarz et al., 2015; Szidat, 2009; Szidat et al.,
68 2004a; Szidat et al., 2009). The limited understanding of EC aerosol emissions results
69 in poorly constrained estimates of their contribution to anthropogenic climate
70 warming that globally may be second only to CO₂ and regionally, such as over East
71 Asia, the dominant driver of climate change (Chen et al., 2013). Therefore, detailed
72 knowledge of the sources of EC is necessary for the implementation of mitigation
73 strategies for EC reduction. Carbon isotope (^{14}C and ^{13}C) analysis is a powerful tool
74 for unambiguously distinguishing the carbon sources of EC (Currie, 2000; Szidat,
75 2009; Szidat et al., 2009; Gustafsson et al., 2009; Kirillova et al., 2013; Liu et al.,
76 2013; Zencak et al., 2007; Zhang et al., 2019b). Carbon isotope source apportionment
77 requires the physical isolation of organic carbon (OC) and EC, which is complicated
78 by the fact that there is no sharp boundary between OC and EC in carbonaceous
79 aerosols (Elmquist et al., 2006). Therefore, one of the large challenges of this method
80 is the isolation of EC for ^{14}C and ^{13}C analysis.

81
82 Based on the thermal stability of EC, several methods for isolating OC and EC
83 from aerosols have been developed. An intercomparison of 9 laboratories for ^{14}C
84 analysis of carbonaceous aerosol samples was conducted in a previous study, and ^{14}C
85 analysis of EC revealed a large deviation of 28-79% between the approaches as a
86 consequence of the different isolation techniques (Szidat et al., 2013). Due to the
87 application of the same principle as aerosol OC and EC measurement, thermo-optical
88 isolation, also named oxygen-based OC-EC isolation, has gradually become the main
89 method for EC isolation in recent years. Although the ^{14}C results of EC between three
90 independent laboratory methods showed good agreement, the recovery of EC differed
91 greatly (Zenker et al., 2017). Recently, hydropyrolysis (Hypy) has been introduced as
92 an EC isolation method (Meredith et al., 2012; Zhang et al., 2019b). A comparison
93 study of ^{14}C -EC in aerosol samples isolated using the two-step heating method
94 (CTO-375), EC_{He/O₂-475} method and Hypy method was also conducted (Zhang et al.,

96 2019b). However, the ^{14}C intercomparisons of all studies were mainly restricted to
97 ambient filter samples or urban dust (SRM 1649a/b), for which the “true” ^{14}C activity
98 of EC is not known. As the literature emphasizes (Dasari et al., 2022), even when
99 methods give similar results, it may still be unclear whether the methods give accurate
100 results. In the worst case, if the methods give different results, then it is impossible to
101 determine which method (if any) gives an accurate value (Zenker et al., 2017).
102 Therefore, the key to evaluating the accuracy of different isolation methods is to
103 obtain suitable EC reference materials for the ^{14}C analysis of aerosols.
104

105 Carbonaceous aerosols are mainly composed of primary emissions from fossil fuel
106 and biomass combustion and secondary organic compounds (Huang et al., 2014;
107 Zhang et al., 2015). In general, secondary organic aerosols are relatively easy to
108 isolate from EC using methods such as water or organic solvent extraction. However,
109 it is difficult to isolate insoluble OC from EC in primary combustion products.
110 Biomass burning, coal combustion and traffic emissions are the main primary sources
111 of EC in aerosols (Bond et al., 2013). In this study, six samples were synthesized
112 artificially by using biomass combustion (corn straw or pine wood), coal combustion
113 and motor vehicle exhaust samples according to the relative content of fossil carbon
114 and modern carbon in actual aerosols in this study. The theoretical calculated values
115 of the EC contents and EC carbon isotopes in six synthetic samples were determined
116 based on the measured isotopes of each source sample and the elemental carbon/total
117 carbon (EC/TC) measured by using the thermal-optical transmittance (TOT) method.
118 And the calculated ^{14}C value of EC can be taken as the “true” ^{14}C -EC value.
119 Consequently, four EC isolation methods, including Hypy (Zhang et al., 2019b),
120 CTO-375 (Liu et al., 2013), EC_{He/O₂-475} (Liu et al., 2017) and EC_{LARA} (Zenker et al.,
121 2017), were selected for EC isolation, and then the EC contents and EC carbon
122 isotopes were compared to the corresponding theoretical calculated value of each
123 synthetic sample. The accuracy of each isolation method was evaluated based on the
124 recovery of the EC contents and carbon isotopes. Finally, the EC contents and EC
125 carbon isotopes (^{14}C and ^{13}C) of urban dust (SRM 1649b) were determined by the
126 isolation method with the best accuracy.
127

128 2. Materials and Methods

130 2.1. Sample collection

132 Corn straw (*Zea mays*, C4 plant, with a carbon isotope composition that differs
133 significantly from fossil fuels), pine wood (*Pinus tabulaeformis Carr.* woody plant),
134 one type of raw coal in chunks sourced from Yanzhou (YZ) in Shandong Province,
135 and one type of gasoline truck exhaust were selected as the representative sources for
136 biomass burning, coal combustion and vehicle exhaust. Corn straw and pine wood
137 combustion products were collected through a sampling system. Coal was combusted
138 in a high-efficiency stove, and PM_{2.5} emissions were collected using a dilution
139 sampling system. Vehicle exhaust particles were collected using the on-board
140 emission measurement system. A description of the detailed sampling information
141 was provided in a previous report (Zhang et al., 2019b).
142

143 2.2. EC isolation method

144 **CTO-375 method:** To achieve the complete removal of the OC from the EC_{CTO375}

146 fraction, the samples were treated by vaporizing the OC at 375 °C in a muffle furnace
147 in the presence of air using a shorter isolation time of 4 h (Liu et al., 2013).

148
149 **EC_{He/O₂-475} method:** The EC_{He/O₂-475} fractions in the samples were purified in the
150 commercial OC-EC analyzer as follows: 120 s at 200 °C, 150 s at 300 °C, and 180 s at
151 475 °C in an oxidative atmosphere (10% oxygen, 90% helium), followed by 180 s at
152 650 °C in helium. Details of the handling methods were described in a previous report
153 (Liu et al., 2017).

154
155 **EC_{LARA} method:** A punch of the water-extracted filter was treated with a
156 thermo-optical OC-EC analyzer using the first three steps of the “Swiss 4S protocol”
157 to remove all remaining water-insoluble OC, giving a residue that constituted the
158 EC_{LARA} sample (Zenker et al., 2017; Zhang et al., 2015).

159
160 **Hydropyrolysis:** Each sample was mixed fully with ammonium
161 dioxydithiomolybdate [(NH₄)₂MoO₂S₂] as a catalyst to reach a nominal molybdenum
162 loading of more than 20% of sample carbon weight. The samples were first heated in
163 the reactor tube from ambient temperature to 250 °C at a rate of 300 °C min⁻¹ and then
164 from 300 °C to the final temperature (550 °C) at 8 °C min⁻¹; samples were then held
165 for 5 min under a hydrogen pressure of 15 MPa and a flow rate of 5.0 L/min. The
166 resulting residue was the EC_{Hypy} sample (Zhang et al., 2019b).

167 2.3. OC/EC and carbon isotopes analysis

168
169 The OC and EC were analyzed by a laboratory OC/EC analyzer (Sunset Laboratory,
170 USA) using the NIOSH2 thermal protocol (Maenhaut et al., 2005; Salma et al., 2004).
171 Methods of ¹³C and ¹⁴C analysis for all samples were described in the SI (Liu et al.,
172 2013; Liu et al., 2017).

173 2.4. Nuclear Magnetic Resonance (NMR) and Field Emission Scanning Electron 174 Microscopy (FESEM) analysis

175 NMR experiments were performed with an AVANCE III 400-MHz NMR
176 spectrometer (Bruker, Billerica, MA, USA). FESEM experiments were analyzed by
177 the field emission scanning electron microscope (Hitachi su8010, Hitachi, Japan).
178 Detailed experimental methods of NMR and FESEM analysis were described in the
179 SI (Zhang et al., 2019b; Chen et al., 2020).

180 3. Results and discussion

181 3.1. Comparison of EC purified by different methods

182 The six synthetic known samples were made by biomass combustion (corn straw or
183 pine wood), coal combustion and motor vehicle exhaust (Table S1). The hybrid
184 samples were produced according to the proportioning principle, based on the
185 approximate proportions (Figure S1 and Table S2). The average deviations of carbon
186 content, ¹³C_{TC} and *f_M(TC)* of the hybrid samples between the theoretical values and
187 the test values were 0.30%, -0.12‰ and 0.03, respectively (Table S3), and there was
188 no significant difference (T-test, *P*=0.77, 0.96 and 0.49, respectively). These results
189 show that the samples were well mixed and were therefore suitable for the method

196 comparison experiments.

197

198 Before comparing EC recovery rates, it is necessary to obtain relatively accurate
199 EC concentrations. The EC/TC ratios of the four combustion source samples were
200 analyzed by the TOT method (Table S4). The EC/TC results of the four combustion
201 source samples processed using the four isolation methods (CTO-375, EC_{He/O2-475},
202 EC_{LARA} and Hypy) are listed in Table S4. The amount of EC obtained by the
203 CTO-375 method is obviously lower than the results of the other three methods. For
204 example, due to the high content of soot in the vehicle exhaust, the amount of EC can
205 reach about 20%, while the amount of EC in other source samples is less than 10%
206 (Hammes et al., 2007). It indicates that the CTO-375 method has obvious defects in
207 the quantitative analysis of EC content in aerosols. Therefore, this method is not
208 suitable for isolating EC to isotopes analysis. The EC/TC ratios of the coal
209 combustion and motor vehicle exhaust obtained by the other three methods are lower
210 than those of the TOT method, and the EC/TC ratios of the pine burning samples are
211 higher than those of the TOT method. Among the above four methods, the result
212 obtained by the Hypy method is the closest to the result of the TOT method. For the
213 corn straw combustion samples, the Hypy and EC_{LARA} methods are lower than the
214 TOT method, but the results obtained by the EC_{He/O2-475} are higher than the TOT
215 method. On the one hand, this difference is the problem of the method itself. Each
216 method only isolates a specific part of the EC continuum, rather than all the
217 components of the EC continuum (Currie et al., 2002; de la Rosa et al., 2011; Schmidt
218 et al., 2001). On the other hand, the different isolation effect of the method is due to
219 the difference of the organic carbon structure in the source sample.

220

221 NMR spectroscopy is an essential tool for acquiring detailed structural
222 characterization results of the complex natural organic matter. The four combustion
223 source samples were characterized by using solid-state ¹³C NMR (Figure S2 and
224 Table S5). The ¹³C NMR results show that the average lower limit estimate for
225 organic oxygen (Kelemen et al., 2010) from biomass combustion is 37% higher than
226 that for fossil combustion. This finding indicates that there are more
227 oxygen-containing organic carbon components in biomass combustion samples. The
228 more organic oxygen in the sample, the greater the sample's polarity, which
229 contributes to the increased fraction of water-soluble components in biomass
230 combustion compared to the fossil combustion samples. In the absence of oxygen,
231 using an aromatization process based on the cleavage of O-alkylated carbons might
232 overestimate the EC content analyzed by thermal-optical methods (Li et al., 2013).
233 The fraction of methyls in the aliphatics (FMA) (Chen et al., 2020) and nonprotonated
234 aromatics (Kelemen et al., 2010) in pine wood combustion are 22% and 12% higher,
235 respectively, than those in corn straw. These findings indicate that the water solubility
236 of pine wood combustion products is worse than that of corn straw, in addition to the
237 fact that the aromatic structure of pine wood combustion materials is denser. The
238 water-soluble components of the corn straw combustion products were high, such that
239 OC charring has a greatly influenced EC isolation when using the EC_{He/O2-475} method,
240 while minimally impacting EC isolation following the water extraction EC_{LARA}
241 methods (Zhang et al., 2012).

242

243 By using FESEM in this study (Figure S3), it was observed that the pine wood
244 samples contained a coke structure that was more condensed than the structure of the
245 corn straw samples. In addition, a large number of soot structures were observed in

246 the fossil source samples, indicating that fossil source samples are more condensed
247 than biomass samples.

248
249 In general, due to the differences between the isolation technologies, the EC/TC
250 ratios of the six synthetic known samples (Table S4) revealed a deviation of
251 approximately -99%~+125% between the calculated EC/TC ratios and the EC/TC
252 ratios isolated by the four methods. The deviations isolated by the Hypy, EC_{LARA},
253 EC_{He/O2-475} and CTO-375 methods were approximately -8%~+31%, -39%~+121%,
254 -62%~+125% and -93%~+99%, respectively. The result obtained by the Hypy method
255 is closest to the TOT method, and the average value of the ratio is 1.1, which shows
256 the advantages of stability and reliability in purifying EC.
257

258 **3.2. Comparison of carbon isotopes in EC**

259
260 The different EC recoveries of the source samples may lead to different carbon
261 isotope results in the EC from the synthetic known samples. The theoretical EC/TC
262 ratios and ¹³C_{EC} values of each hybrid sample were calculated according to the EC/TC
263 (TOT) ratios and ¹³C_{TC} values in the combustion source and the relative proportion of
264 each source, respectively (Table S3). In the calculation, it is assumed that the ¹³C
265 value in the EC is very close with that in the TC in each source sample. The ¹³C
266 results of the EC from the six synthetic known samples processed by the four isolation
267 methods are shown in Table 1. No significant difference of ¹³C was observed between
268 the results of the four isolation methods and the corresponding theoretical calculation
269 values of all samples (T-test, P>0.05), except for the samples (S1, S2 and S3)
270 containing corn straw combustion material isolated using the EC_{He/O2-475} method,
271 which presented much higher ¹³C values. This finding indicated that the EC isolated
272 using the EC_{He/O2-475} method contained more biomass carbon. The reason for this
273 result may be that the organic carbon of combusted corn straw is charring during the
274 EC isolation process. However, this phenomenon was not observed in the samples
275 containing pine wood combustion, which may be the reason that the ¹³C value of the
276 pine wood combustion sample is close to that of coal combustion.
277

278 The ¹⁴C results of the EC are shown in Table 1 and Figure 1. Fraction of Modern
279 (*f_M*) is used to express the proportion of biomass burning. The theoretical values of
280 *f_M*(EC) in the hybrid samples were obtained according to the proportion of fossil
281 carbon and modern carbon in each sample in accordance with the EC/TC (TOT) ratios
282 (Figure 1). The results show that the *f_M* values obtained by different isolation methods
283 are quite different, and are generally affected by the ratios of combustion source
284 sample EC recovered by different methods. Due to the low recovery rate of EC by
285 CTO-375 method, the *f_M*(EC_{CTO-375}) value is irregular. Generally, the *f_M*(EC_{CTO-375})
286 value obtained by this method is more than twice the theoretical value. For the
287 EC_{He/O2-475} method, due to the influence of biomass burning OC charring the
288 *f_M*(EC_{He/O2-475}) value obtained by this method deviates greatly from the theoretical
289 value. On the whole, *f_M* values obtained by the Hypy and EC_{LARA} methods are
290 relatively close to the theoretical values, but the two methods have their own
291 advantages in the two different sets of samples. For the combustion of herbaceous
292 plants, the Hypy method has a low EC recovery rate for such source samples,
293 resulting in a small *f_M* value. For the combustion of woody combustion, due to the

higher EC recovery rate by the Hypy method, the $f_M(\text{EC}_{\text{Hypy}})$ value is slightly higher than that of samples containing herbaceous plants. For the EC_{LARA} method, in the first group of samples with corn straw combustion, the EC recovery rate of each source sample is lower than the theoretical value, so that the $f_M(\text{EC}_{\text{LARA}})$ value obtained by this method is the closest to the theoretical value. However, in the second group of samples containing woody combustion, the $f_M(\text{EC}_{\text{LARA}})$ value obtained by this method was significantly higher than the theoretical value, due to the higher recovery rate of woody combustion EC by the EC_{LARA} method. The results show that the f_M value of EC was not only related to the isolation method but also to the types and proportions of biomass sources in the sample.

The above results show that the type of biomass combustion affects the efficiency of the isolation method to purify black carbon and the accuracy of the radiocarbon test results. Charcoal, harvest residues and wood materials are the most common biomass fuels used as energy sources (Anenberg et al., 2013). From a global perspective, the types of biomass fuels are complex, but generally can be divided into two categories, herbaceous burning and woody plant burning, the ratio of the two types of biomass is about 58:42 (Table S6). Different regions have different proportions. According to the literature (Bond et al., 2004; Stevens et al., 2017; Streets et al., 2003; Zhang et al., 2019a), developed countries, such as Europe and North America, have a relatively high proportion of woody plants, while developing countries, such as Africa and Asia, have a relatively high proportion of herbaceous plants (Table S6). According to the recovery rate of different types of biomass combustion EC by different methods, the deviations that may be caused by the results of testing ^{14}C in different regions are estimated. The results are listed in Table S6. It can be seen that on a global scale, the f_M value obtained by the Hypy method is the closest to the theoretical value. Therefore, the Hypy method is an effective and stable approach for matrix-independent ^{14}C quantification of EC avoiding charring in aerosols.

3.3. Carbon isotopes of EC in SRM 1649b

SRM 1649a/b, urban dust, was used to check the quality of EC or EC isotope measurement method (Currie et al., 2002; Liu et al., 2013; Szidat et al., 2004b; Reddy et al., 2002; Heal et al., 2011). SRM 1649b was prepared from the same particulate material that was issued in 1982 as SRM 1649 and re-issued in 1999 as SRM 1649a, and the only difference is that the bulk material was sieved to a smaller particle size fraction ⁴⁷. Therefore, the f_M and $\delta^{13}\text{C}$ of TC in SRM 1649b obtained in this study was consistent with SRM 1649a reported by Szidat et al (Szidat et al., 2004b). EC/TC ratios, f_M -EC and $\delta^{13}\text{C}$ -EC of SRM1649b isolated using Hypy method in this study and archived data from the literature using different isolation methods are listed in Table 2. The EC/TC ratios varied from 7.5% to 46% determined by the different analyzing methods. However, the value of about ~28% obtained in this study is in good agreement with that obtained by Hypy method (Meredith et al., 2012) and by TOT method (Currie et al., 2002). The f_M and $\delta^{13}\text{C}$ of EC in SRM 1649a ranged from 0.038 to 0.153 and from -26.55‰ to -24.8‰ respectively reported by the previous research using the different isolation methods except Hypy (Currie et al., 2002). The corresponding values of 0.11 and -24.9‰ treated by Hypy method in this study are just in the range of archived data. Therefore, the values of ^{13}C and ^{14}C of EC_{Hypy} in SRM 1649b provide a definite and comparable reference for the future research methods.

344
345 **4. Conclusions**
346

347 Carbon isotope (^{14}C and ^{13}C) analysis is a powerful tool for distinguishing the
348 carbon sources in carbonaceous aerosols. As addressed in this work, one main
349 challenge of this method is the isolation of EC or BC for carbon isotope analysis. In
350 this study, six synthetic known samples were collected, including biomass combustion
351 (corn straw or pine wood) and coal combustion products and motor vehicle exhaust.
352 These samples were then used to evaluate four EC isolation methods, which included
353 the Hypy, CTO-375, $\text{EC}_{\text{He}/\text{O}_2-475}$ and EC_{LARA} methods. The results demonstrated the
354 Hypy method was in good agreement with the thermo-optical (TOT) method for the
355 quantification of EC. And the EC_{fm} values depended not only on the isolation method
356 but also on the types and proportions of the biomass sources in the samples. The Hypy
357 method is the most appropriate EC isolation method of the four methods reported here,
358 followed by the EC_{LARA} method. The Hypy method, which can be used to isolate a
359 highly stable portion of EC_{Hypy} and avoid charring, is a more effective and stable
360 approach for the matrix-independent ^{14}C quantification of EC in aerosols. The EC_{Hypy}
361 of SRM1649b sample was isolated by the Hypy method. The results indicated that the
362 ^{13}C - EC_{Hypy} and non-fossil EC_{Hypy} values of SRM1649b were $-24.9\text{\textperthousand}$ and $11\text{\textperthousand}$,
363 respectively. These two isotope values was able to provide a valuable reference for
364 other EC isolation methods.

365
366 **Supporting Information**

367 Supporting Information may be found in the online version of this article.
368
369

370 **Acknowledgments**

371 This work was supported by the National Natural Science Foundation of China (grant
372 nos. 42192511, 42030715 and 41977177), Guangdong Foundation for Program of
373 Science and Technology Research (grant nos. 2017BT01Z134 and 2020B1212060053)
374 and Guangzhou Foundation for Program of Science and Technology Research (grant
375 no. 202102080251).

376
377 **Author contributions**

378 GZ led the study. JL and XZ designed the study, developed the analysis protocols, and
379 wrote the initial manuscript. XZ, SZ, JL, PD, SG, CT, YC and PP provided data,
380 provided comments on the analysis, and contributed and reviewed the final
381 manuscript.

382
383 **Competing interests**

384 The authors declare that they have no conflict of interest.
385

386 **References**

387 Anenberg, S. C., Balakrishnan, K., Jetter, J., Masera, O., Mehta, S., Moss, J. and
388 Ramanathan, V.: Cleaner Cooking Solutions to Achieve Health, Climate, and
389 Economic Cobenefits, *Environ. Sci. Technol.*, 47(9), 3944-3952,
390 doi:10.1021/es304942e, 2013.
391 Bond, T. C., et al.: Bounding the role of black carbon in the climate system: A
392 scientific assessment, *J. Geophys. Res.-Atmos.*, 118(11), 5380-5552,
393 doi:10.1002/jgrd.50171, 2013.

394 Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H. and Klimont, Z.: A
395 technology-based global inventory of black and organic carbon emissions
396 from combustion, *J. Geophys. Res.-Atmos.*, 109(D14), 43,
397 doi:10.1029/2003jd003697, 2004.

398 Chen, B., et al.: Source Forensics of Black Carbon Aerosols from China, *Environ. Sci.*
399 *Technol.*, 47(16), 9102-9108, doi:10.1021/es401599r, 2013.

400 Chen, J., Jia, W. L., Yu, C. L., Zhang, X. Y. and Peng, P. A.: Bound hydrocarbons and
401 structure of pyrobitumen rapidly formed by asphaltene cracking: Implications
402 for oil-source correlation, *Org. Geochem.*, 146, 16,
403 doi:10.1016/j.orggeochem.2020.104053, 2020.

404 Currie, L. A.: Evolution and multidisciplinary frontiers of C-14 aerosol science,
405 *Radiocarbon*, 42(1), 115-126, 2000.

406 Currie, L. A., et al.: A critical evaluation of interlaboratory data on total, elemental,
407 and isotopic carbon in the carbonaceous particle reference material, NIST
408 SRM 1649a, *J. Res. Natl. Inst. Stand. Technol.*, 107(3), 279-298,
409 doi:10.6028/jres.107.022, 2002.

410 Dasari, S., Widory, D.: Radiocarbon (14C) Analysis of Carbonaceous Aerosols:
411 Revisiting the Existing Analytical Techniques for Isolation of Black Carbon,
412 *Front. Environ. Sci.*, 10, 907467, doi: 10.3389/fenvs.2022.907467, 2022.

413 de la Rosa, J. M., Garcia, L. S., de Andres, J. R., Gonzalez-Vila, F. J., Gonzalez-Perez,
414 J. A. and Knicker, H.: Contribution of black carbon in recent sediments of the
415 Gulf of Cadiz: Applicability of different quantification methodologies, *Quat.*
416 *Int.*, 243(2), 264-272, doi:10.1016/j.quaint.2011.01.034, 2011.

417 Elmquist, M., Cornelissen, G., Kukulska, Z. and Gustafsson, O.: Distinct oxidative
418 stabilities of char versus soot black carbon: Implications for quantification and
419 environmental recalcitrance, *Glob. Biogeochem. Cycle*, 20(2), 11,
420 doi:10.1029/2005gb002629, 2006.

421 Fuzzi, S., et al.: Critical assessment of the current state of scientific knowledge,
422 terminology, and research needs concerning the role of organic aerosols in the
423 atmosphere, climate, and global change, *Atmos. Chem. Phys.*, 6, 2017-2038,
424 doi:10.5194/acp-6-2017-2006, 2006.

425 Gustafsson, O., Krusa, M., Zencak, Z., Sheesley, R. J., Granat, L., Engstrom, E.,
426 Praveen, P. S., Rao, P. S. P., Leck, C. and Rodhe, H.: Brown Clouds over
427 South Asia: Biomass or Fossil Fuel Combustion?, *Science*, 323(5913),
428 495-498, doi:10.1126/science.1164857, 2009.

429 Hammes, K., et al.: Comparison of quantification methods to measure fire-derived
430 (black/elemental) carbon in soils and sediments using reference materials from
431 soil, water, sediment and the atmosphere, *Glob. Biogeochem. Cycle*, 21(3), 18,
432 doi:10.1029/2006gb002914, 2007.

433 Heal, M. R., Naysmith, P., Cook, G. T., Xu, S., Duran, T. R., Harrison, R. M.:
434 Application of C-14 analyses to source apportionment of carbonaceous PM2.5
435 in the UK, *Atmos. Environ.* 45, (14), 2341-2348, 2011.

436

437 Huang, R. J., et al.: High secondary aerosol contribution to particulate pollution

438 during haze events in China, *Nature*, 514(7521), 218-222,
 439 doi:10.1038/nature13774, 2014.

440 Kelemen, S. R., et al.: Characterization of solid bitumens originating from thermal
 441 chemical alteration and thermochemical sulfate reduction, *Geochim. Cosmochim. Acta*, 74(18), 5305-5332, doi:10.1016/j.gca.2010.06.013, 2010.

442 Kirillova, E. N., Andersson, A., Sheesley, R. J., Krusa, M., Praveen, P. S., Budhavant,
 443 K., Safai, P. D., Rao, P. S. P. and Gustafsson, O.: C-13- and C-14-based study
 444 of sources and atmospheric processing of water-soluble organic carbon
 445 (WSOC) in South Asian aerosols, *J. Geophys. Res.-Atmos.*, 118(2), 614-626,
 446 doi:10.1002/jgrd.50130, 2013.

447 Li, X. M., Shen, Q. R., Zhang, D. Q., Mei, X. L., Ran, W., Xu, Y. C. and Yu, G. H.:
 448 Functional Groups Determine Biochar Properties (pH and EC) as Studied by
 449 Two-Dimensional C-13 NMR Correlation Spectroscopy, *PLoS One*, 8(6), 7,
 450 doi:10.1371/journal.pone.0065949, 2013.

451 Liu, D., Li, J., Zhang, Y. L., Xu, Y., Liu, X., Ding, P., Shen, C. D., Chen, Y. J., Tian, C.
 452 G and Zhang, G: The Use of Levoglucosan and Radiocarbon for Source
 453 Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East
 454 China, *Environ. Sci. Technol.*, 47(18), 10454-10461, doi:10.1021/es401250k,
 455 2013.

456 Liu, J. W., Li, J., Ding, P., Zhang, Y. L., Liu, D., Shen, C. D. and Zhang, G.:
 457 Optimizing isolation protocol of organic carbon and elemental carbon for C-14
 458 analysis using fine particulate samples, *Atmos. Environ.*, 154, 9-19,
 459 doi:10.1016/j.atmosenv.2017.01.027, 2017.

460 Maenhaut, W., Raes, N., Chi, X. G., Cafmeyer, J., Wang, W. and Salma, I.: Chemical
 461 composition and mass closure for fine and coarse aerosols at a kerbside in
 462 Budapest, Hungary, in spring 2002, *X-Ray Spectrom.*, 34(4), 290-296,
 463 doi:10.1002/xrs.820, 2005.

464 Meredith, W., Ascough, P. L., Bird, M. I., Large, D. J., Snape, C. E., Sun, Y. and
 465 Tilston, E. L.: Assessment of hydrolysis as a method for the quantification
 466 of black carbon using standard reference materials, *Geochim. Cosmochim. Acta*, 97, 131-147, doi:10.1016/j.gca.2012.08.037, 2012.

467 Reddy, C. M., Pearson, A., Xu, L., McNichol, A. P., Benner, B. A., Wise, S. A.,
 468 Klouda, G. A., Currie, L. A., Eglinton, T. I.: Radiocarbon as a tool to apportion
 469 the sources of polycyclic aromatic hydrocarbons and black carbon in
 470 environmental samples, *Environ. Sci. Technol.*, 36, (8), 1774-1782, 2002.

471 Salma, I., Chi, X. G. and Maenhaut, W.: Elemental and organic carbon in urban
 472 canyon and background environments in Budapest, Hungary, *Atmos. Environ.*,
 473 38(1), 27-36, doi:10.1016/j.atmosenv.2003.09.047, 2004.

474 Schmidt, M. W. I., Skjemstad, J. O., Czimczik, C. I., Glaser, B., Prentice, K. M.,
 475 Gelinas, Y. and Kuhlbusch, T. A. J.: Comparative analysis of black carbon in
 476 soils, *Glob. Biogeochem. Cycle*, 15(1), 163-167, doi:10.1029/2000gb001284,
 477 2001.

478 Schwarz, J. P., Holloway, J. S., Katich, J. M., McKeen, S., Kort, E. A., Smith, M. L.,
 479 Ryerson, T. B., Sweeney, C. and Peischl, J.: Black Carbon Emissions from the

482 Bakken Oil and Gas Development Region, *Environ. Sci. Technol. Lett.*, 2(10),
483 281-285, doi:10.1021/acs.estlett.5b00225, 2015.

484 Stevens, N., Lehmann, C. E. R., Murphy, B. P. and Durigan, G.: Savanna woody
485 encroachment is widespread across three continents, *Glob. Change Biol.*,
486 23(1), 235-244, doi:10.1111/gcb.13409, 2017.

487 Streets, D. G., Yarber, K. F., Woo, J. H. and Carmichael, G. R.: Biomass burning in
488 Asia: Annual and seasonal estimates and atmospheric emissions, *Glob.*
489 *Biogeochem. Cycle*, 17(4), 20, doi:10.1029/2003gb002040, 2003.

490 Szidat, S.: ATMOSPHERE Sources of Asian Haze, *Science*, 323(5913), 470-471,
491 doi:10.1126/science.1169407, 2009.

492 Szidat, S., et al.: INTERCOMPARISON OF C-14 ANALYSIS OF
493 CARBONACEOUS AEROSOLS: EXERCISE 2009, *Radiocarbon*, 55(2-3),
494 1496-1509, doi:10.2458/azu_js_rc.55.16314, 2013.

495 Szidat, S., et al.: Radiocarbon (C-14)-deduced biogenic and anthropogenic
496 contributions to organic carbon (OC) of urban aerosols from Zurich,
497 Switzerland, *Atmos. Environ.*, 38(24), 4035-4044,
498 doi:10.1016/j.atmosenv.2004.03.066, 2004a.

499 Szidat, S., Jenk, T. M., Gaggeler, H. W., Synal, H. A., Hajdas, I., Bonani, G. and
500 Saurer, M.: THEODORE, a two-step heating system for the EC/OC
501 determination of radiocarbon (C-14) in the environment, *Nucl. Instrum.*
502 *Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms*, 223, 829-836,
503 doi:10.1016/j.nimb.2004.04.153, 2004b.

504 Szidat, S., M. Ruff, Perron, N., Wacker, L., Synal, H. A., Hallquist, M., Shannigrahi,
505 A. S., Yttri, K. E., Dye, C. and Simpson, D.: Fossil and non-fossil sources of
506 organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, *Atmos.*
507 *Chem. Phys.*, 9(5), 1521-1535, doi:10.5194/acp-9-1805-2009, 2009.

508 Zencak, Z., Elmquist, M. and Gustafsson, O.: Quantification and radiocarbon source
509 apportionment of black carbon in atmospheric aerosols using the CTO-375
510 method, *Atmos. Environ.*, 41(36), 7895-7906,
511 doi:10.1016/j.atmosenv.2007.06.006, 2007.

512 Zenker, K., Vonwiller, M., Szidat, S., Calzolai, G., Giannoni, M., Bernardoni, V.,
513 Jedynska, A. D., Henzing, B., Meijer, H. A. J. and Dusek, U.: Evaluation and
514 Inter-Comparison of Oxygen-Based OC-EC Separation Methods for
515 Radiocarbon Analysis of Ambient Aerosol Particle Samples, *Atmosphere*,
516 8(11), 21, doi:10.3390/atmos8110226, 2017.

517 Zhang, W. M., Brandt, M., Penuelas, J., Guichard, F., Tong, X. Y., Tian, F. and
518 Fensholt, R.: Ecosystem structural changes controlled by altered rainfall
519 climatology in tropical savannas, *Nat. Commun.*, 10, 7,
520 doi:10.1038/s41467-019-08602-6, 2019a.

521 Zhang, X. Y., et al.: Isolation and radiocarbon analysis of elemental carbon in
522 atmospheric aerosols using hydrolysis, *Atmos. Environ.*, 198, 381-386,
523 doi:10.1016/j.atmosenv.2018.11.005, 2019b.

524 Zhang, Y. L., Perron, N., Ciobanu, V. G., Zotter, P., Minguillon, M. C., Wacker, L.,
525 Prevot, A. S. H., Baltensperger, U. and Szidat, S.: On the isolation of OC and

526 EC and the optimal strategy of radiocarbon-based source apportionment of
527 carbonaceous aerosols, *Atmos. Chem. Phys.*, 12(22), 10841-10856,
528 doi:10.5194/acp-12-10841-2012, 2012.

529 Zhang, Y. L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Zotter, P., Shen, R.
530 R., Schafer, K., Shao, L. Y., Prevot, A. S. H. and Szidat, S.: Source
531 Apportionment of Elemental Carbon in Beijing, China: Insights from
532 Radiocarbon and Organic Marker Measurements, *Environ. Sci. Technol.*,
533 49(14), 8408-8415, doi:10.1021/acs.est.5b01944, 2015.

534 NIST: Certificate of Analysis for Standard Reference Material 1649b, Urban Dust;
535 National Institute of Standards and Technology: Gaithersburg, MD, 2007.

536

537

Table 1. The $\delta^{13}\text{C}$ and ^{14}C results of EC from the six synthetic known samples by four isolation methods.

Sample	$\delta^{13}\text{C}\text{‰}(\text{EC})$ (calculated)	$f_{\text{M}}(\text{EC})$ (calculated)	$\delta^{13}\text{C}\text{‰}(\text{EC}_{\text{Hypy}})$ ($\pm 0.5 \text{‰}$)	$f_{\text{M}}(\text{EC}_{\text{Hypy}})$	$\delta^{13}\text{C}\text{‰}(\text{EC}_{\text{CTO-375}})$ ($\pm 0.5 \text{‰}$)	$f_{\text{M}}(\text{EC}_{\text{CTO-375}})$	$\delta^{13}\text{C}\text{‰}(\text{EC}_{\text{He/O2-475}})$ ($\pm 0.5 \text{‰}$)	$f_{\text{M}}(\text{EC}_{\text{He/O2-475}})$	$\delta^{13}\text{C}\text{‰}(\text{EC}_{\text{LARA}})$ ($\pm 0.5 \text{‰}$)	$f_{\text{M}}(\text{EC}_{\text{LARA}})$
S1	-22.98	0.2192	-23.40	0.0946 ± 0.0013	-22.26	0.4027 ± 0.0145	-19.69	0.3378 ± 0.0025	-23.55	0.2140 ± 0.0023
S2	-22.77	0.2795	-23.42	0.1375 ± 0.0015	-22.42	0.5332 ± 0.0172	-17.00	0.3809 ± 0.0038	-23.77	0.2437 ± 0.0024
S3	-22.43	0.3201	-23.31	0.1694 ± 0.0016	-22.60	0.7368 ± 0.0169	-18.69	0.4547 ± 0.0029	-24.11	0.2590 ± 0.0025
S4	-25.16	0.2403	-24.33	0.3145 ± 0.0045	-25.83	0.4019 ± 0.0076	-24.36	0.5005 ± 0.0036	-24.28	0.5101 ± 0.0030
S5	-25.52	0.3053	-24.55	0.3382 ± 0.0049	-25.85	0.4779 ± 0.0119	-24.57	0.6487 ± 0.0036	-24.54	0.6655 ± 0.0041
S6	-25.59	0.3483	-24.57	0.3707 ± 0.0063	-25.76	0.5966 ± 0.0098	-24.84	0.7226 ± 0.0033	-24.68	0.7315 ± 0.0034

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

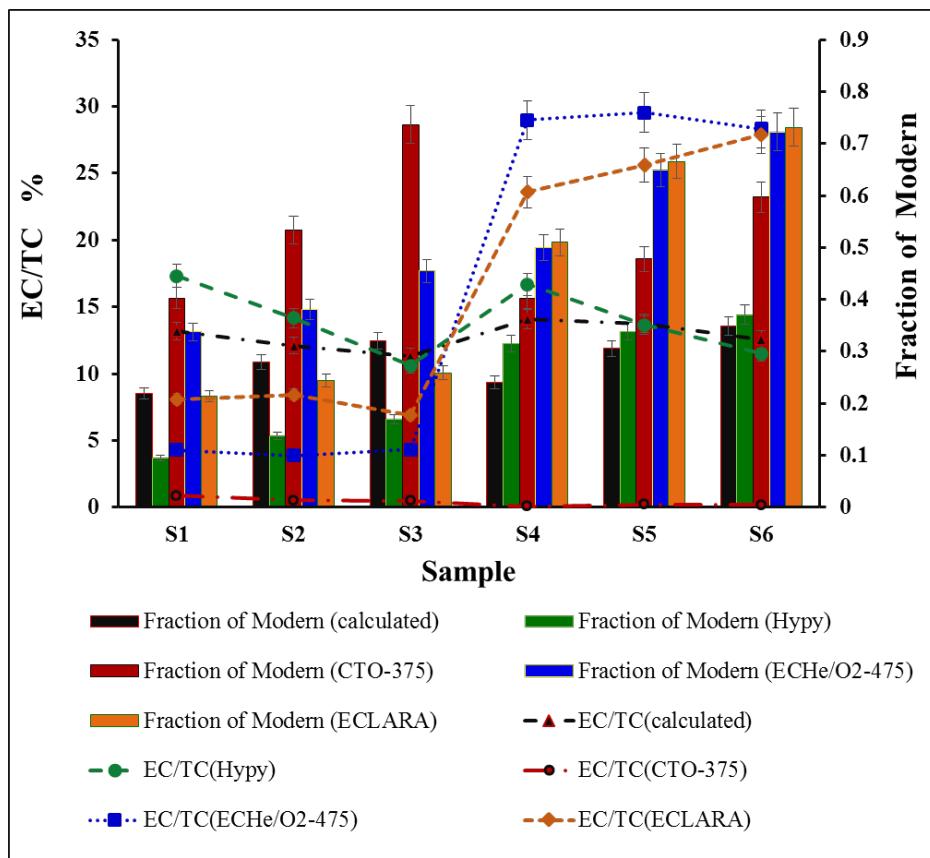
556

557

558

559

560 **Table 2.** ^{14}C and ^{13}C analysis results in SRM 1649 a/b.


Sample	f_{M}	$M_{\text{C}} (\mu\text{g})$	$\delta^{13}\text{C} (\text{‰} \text{ vs VPDB})$	EC/TC	reference
1649b TC	$0.525 \pm 0.002 \text{ (n = 1)}$	220	$-25.6 \pm 0.5 \text{ (n = 2)}$	0.275 ± 0.050	this work
1649a TC	$0.522 \pm 0.018 \text{ (n = 5)}$	12–87	$-25.5 \pm 0.6 \text{ (n = 2)}$	0.280 ± 0.080	ref (Szidat et al., 2004)
1649a TC	$0.510 \pm 0.011 \text{ (n = 3)}$	not given	$-25.3 \pm 0.3 \text{ (n = 2)}$	0.080 ± 0.010	ref (Reddy et al., 2002)
1649a TC	0.610 ± 0.040	not given	not given	not given	ref (Currie et al., 2002)
1649a TC	0.505 ± 0.003	not given	not given	0.458 ± 0.025	ref (Currie et al., 2002)
1649a TC	0.517 ± 0.004	not given	not given	not given	ref (Currie et al., 2002)
1649b EC	$0.108 \pm 0.002 \text{ (n = 1)}$	270	$-24.9 \pm 0.5 \text{ (n = 2)}$	0.275 ± 0.050	this work
1649b EC	$0.112 \pm 0.080^* \text{ (n = 1)}$	~ 460	$-24.9 \pm 0.5 \text{ (n = 2)}$	0.275 ± 0.050	this work
1649a EC	$0.066 \pm 0.020 \text{ (n = 4)}$	37–70	$-24.8 \pm 0.5 \text{ (n = 4)}$	0.280 ± 0.080	ref (Szidat et al., 2004)
1649a EC	$0.065 \pm 0.014 \text{ (n = 3)}$	~ 2800	-26.55 ± 0.04	0.080 ± 0.010	ref (Reddy et al., 2002)
1649a EC	$0.140 \pm 0.050 \text{ (n = 1)}$	459	not given	~ 0.280	ref (Liu et al., 2013)
1649a EC	0.150 ± 0.080	not given	not given	not given	ref (Heal et al., 2011)
1649a EC	$0.065 \pm 0.003 \text{ (n = 1)}$	not given	not given	0.077 ± 0.002	ref (Currie et al., 2002)
1649a EC	0.153 ± 0.002	not given	not given	0.458 ± 0.025	ref (Currie et al., 2002)
1649a EC	0.038 ± 0.012	not given	not given	0.109 ± 0.005	ref (Currie et al., 2002)

561 * The same 1649b EC obtained by the Hypy method was sent to BETA for ^{14}C analysis.

562

563

564

565

566 **Figure 1.** The EC/TC% and ^{14}C results of EC from the six synthetic known samples by four isolation methods.

567