Technical note: Intercomparison Study of the EC Radiocarbon Analysis
Methods Using Synthetic Known Samples

Xiangyun Zhang¹,²,³, Jun Li¹,²,³, Sanyuan Zhu¹,²,³, Junwen Liu⁴, Ping Ding⁵, Shoutao Gao¹,²,³, Chongguo Tian⁶, Yingjun Chen⁷, Ping'an Peng¹,²,³, Gan Zhang¹,²,³

¹ State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
² CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
³ Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
⁴ Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China.
⁵ State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
⁶ Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
⁷ Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.

*Correspondence: Jun Li (junli@gig.ac.cn), Gan Zhang (zhanggan@gig.ac.cn)
Abstract

The accurate identification of elemental carbon (EC) source in aerosol based on radiocarbon (14C) depends on the method of EC isolation. The lack of aerosol EC reference materials with "true" 14C values makes it impossible to evaluate the accuracy of various methods for the analysis of 14C-EC in aerosols. In this study, EC separation methods were evaluated by using samples of mixed biomass burning, vehicle exhaust and coal-combustion. The results show that 14C-EC was not only related to the separation method but also to the types and proportions of biomass sources in the sample. **And the Hydropyrolysis (Hypy) method, which can be used to separate a highly stable portion of EC$_{Hypy}$ and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols. The 1314C-EC$_{Hypy}$ and non-fossil EC$_{Hypy}$ values of SRM1649b were 24.9‰ and 11‰, respectively.**

1. Introduction

The elemental carbon (EC) or black carbon (BC) fraction of carbonaceous aerosols (CAs) is derived from the incomplete combustion of fossil fuels or biomass and is responsible for an overall warming effect of the Earth by either absorbing incoming solar radiation in the atmosphere or reducing the albedo of surface materials (i.e., snow and ice) (Fuzzi et al., 2006; Schwarz et al., 2015; Szidat, 2009; Szidat et al., 2004a; Szidat et al., 2009). The limited understanding of EC aerosol emissions causes poorly constrained anthropogenic climate warming that globally may be second only to CO$_2$ and regionally, such as over East Asia, the dominant driver of climate change (B. Chen et al., 2013). Therefore, detailed knowledge of the sources of EC is necessary for the implementation of mitigation strategies for EC reduction. Carbon isotope (14C and 13C) analysis is a powerful tool for unambiguously distinguishing the carbon sources of EC (Currie, 2000; Szidat, 2009; Szidat et al., 2009; Gustafsson et al., 2009; Kirillova et al., 2013; D. Liu et al., 2013; Zencak et al., 2007; X. Y. Zhang et al., 2019b). Carbon isotope source apportionment requires the physical separation of OC and EC, which is complicated by the fact that there is no sharp boundary between organic carbon (OC) and EC in carbonaceous aerosols (Elmqist et al., 2006). Therefore, one of the large challenges of this method is the isolation of EC for 14C and 13C analysis.

Based on the thermal stability of EC, several methods for separating OC and EC from aerosols have been developed. An intercomparison of 9 laboratories for 14C analysis of carbonaceous aerosol samples was conducted in a previous study, and 14C analysis of EC revealed a large deviation of 28-79% between the approaches as a consequence of the different separation techniques (Szidat et al., 2013). Due to the same principle as aerosol OC and EC measurement, thermo-optical separation, also named oxygen-based OC-EC separation, has gradually become the main method for EC separation in recent years. Although the 14C results of EC between three independent laboratory methods showed good agreement, the recovery of EC differed greatly (Zenker et al., 2017). Recently, hydropyrolysis (Hypy) has been introduced as...
an EC separation method (Meredith et al., 2012; X.Y. Zhang et al., 2019b). A comparison study of 14C-EC in aerosol samples separated using the two-step heating method (CTO-375), EC$_{He/O_2-475}$ method and Hypy method was also conducted (X.Y. Zhang et al., 2019b). However, the 14C intercomparisons of all studies were mainly restricted to ambient filter samples or urban dust (SRM 1649a/b), for which the “true” 14C of EC is not known. As the literature emphasizes (Dasari et al., 2022), even when methods give similar results, it may still be unclear whether the methods give accurate results. In the worst case, if the methods give different results, then it is impossible to determine which method (if any) gives an accurate value (Zenker et al., 2017). Therefore, the key to evaluating the accuracy of different separation methods is to obtain suitable EC reference materials for the 14C analysis of aerosols.

Carbonaceous aerosols are mainly composed of primary emissions from fossil fuel and biomass combustion and secondary organic compounds (Huang et al., 2014; Y.L. Zhang et al., 2015). In general, secondary organic aerosols are relatively easy to separate from EC using methods such as water or organic solvent extraction. However, it is difficult to separate insoluble OC from EC in primary combustion products. Biomass burning, coal combustion and traffic emissions are the main primary sources of EC in aerosols (Bond et al., 2013). In this study, six samples were synthesized artificially by using biomass combustion (corn straw or pine wood), coal combustion and motor vehicle exhaust samples according to the relative content of fossil carbon and modern carbon in actual aerosols in this study. The theoretical calculated values of the EC contents and EC carbon isotopes in six synthetic samples were determined based on the measured isotopes of each source sample and the EC/TC measured by using the thermal-optical transmittance (TOT) method. And the calculated 14C value of EC can be taken as the “true” 14C-EC value. Consequently, four EC separation methods, including Hypy (X.Y. Zhang et al., 2019b), CTO-375 (D. Liu et al., 2013), EC$_{He/O_2-475}$ (J.W. Liu et al., 2017) and EC$_{LARA}$ (Zenker et al., 2017), were selected for EC separation, and then the EC contents and EC carbon isotopes were compared to the corresponding theoretical calculated value of each synthetic sample. The accuracy of each separation method was evaluated based on the recovery of the EC contents and carbon isotopes. Finally, the EC contents and EC carbon isotopes (14C and 13C) of urban dust (SRM 1649b) were determined by the separation method with the best accuracy.

2. Materials and Methods

2.1. Sample collection

Corn straw (Zea mays, C4 plant, with carbon isotopes that differ significantly from fossil fuels), pine wood (Pinus tabuliformis Carr. woody plant), one type of raw coal in chunks sourced from Yanzhou (Y.Z) in Shandong Province, and one type of gasoline truck were selected as the representative sources for biomass burning, coal combustion and vehicle exhaust. Corn straw and pine wood combustion products were collected through a sampling system. Coal was combusted in a high-efficiency stove, and PM$_{2.5}$ emissions were collected using a dilution sampling system. Vehicle exhaust particles were collected using the on-board emission measurement system. A description of the detailed sampling information was provided in a previous report [X.Y. Zhang et al., 2019b].
2.2. EC Purification Method

CTO-375 method: To achieve the complete removal of the OC from the EC fraction, the samples were treated by vaporizing the OC at 375 °C in a muffle furnace in the presence of air using a shorter separation time of 4 h (D. Liu et al., 2013).

ECHe/02-475 method: The ECHe/02-475 fractions in the samples were purified in the commercial OC-EC analyzer as follows: 120 s at 200 °C, 150 s at 300 °C, and 180 s at 475 °C in an oxidative atmosphere (10% oxygen, 90% helium), followed by 180 s at 650 °C in helium. Details of the handling methods were described in a previous report (J.W. Liu et al., 2017).

EC LARA method: A punch of the water-extracted filter was treated with a thermo-optical OC-EC analyzer using the first three steps of the “Swiss 4S protocol” to remove all remaining water-insoluble OC, giving a residue that constituted the ECLARA sample (Zenker et al., 2017; Y.L. Zhang et al., 2015).

Hydropyrolysis: Each sample was mixed fully with ammonium dioxydithiomolybdate [(NH₄)₂MoO₂S₂] as a catalyst to reach a nominal molybdenum loading of 1% by weight. The samples were first heated in the reactor tube from ambient temperature to 250 °C at a rate of 300 °C min⁻¹ and then from 300 °C to the final temperature (550 °C) at 8 °C min⁻¹; samples were then held for 5 min under a hydrogen pressure of 15 MPa and a flow rate of 5.0 L/min. The resulting residue was the EC hyp sample (X.Y. Zhang et al., 2019b).

2.3. OC/EC and carbon isotopes analyses

The OC and EC were analyzed by a laboratory OC/EC analyzer (Sunset Laboratory, USA) using the NIOSH2 thermal protocol (Maenhaut et al., 2005; Salma et al., 2004). Methods of ¹³C and ¹⁴C analysis for all samples were described in the SI (D. Liu et al., 2013; J.W. Liu et al., 2017).

3. Results and discussion

3.1. Comparison of EC purified by different methods

The six synthetic known samples were made by biomass combustion (corn straw or pine wood), coal combustion and motor vehicle exhaust (Table S1). The hybrid samples were produced according to the proportioning principle, based on the approximate proportions (Figure S1 and Table S2). The average deviations of carbon content, ¹³C TC and fM(TC) of the hybrid samples between the theoretical values and the test values were 0.30%, 0.12‰ and 0.03, respectively (Table S3), and there was no significant difference (T-test, P=0.77, 0.96 and 0.49, respectively). These results show that the samples were well mixed and were sufficient to use for the method comparison experiments.

Before comparing EC recovery rates, it is necessary to obtain relatively accurate EC concentrations. The EC/TC ratios of the four combustion source samples were analyzed by the TOT method (Table S4). The EC/TC results of the four combustion source samples processed using the four separation methods (Hypy, CTO-375,
EC$_{\text{He/O2-475}}$ and EC$_{\text{LARA}}$ are listed in Table S4. Compared with the TOT method, the amount of EC obtained by the CTO-375 method is obviously lower than the results of the other three methods. For example, due to the high content of soot in the vehicle exhaust, the amount of EC can reach about 20%, while the amount of EC in other source samples is less than 10% (Hammes et al., 2007). It indicates that the CTO-375 method has obvious defects in the quantitative analysis of black carbon isotopes in aerosols. The EC/TC ratios of the coal combustion and motor vehicle exhaust obtained by the other three methods are lower than those of the TOT method, and the EC/TC ratios of the pine burning samples are higher than those of the TOT method. Among the above four methods, the result obtained by the Hypy method is the closest to the result of the TOT method. For the corn straw combustion samples, the Hypy and EC$_{\text{LARA}}$ methods are lower than the TOT method, but the results obtained by the EC$_{\text{He/O2-475}}$ are higher than the TOT method. On the one hand, this difference is the problem of the method itself. Each method only obtains a specific part of the EC continuum, rather than all the components of the black carbon continuum (Currie et al., 2002; de la Rosa et al., 2011; Schmidt et al., 2001). On the other hand, the different separation effect of the method is due to the difference of the organic carbon structure in the source sample.

Nuclear Magnetic Resonance (NMR) spectroscopy is an essential tool for acquiring detailed structural characterization results of the complex natural organic matter. The four combustion source samples were characterized by using solid-state 13C NMR (Figure S2 and Table S5). The 13C NMR results show that the average lower limit estimate for organic oxygen (Kelemen et al., 2010) from biomass combustion is 37% higher than that for fossil combustion. This finding indicates that there are more oxygen-containing organic carbon components in biomass combustion samples. The more organic oxygen in the sample, the greater the sample’s polarity, which contributes to the increased fraction of water-soluble components in biomass combustion than in fossil combustion samples. In the absence of oxygen, using an aromatization process based on the cleavage of O-alkylated carbons might overestimate the EC content analyzed by thermal-optical methods (Li et al., 2013). The fraction of methyls in the aliphatics (FMA) (J. Chen et al., 2020) and nonprotonated aromatics (Kelemen et al., 2010) in pine wood combustion are 22% and 12% higher, respectively, than those in corn straw. These findings indicate that the water solubility of pine wood combustion products is worse than that of corn straw, in addition to the fact that the aromatic structure of pine wood combustion materials is denser. The water-soluble components of the corn straw combustion products were high, such that OC charring has a greatly influenced EC separation when using the EC$_{\text{He/O2-475}}$ method, while minimally impacting EC separation following water extraction EC$_{\text{LARA}}$ methods (Y. L. Zhang et al., 2012).

By using field emission scanning electron microscopy (FESEM) in this study (Figure S3), it was observed that the pine wood samples contained a coke structure that was more compact than the structure of the corn straw samples. In addition, a large number of soot structures were observed in the fossil source samples, indicating that fossil source samples are more compact than biomass samples.

In general, due to the differences between the separation technologies, the EC/TC ratios of the six synthetic known samples (Table S4) revealed a deviation of approximately -98%~125% between the calculated EC/TC ratios and the EC/TC
ratios separated by the four methods. The deviations separated by the Hypy, EC\textsubscript{LARA},
EC\textsubscript{He/O2-475} and CTO-375 methods were approximately -8%~-31%, -39%~-121%,
-62%~125% and -93%~-95%, respectively. The result obtained by the Hypy method is closest to the TOT method, and the average value of the ratio is 1.1, which shows
the advantages of stability and reliability in purifying EC.

3.2. Comparison of carbon isotopes in EC

The different EC recoveries of the source samples may lead to different carbon
isothe results in the EC from the synthetic known samples. The theoretical EC/TC
ratios and \(^{13}\)C\textsubscript{EC} values of each hybrid sample were calculated according to the EC/TC
(TOT) ratios and \(^{13}\)C\textsubscript{TC} values in the combustion source and the relative proportion of
each source, respectively (Table S3). In the calculation, it is assumed that the \(^{13}\)C \nvalue in the EC is the same as that in the TC in each source sample. The \(^{13}\)C results of
the EC from the six synthetic known samples processed by the four separation
methods are shown in Table 1. No significant difference of \(^{13}\)C was observed between
the results of the four separation methods and the corresponding theoretical
calculation values of all samples (T-test, P>0.05), except for the samples (S1, S2 and
S3) containing corn straw combustion material separated using the EC\textsubscript{He/O2-475} method,
which presented much higher \(^{13}\)C values. This finding indicated that the EC separated
using the EC\textsubscript{He/O2-475} method contained more biomass carbon. The reason for this
result may be that the organic carbon of combusted corn straw is charring during the
EC separation process. However, this phenomenon was not observed in the samples
containing pine wood combustion, which may be the reason that the \(^{13}\)C value of the
pine wood combustion sample is close to that of coal combustion.

The \(^{14}\)C results of the EC are shown in Table 1 and Figure 1. Fraction of Modern
\((f_{M})\) is used to express the proportion of biomass burning. The theoretical values of
\(f_{M}(EC)\) in the hybrid samples were obtained according to the proportion of fossil
carbon and modern carbon in each sample in accordance with the EC/TC (TOT) ratios
(Figure 1). The results show that the \(f_{M}\) values obtained by different separation
methods are quite different, and are generally affected by the ratios of combustion
source sample EC recovered by different methods. Due to the low recovery rate of EC
by CTO-375 method, the \(f_{M}(EC_{\text{CTO-375}})\) value is irregular to follow. Generally, the
\(f_{M}(EC_{\text{CTO-375}})\) value obtained by this method is more than twice the theoretical value.
For the EC\textsubscript{He/O2-475} method, due to the influence of biomass burning OC coking, the
\(f_{M}(EC_{\text{He/O2-475}})\) value obtained by this method deviates greatly from the theoretical
value. On the whole, \(f_{M}\) values obtained by the Hypy and EC\textsubscript{LARA} methods are
relatively close to the theoretical values, but the two methods have their own
avantages in the two different sets of samples. For the combustion of herbaceous
plants, the Hypy method has a low EC recovery rate for such source samples,
resulting in a small \(f_{M}\) value. For the combustion of woody combustion, due to the
higher EC recovery rate by the Hypy method, the \(f_{M}(EC_{\text{Hypy}})\) value is slightly higher
than that of samples containing herbaceous plants. For the EC\textsubscript{LARA} method, in the first
group of samples with corn straw combustion, the EC recovery rate of each source
sample is lower than the theoretical value, so that the \(f_{M}(EC_{\text{LARA}})\) value obtained by
this method is the closest to the theoretical value. However, in the second group of
samples containing woody combustion, the \(f_{M}(EC_{\text{LARA}})\) value obtained by this method
was significantly higher than the theoretical value, due to the higher recovery rate of woody combustion EC by the ECLARA method. The results show that the \(f_M \) value of EC was not only related to the separation method but also to the types and proportions of biomass sources in the sample.

The above results show that the type of biomass combustion affects the efficiency of the separation method to purify black carbon and the accuracy of the radiocarbon test results. Charcoal, harvest residues and wood materials are the most common biomass fuels used as energy sources (Anenberg et al., 2013). From a global perspective, the types of biomass fuels are complex, but generally can be divided into two categories, herbaceous burning and woody plant burning, the ratio of the two types of biomass is about 58:42 (Table S6). Different regions have different proportions. According to the literature (Bond et al., 2004; Stevens et al., 2017; Streets et al., 2003; W.M. Zhang et al., 2019a), developed countries, such as Europe and North America, have a relatively high proportion of woody plants, while developing countries, such as Africa and Asia, have a relatively high proportion of herbaceous plants (Table S6). According to the recovery rate of different types of biomass combustion EC by different methods, the deviations that may be caused by the results of testing \(^{14} \text{C} \) in different regions are estimated. The results are listed in Table S6. It can be seen that on a global scale, the \(f_M \) value obtained by the Hypy method is the closest to the theoretical value. Therefore, the Hypy method is an effective and stable approach for matrix-independent \(^{14} \text{C} \) quantification of EC avoiding charring in aerosols.

3.3. Carbon isotopes of EC in SRM 1649b

SRM 1649a/b, urban dust, was used to check the quality of EC or EC isotope measurement method (D. Liu et al., 2013; Szidat et al., 2004b; Reddy et al., 2002; Heal et al., 2011). SRM 1649b was prepared from the same particulate material that was issued in 1982 as SRM 1649 and re-issued in 1999 as SRM 1649a, and the only difference is that the bulk material was sieved to a smaller particle size fraction \(^{47}\). Therefore, the \(f_M \) and \(\delta ^{13} \text{C} \) of TC in SRM 1649b obtained in this study was consistent with SRM 1649a reported by Szidat et al (Szidat et al., 2004b). EC/TC ratios, \(f_M \)-EC and \(\delta ^{13} \text{C}-\text{EC} \) of SRM1649b separated using Hypy method in this study and archived data of the literatures using different separation methods are listed in Table S7. The EC/TC ratios varied from 7.5% to 46% determined by the different analyzing methods. However, the value of about ~28% obtained in this study is in good agreement with that obtained by Hypy method (Meredith et al., 2012) and by TOT method (Currie et al., 2002). The \(f_M \) and \(\delta ^{13} \text{C} \) of EC in SRM 1649a ranged from 0.038 to 0.153 and from -26.55‰ to -24.8 ‰ respectively reported by the previous research using the different separation methods except Hypy (Currie et al., 2002). The corresponding values of 0.11 and -24.9 ‰ treated by Hypy method in this study are just in the range of archived data. Therefore, the values of \(^{13} \text{C} \) and \(^{14} \text{C} \) of EC\(_{\text{Hypy}}\) in SRM 1649b provide a definite and comparable reference for the future research methods.

4. Conclusions

Carbon isotope (\(^{14} \text{C} \) and \(^{13} \text{C} \)) analysis is a powerful tool for distinguishing the carbon sources of carbonaceous aerosols. As addressed in this work, one main
challenge of this method is the isolation of EC or BC for carbon isotope analysis. In this study, six synthetic known samples were collected, including biomass combustion (corn straw or pine wood) and coal combustion products and motor vehicle exhaust. These samples were then used to evaluate four EC separation methods, which included the Hypy, CTO-375, EC_{He/O2-475} and EC_{LARA} methods. The results demonstrated the Hypy method was in good agreement with the thermo-optical (TOT) method for the quantification of EC. And the EC_{fM} values depended not only on the separation method but also on the types and proportions of the biomass sources in the samples. The Hypy method is the most appropriate EC separation method of the four methods reported here, followed by the EC_{LARA} method. The Hypy method, which can be used to separate a highly stable portion of EC_{Hypy} and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols. The EC_{Hypy} of SRM1649b sample was separated by the Hypy method. The results indicated that the 13C-EC_{Hypy} and non-fossil EC_{Hypy} values of SRM1649b was 24.9‰ and 11%, respectively. This result can provide participation value for other separation methods.

Supporting Information
Supporting Information may be found in the online version of this article.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (grant nos. 42192510, 42030715 and 41977177), Guangdong Foundation for Program of Science and Technology Research (grant nos. 2019B121205006 and 2020B1212060053) and Guangzhou Foundation for Program of Science and Technology Research (grant no. 202102080251).

Author contributions
GZ led the study. JL and XZ designed the study, developed the analysis protocols, and wrote the initial manuscript. XZ, SZ, JL, PD, SG, CT, YC and PP provided data, provided comments on the analysis, and contributed and reviewed the final manuscript.

Competing interests
The authors declare that they have no conflict of interest.

References

Kirillova, E. N., Andersson, A., Sheesley, R. J., Krusa, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao, P. S. P. and Gustafsson, O.: C-13- and C-14-based study

Szidat, S., et al.: INTERCOMPARISON OF C-14 ANALYSIS OF
Table 1. The δ¹³C and δ¹⁴C results of EC from the six synthetic known samples by four separation methods.

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ¹³C(δEC) (calculated)</th>
<th>fM(δEC) (calculated)</th>
<th>δ¹³C(δECHy) (±0.5 ‰)</th>
<th>fM(δECCTO-375) (±0.5 ‰)</th>
<th>δ¹³C(δECHe/O₂-475) (±0.5 ‰)</th>
<th>fM(δECLARA) (±0.5 ‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-22.98</td>
<td>0.2192</td>
<td>-23.40</td>
<td>0.0946±0.0013</td>
<td>-19.69</td>
<td>0.3378±0.0025</td>
</tr>
<tr>
<td>S2</td>
<td>-22.77</td>
<td>0.2795</td>
<td>-23.42</td>
<td>0.1375±0.0015</td>
<td>-17.00</td>
<td>0.380±0.0038</td>
</tr>
<tr>
<td>S3</td>
<td>-22.43</td>
<td>0.3201</td>
<td>-23.31</td>
<td>0.1694±0.0016</td>
<td>-18.69</td>
<td>0.4547±0.0029</td>
</tr>
<tr>
<td>S4</td>
<td>-25.16</td>
<td>0.2483</td>
<td>-24.33</td>
<td>0.3145±0.0045</td>
<td>-24.36</td>
<td>0.5005±0.0036</td>
</tr>
<tr>
<td>S5</td>
<td>-25.52</td>
<td>0.3053</td>
<td>-24.55</td>
<td>0.3382±0.0049</td>
<td>-25.83</td>
<td>0.6487±0.0036</td>
</tr>
<tr>
<td>S6</td>
<td>-25.59</td>
<td>0.3483</td>
<td>-24.57</td>
<td>0.3707±0.0063</td>
<td>-25.76</td>
<td>0.5966±0.0098</td>
</tr>
</tbody>
</table>
Figure 1. The EC/TOC% and 14C results of EC from the six synthetic known samples by four separation methods.