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Abstract. Land surface models (LSM) are an important tool for advancing our knowledge of the Earth system. LSM are constantly 10 

improved to represent the various terrestrial processes in more detail. High quality data, freely available from various observation 

networks, are providing being used to improve the prediction of terrestrial states and fluxes of water and energy. To optimize LSM 

with observations, data assimilation methods and tools have been developed in the past decades. We apply the coupled Community 

Land Model version 5 (CLM5) and Parallel Data Assimilation Framework (PDAF) system (CLM5-PDAF) for thirteen forest field 

sites throughout Europe covering different climate zones. The goal of this study is to assimilate in-situ soil moisture measurements 15 

into CLM5 to improve the modeled evapotranspiration fluxes. The modeled fluxes will be evaluated using the predicted 

evapotranspiration fluxes with eddy covariance (EC) systems. Most of the sites use point scale measurements from, however for 

three of the forest sites we use soil water content data from cosmic-ray neutron sensors, which have a measurement scale closer to 

the typical land surface model grid scale and EC footprint. Our results show that while data assimilation reduced the root-mean-

square error for soil water content on average by 56 to 64%, the root-mean-square error for the evapotranspiration estimation is 20 

increased by 4%. This finding indicates that state-of-the-art LSM such as CLM5 still suffer from uncertainties in the representation 

of soil hydrological processes in forests, e.g. deep root water uptake, or highly uncertain vegetation parameters. 

1 Introduction 

Land surface models (LSM) are important tools to improve our understanding of the Earth system. LSM cover a broad range of land 

surface processes like the partitioning of incoming energy at the land surface, mass exchange between the land and atmosphere, 25 

hydrological, and ecological processes. They use sophisticated parameterizations and are constantly improved to achieve a more 

accurate representation of land surface processes, e.g. Arora et al. (2020) and references therein. However, there are still many sources 

of uncertainty introducing systematic biases in the LSM (e.g. initial conditions, atmospheric forcings, parameters, and 

parameterization. One approach to improve model predictions is to assimilate observational data. Improved estimates of 

evapotranspiration (ET) by LSM is of main interest as ET is a major driver of climate and and weather, an important component of 30 
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the water and energy cycles, closely coupled to the carbon cycle through the photosynthesis process (Jung et al., 2011). Fine spatial 

scale ET estimations are important to estimate water use and plant stress (Wurster et al. 2020). The flux of ET is, however, influenced 

by multiple factors, including soil water content, soil properties, ecophysiological processes, and vegetation characteristics (Wilson 

et al., 2004), so it is more common to assimilate these prognostic variables rather than ET itself.  

 35 

Many studies assimilate soil moisture products into LSMs (e.g. Hung et al., 2022; Mahmood et al., 2019; Naz et al., 2019; Liu and 

Mishra., 2017; Han et al., 2015) and report on the impact on hydrological variables like root-zone-moisture and runoff. Some studies 

use assimilation of soil water content or related variables to evaluate ET estimation of LSMs. For example, Girotto et al. (2017) 

assimilated terrestrial water storage from the Gravity Recovery and Climate Experiment into a land surface model and evaluated 

results over India. However, they found that the assimilation decreased the accuracy of ET estimation compared to observations due 40 

to model limitations in representing irrigation. Peters‐Lidard et al. (2011) assimilated two different remotely sensed soil water content 

products into the Noah land surface model over North America and found mixed results regarding the improvement of latent heat 

flux estimates . The domain averaged root-mean-square error of the latent heat flux reduced from 27.6 Wm⁻² to 25.6 Wm⁻² or 

increased to 29.4 Wm⁻² depending on the assimilated soil water content product. Additionally, they show that the improvements and 

degradation vary spatially across their study domain, with land cover type, and as function of the season and they note that the most 45 

significant improvements occur for cropland and grassland. Liu and Mishra (2017) assimilated surface soil water content data from 

the Advanced Microwave Scanning Radiometer-Earth Observing System in a global Community Land Model version 4.5 and found 

ET bias reductions of up to 2.5mm/day compared to the Global Land Data Assimilation System (GLDAS) data product. 

 

For our study, we chose the latest version (version 5) of the widely used Community Land Model (CLM5) (Lawrence et al. 2019) as 50 

various land surface process representations have been improved in CLM5 compared to earlier versions. For instance, Kennedy et al. 

(2019) added a plant hydraulic stress parameterization to improve the accuracy of simulated transpiration and soil water content. 

Lawrence et al. (2019) demonstrated the improvements of CLM5 over its precursor CLM4 in terms of ET using two study sites as 

examples and highlighted the better representation of the effects of soil depth on ET prediction in CLM5. On the other hand, Cheng 

et al. (2021) found that CLM5 predicts lower ET compared to older CLM versions and various observational data, likely due to low 55 

photosynthetic rate and leaf area index (LAI), which is consistent with their finding of low gross primary production (GPP) compared 

to reference data in the same simulations. In addition to these regional to global validation studies, CLM was used in several single 

point setups, i.e. simulations for a single grid cell, to evaluate the performance of various LSM components. For example, Hudiburg 

et al. (2013) used CLM 4.0 to estimate net primary production (NPP) and GPP of a forested site and compared it with eddy covariance 

(EC) measurements. Another study (Zhang et al., 2019) reduced an overestimation of growing-season LAI and annual GPP of a 60 

grassland site for a CLM 4.5 single-point setup. More recently, CLM5 was extended to consider both cover crop management with 

improvements to ET estimation of up to 57% (Boas et al., 2021) and fruit tree cultivation using extensive field measurements with 

high correlation between observed and modeled ET (Dombrowski et al., 2022). 

 

In this study, we investigate if assimilating high quality, in-situ soil water content measurements can improve the evapotranspiration 65 

estimates of LSM. We focus on one specific land cover type, namely forests. To investigate this, we use point and plot scale in-situ 
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soil water content measurements. For most sites we use point measurements provided by FLUXNET (Baldocchi et al., 2020) and 

eLTER Europe. The FLUXNET data have been used in various studies to verify or compare model results. For example, Dirmeyer 

et al. (2018) used FLUXNET data to compare four model systems, including CLM4.5, in three configurations and found for annual 

averaged ET that correlations range from 0.28 to 0.43 and for sensible heat from 0.14 to 0.54. The point scale measurements use 70 

invasive equipment and the specific measurement volume, exact depth of the sensors, number of sensors, and number of stations 

varies from site to site. For a few sites we use soil water content measurements from Cosmic Ray Neutron Sensing (CRNS) from the 

COSMOS-Europe data set (Bogena et al., 2022). The CRNS provides continuous and non-invasive soil water content measurements 

over a spatial footprint of hundreds-of-meters and integrates from the surface to a depth of 10-70 cm vertically in the soil (Zreda et 

al., 2008; Köhli et al., 2015). The spatial footprint area is similar to the footprint of the EC flux tower. We use the final processed 75 

data on soil water content and vertical penetration (measurement) depth provided by the COSMOS-Europe dataset (Bogena and Ney, 

2021). In this study, we use the ensemble Kalman filter to assimilate in-situ soil water content measurements into CLM5 simulations 

and the effect on the modeling results are quantified by comparing the modeled ET against the observed ET obtained from EC flux 

towers. We also analyze the effects on other land-atmosphere exchange fluxes, i.e. net ecosystem exchange (NEE) and gross primary 

production (GPP). The paper is structured as follows: First, we introduce the model and data assimilation framework used. The sites 80 

selected for this study and the observational data used for data assimilation and model-observation comparison are then described. 

Subsequently, the results for each variable of interest are shown and analyzed. Finally, we end with a discussion of the obtained 

results and conclusions. 

  

2. Methods and Materials 85 

2.1 Study sites 

 

In our study, we are interested in the characterization of water, energy and carbon exchange between (European) forest ecosystems 

and the atmosphere, and whether soil water content assimilation can improve the characterization of these processes. Therefore, we 

selected European sites with different forest types (see Table 1) covering different climate zones in Europe. Another important 90 

constraint was the availability of soil water content data and evapotranspiration measurements for the period from 2009 to 2018. The 

selected sites are mostly part of FLUXNET (Baldocchi et al., 2020) or the European Long-Term Ecological Research network 

(eLTER-Europe) (Parr et al., 2002). In addition to the sites from these observation networks, we included three sites from the 

COSMOS-Europe network (Bogena et al., 2022) where cosmic-ray neutron sensors (CRNSs) are installed to estimate the soil water 

content of the forested sites. Table 1 gives an overview of all selected sites for this study and Figure 1 shows the distribution on the 95 

map. 

In this study, daily average soil water content data are assimilated and the model is verified using daily average evapotranspiration 

and sensible heat flux data. Since the observational data were already quality controlled by the providers, we did not filter out any 
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data. Additionally, gaps in soil water content observations were not filled and only soil water content data were assimilated for days 

when observations were available. Similarly, simulated evapotranspiration was only compared with observations when data were 100 

available. 

 

2.2 Model description 

For our study, we used the Community Land Model version 5.0 (CLM5) that can be applied in various configurations (Lawrence et 

al. 2019). We use CLM5-BGC, i.e. CLM5 with the biogeochemistry module active as opposed to CLM5 with fixed phenology. The 105 

biogeochemistry module enables a fully prognostic treatment for carbon and nitrogen in the land surface model and has a significant 

impact on the modeled water and energy budgets.  

 

CLM5 uses a sub-grid hierarchy of various Plant Functional Types (PFTs) to characterize the land-use and vegetation type within 

every grid cell, e.g. evergreen needle leaf or deciduous broad leaf forests. CLM5 contains a spatially variable soil depth with an 110 

underlying, impermeable bedrock instead of the unconfined aquifer parameterization used in the former CLM4 versions. To estimate 

the soil water content, CLM5 solves the Richard’s equation using the Brooks-Corey parameters derived from pedotransfer functions 

from Clapp and Hornberger (1978) with a finite-difference approximation to represent the vertical discretization and temporal 

evolution of soil water content. 

The sensible and latent heat flux estimation in CLM5 is derived from the Monin-Obukhov Similarity Theory and differentiated for 115 

vegetated and non-vegetated surfaces. We only study forested areas where CLM5 partitions the sensible heat and latent heat flux into 

vegetation and ground fluxes. For the vegetation part the contributions from the leaf boundary layer, the sunlit and shaded stomatal 

resistances affect the total resistance to the modeled water vapor transfer. The water vapor transfer includes transpiration from dry 

leaf surfaces and the transpiration removes water from the soil based on root fraction for a given soil layer. Interception, throughfall 

and canopy drip are explicitly modeled in CLM5 and canopy evaporation is partitioned from stem and leaf surface evaporation based 120 

on the vegetation temperature. The ground fluxes, e.g. from bare soils or soil beneath a canopy, are dependent on the ground surface 

temperature. The ground latent heat flux is reduced if not enough soil moisture is available and the excess energy is redistributed to 

the sensible heat flux. The detailed procedure and equations are documented in Lawrence et al. (2018). 
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2.3 Data assimilation  125 

2.3.1 Ensemble Kalman filter 

In this work, assimilation of soil water content measurements is performed with the Ensemble Kalman Filter (EnKF) (Evensen, 1994; 

Burgers et al., 1998). The EnKF uses an ensemble modeling approach, with various simultaneous model runs, to approximate the 

model uncertainty. The ensemble members have different input model parameters and atmospheric forcings (see section 2.4 for 

details). We define a state vector x and an observation vector y, e.g. 130 

𝐱𝑖 =

(

 
 
 
 

θ1,1
i

θ1,2
i

. . .
θ1,m
i

. . .
θn,m
i )

 
 
 
 

 (1) 

where n is the number of layers and m is the number of grid cells, θj,l
i  is the soil water content for layer j and grid cell l of the model 

and the superscript i refers to ensemble member i. 

𝐲 = 𝐨 + 𝐞 (2) 

where o is a vector of the observational data and e represents a perturbation vector with mean zero and covariance according to the 135 

observational error covariance matrix. This perturbation vector is used to correct the error statistics as described in Burgers et al. 

(1998).  

The update step of the ensemble Kalman filter is: 

𝐱a
i = 𝐱f

i +𝐊[𝐲 − 𝐇𝐱f
i] (3) 

where the superscript i refers to ensemble member i, 𝐱a
i  is the updated state vector after the analysis, 𝐱f

i is the forecasted model state 140 

vector, K is the Kalman gain and H is the measurement operator that transforms between model and observational states. In this 

study, the measurement operator H consists of a simple mapping of the observations to the corresponding model layers in the state 

vector for simulations with point measurements. For simulations assimilating CRNS, H assigns the mean observed SWC to all the 

layers down to the measurement depth. This is a simplified approach and will be improved in further studies to take the weighting 

function from Schrön et al. (2017) into account. The Kalman gain is calculated accordingly: 145 

 𝐊 = 𝐏𝐇T(𝐑 + 𝐇𝐏𝐇𝐓)−1 (4) 
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where the superscript T is used for transposed matrices, P is the model error covariance matrix, which is approximated through 

ensemble statistics, specifically: 

P =
1

(𝑁−1)
∑ (𝐱f

i − 𝐱f)(𝐱f
i − 𝐱f)

T𝑁
i=1  (5) 

where N is the number of ensemble members and x̄ is the ensemble mean. 150 

In this study, the state vector depends on the simulation scenario (explained in more detail in section 2.3.2). 

To enable data assimilation with CLM5, we use the Parallel Data Assimilation framework (PDAF) (Nerger et al. 2005), which was 

recently coupled to CLM5 (Strebel et al. 2022). This coupling (CLM5-PDAF) also supports the assimilation of soil water content 

measurements. 

 155 

2.3.2 Parameter updating 

In addition to the use of data assimilation for state updating, we also perform parameter updating based on the state augmentation 

approach (Friedland, 1969; Fertig et al., 2009). Here, model parameters are attached to the state vector and updated based on the 

Kalman gain calculations without observations of the model parameters. By default, CLM5-PDAF updates soil hydraulic parameters 

through changes to fractions of sand, clay, and organic matter and the pedotransfer function of Clapp and Hornberger (1978). In this 160 

indirect approach the state vector for the EnKF is defined as follows: 

𝐱i =

(

 

θi

%sandi

%clayi

%organici)

  (6) 

where the superscript i refers to ensemble member i. The components θ, %sand, %clay, and %organic each represent a vector 

containing the respective variable for each soil layer of each grid cell of the model. 

 165 

2.4 Model setup 

2.4.1 Domain setup 

Since we only use local field measurements, we represent each study site as a single grid cell in CLM5. This approach is also 

consistent from the viewpoint of larger regional scale models, where each of these sites would only be part of a grid cell. The CLM5 
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grid cells are vertically divided into 25 layers from the surface down to 50 m depth of which the first 20 layers (until 8.6 m depth) 170 

may be hydrologically and biogeochemically active depending on the variable soil depth for each site (Lawrence et al., 2018). For 

the more than 70 different surface parameters of CLM5, we used the default values generated by the tools provided with CLM5 (e.g. 

soil depth to bedrock, sand, clay, and organic matter fractions, PFTs). These default values are generated from remapping various 

global files (Lawrence et al., 2019). Only the PFT were manually assigned for each site. For the ensemble creation, the fractions of 

sand, clay, and organic matter are modified for each ensemble member. The perturbations are normally distributed with mean zero 175 

and a standard deviation of 10%. For FLUXNET sites, measured soil water content is provided for up to three depths described as 

superficial, medium, and deep. Since data assimilation in CLM5-PDAF requires a specific vertical layer, we assigned 5, 20 and 50 

cm to the respective FLUXNET SWC layers. For the CRNS sites, the measurement depth for each individual measurement is 

calculated following Schrön et al. (2017) and is included in the dataset from Bogena et al. (2022). 

2.4.2 Atmospheric forcings 180 

Meteorological observations were also available at the selected study sites and were used to force CLM5. The existing gaps in the 

observation time series were gap-filled with data from the COSMO-REA6 reanalysis data product (Bollmeyer et al., 2015). For the 

ensemble generation precipitation (PR), shortwave radiation (SW), longwave radiation (LW), and air temperature (TA) were 

perturbed taking into account cross-correlations between variables according Reichle et al. (2007). The perturbations are: 

multiplicative PR ~ logN(1, 0.5), multiplicative SW ~ logN(1, 0.3), additive LW ~ N(0, 20) (W/m2), and additive TA ~ N(0, 1) (°K). 185 

The following cross-correlation coefficients between variables were used: PR–SW -0.8, PR-LW 0.5, PR-TA 0, SW-LW -0.5, SW-

TA 0.4 and LW-TA 0.4.  

2.4.3 Data assimilation experimental setups 

Three different simulation scenarios were considered: 1) Open loop (OL) simulations without data assimilation; 2) Data assimilation 

with updating of soil water content (DAS); and 3) Data assimilation with soil water content updating and parameter updating (DASP). 190 

For all scenarios data assimilation is performed at a daily frequency and with daily averages from the observations. For  DASP a 

damping factor of 0.1 is used on the parameter updates to avoid filter inbreeding and keep the ensemble spread larger so that the 

model error covariance matrix is a good approximation for model uncertainty. 
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2.5 Statistical metrics 

For the comparison of simulation results with observations, we use four statistical metrics: the squared correlation coefficient (R²), 195 

the mean bias error (MBE), the root-mean-square error (RMSE), and the unbiased root-mean-square-error (ubRMSE): 

R2 = 1 −
∑ (ot−mt)

2Nt
t=1

∑ (ot−ot)
2

N
t=1

 (7) 

MBE =
∑ (mt−ot)Nt
t=1

Nt
 (8) 

RMSE = √
∑ (mt−ot)2Nt
t=1

Nt
 (9) 

ubRMSE = √
∑ [(mt−mt)−(ot−ot)]

2
Nt
t=1

Nt
 (10) 200 

 

where o stands for observations, m represents the ensemble average of the simulated values, t is the time step, Nt the total number of 

time steps and overbar represents the average over all time steps. 

3. Results 

3.1 Soil water content  205 

Figures 2, 3 and 4 show the results of the soil water content simulations at 20 cm depth of the OL, DAS and DASP simulations 

compared to the soil water content observed at the nine sites. The corresponding scatter diagrams for the depths 5 and 50 cm can be 

found in the appendix (Figures A1, A2, A3, and A4). Overall, the results show expected improvements by data assimilation of 

observed soil water content. For the OL simulations, Fig. 2 shows particularly large RMSE values for CZ-BK, DE-Obe, FI-Sod and 

NL-Loo. Fig. 3 illustrates the improved performance achieved by DASP, with a RMSE reduction from 29.3 cm³/cm³ to 6.25 cm³/cm³ 210 

and a MBE reduction from 28.06 cm³/cm³ to -2.94 cm³/cm³ for FI-Sod. Parameter updating, as shown in Fig. 4, further improves the 

simulation results, but the improvement from DAS to DASP is significantly less than from OL to DAS. 

The results of the three COSMOS-Europe sites are shown in Figure 5, in which the observed SWC values are compared with the 

weighted SWC mean of the model layers corresponding to the measurement depth of CRNS. This comparison again shows the large 

improvement from OL to DAS, and a smaller improvement or even a small deterioration from DAS to DASP. 215 

https://doi.org/10.5194/egusphere-2023-366
Preprint. Discussion started: 13 March 2023
c© Author(s) 2023. CC BY 4.0 License.



9 

 

 

3.2 Evapotranspiration 

The impact of the data assimilation on the ET flux is shown in Figures 6 and 7. Notably, the difference between the OL and the DASP 

results is smaller for ET than for SWC. While the data assimilation improves the model results for SWC for all sites, both 

improvement and deterioration occur for modeled ET. Figure 8 shows the comparison of the improvements by data assimilation for 220 

SWC and the positive and negative effect on ET estimation. The average RMSE reduction for the DASP SWC prediction is between 

56% and 64% compared to OL. Comparing the OL and DASP results for ET shows an average reduction of the MBE of 0.06 mm/day, 

but an increase in RMSE for the DASP ET predictions of 4 % on average, with 8 of the 13 sites showing a relative change in ET of 

only +/- 1 %. Two outliers (FI-Sod and NL-Loo sites) reduce the average model improvement in particular. These sites show both a 

large overestimation in SWC in the OL (see Fig. 2) and a large underestimation of ET in the DASP simulation (see Fig. 7). This 225 

indicates that the SWC-ET relation is incorrect for these sites. A possible explanation is the water uptake by roots in the deeper layers 

is underestimated for forest sites, as also suggested by Shrestha et al. (2018). Fig. 8 shows that the quality of the model results is not 

dependent on the forest type, i.e. the evergreen needle leaf forests (ENF) sites show both strong and average relative changes in SWC 

RMSE and ET RMSE. This suggests that the strong deviations in the model results of the FI-Sod and NL-Loo sites are due to other 

local conditions, e.g. soil properties.  230 

 

The three CRNS sites show an average relative change of ET RMSE of -2.6%, -0.2%, and -0.9% for DE-HoH, DE-Wue, and DK-

Glu, respectively. Therefore, although the CNRS measurements are more consistent with the large measurement area of the flux 

towers, no significant improvement in ET for these three sites can be achieved with the current implementation of the CNRS-SWC 

assimilation. We anticipate that the implementation of a more accurate observation operator would improve the modeled SWC. The 235 

current observation operator does not use vertical weighting to take the decreasing CRNS sensitivity with depth into account. 

 

3.3. Evaluation of other land-atmosphere exchange fluxes  

Comparing measured and modeled sensible heat fluxes (SH) are compared to measurements (Figures 9 and 10), similar R² values are 

obtained for the OL and the DASP approach. The R² values range from 0.23 to 0.51 with an average of 0.36. This is similar to the 240 
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ET results, where the R² of measured and modeled (OL and DASP) ET range from 0.01 to 0.58 with an average of 0.37. Comparing 

Fig. 9 and Fig. 10 shows the impact of data assimilation of SWC on SH to be small. On average DASP improves the MBE by 4.66 

W/m² compared to OL. However, for five of the eight sites the improvement of the MBE is smaller than 1 W/m². But, compared to 

the ET results data assimilation of SWC reduces the MBE of SH for all sites. 

 245 

The impact of updating SWC with data assimilation on modeled Nee, GPP, and LAI is shown in Fig. 11. The NEE is negative (land 

acts as carbon sink) for eight, seven, and six of the field sites for OL, DAS, and DASP respectively. For DASP the GPP and LAI 

show an increase for two of the sites, a decrease for three of the sites and remain similar for eight of the sites. Fig. 12 shows how 

average SWC in 5 cm and 50 cm depth, ET, NEE, GPP and SH (average over all sites and all years) are affected by data assimilation. 

Although DASP adjusts SWC at 5cm towards the observations, the correction for SWC at 50cm depth is smaller because not all sites 250 

provide data at this depth. In spite of improved SWC characterization, ET deviates slightly more from the observations after DASP, 

while sensible heat flux is very slightly closer to the observations. GPP is lower after DASP and NEE less negative. While the overall 

change for some of these variables is small, different variations throughout the year can be observed. This averaging hides the 

variations between sites and annual variability but highlights the overall model behavior. Notably, the data assimilation improves 

SWC estimation at 5cm throughout the year while at 50 cm depth the improvement can mainly be observed in late summer and 255 

autumn. Similarly, for SH a model structural bias is apparent with large negative simulated SH values in late autumn, winter, and 

early spring while the observations show only a few days with negative average values over all sites and all years. 
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4. Discussion  

4.1 Soil water content improvements 260 

Our results confirm that assimilation of high quality in-situ SWC data improves the prediction of SWC by CLM5, as it has been 

demonstrated in several other studies (Hung et al., 2022; Mahmood et al., 2019; Naz et al., 2019; Liu and Mishra, 2017; Han et al., 

2015 ). In our study, we were able to show that this also applies to forest sites with different climates, tree species, and soil properties. 

Additionally, CRNS observations represent SWC for a larger area in better correspondence to the EC tower footprint. So far, only 

few studies have used CRNS information in a data assimilation framework (Rosolem et al., 2014; Han et al., 2015; Baatz et al., 2017, 265 

Patil et al., 2021). In line with our study, these studies show the high potential of CRNS for improved soil moisture prediction with 

land surface models, both in terms of SWC prediction as well as in improving soil hydraulic parameters. Currently, CRNS stations 

are operated with increasing numbers worldwide (Andreasen et al., 2017), in hydrological observatories (e.g. Bogena et al., 2018; 

Lui et al., 2018), as national networks (Zreda et al., 2012; Evans et al., 2016) or even increasing at continental scales (e.g. Hawdon 

et al., 2014; Bogena et al., 2022), which opens up new opportunities for assimilation of CRNS data in land surface models at various 270 

scales. 

In our data assimilation approach, we assumed that the CRNS signal shows a constant sensitivity to SWC down to the penetration 

depth of the CRNS. However, Schrön et al. (2017) have shown that the integrated neutron signal over a vertical soil column exhibits 

a strong decrease in sensitivity with depth and suggested that this physical behavior of neutrons should be taken into account in model 

applications. For example, Shuttleworth et al. (2013) developed a simple, physically-based analytical model to translate model-275 

predicted soil moisture profiles into aboveground fast neutron counts within a data assimilation framework. A simpler method was 

proposed by Schrön et al. (2017) by using vertical weighting functions that depend on SWC, atmospheric pressure, horizontal distance 

and vegetation height. Therefore, in a follow-up study, we will test whether observation operators that account for the vertical weights 

of the different model soil layers according to the decreasing sensitivity of CRNS with depth will improve our SWC prediction 

results. 280 

4.2 Evapotranspiration estimation without improvements from SWC DA 

Several studies have demonstrated the potential of improved ET prediction using data assimilation of SWC measurements (Liu and 

Mishra, 2017; Girotto et al., 2017; Lidard et al., 2011). These studies focused on regional or global scale and show heterogeneous 
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spatial patterns of improvement to ET estimation. Baatz et al. (2017) showed that assimilation of CRNS observations altered the ET 

estimation in CLM4.5 in parts of their study area by up to 80 mm per year compared to the OL approach. 285 

However, in our study with the land surface model CLM5 that data assimilation of SWC does not improve the ET prediction for 

European forest sites. We also found that the impact on ET from assimilating CRNS observations is similarly limited as assimilation 

of other in-situ SWC data Since our study sites cover a variety of climates and soil types, we assume that this result also applies to 

other forest sites worldwide with similar tree species.  

The lack of improvement in ET prediction in the case of data assimilation of in-situ soil moisture information is consistent with 290 

findings from other studies. Girotto et al. (2017) found a decrease in ET accuracy after assimilating GRACE data over India and 

attributed the results to the representation of irrigation in the model. Similarly, Peters‐Lidard et al. (2011) showed mixed results after 

assimilating multiple satellite soil water content products over North America with spatial variation of improvements and 

deterioration of ET estimation. Overall, for 9 of the 13 forested study sites our OL simulations show positive mean bias error 

indicating that CLM5 underestimates the ET compared to the FLUXNET observations. These underestimations are in agreement 295 

with the results shown in the study by Cheng et al. (2021) showing that CLM5 underestimates ET observations. Additionally, Nearing 

et al. (2018) investigated the contribution of model structural errors and model inputs for four different LSM and concluded that 

SWC uncertainty was dominated by soil parameter uncertainty while ET uncertainty was dominated by forcing uncertainty. Without 

a similar in-depth benchmark study for CLM5, but from our results and the results of the previously mentioned CLM5 studies a 

similar conclusion can be drawn for CLM5. 300 

A different aspect is that we assume that the EC data are correct to validate our simulation results. However, the EC-data might be 

affected by energy balance closure issues (Foken, 2008; Hendricks Franssen et al., 2010). 

4.4 Methods to improve ET estimation 

There are various approaches to improve modeled ET estimates. For example, Zhang et al. (2020) identified and optimized four 

hydraulic and three vegetation parameters in CLM4.0 that improved ET estimation by 7.3% for the optimization period and 5.3% for 305 

the validation period for China. Similarly, Post et al., (2017) calibrated eight parameters to improve NEE estimation in CLM 4.5 and 

a similar approach to optimize vegetation parameters in CLM 5.0 for ET estimation could improve simulation results. Tang et al. 

(2015) implemented a root hydraulic redistribution model in CLM4.5 to improve ET estimation but found that their method was only 

able to improve ET predictions north of 20°N. They identified the representation of deep roots, soil hydraulic parameterization for 
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certain soils, meteorological forcings, and the parameterization of the water table dynamics and drainage as the main limitations to 310 

improve ET by their method. 

Denager et al. (2022) used SWC measurements for an agricultural site in Denmark for parameter calibration of soil texture, LAI, 

stomata conductance and the root distribution in CLM5 and obtained improved energy partitioning of ET and SH. However, they 

also found it difficult to calibrate the parameters to get an improvement in SH estimation throughout the year and suggested that the 

difference in energy balance closure between LSMs and EC flux observations contributes to the bias. 315 

Fox et al. (2022) concluded that errors in LAI estimations in LSMs lead to substantial flaws in the representation of carbon, water, 

and energy fluxes. Furthermore, they conclude that data assimilation to remove bias in LAI improves LSMs results significantly and 

is advisable until the prognostically modeled LAI improves substantially. For example, Zhang et al. (2016) assimilated remotely 

sensed LAI data into the Biome-BGC model at two sites and improved both ET and NEE estimates, evaluated with EC tower 

measurements. Rahman et al. (2022) showed that the joint LAI and topsoil SWC assimilation from satellite products improved the 320 

ET estimation for the Contiguous United States compared with independent validation datasets. While data assimilation of topsoil 

SWC alone only improved the SWC estimation. 

As mentioned, LAI is identified as a key variable to improve ET estimation and representation of land carbon processes. Therefore, 

in future work we will investigate the effects of data assimilation of LAI and joint state-vegetation parameter estimation on the 

simulation of carbon, water, and energy fluxes with CLM5. 325 
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5. Conclusions 

This paper analyzed the impact of the assimilation of in situ soil water content (SWC) data on SWC characterization, 

evapotranspiration (ET), sensible heat flux (SH), gross primary production (GPP) and net ecosystem exchange (NEE), for 13 forested 

sites in Europe. Assimilation of SWC, from both point scale and plot scale observations, with the Ensemble Kalman Filter, using the 330 

Community Land Model version 5 coupled to the Parallel Data Assimilation Framework (CLM5-PDAF) improves SWC prediction 

(RMSE reductions between 56% and 64% compared to the open loop run, and depending on measurement depth). However, 

assimilation of in situ SWC does not improve the ET prediction for the investigated European forest sites. For most of the sites, data 

assimilation showed almost no effect on ET fluxes (RMSE changes between +/- 1%) and some sites showed strong negative effects 

of SWC assimilation on ET predictions ( -20% to -30% change in RMSE). The assimilation of in situ SWC from Cosmic Ray Neutron 335 

Sensors (CRNS), which determine SWC over a larger horizontal footprint more in correspondence with the eddy covariance footprint, 

for three of the 13 sites, also does not improve ET characterization. These results suggest that state-of-the-art LSM such as CLM5 

still suffer from uncertainties in the representation of soil hydrological processes in forests, e.g. deep root water uptake, uncertainties 

in the representation of biological processes of tree transpiration, partly related to uncertain vegetation parameters. In the future, to 

improve modeled ET using data assimilation we will further examine the potential of assimilating different state variables, like for 340 

example leaf area index and updating related vegetation parameters. In addition, we will apply a measurement operator in the data 

assimilation framework that considers the vertical sensitivity of the CRNS signal 
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Tables 

Table 1: Overview of the study sites. Classification uses the International Geosphere-Biosphere Program Code (IGBP) as is used for 525 

FLUXNET: MF for mixed forests, ENF for evergreen needle leaf forests, DBF for deciduous broad leaf forests, EBF for evergreen 

broad leaf forests, WSA for woody savannah. LON is longitude and LAT latitude. 
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Site name Country Abbreviation Code LON LAT Data source 

Mean annual 

temperature 

[°C] 

Mean annual 

precipitation 

[mm] 

Typical tree 

species 

Brasschaat Belgium BE-Bra MF 4.51 51.30 FLUXNET 9.8 750 Scots pine 

Bílý Kříž forest Czech Republic CZ-BK ENF 18.53 49.50 FLUXNET 7 1316 Norway spruce 

Hainich Germany DE-Hai DBF 10.45 51.07 FLUXNET 8.3 720 Mixed Beech 

Hohes Holz Germany DE-HoH DBF 11.21 52.08 COSMOS Europe 10 820 Mixed beech 

Oberbärenburg Germany DE-Obe ENF 13.72 50.78 FLUXNET 5.5 996 Norway spruce 

Wüstebach Germany DE-Wue ENF 6.33 50.50 COSMOS Europe 7 1180 Spruce 

Gludsted Denmark DK-Glu ENF 9.33 56.07 COSMOS Europe 8.2 1080 Spruce 

Conde Spain ES-Cnd WSA -3.22 37.91 FLUXNET 15.8 474 Olive grove 

Hyytiälä Finland FI-Hyy ENF 24.29 61.84 LTER Europe 3.8 709 Boreal Scots pine 

Sodankylä Finland FI-Sod ENF 26.63 67.36 FLUXNET -1 500 Boreal Scots pine 

Puéchabon France FR-Pue EBF 3.59 43.69 FLUXNET 13.5 883 Evergreen oak 

Lavarone Italy IT-Lav ENF 11.28 45.95 FLUXNET 7.8 1291 Coniferous forest 

Loobos Netherlands NL-Loo ENF 5.74 52.16 FLUXNET 9.8 786 Scots pine 

 530 
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Figure 1: Map showing the location of the selected study sites of the FLUXNET, eLTER and COSMOS-Europe networks. 
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Figure 2: Scatter plots of observed soil water content at nine study sites versus OL simulation results at 20 cm depth. The 

points represent daily averages for the days observation data are available. 
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Figure 3: Scatter plots of observed soil water content at nine study sites versus DAS simulation results at 20 cm depth. The 

points represent daily averages for the days observation data are available. 
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Figure 4: Scatter plots of observed soil water content at nine study sites versus DASP simulation results at 20 cm depth. The 

points represent daily averages for the days on which observation data are available. 
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Figure 5: Scatter plots of observed soil water content at three CRNS study sites (DE-HoH left column, DE-Wue middle 

column, DK-Glu right column) versus simulation results (OL results in the top row, DAS results in the middle row, and DASP 

results in the bottom row). The points represent daily averages for the days on which observation data are available. 
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Figure 6: Scatter plots of observed evapotranspiration at thirteen study sites versus OL simulation results. The points 555 

represent daily averages for the days on which observation data are available. 
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Figure 7: Scatter plots of observed evapotranspiration at thirteen study sites versus DASP simulation results. The points 

represent daily averages for the days on which observation data are available. 560 

 

 

Figure 8: Comparing the SWC and ET characterization for the OL and DASP simulations. Each point represents the overall 

average RMSE change for one site. The color of the points indicates the classification code for the different forest types (MF: 

mixed forest, ENF: evergreen needle leaf forest, DBF: deciduous broad leaf forest, EBF: evergreen broad leaf forest, AVG: 565 

average over all forest types). 
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Figure 9: Scatter plots of observed sensible heat flux at eight study sites versus OL simulation results. The points represent 

daily averages for the days on which observation data are available. 
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Figure 10: Scatter plots of observed sensible heat flux at eight study sites versus DASP simulation results. The points represent 

daily averages for the days on which observation data are available. 
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Figure 11: Open loop (OL) and assimilation scenario (DAS and DASP) yearly averages of A) net ecosystem exchange (NEE), 

B) gross primary production (GPP), and C) leaf area index (LAI) for all selected sites. 
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Figure 12: Seasonality of observed (OBS) and simulated (OL and DASP) states and fluxes based on daily averages from all 580 
years (2009 to 2018) and all sites: A) soil water content (SWC) at 5 cm depth, B) SWC at 50 cm depth, C) evapotranspiration 

(ET), D) sensible heat flux (SH), E) net ecosystem exchange (NEE), and F) gross primary production (GPP). 
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Appendix. 

A. Additional figures 
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Figure A1 : Scatter plots of observed soil water content at ten study sites versus OL simulation results at 5 cm depth. The points 

represent daily averages for the days on which observation data are available. 

 

https://doi.org/10.5194/egusphere-2023-366
Preprint. Discussion started: 13 March 2023
c© Author(s) 2023. CC BY 4.0 License.



36 

 

Figure A2 Scatter plots of observed soil water content at ten study sites versus DASP simulation results at 5 cm depth. The points 

represent daily averages for the days on which observation data are available. 590 

 

 

Figure A3: Scatter plots of observed soil water content at eight study sites versus OL simulation results at 50 cm depth. The points 

represent daily averages for the days on which observation data are available. 
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Figure A4: Scatter plots of observed soil water content at eight study sites versus DASP simulation results at 50 cm depth. The 

points represent daily averages for the days on which observation data are available. 
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