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Abstract. Land surface models (LSM) are an important tool for advancing our knowledge of the Earth
system. LSM are constantly improved to represent the various terrestrial processes in more detail. High
quality data, freely available from various observation networks, are providing being used to improve the
prediction of terrestrial states and fluxes of water and energy. To optimize LSM with observations, data
assimilation methods and tools have been developed in the past decades. We apply the coupled
Community Land Model version 5 (CLMS5) and Parallel Data Assimilation Framework (PDAF) system
(CLM5-PDAF) for thirteen forest field sites throughout Europe covering different climate zones. The
goal of this study is to assimilate in-situ soil moisture measurements into CLM5 to improve the modeled
evapotranspiration fluxes. The modeled fluxes will be evaluated using the predicted evapotranspiration
fluxes with eddy covariance (EC) systems. Most of the sites use point scale measurements from, however
for three of the forest sites we use soil water content data from cosmic-ray neutron sensors, which have a
measurement scale closer to the typical land surface model grid scale and EC footprint. Our results show
that while data assimilation reduced the root-mean-square error for soil water content on average by 56
to 64%, the root-mean-square error for the evapotranspiration estimation is increased by 4%. This finding
indicates that only improving the SWC estimation of state of the art LSM such as CLM5 is not sufficient
to improve evapotranspiration estimates for forest sites. To improve evapotranspiration estimates, it is
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also necessary to consider the representation of LAI in magnitude and timing, as well as uncertainties in
water uptake by roots and vegetation parameters.

1 Introduction

Land surface models (LSM) are important tools to improve our understanding of the Earth system. LSM
cover a broad range of land surface processes like the partitioning of incoming energy at the land surface,
mass exchange between the land and atmosphere, hydrological and ecological processes. They use
sophisticated parameterizations and are constantly improved to achieve a more accurate representation of
land surface processes, e.g. Arora et al. (2020) and references therein. However, there are still many
sources of uncertainty introducing systematic biases in the LSM (e.g. initial conditions, atmospheric
forcings, parameters, and parameterization). One approach to improve model predictions is to assimilate
observational data. Improved estimates of evapotranspiration (ET) by LSM are of main interest as ET is
a major driver of climate and weather, an important component of the water and energy cycles, closely
coupled to the carbon cycle through the photosynthesis process (Jung et al., 2011). Fine spatial scale ET
estimations are important to estimate water use and plant stress (Wurster et al. 2020). The flux of ET is,
however, influenced by multiple factors, including soil water content (SWC), soil properties,
ecophysiological processes, and vegetation characteristics (Wilson et al., 2004), so it is more common to
assimilate these prognostic variables rather than ET itself.

Many studies assimilate soil moisture products into LSMs (e.g. Hung et al., 2022; Mahmood et al., 2019;
Naz et al., 2019; Liu and Mishra., 2017; Han et al., 2015) and report on the impact on hydrological
variables like root-zone-moisture and runoff. Some studies use assimilation of soil water content or related
variables to evaluate ET estimation of LSMs. For example, Girotto et al. (2017) assimilated terrestrial
water storage from the Gravity Recovery and Climate Experiment into a land surface model and evaluated
results over India. They found that the assimilation decreased the accuracy of ET estimation compared to
observations due to model limitations in representing irrigation. Peters-Lidard et al. (2011) assimilated
two different remotely sensed soil water content products into the Noah land surface model over North
America and found mixed results regarding the improvement of latent heat flux estimates. The domain
averaged root-mean-square error of the latent heat flux reduced from 27.6 Wm™2 to 25.6 Wm™=2 or
increased to 29.4 Wm 2 depending on the assimilated soil water content product. Additionally, they show
that the improvements and degradation vary spatially across their study domain, with land cover type,
and as function of the season and they note that the most significant improvements occur for cropland
and grassland. Liu and Mishra (2017) assimilated surface soil water content data from the Advanced
Microwave Scanning Radiometer-Earth Observing System in a global Community Land Model version
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4.5 and found ET bias reductions of up to 2.5mm/day compared to the Global Land Data Assimilation
System (GLDAS) data product.

[For our study, we chose the latest version (version 5) of the widely used Community Land Model (CLM5)
(Lawrence et al. 2019) as various land surface process representations have been improved in CLM5
compared to earlier versions. For instance, Kennedy et al. (2019) added a plant hydraulic stress
parameterization to improve the accuracy of simulated transpiration and soil water content. Lawrence et
al. (2019) demonstrated the improvements of CLM5 over its precursor CLM4 in terms of ET using two
study sites as examples and highlighted the better representation of the effects of soil depth on ET
prediction in CLM5. On the other hand, Cheng et al. (2021) found that CLM5 predicts lower ET compared
to older CLM versions and various observational data, likely due to low photosynthetic rate and leaf area
index (LAI), which is consistent with their finding of low gross primary production (GPP) compared to
reference data in the same simulations. In addition to these regional to global validation studies, CLM
was used in several single point setups, i.e. simulations for a single grid cell, to evaluate the performance
of various LSM components. For example, Hudiburg et al. (2013) used CLM 4.0 to estimate net primary
production (NPP) and GPP of a forested site and compared it with eddy covariance (EC) measurements.
Another study (Zhang et al., 2019) reduced an overestimation of growing-season LAI and annual GPP of
a grassland site for a CLM 4.5 single-point setup. More recently, CLM5 was extended to consider both
cover crop management with improvements to ET estimation of up to 57% (Boas et al., 2021) and fruit
tree cultivation using extensive field measurements with high correlation between observed and modeled
ET (Dombrowski et al., 2022. Other studies have used manual tuning of parameters to improve CLM
simulations for forests. For instance, Duarte et al. (2017) calibrated CLM4.5 for an old-growth coniferous
forest and found good agreement between simulated and observed response of canopy conductance to
atmospheric vapor pressure deficit and soil water content. Raczka et al. (2016) used CLM4.5 and
implemented a seasonally varying calibration of vegetation parameters and accurately simulated net
carbon exchange, latent heat exchange, and biomass.

In this study, we investigate if assimilating high quality, in-situ soil water content measurements can
improve the evapotranspiration estimates of LSM. We focus on one specific land cover type, namely
forests. In a previous study (Strebel et al. 2022), we investigated the potential for data assimilation of in-
situ SWC measurements to improve model estimation for a single forest site. This study expands this
method to more forest sites and investigates the effect of improved SWC estimation on ET. Investigating
the method for a large number of sites is the important contribution of this study and necessary to show
that the conclusions from Strebel et al. (2022) are not just a characteristic of the one study site but apply
more broadly to forest sites simulated with CLM5. To investigate this, we use point and plot scale in-situ
soil water content measurements. For most sites we use point measurements provided by FLUXNET
(Baldocchi et al., 2020) and eLTER Europe. The FLUXNET data have been used in various studies to
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verify or compare model results. For example, Dirmeyer et al. (2018) used FLUXNET data to compare
four model systems, including CLM4.5, in three configurations and found for annual averaged ET that
correlations range from 0.28 to 0.43 and for sensible heat from 0.14 to 0.54. The point scale measurements
use invasive equipment and the specific measurement volume, exact depth of the sensors, number of
sensors, and number of stations varies from site to site. For a few sites we use soil water content
measurements from Cosmic Ray Neutron Sensing (CRNS) from the COSMOS-Europe data set (Bogena
et al., 2022). The CRNS provides continuous and non-invasive soil water content measurements over a
spatial footprint of hundreds-of-meters and integrates from the surface to a depth of 10-70 cm vertically
in the soil (Zreda et al., 2008; Kohli et al., 2015). CRNS use neutrons as proxy for SWC and the vertical
measurement depth varies with the soil moisture conditions. Additionally, the uncertainty of CRNS-
derived soil moisture varies not only with the different neutron detectors but also with the number of
counts in a time period and therefore results under lower soil moisture conditions are more accurate
(Bogena et al., 2022). The spatial footprint area is similar to the footprint of the EC flux tower. We use
the final processed data on soil water content and vertical penetration (measurement) depth provided by
the COSMOS-Europe dataset (Bogena and Ney, 2021). In this study, we use the ensemble Kalman filter
to assimilate in-situ soil water content measurements into CLM5 simulations and the effect on the
modeling results are quantified by comparing the modeled ET against the observed ET obtained from EC
flux towers. We also analyze the effects on other land-atmosphere exchange fluxes, i.e. net ecosystem
exchange (NEE) and gross primary production (GPP). The paper is structured as follows: First, we
introduce the model and data assimilation framework used. The sites selected for this study and the
observational data used for data assimilation and model-observation comparison are then described.
Subsequently, the results for each variable of interest are shown and analyzed. Finally, we end with a
discussion of the obtained results and conclusions.,

A

2. Methods and Materials

2.1 Study sites

In our study, we are interested in the characterization of water, energy and carbon exchange between
(European) forest ecosystems and the atmosphere, and whether soil water content assimilation can
improve the characterization of these processes. Therefore, we selected European sites with different
forest types (see Table 1) covering different climate zones in Europe. Another important constraint was
the availability of soil water content data and evapotranspiration measurements for the period from 2009
to 2018. The selected sites are mostly part of FLUXNET (Baldocchi et al., 2020) or the European Long-
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Term Ecological Research network (eLTER-Europe) (Parr et al., 2002). In addition to the sites from these
observation networks, we included three sites from the COSMOS-Europe network (Bogena et al., 2022)
where cosmic-ray neutron sensors (CRNSs) are installed to estimate the soil water content of the forested
sites. Table 1 gives an overview of all selected sites for this study and Figure 1 shows the distribution on
the map.

In this study, daily average soil water content data are assimilated (see section 2.4.1 for more details) and
the model is verified using daily average evapotranspiration and sensible heat flux data. Since the
observational data were already quality controlled by the providers, we did not filter out any data. We
only assimilated (daily mean averaged) soil water content observations when measurements were
available for a given day. The daily mean averages were calculated independent from the observation
frequency for the different sites. Similarly, simulated evapotranspiration was only compared with
observations when data were available, on the basis of daily mean averages.

2.2 Model description

For our study, we used the Community Land Model version 5.0 (CLM5) that can be applied in various
configurations (Lawrence et al. 2019). We use CLM5-BGC, i.e. CLM5 with the biogeochemistry module
active as opposed to CLM5 with fixed phenology. The biogeochemistry module enables a fully prognostic
treatment for carbon and nitrogen in the land surface model and has a significant impact on the modeled
water and energy budgets.

CLM5 uses a sub-grid hierarchy of various Plant Functional Types (PFTs) to characterize the land-use
and vegetation type within every grid cell, e.g. evergreen needle leaf or deciduous broad leaf forests.
CLMS5 contains a spatially variable soil depth with an underlying, impermeable bedrock instead of the
unconfined aquifer parameterization used in the former CLM4 versions. To estimate the soil water
content, CLMS5 solves the Richard’s equation using the Brooks-Corey parameters derived from
pedotransfer functions from Clapp and Hornberger (1978) with a finite-difference approximation to
represent the vertical discretization and temporal evolution of soil water content.

The sensible and latent heat flux estimation in CLM5 is derived from the Monin-Obukhov Similarity
Theory and differentiated for vegetated and non-vegetated surfaces. CLM5 simulates sensible and latent
heat flux for both vegetated and ground fluxes. For the vegetation part the contributions from the leaf
boundary layer, the sunlit and shaded stomatal resistances affect the total resistance to the modeled water
vapor transfer. The water vapor transfer includes transpiration from dry leaf surfaces and the transpiration
removes water from the soil based on root fraction for a given soil layer. Interception, throughfall and
canopy drip are explicitly modeled in CLM5 and canopy evaporation is represented as from the sum of
stem and leaf surface evaporation as a function of temperature. The ground fluxes, e.g. from bare soils or
soil beneath a canopy, are dependent on the ground surface temperature. The ground latent heat flux is
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reduced if not enough soil moisture is available and the excess energy is redistributed to the sensible heat
flux. The detailed procedure and equations are documented in Lawrence et al. (2018).

2.3 Data assimilation
2.3.1 Ensemble Kalman filter

In this work, assimilation of soil water content measurements is performed with the Ensemble Kalman
Filter (EnKF) (Evensen, 1994; Burgers et al., 1998). The EnKF uses an ensemble modeling approach,
with various simultaneous model runs, to approximate the model uncertainty. The ensemble members
have different input model parameters and atmospheric forcings (see section 2.4 for details). We define a
state vector x and an observation vector vy, e.g.

(i)
| iz |
xi = | 1
\%m )( )
A A A HTLLm
where n is the number of layers and m is the number of grid cells, 6;, is the soil water content for layer j

and grid cell | of the model and the superscript i refers to ensemble member i. In this study we use an
ensemble of 96 member to sample the model uncertainty.

y=o0+e(2)

where 0 is a vector of the observational data and e represents a perturbation vector with mean zero and
covariance according to the observational error covariance matrix. This perturbation vector is used to
correct the error statistics as described in Burgers et al. (1998).

The update step of the ensemble Kalman filter is:

Za,= .+ K]y = Hxi] (3)

where the superscript i refers to ensemble member i, x; is the updated state vector after the analysis, x/
is the forecasted model state vector, K is the Kalman gain and H is the measurement operator that

transforms between model and observational states. In this study, the measurement operator H consists

of a simple mapping of the observations to the corresponding model layers in the state vector for

simulations with point measurements. For FLUXNET sites, measured soil water content is provided for

up to three depths described as superficial, medium, and deep. Since data assimilation in CLM5-PDAF

requires a specific vertical layer, we assigned 5, 20 and 50 cm to the respective FLUXNET SWC layers.
For the CRNS sites, the measurement depth for each individual measurement is calculated following
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Schron et al. (2017) and is included in the dataset from Bogena et al. (2022). For simulations assimilating
CRNS, H assigns the mean observed SWC to all the layers down to the measurement depth. This is a
simplified approach and will be improved in further studies to take the weighting function from Schron
et al. (2017) into account. The Kalman gain is calculated accordingly:

K =PH"(R+HPHT)™* (4)

where the superscript T is used for transposed matrices, R is the observational error covariance matrix,
and P is the model error covariance matrix, which is approximated through ensemble statistics,
specifically:

i Vol 7\
P =S~ %) (f — %) (5)

A

where N is the number of ensemble members and X is the ensemble mean.

In this study, the state vector depends on the simulation scenario (explained in more detail in section
2.3.2) and R is based on the measurement errors which are assumed to be constant and independent with
a root-mean square error of 0.02 cm3/cm3.

To enable data assimilation with CLM5, we use the Parallel Data Assimilation framework (PDAF)
(Nerger et al. 2005), which was recently coupled to CLM5 (Strebel et al. 2022). This coupling (CLM5-
PDAF) also supports the assimilation of soil water content measurements.

2.3.2 Parameter updating

In addition to the use of data assimilation for state updating, we also perform parameter updating based
on the state augmentation approach (Friedland, 1969; Fertig et al., 2009). Here, model parameters are
attached to the state vector and updated based on the Kalman gain calculations without observations of
the model parameters. By default, CLM5-PDAF updates soil hydraulic parameters through changes to
fractions of sand, clay, and organic matter and the pedotransfer function of Clapp and Hornberger (1978).
In this indirect approach the state vector for the EnKF is defined as follows:
91'

0, i
<= i Jo
. . \%organict

where the superscript i refers to ensemble member i. The components 6, %sand, %clay, and %organic
each represent a vector containing the respective variable for each soil layer of each grid cell of the model.
A damping factor of 0.1 is used on the parameter updates to avoid filter inbreeding and keep the ensemble
spread larger so that the model error covariance matrix is a good approximation for model uncertainty.

In previous studies parameters were updated indirectly (Naz et al., 2019; Han et al., 2014; Baatz et al.,
2017). We tested directly updating saturated hydraulic conductivity, porosity, hydraulic conductivity
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exponent, and_saturated soil matric potential but this resulted in more unstable estimates than indirectly
updating soil hydraulic parameters. The pedotransfer function which is used for the indirect updating
results in reasonably correlated soil hydraulic parameters. <In testing a direct approach to updating
saturated hydraulic conductivity, porosity, hydraulic conductivity exponent B, and saturated soil matric
potential we found that updating the parameters indirectly to provide more stable simulations. The
pedotransfer function keeps the soil hydraulic parameters reasonably correlated to each other. In this
study, the parameters are chosen to optimize the SWC estimation and not ET estimation to study the
effects of SWC improvements on ET. To more directly improve the ET estimation, parameters
affectingthat are critical to the ET process directhy-should be added, e.g. vegetation hydraulic parameters
that are related to the transfer of water from the root to leaf or parameters related to stomatal conductance.,

2.4 Model setup
2.4.1 Domain setup

Since we only use local field measurements, we represent each study site as a single grid cell in CLM5.
This approach is also consistent from the viewpoint of larger regional scale models, where each of these
sites would only be part of a grid cell. The CLMD5 grid cells are vertically divided into 25 layers from the
surface down to 50 m depth of which the first 20 layers (until 8.6 m depth) may be hydrologically and
biogeochemically active depending on the variable soil depth for each site (Lawrence et al., 2018). For
the more than 70 different surface parameters of CLMS5, we used the default values generated by the tools
provided with CLM5 (e.g. soil depth to bedrock, sand, clay, and organic matter fractions, PFTs). These
default values are generated from remapping various global files (Lawrence et al., 2019). Only the PFT
were manually assigned for each site. For the ensemble creation, the fractions of sand, clay, and organic
matter are modified for each ensemble member. The perturbations are normally distributed with mean
zero and a standard deviation of 10%.

2.4.2 Atmospheric forcings

Meteorological observations were also available at the selected study sites and were used to force CLM5.
The existing gaps in the observation time series were gap-filled with data from the COSMO-REA6
reanalysis data product (Bollmeyer et al., 2015). For the ensemble generation precipitation (PR),
shortwave radiation (SW), longwave radiation (LW), and air temperature (TA) were perturbed taking into
account cross-correlations between variables according Reichle et al. (2007). The perturbations are:
multiplicative PR ~ logN(1, 0.5), multiplicative SW ~ logN(1, 0.3), additive LW ~ N(0, 20) (W/m2), and
additive TA ~ N(0O, 1) (°K). The following cross-correlation coefficients between variables were used:
PR-SW -0.8, PR-LW 0.5, PR-TA 0, SW-LW -0.5, SW-TA 0.4 and LW-TA 0.4.
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2.4.3 Data assimilation experimental setups

Three different simulation scenarios were considered: 1) Open loop (OL) simulations without data
assimilation; 2) Data assimilation with updating of soil water content (DAS); and 3) Data assimilation
with soil water content updating and parameter updating (DASP). For all scenarios data assimilation is
performed at a daily frequency and with daily averages from the observations. The observation error is
assumed to be constant and set to a RMS of 2%.

2.5 Statistical metrics

For the comparison of simulation results with observations, we use four statistical metrics: the squared
correlation coefficient (R?), the mean bias error (MBE), the root-mean-square error (RMSE), and the
unbiased root-mean-square-error (UbDRMSE):

R2=1 Zt 1(0 mt)
A A Zévl( t_o) ()

MBE = 2020 (g)
A A Nt A

RMSE = Zi (' —ob? - (9)
A

Nt

ubRMSE = \/Zt (G e G (10)

A

Where o stands for observations, m represents the ensemble average of the simulated values, t is the time
step, Nt the total number of time steps and overbar represents the average over all time steps.

3. Results
3.1 Soil water content and related parameters

Figures 2 and 3 show the results of the soil water content simulations at 20 cm depth of the OL, DAS and
DASP simulations compared to the soil water content observed at the nine sites. Figure 2 compares the
OL and DAS results and Fig. 3 compares the OL and DASP results. The corresponding scatter diagrams
for the depths 5, 20, and 50 cm can be found in the appendix (Figures Al - A7). Overall, the results show
expected improvements by data assimilation of observed soil water content. For the OL simulations, Fig.
2 shows particularly large RMSE values for CZ-BK, DE-Obe, FI-Sod and NL-Loo. Fig. 2 also illustrates
the improved performance achieved by DASP, with a RMSE reduction from 29.3 cm3/cm? to 6.25
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cm3/cm3 and a MBE reduction from 28.06 cm3/cm? to -2.94 cm?3/cm3 for FI-Sod. Parameter updating, as
shown in Fig. 3, further improves the simulation results, but the improvement from DAS to DASP is
significantly less than from OL to DAS.

The results of the three COSMOS-Europe sites are shown in Figure 4, in which the observed SWC values
are compared with the weighted SWC mean of the model layers corresponding to the measurement depth
of CRNS. This comparison again shows the large improvement from OL to DAS, and a smaller
improvement or even a small deterioration from DAS to DASP.,

Figure 5Figure 5 shows the depth profile for the root fraction and the SWC average of the OL and DASP
simulations for the first 1.2 meters (10 layers) for each site. The SWC is updated for all layers, including
the layers with the largest root fraction, but depending on the site the magnitude of the update varies with
depth. For most sites the data assimilation shifts the SWC values while keeping the profile similar to the
OL results. FI-Hyy and FI-Sod are the exception and show a decrease of SWC in the first 25 to 50 cm
and an increase of SWC in the deeper layers for DASP.

Figure 6 shows time series of the estimated saturated soil hydraulic conductivity for each of the sites and
the three observation layer depths. The DASP scenario results in parameter changes when the first
observations are available but converge over the time of the simulation to a new value. The corresponding
time series for the other soil hydraulic parameters can be found in the appendix (Figures A8, A9, and

A10). The sand, clay, and organic matter fraction and thus the soil hydraulic paramete aR-\Vary-with

Figures 7, 8, and 9 show the initial (prior) and the updated (posterior) vertical profiles for the sand-, clay-

, and organic matter fractions for the upper 1.2 meters (10 soil layers). The updated parameters often keep
the profile distribution but have reduced or increased values throughout the layers compared to the prior.

3.2 Evapotranspiration

The impact of the data assimilation on the ET flux is shown in Figures 610 and 711. Notably, the
difference between the OL and the DASP results is smaller for ET than for SWC. While the data
assimilation improves the model results for SWC for all sites, both improvement and deterioration occur
for modeled ET. Figure 812 shows the comparison of the improvements by data assimilation for SWC
and the positive and negative effect on ET estimation. The average RMSE reduction for the DASP SWC
prediction is between 56% and 64% compared to OL. Comparing the OL and DASP results for ET shows
an average reduction of the MBE of 0.06 mm/day, but an increase in RMSE for the DASP ET predictions
of 4 % on average, with 8 of the 13 sites showing a relative change in ET of only +/- 1 %. Two outliers
(F1-Sod and NL-Loo sites) reduce the average model improvement. These sites show both a large
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overestimation in SWC in the OL (see Fig. 2) and a large underestimation of ET in the DASP simulation
(see Fig. #11). This could be caused by the mismatch of simulated and actual LAI for these sites. To
investigate this, we repeated the simulations using CLM5 with satellite-derived phenology (CLM5-SP)
the results are shown in Fig. 9:13. Because the focus of this study is on CLM5-BGC, these CLM5-SP
simulations use the default datasets from CLMD5 since in-situ LAl measurements for these sites were not
available The CLM5-SP OL and DASP simulations do not use any information from the CLM5-BGC
simulations which implies that for the CLM-SP DASP simulations parameters are estimated
independently from the CLM5-BGC simulations. For CLM5-SP we observe an average improvement in
the RMSE of SWC between 57.6 % and 64.3 % and an average reduction of 5.8 % for the ET estimation.
These CLM5-SP simulations use the default datasets from CLM5 and without site specific calibration of
the timing or magnitude of the seasonal phenology of LAI. Therefore, even for the CLM5-SP simulations,
there is a mismatch between simulated and actual LAI. However, also for this case there are sites with
large improvement in SWC estimation that show deterioration for ET estimation,,

Another possible explanation for the improvement in SWC estimation but no improvement of ET
estimation is the underestimation of root water uptake from deeper soil layers for forest sites, as also
suggested by Shrestha et al. (2018). Fig. 812 shows that the quality of the model results is not dependent
on the forest type, i.e. the evergreen needle leaf forests (ENF) sites show both strong and average relative
changes in SWC RMSE and ET RMSE. This suggests that the strong deviations in the model results of
the FI-Sod and NL-Loo sites are due to other local conditions, e.g. soil properties.

The three CRNS sites show an average relative change of ET RMSE of -2.6%, -0.2%, and -0.9% for DE-
HoH, DE-Wue, and DK-Glu, respectively. Therefore, although the CNRS measurements are more
consistent with the large measurement area of the flux towers, no significant improvement in ET for these
three sites can be achieved with the current implementation of the CNRS-SWC assimilation. We
anticipate that the implementation of a more accurate observation operator would improve the modeled
SWC. The current observation operator does not use vertical weighting to take the decreasing CRNS
sensitivity with depth into account.

3.3. Evaluation of other land-atmosphere exchange fluxes

Comparing measured and modeled sensible heat fluxes (SH) are compared to measurements (Figures
1014 and 4115), similar R? values are obtained for the OL and the DASP approach. The R2 values range
from 0.23 to 0.51 with an average of 0.36. This is similar to the ET results, where the R2? of measured and
modeled (OL and DASP) ET range from 0.01 to 0.58 with an average of 0.37. Comparing Fig. 4614 and
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Fig. 2115 shows the impact of data assimilation of SWC on SH to be small. On average DASP improves
the MBE by 4.66 W/m2 compared to OL. However, for five of the eight sites the improvement of the
MBE is smaller than 1 W/mz2. But, compared to the ET results data assimilation of SWC reduces the MBE
of SH for all sites,,

The impact of updating SWC with data assimilation on modeled Nee, GPP, and LAI is shown in Fig.
1216. The NEE is negative (land acts as carbon sink) for eight, seven, and six of the field sites for OL,
DAS, and DASP respectively. For DASP the GPP and LAI show an increase for two of the sites, a
decrease for three of the sites and remain similar for eight of the sites. Fig. 3317 shows how average SWC
in 5 cm and 50 cm depth, ET, NEE, GPP and SH (average over all sites and all years) are affected by data
assimilation. Although DASP adjusts SWC at 5cm towards the observations, the correction for SWC at
50cm depth is smaller because not all sites provide data at this depth. However, for all sites the data
assimilation provides some improvement for SWC estimation even in layers below the observation depth.
In spite of improved SWC characterization, ET deviates slightly more from the observations after DASP,
while sensible heat flux is very slightly closer to the observations. GPP is lower after DASP and NEE less
negative. While the overall change for some of these variables is small, different variations throughout
the year can be observed. This averaging hides the variations between sites and annual variability but
highlights the overall model behavior. Notably, the data assimilation improves SWC estimation at 5cm
throughout the year while at 50 cm depth the improvement can mainly be observed in late summer and
autumn. Similarly, for SH a model structural bias is apparent with large negative simulated SH values in
late autumn, winter, and early spring while the observations show only a few days with negative average
values over all sites and all years.,

Figure 2418 shows the LAI for each site averaged over all the simulated years- and the difference between
the prescribed LAI used in CLM5-SP and the simulated LAI by CLM5-BGC. Sites with the same PFT
show clear differences in the yearly LAI cycle.,
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4. Discussion
4.1 Soil water content improvements

Our results confirm that assimilation of high quality in-situ SWC data improves the prediction of SWC
by CLMS5, as it has been demonstrated in several other studies (Hung et al., 2022; Mahmood et al., 2019;
Naz et al., 2019; Liu and Mishra, 2017; Han et al., 2015 ). In our study, we were able to show that this
also applies to forest sites with different climates, tree species, and soil properties.

Additionally, CRNS observations represent SWC for a larger area in better correspondence to the EC
tower footprint. So far, only few studies have used CRNS information in a data assimilation framework
(Rosolem et al., 2014; Han et al., 2015; Baatz et al., 2017, Patil et al., 2021). In line with our study, these
studies show the high potential of CRNS for improved soil moisture prediction with land surface models,
both in terms of SWC prediction as well as in improving soil hydraulic parameters. Currently, CRNS
stations are operated with increasing numbers worldwide (Andreasen et al., 2017), in hydrological
observatories (e.g. Bogena et al., 2018; Lui et al., 2018), as national networks (Zreda et al., 2012; Evans
etal., 2016) or even increasing at continental scales (e.g. Hawdon et al., 2014; Bogena et al., 2022), which
opens up new opportunities for assimilation of CRNS data in land surface models at various scales.

In our data assimilation approach, we assumed that the CRNS signal shows a constant sensitivity to SWC
down to the penetration depth of the CRNS. However, Schron et al. (2017) have shown that the integrated
neutron signal over a vertical soil column exhibits a strong decrease in sensitivity with depth and
suggested that this physical behavior of neutrons should be taken into account in model applications. For
example, Shuttleworth et al. (2013) developed a simple, physically-based analytical model to translate
model-predicted soil moisture profiles into aboveground fast neutron counts within a data assimilation
framework. A simpler method was proposed by Schron et al. (2017) by using vertical weighting functions
that depend on SWC, atmospheric pressure, horizontal distance and vegetation height. Therefore, in a
follow-up study, we will test whether observation operators that account for the vertical weights of the
different model soil layers according to the decreasing sensitivity of CRNS with depth will improve our
SWC prediction results.

4.2 Evapotranspiration estimation without improvements from SWC DA

Several studies have demonstrated the potential of improved ET prediction using data assimilation of
SWC measurements (Liu and Mishra, 2017; Girotto et al., 2017; Lidard et al., 2011). These studies
focused on regional or global scale and show heterogeneous spatial patterns of improvement to ET
estimation. Baatz et al. (2017) showed that assimilation of CRNS observations altered the ET estimation
in CLM4.5 in parts of their study area by up to 80 mm per year compared to the OL approach.
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However, in our study with the land surface model CLM5 that data assimilation of SWC does not improve
the ET prediction for European forest sites. We also found that the impact on ET from assimilating CRNS
observations is similarly limited as assimilation of other in-situ SWC data Since our study sites cover a
variety of climates and soil types, we assume that this result also applies to other forest sites worldwide
with similar tree species.

The lack of improvement in ET prediction in the case of data assimilation of in-situ soil moisture
information is consistent with findings from other studies. Girotto et al. (2017) found a decrease in ET
accuracy after assimilating GRACE data over India and attributed the results to the representation of
irrigation in the model. Similarly, Peters-Lidard et al. (2011) showed mixed results after assimilating
multiple satellite soil water content products over North America with spatial variation of improvements
and deterioration of ET estimation. Overall, for 9 of the 13 forested study sites our OL simulations show
positive mean bias error indicating that CLM5 underestimates the ET compared to the FLUXNET
observations. These underestimations agree with the results shown in the study by Cheng et al. (2021)
showing that CLM5 underestimates ET observations. Additionally, Nearing et al. (2018) investigated the
contribution of model structural errors and model inputs for four different LSM and concluded that SWC
uncertainty was dominated by soil parameter uncertainty while ET uncertainty was dominated by forcing
uncertainty. Without a similar in-depth benchmark study for CLM5, but from our results and the results
of the previously mentioned CLMD5 studies a similar conclusion can be drawn for CLM5.

A different aspect is that we assume that the EC data are correct to validate our simulation results.
However, the EC-data might be affected by energy balance closure issues (Foken, 2008; Hendricks
Franssen et al., 2010).

4.4 Methods to improve ET estimation

There are various approaches to improve modeled ET estimates. For example, Zhang et al. (2020)
identified and optimized four hydraulic and three vegetation parameters in CLM4.0 that improved ET
estimation by 7.3% for the optimization period and 5.3% for the validation period for China. Similarly,
Post et al., (2017) calibrated eight parameters to improve NEE estimation in CLM 4.5 and a similar
approach to optimize vegetation parameters in CLM 5.0 for ET estimation could improve simulation
results. Tang et al. (2015) implemented a root hydraulic redistribution model in CLM4.5 to improve ET
estimation but found that their method was only able to improve ET predictions north of 20°N. They
identified the representation of deep roots, soil hydraulic parameterization for certain soils,
meteorological forcings, and the parameterization of the water table dynamics and drainage as the main
limitations to improve ET by their method.

Denager et al. (2022) used SWC measurements for an agricultural site in Denmark for parameter
calibration of soil texture, LAI, stomata conductance and the root distribution in CLM5 and obtained
improved energy partitioning of ET and SH. However, they also found it difficult to calibrate the
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parameters to get an improvement in SH estimation throughout the year and suggested that the difference
in energy balance closure between LSMs and EC flux observations contributes to the bias.

Fox et al. (2022) concluded that errors in LAI estimations in LSMs lead to substantial flaws in the
representation of carbon, water, and energy fluxes. Furthermore, they conclude that data assimilation to
remove bias in LAl improves LSMs results significantly and is advisable until the prognostically modeled
LAI improves substantially. For example, Zhang et al. (2016) assimilated remotely sensed LAI data into
the Biome-BGC model at two sites and improved both ET and NEE estimates, evaluated with EC tower
measurements. Rahman et al. (2022) showed that the joint LAl and topsoil SWC assimilation from
satellite products improved the ET estimation for the Contiguous United States compared with
independent validation datasets. While data assimilation of topsoil SWC alone only improved the SWC
estimation.

As mentioned, LAI is identified as a key variable to improve ET estimation and representation of land
carbon processes. Therefore, in future work we will investigate the effects of data assimilation of LAI
and joint state-vegetation parameter estimation on the simulation of carbon, water, and energy fluxes with
CLMS5.
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S. Conclusions

This paper analyzed the impact of the assimilation of in situ soil water content (SWC) data on SWC
characterization, evapotranspiration (ET), sensible heat flux (SH), gross primary production (GPP) and
net ecosystem exchange (NEE), for 13 forested sites in Europe. Assimilation of SWC, from both point
scale and plot scale observations, with the Ensemble Kalman Filter, using the Community Land Model
version 5 coupled to the Parallel Data Assimilation Framework (CLM5-PDAF) improves SWC prediction
(RMSE reductions between 56% and 64% compared to the open loop run, and depending on measurement
depth). However, assimilation of in situ SWC does not improve the ET prediction for the investigated
European forest sites. For most of the sites, data assimilation showed almost no effect on ET fluxes
(RMSE changes between +/- 1%) and some sites showed strong negative effects of SWC assimilation on
ET predictions ( -20% to -30% change in RMSE). The assimilation of in situ SWC from Cosmic Ray
Neutron Sensors (CRNS), which determine SWC over a larger horizontal footprint more in
correspondence with the eddy covariance footprint, for three of the 13 sites, also does not improve ET
characterization. These results suggest that improving the SWC estimation of state-of-the-art LSM such
as CLM5 s not sufficient to improve ET estimation for forest sites. To improve ET estimation it is also
necessary to consider the representation of LAI in magnitude and timing, as well as uncertainties in water
uptake by roots and vegetation parameters In the future, to improve modeled ET using data assimilation
we will further examine the potential of assimilating different state variables, like for example leaf area
index and updating related vegetation parameters. In addition, we will apply a measurement operator in
the data assimilation framework that considers the vertical sensitivity of the CRNS signal.
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Tables
1385 Table 1: Overview of the study sites. Classification uses the International Geosphere-Biosphere Program
Code (IGBP) as is used for FLUXNET: MF for mixed forests, ENF for evergreen needle leaf forests,
DBF for deciduous broad leaf forests, EBF for evergreen broad leaf forests, WSA for woody savannah.
LON is longitude and LAT latitude.
Site name Country  Abbreviation Code LON LAT Elevation Data Mean Mean Typical «
[m.a.s.l.] source annual annual tree
temperature precipitation species
[°C] [mm]
Brasschaat Belgium  BE-Bra MF 451 513 16 FLUXNET 9.8 750 Scots pine
Bily Ktiz Czech CZ-BK ENF 18.53 49.5 875 FLUXNET 7 1316 Norway «
forest Republic spruce
Hainich Germany  DE-Hai DBF 10.45 51.07 430 FLUXNET 8.3 720 Mixed <
Beech
Hohes Holz Germany DE-HoH DBF 11.21 52.08 217 COSMOS 10 820 Mixed <«
Europe beech
Oberbérenburg Germany  DE-Obe ENF 13.72 50.78 734 FLUXNET 5.5 996 Norway <
spruce
Wiistebach Germany DE-Wue ENF 6.33 505 605 COSMOS 7 1180 Spruce <
Europe
Gludsted Denmark  DK-Glu ENF 9.33 56.07 86 COSMOS 8.2 1080 Spruce <
Europe
Conde Spain ES-Cnd WSA -3.22 37.91 370 FLUXNET 15.8 474 Olive <
grove
Hyytiéla Finland FI-Hyy ENF 24.29 61.84 181 LTER 3.8 709 Boreal <«
Europe Scots pine
Sodankyla Finland FI-Sod ENF 26.63 67.36 180 FLUXNET -1 500 Boreal <«
Scots pine
Puéchabon France FR-Pue EBF 3.59 43.69 270 FLUXNET 13.5 883 Evergreen
oak
Lavarone Italy IT-Lav ENF 11.28 45.95 1353 FLUXNET 7.8 1291 Coniferous
forest
Loobos Netherlands NL-Loo ENF 5.74 5216 25 FLUXNET 9.8 786 Scots pine
1390 |
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Figure 1: Map showing the location of the selected study sites of the FLUXNET (F), eLTER (L) and
COSMOS-Europe (C) networks.
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Figure 2: Scatter plots of observed soil water content at 20 cm depth at nine study sites versus OL and

410 DAS simulated soil water content. The points represent daily averages for the days observation data are
available. Green points are OL and blue points are DAS results.
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1415 Figure 3: Scatter plots of observed soil water content at 20 cm depth at nine study sites versus OL and
DASP simulated soil water content results at 20 cm depth. The points represent daily averages for the
days observation data are available. Green points are OL and purple points are DASP results.
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Figure 4: Scatter plots of observed soil water content at three CRNS study sites (DE-HoH left column,

DE-Wue middle column, DK-Glu right column) versus simulation results (OL results in the top row, DAS
results in the middle row, and DASP results in the bottom row). The points represent daily averages for
the days on which observation data are available.
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Figure 5: Profile plots for the first 10 layers, showing the root fraction and the time-averaged SWC per

depth for each site. In the SWC profiles, the red and green lines represent the SWC from the open-loop

435 simulations (OL) and DASP simulations, respectively.
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Figure 6: Time series of the saturated soil hydraulic conductivity for each site in the DASP simulation.
The grey line is the value at 5 cm depth, the blue line at 20 cm depth, and the green line at 50 cm depth.
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445 Fiqure 7: Profile plot showing the sand fractions for the first 10 layers of all 13 sites.
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Figure 8: Profile plot showing the clay fractions for the first 10 layers of all 13 sites.
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Figure 9: Profile plot showing the organic matter fractions for the first 10 layers of all 13 sites.
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Figure 10: Scatter plots of observed evapotranspiration at thirteen study sites versus OL simulation

results. The points represent daily averages for the days on which observation data are available.,
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Figure #11: Scatter plots of observed evapotranspiration at thirteen study sites versus DASP simulation

results. The points represent daily averages for the days on which observation data are available.
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Figure 913: Comparing the SWC and ET characterization for the OL and DASP simulations using

CLM5-SP. Each point represents the overall average RMSE change for one site. The color of the points
indicate the forest type (MF: mixed forest, ENF: evergreen needle leaf forest, DBF: deciduous broad leaf
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Figure 1814 Scatter plots of observed sensible heat flux at eight study sites versus OL simulation results.

The points represent daily averages for the days on which observation data are available.,
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Figure 2115; Scatter plots of observed sensible heat flux at eight study sites versus DASP simulation

results. The points represent daily averages for the days on which observation data are available.,
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Figure 4317: Seasonality of observed (OBS) and simulated (OL and DASP) states and fluxes based on

daily averages from all years (2009 to 2018) and all sites: A) soil water content (SWC) at 5 cm depth, B)
SWC at 50 cm depth, C) evapotranspiration (ET), D) sensible heat flux (SH), E) net ecosystem exchange

535 (NEE), and F) gross primary production (GPP).,
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Figure Al : Scatter plots of observed soil water content at ten study sites versus OL simulation results at
5 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A2 Scatter plots of observed soil water content at ten study sites versus DASP simulation results
at 5 cm depth. The points represent daily averages for the days on which observation data are available.
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1560 Figure A3 : Scatter plots of observed soil water content at ten study sites versus OL simulation results at
20 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A4 : Scatter plots of observed soil water content at ten study sites versus DAS simulation results
1565 at 20 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A5 : Scatter plots of observed soil water content at ten study sites versus DASP simulation results
at 20 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A6: Scatter plots of observed soil water content at eight study sites versus OL simulation results
at 50 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A7: Scatter plots of observed soil water content at eight study sites versus DASP simulation results
at 50 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A8: Time series .for the Clapp-Hornberger shape parameter B (BSW) for each site in the DASP
simulation. The grey line is the value at 5 cm depth, the blue line at 20cm depth, and the green line at
50cm depth.,
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Figure A9: Time series .for the saturated soil matric potential for each site in the DASP simulation. The
grey line is the value at 5 cm depth, the blue line at 20cm depth, and the green line at 50cm depth.,
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Figure A10: Time series .for the porosity for each site in the DASP simulation. The grey line is the value
1605 at 5 cm depth, the blue line at 20cm depth, and the green line at 50cm depth.,
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