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Abstract:

. Land surface models (LSM) are an important tool for advancing our knowledge of the Earth system.« -

LSM are constantly improved to represent the various terrestrial processes in more detail. High
quality data, freely available from various observation networks, are providing being used to improve
the prediction of terrestrial states and fluxes of water and energy. To optimize LSM with observations,
data assimilation methods and tools have been developed in the past decades. We apply the coupled
Community Land Model version 5 (CLM5) and Parallel Data Assimilation Framework (PDAF)
system (CLM5-PDAF) for thirteen forest field sites throughout Europe, covering different climate

zones. The goal of this study is to assimilate in-situ soil moisture measurements into CLM5 to
improve the modeled evapotranspiration fluxes. The modeled fluxes will be evaluated using the
predicted evapotranspiration fluxes with eddy covariance (EC) systems. Most of the sites use point
scale measurements from, however for three of the forest sites we use soil water content data from
cosmic-ray neutron sensors, which have a measurement scale closer to the typical land surface model

grid scale and EC footprint. Our results show that while data assimilation reduced the root-mean-
square error for soil water content on average by 56 to 64%, the root-mean-square error for the
evapotranspiration estimation is increased by 4%. This finding indicates that only improving the SWC
estimation of state- of- the- art LSM such as CLM5 still-sufferfrom-uneertatntiestr-is not sufficient

to improve evapotranspiration estimates for forest sites. To improve evapotranspiration estimates, it

is also necessary to consider the representation of sei-hydrolegical-processes-n-forests;e.g-—deep-root
LAl in magnitude and timing, as well as uncertainties in water uptake—erhighly-uncertain by roots

and, vegetation parameters.
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1. Introduction

Land surface models (LSM) are important tools to improve our understanding of the Earth system.
LSM cover a broad range of land surface processes like the partitioning of incoming energy at the
land surface, mass exchange between the land and atmosphere, hydrological; and ecological
processes. They use sophisticated parameterizations and are constantly improved to achieve a more
accurate representation of land surface processes, e.g. Arora et al. (2020) and references therein.
However, there are still many sources of uncertainty introducing systematic biases in the LSM (e.g.
initial conditions, atmospheric forcings, parameters, and parameterization-). One approach to improve
model predictions is to assimilate observational data. Improved estimates of evapotranspiration (ET)
by LSM isare of main interest as ET is a major driver of climate-and, and weather, an important

component of the water and energy cycles, closely coupled to the carbon cycle through the
photosynthesis process (Jung et al., 2011). Fine spatial scale ET estimations are important to estimate
water use and plant stress (Wurster et al. 2020). The flux of ET is, however, influenced by multiple
factors, including soil water content; (SWC), soil properties, ecophysiological processes, and
vegetation characteristics (Wilson et al., 2004), so it is more common to assimilate these prognostic
variables rather than ET itself.

Many studies assimilate soil moisture products into LSMs (e.g. Hung et al., 2022; Mahmood et al.,
2019; Naz et al., 2019; Liu and Mishra., 2017; Han et al., 2015) and report on the impact on
hydrological variables like root-zone-moisture and runoff. Some studies use assimilation of soil water
content or related variables to evaluate ET estimation of LSMs. For example, Girotto et al. (2017)
assimilated terrestrial water storage from the Gravity Recovery and Climate Experiment into a land
surface model and evaluated results over India. However—theyThey, found that the assimilation
decreased the accuracy of ET estimation compared to observations due to model limitations in
representing irrigation. Peters-Lidard et al. (2011) assimilated two different remotely sensed soil
water content products into the Noah land surface model over North America and found mixed results
regarding the improvement of latent heat flux estimates-, The domain averaged root-mean-square
error of the latent heat flux reduced from 27.6 Wm™ to 25.6 Wm™ or increased to 29.4 Wm™2
depending on the assimilated soil water content product. Additionally, they show that the
improvements and degradation vary spatially across their study domain, with land cover type, and as
function of the season and they note that the most significant improvements occur for cropland and
grassland. Liu and Mishra (2017) assimilated surface soil water content data from the Advanced
Microwave Scanning Radiometer-Earth Observing System in a global Community Land Model
version 4.5 and found ET bias reductions of up to 2.5mm/day compared to the Global Land Data
Assimilation System (GLDAS) data product.

[For our study, we chose the latest version (version 5) of the widely used Community Land Model
(CLM5) (Lawrence et al. 2019) as various land surface process representations have been improved
in CLM5 compared to earlier versions, For instance, Kennedy et al. (2019) added a plant hydraulic
stress parameterization to improve the accuracy of simulated transpiration and soil water content.
Lawrence et al. (2019) demonstrated the improvements of CLM5 over its precursor CLM4 in terms
of ET using two study sites as examples and highlighted the better representation of the effects of soil
depth on ET prediction in CLM5. On the other hand, Cheng et al. (2021) found that CLM5 predicts
lower ET compared to older CLM versions and various observational data, likely due to low
photosynthetic rate and leaf area index (LAI), which is consistent with their finding of low gross
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primary production (GPP) compared to reference data in the same simulations. In addition to these
regional to global validation studies, CLM was used in several single point setups, i.e. simulations
for a single grid cell, to evaluate the performance of various LSM components. For example,
Hudiburg et al. (2013) used CLM 4.0 to estimate net primary production (NPP) and GPP of a forested
site and compared it with eddy covariance (EC) measurements. Another study (Zhang et al., 2019)
reduced an overestimation of growing-season LAI and annual GPP of a grassland site fora CLM 4.5
single-point setup. More recently, CLM5 was extended to consider both cover crop management with
improvements to ET estimation of up to 57% (Boas et al., 2021) and fruit tree cultivation using
extensive field measurements with high correlation between observed and modeled ET (Dombrowski
et al., 2022).. Other studies have used manual tuning of parameters to improve CLM simulations for
forests. For instance, Duarte et al. (2017) calibrated CLM4.5 for an old-growth coniferous forest and
found good agreement between simulated and observed response of canopy conductance to
atmospheric vapor pressure deficit and soil water content. Raczka et al. (2016) used CLM4.5 and
implemented a seasonally varying calibration of vegetation parameters and accurately simulated net
carbon exchange, latent heat exchange, and biomass.,

A

In this study, we investigate if assimilating high quality, in-situ soil water content measurements can

improve the evapotranspiration estimates of LSM. We focus on one specific land cover type, namely |

forests. In a previous study (Strebel et al. 2022), we investigated the potential for data assimilation of

in-situ SWC measurements to improve model estimation for a single forest site. This study expands
this method to more forest sites and investigates the effect of improved SWC estimation on ET. To
investigate this, we use point and plot scale in-situ soil water content measurements. For most sites
we use point measurements provided by FLUXNET (Baldocchi et al., 2020) and eLTER Europe. The
FLUXNET data have been used in various studies to verify or compare model results. For example,
Dirmeyer et al. (2018) used FLUXNET data to compare four model systems, including CLM4.5, in
three configurations and found for annual averaged ET that correlations range from 0.28 to 0.43 and
for sensible heat from 0.14 to 0.54. The point scale measurements use invasive equipment and the
specific measurement volume, exact depth of the sensors, number of sensors, and number of stations
varies from site to site. For a few sites we use soil water content measurements from Cosmic Ray
Neutron Sensing (CRNS) from the COSMOS-Europe data set (Bogena et al., 2022). The CRNS
provides continuous and non-invasive soil water content measurements over a spatial footprint of
hundreds-of-meters and integrates from the surface to a depth of 10-70 cm vertically in the soil (Zreda
et al., 2008; Kohli et al., 2015). CRNS use neutrons as proxy for SWC and the vertical measurement

Form

depth varies with the soil moisture conditions. Additionally, the uncertainty of CRNS-derived soil
moisture varies not only with the different neutron detectors but also with the number of counts in a
time period and therefore results under lower soil moisture conditions are more accurate (Bogena et
al., 2022). The spatial footprint area is similar to the footprint of the EC flux tower. We use the final
processed data on soil water content and vertical penetration (measurement) depth provided by the
COSMOS-Europe dataset (Bogena and Ney, 2021). In this study, we use the ensemble Kalman filter
to assimilate in-situ soil water content measurements into CLM5 simulations and the effect on the
modeling results are quantified by comparing the modeled ET against the observed ET obtained from
EC flux towers. We also analyze the effects on other land-atmosphere exchange fluxes, i.e. net
ecosystem exchange (NEE) and gross primary production (GPP). The paper is structured as follows:
First, we introduce the model and data assimilation framework used. The sites selected for this study
and the observational data used for data assimilation and model-observation comparison are then
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256 described. Subsequently, the results for each variable of interest are shown and analyzed. Finally, we

257 end with a discussion of the obtained results and conclusions., Form
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275 2. Methods and Materials, . Form
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276 2.1 Study sites, - 12 Pt.
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278 Inour study, we are interested in the characterization of water, energy and carbon exchange between %
- - . . orm
279  (European) forest ecosystems and the atmosphere, and whether soil water content assimilation can 1.15;
280  improve the characterization of these processes. Therefore, we selected European sites with different Form

281  forest types (see Table 1) covering different climate zones in Europe. Another important constraint (12 Pt

282 was the availability of soil water content data and evapotranspiration measurements for the period ;?;r,“;
283  from 2009 to 2018. The selected sites are mostly part of FLUXNET (Baldocchi et al., 2020) or the
284  European Long-Term Ecological Research network (eLTER-Europe) (Parr et al., 2002). In addition
285  to the sites from these observation networks, we included three sites from the COSMOS-Europe
286  network (Bogena et al., 2022) where cosmic-ray neutron sensors (CRNSs) are installed to estimate
287  the soil water content of the forested sites. Table 1 gives an overview of all selected sites for this

288  study and Figure 1 shows the distribution on the map. , Form
12 Pt.




301

302

303

304

305
306
307
308
309
310
311
312

ID Site name

A1)

Brasschaat

Bily Kriz forest
Hainich

Hohes Holz
Oberbarenburg
Woistebach
Gludsted
Hyytiala

O 0 N O 0 B W N B

Sodankyla
10 Puéchabon
11 Lavarone
12 Loobos

13 Conde

In this study, daily average soil water content data are assimilated (see section 2.4.1 for more details)« "

and the model is verified using daily average evapotranspiration and sensible heat flux data. Since
the observational data were already quality controlled by the providers, we did not filter out any data.

Additionalhygaps+aWe only assimilated (daily mean averaged),soil water content observations were
i 8 b -when ebservationsmeasurements

were available for a given day. The daily mean averages were calculated independent from the

observation frequency for the different sites. Similarly, simulated evapotranspiration was only

compared with observations when data were available, on the basis of daily mean averages,,
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2.2 Model description, -

[For our study, we used the Community Land Model version 5.0 (CLM5) that can be applied in various-

configurations (Lawrence et al. 2019). We use CLM5-BGC, i.e. CLM5 with the biogeochemistry
module active as opposed to CLM5 with fixed phenology. The biogeochemistry module enables a
fully prognostic treatment for carbon and nitrogen in the land surface model and has a significant
impact on the modeled water and energy budgets. ,

CLM5 uses a sub-grid hierarchy of various Plant Functional Types (PFTs) to characterize the land-
use and vegetation type within every grid cell, e.g. evergreen needle leaf or deciduous broad leaf
forests. CLM5 contains a spatially variable soil depth with an underlying, impermeable bedrock
instead of the unconfined aquifer parameterization used in the former CLM4 versions. To estimate
the soil water content, CLMS5 solves the Richard’s equation using the Brooks-Corey parameters
derived from pedotransfer functions from Clapp and Hornberger (1978) with a finite-difference
approximation to represent the vertical discretization and temporal evolution of soil water content.,
The sensible and latent heat flux estimation in CLM5 is derived from the Monin-Obukhov Similarity
Theory and differentiated for vegetated and non-vegetated surfaces. We-enly-study-forested-areas
where-CLM5 partitions—thesimulates sensible heat-and latent heat flux inte—vegetatienfor both
vegetated, and ground fluxes. For the vegetation part the contributions from the leaf boundary layer,
the sunlit and shaded stomatal resistances affect the total resistance to the modeled water vapor
transfer. The water vapor transfer includes transpiration from dry leaf surfaces and the transpiration
removes water from the soil based on root fraction for a given soil layer. Interception, throughfall and
canopy drip are explicitly modeled in CLM5 and canopy evaporation is partitienedrepresented as
from the sum of stem and leaf surface evaporation based—en—the—vegetationas a function of
temperature. The ground fluxes, e.g. from bare soils or soil beneath a canopy, are dependent on the
ground surface temperature. The ground latent heat flux is reduced if not enough soil moisture is
available and the excess energy is redistributed to the sensible heat flux. The detailed procedure and
equations are documented in Lawrence et al. (2018).,

A

2.3 Data assimilation, -

2.3.1 Ensemble Kalman filter,

In this work, assimilation of soil water content measurements is performed with the Ensemble Kalman-
Filter (EnKF) (Evensen, 1994; Burgers et al., 1998). The EnKF uses an ensemble modeling approach,

with various simultaneous model runs, to approximate the model uncertainty. The ensemble members

have different input model parameters and atmospheric forcings (see section 2.4 for details). We

define a state vector x and an observation vector y, e.g,
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Wwhere n is the number of layers and m is the number of grid cells, G‘HG}IAis the soil water content for-/

layer j and grid cell | of the model and the superscript i refers to ensemble member i._In this study we
use an ensemble of 96 member to sample the model uncertainty.,

y=o0-+-e
y=0+e(2),
Where 0 is a vector of the observational data and e represents a perturbation vector with mean zero
and covariance according to the observational error covariance matrix. This perturbation vector is
used to correct the error statistics as described in Burgers et al. (1998). ,
The update step of the ensemble Kalman filter is:,

S i
a

xb = xf + K[y — Hx}| (3)

where the superscript i refers to ensemble member i, xkx, is the updated state vector after the analysis,«
xéxjﬁis the forecasted model state vector, K is the Kalman gain and H is the measurement operator
that transforms between model and observational states. In this study, the measurement operator H

consists of a simple mapping of the observations to the corresponding model layers in the state vector
for simulations with point measurements. For FLUXNET sites, measured soil water content is

provided for up to three depths described as superficial, medium, and deep. Since data assimilation

in CLM5-PDAF requires a specific vertical layer, we assigned 5, 20 and 50 cm to the respective
FLUXNET SWC layers. For the CRNS sites, the measurement depth for each individual

measurement is calculated following Schrén et al. (2017) and is included in the dataset from Bogena
et al. (2022). For simulations assimilating CRNS, H assigns the mean observed SWC to all the layers
down to the measurement depth. This is a simplified approach and will be improved in further studies
to take the weighting function from Schrén et al. (2017) into account. The Kalman gain is calculated
accordingly:,

K=PHER+HPHEY K = PH"(R+ HPH") (4)
where the superscript T is used for transposed matrices, R is the observational error covariance matrix,
and P is the model error covariance matrix, which is approximated through ensemble statistics, |
specifically:,

PP = LY )i i (¢ — %) (-~ %7) (5)

A

where N is the number of ensemble members and X is the ensemble mean., Y

/
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In this study, the state vector depends on the simulation scenario (explained in more detail in section<

2.3.2)) and R is based on the measurement errors which are assumed to be constant and independent
with a root-mean square error of 0.02 cm3/cm3,

To enable data assimilation with CLM5, we use the Parallel Data Assimilation framework (PDAF)-+

(Nerger et al. 2005), which was recently coupled to CLM5 (Strebel et al. 2022). This coupling
(CLM5-PDAF) also supports the assimilation of soil water content measurements.,

A

2.3.2 Parameter updating, «

In addition to the use of data assimilation for state updating, we also perform parameter updating-
based on the state augmentation approach (Friedland, 1969; Fertig et al., 2009). Here, model
parameters are attached to the state vector and updated based on the Kalman gain calculations without
observations of the model parameters. By default, CLM5-PDAF updates soil hydraulic parameters
through changes to fractions of sand, clay, and organic matter and the pedotransfer function of Clapp
and Hornberger (1978). In this indirect approach the state vector for the EnKF is defined as follows:,

\sprgoic

91
: Ysand’ \
i . 1(6)
Tl %clayt / 6

%organict

Where the superscript i refers to ensemble member i. The components 86, %sand, %clay,-

and %organic each represent a vector containing the respective variable for each soil layer of each
grid cell of the model._ A damping factor of 0.1 is used on the parameter updates to avoid filter
inbreeding and keep the ensemble spread larger so that the model error covariance matrix is a good
approximation for model uncertainty.

In previous studies parameters were updated indirectly (Naz et al., 2019; Han et al., 2014; Baatz et
al.,, 2017). We tested directly updating saturated hydraulic conductivity, porosity, hydraulic
conductivity exponent, and soil matric potential but this resulted in more unstable estimates than
indirectly updating soil hydraulic parameters. The pedotransfer function which is used for the indirect
updating results in reasonably correlated soil hydraulic parameters. “In testing a direct approach to
updating saturated hydraulic conductivity, porosity, hydraulic conductivity exponent B, and soil
matric potential we found that updating the parameters indirectly to provide more stable simulations.
The pedotransfer function keeps the soil hydraulic parameters reasonably correlated to each other. In
this study, the parameters are chosen to optimize the SWC estimation and not ET estimation to study
the effects of SWC improvements on ET. To more directly improve the ET estimation, parameters
affecting the ET process directly should be added, e.g. vegetation hydraulic parameters.
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2.4 Model setup, «

2.4.1 Domain setup,

Since we only use local field measurements, we represent each study site as a single grid cell in CLM5+

This approach is also consistent from the viewpoint of larger regional scale models, where each of

these sites would only be part of a grid cell. The CLMD5 grid cells are vertically divided into 25 layers
from the surface down to 50 m depth of which the first 20 layers (until 8.6 m depth) may be
hydrologically and biogeochemically active depending on the variable soil depth for each site
(Lawrence et al., 2018). For the more than 70 different surface parameters of CLM5, we used the
default values generated by the tools provided with CLMS5 (e.g. soil depth to bedrock, sand, clay, and
organic matter fractions, PFTs). These default values are generated from remapping various global
files (Lawrence et al., 2019). Only the PFT were manually assigned for each site. For the ensemble
creation, the fractions of sand, clay, and organic matter are modified for each ensemble member. The
perturbations are normally distributed with mean zero and a standard deviation of 10%. Fet

2.4.2 Atmospheric forcings, -~

Meteorological observations were also available at the selected study sites and were used to force«

CLMS5. The existing gaps in the observation time series were gap-filled with data from the COSMO-
REAG6 reanalysis data product (Bollmeyer et al., 2015). For the ensemble generation precipitation
(PR), shortwave radiation (SW), longwave radiation (LW), and air temperature (TA) were perturbed
taking into account cross-correlations between variables according Reichle et al. (2007). The
perturbations are: multiplicative PR ~ logN(Z1, 0.5), multiplicative SW ~ logN(1, 0.3), additive LW ~
N(0, 20) (W/m2), and additive TA ~ N(0, 1) (°K). The following cross-correlation coefficients
between variables were used: PR-SW -0.8, PR-LW 0.5, PR-TA 0, SW-LW -0.5, SW-TA 0.4 and
LW-TA 0.4.,

2.4.3 Data assimilation experimental setups, -~

Three different simulation scenarios were considered: 1) Open loop (OL) simulations without data-

assimilation; 2) Data assimilation with updating of soil water content (DAS); and 3) Data assimilation
with soil water content updating and parameter updating (DASP). For all scenarios data assimilation
is performed at a daily frequency and with daily averages from the observations. FerBASP-a-damping

uncertainty-The observation error is assumed to be constant and set to a RMS of 2%
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615 2.5 Statistical metrics, . Form
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616  For the comparison of simulation results with observations, we use four statistical metrics: the squared< [ Form
617  correlation coefficient (R?), the mean bias error (MBE), the root-mean-square error (RMSE), and the fgrp“t‘

618  unbiased root-mean-square-error (UbRMSE):, " Form
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628  where o stands for observations, m represents the ensemble average of the simulated values, t is the</ Form
629  time step, Nt the total number of time steps and overbar represents the average over all time steps. | (12 Pt
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The results of the three COSMOS-Europe sites are shown in Figure 54, in which the observed SWC

values are compared with the weighted SWC mean of the model layers corresponding to the
measurement depth of CRNS. This comparison again shows the large improvement from OL to DAS,
and a smaller improvement or even a small deterioration from DAS to DASP.,
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681

682  Figure-5Figure 5 shows time series of the estimated saturated soil hydraulic conductivity for each of
683  the sites and the three observation layer depths. The DASP scenario results in parameter changes
684  when the first observations are available but converge over the time of the simulation to a new value.
685  The corresponding time series for the other soil hydraulic parameters can be found in the appendix
686  (Figures A8, A9, and A10). The sand, clay, and organic matter fraction and thus the soil hydraulic
687  parameters can vary with depth but as shown in Fig. 5 the DA updates to the parameters affect the
688  different layers similarly.
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3.2 Evapotranspiration

The impact of the data assimilation on the ET flux is shown in Figures 6 and 7. Notably, the difference
between the OL and the DASP results is smaller for ET than for SWC. While the data assimilation
improves the model results for SWC for all sites, both improvement and, deterioration occur for

modeled ET. Figure 8 shows the comparison of the improvements by data assimilation for SWC and
the positive and negative effect on ET estimation. The average RMSE reduction for the DASP SWC
prediction is between 56% and 64% compared to OL. Comparing the OL and DASP results for ET
shows an average reduction of the MBE of 0.06 mm/day, but an increase in RMSE for the DASP ET
predictions of 4 % on average, with 8 of the 13 sites showing a relative change in ET of only +/- 1 %.
sites show both a large overestimation in SWC in the OL (see Fig. 2) and a large underestimation of
ET in the DASP simulation (see Fig. 7). This indicatesthat-could be caused by the SWC-ETrelation
is-neerreetmismatch of simulated and actual LAI for these sites. ATo investigate this, we repeated

the simulations using CLM5 with satellite-derived phenology (CLM5-SP) the results are shown in
Fig. 9. For CLM5-SP we observe an average improvement in the RMSE of SWC between 57.6 %
and 64.3 % and an average reduction of 5.8 % for the ET estimation. These CLM5-SP simulations
use the default datasets from CLMD5 and without site specific calibration of the timing or magnitude
of the seasonal phenology of LAI. Therefore, even for the CLM5-SP simulations there is a mismatch
between simulated and actual LAI. However, also for this case there are sites with large improvement
in SWC estimation that show deterioration for ET estimation.

Another possible explanation for the improvement in SWC estimation but no improvement of ET+«
estimation jis the underestimation of root water uptake by—+reets—inthe-from deeper soil layers is

underestimated-for forest sites, as also suggested by Shrestha et al. (2018). Fig. 8 shows that the

quality of the model results is not dependent on the forest type, i.e. the evergreen needle leaf forests
(ENF) sites show both strong and average relative changes in SWC RMSE and ET RMSE. This

suggests that the strong deviations in the model results of the FI-Sod and NL-Loo sites are due to

other local conditions, e.g. soil properties.

A

The three CRNS sites show an average relative change of ET RMSE of -2.6%, -0.2%, and -0.9% for

DE-HoH, DE-Wue, and DK-Glu, respectively. Therefore, although the CNRS measurements are
more consistent with the large measurement area of the flux towers, no significant improvement in
ET for these three sites can be achieved with the current implementation of the CNRS-SWC
assimilation. We anticipate that the implementation of a more accurate observation operator would
improve the modeled SWC. The current observation operator does not use vertical weighting to take
the decreasing CRNS sensitivity with depth into account.,
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3.3. Evaluation of other land-atmosphere exchange fluxes,

Comparing measured and modeled sensible heat fluxes (SH) are compared to measurements (Figures=

910 and 2011), similar R? values are obtained for the OL and the DASP approach. The R? values

range from 0.23 to 0.51 with an average of 0.36. This is similar to the ET results, where the R2 of
measured and modeled (OL and DASP) ET range from 0.01 to 0.58 with an average of 0.37.
Comparing Fig. 910,and Fig. 2611 shows the impact of data assimilation of SWC on SH to be small.

On average DASP improves the MBE by 4.66 W/m?2 compared to OL. However, for five of the eight
sites the improvement of the MBE is smaller than 1 W/m2. But, compared to the ET results data
assimilation of SWC reduces the MBE of SH for all sites.,

A

The impact of updating SWC with data assimilation on modeled Nee, GPP, and LAI is shown in Fig.
1112. The NEE is negative (land acts as carbon sink) for eight, seven, and six of the field sites for OL,
DAS, and DASP respectively. For DASP the GPP and LAI show an increase for two of the sites, a

decrease for three of the sites and remain similar for eight of the sites. Fig. 4213 shows how average

SWC in 5 cm and 50 cm depth, ET, NEE, GPP and SH (average over all sites and all years) are
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affected by data assimilation. Although DASP adjusts SWC at 5cm towards the observations, the

correction for SWC at 50cm depth is smaller because not all sites provide data at this depth. However
for all sites the data assimilation provides some improvement for SWC estimation even in layers

below the observation depth. In spite of improved SWC characterization, ET deviates slightly more

from the observations after DASP, while sensible heat flux is very slightly closer to the observations.
GPP is lower after DASP and NEE less negative. While the overall change for some of these variables
is small, different variations throughout the year can be observed. This averaging hides the variations
between sites and annual variability but highlights the overall model behavior. Notably, the data
assimilation improves SWC estimation at 5cm throughout the year while at 50 cm depth the
improvement can mainly be observed in late summer and autumn. Similarly, for SH a model structural
bias is apparent with large negative simulated SH values in late autumn, winter, and early spring

while the observations show only a few days with negative average values over all sites and all years.

oL BE-Bra oL

2001

on DE-Hai

200

CZ-BK

1004 100

01 0

-100 -100

s
., R'=030
MBE = 2196

R*= 023
MBE = 19.46

R? = 040
MBE = 14.02

~2001 UBRMSE = 39.30 —200v ubRMSE = 45.74 -200 UbAMSE = 37.50

: i ‘RMSE - 41.72 _RMSE - 49.71 'RNSE - 43, 46
-200 -100 © 100 200 ~200 -100 O 200 ~200 -100 100
OBS - SH(W/m~™2] OBS - SH[W/m"Z] OBS - SH(W/m"Z]
oL DE-Obe oL FI-Sod oL FR-Pue
] |
2001 200 200 :
1004 el . 100 { 100
01 i = o/ 0
\»' ‘.
-100+4 « SR A -100 { x -100
" R'=024 ‘ "R - 0.44 R? = 0.50
MBE = 15.60 ‘ « MBE = 47.30 M8E = -5.75
~2001 UORMSE = 40,50 -2001 _UbRMSE = 49,31 ~200 UDAMSE = 44.02
. _ RMSE = 43.40 1' _ AMSE = 6833 | RMSE = 44. 39
-200 -100 ©0 100 200 -200 -100 0 100 200 -200 -100 ©0 100
OBS - SHW/m~™2] OBS - SH[W/m~2] OBS - SH[W/m"Z]

oL IT-Lav oL NL-Loo
| [ |

2001 200

1001 100

-100+ -100

R? = 035

R? = 0.40

Form
12 Pt.

bt
o

12 Pt.

Form
12 Pt.

MBE = 15.57 ‘ MBE = 27.10
=200+ UDRMSE » 54 46 —200 UbRMSE =~ 41,23
- RMSE = 56.64 _RAMSE = 4934 |
-200 -100 O 100 200 200 -100 0 100 200
OBS - SH[W/m~™2] 0BS - SHIW/m~™2]
/| Form
Nicht
Form
Pt., Z
Form
Schrif
Form
12 Pt.




857
858

859
860

861

DASP BE-Bra
200+
100 3 .
'
D | "' - . "
J i
100+ i
R? = {040
MBE = 13.70
~2001 uBAMSE = 39,30
.RMEE - 41,62
-200 -100 W00 200
OBS - SH[WIm“Z]
DASP DE-Obe
2001
100 4 i o,
0 e
~100 « TN Y
T R* =024
MBE = 14.94
=200 UDRAMSE = 40,74
RMSE = 43.3%

-200 =100 @ 100 200
QOBS - SHIW/m~2]

DASP IT-Lav

2001

MBE = 15.48
UbRMSE = 54,41

RMSE = 56.57

-200 -fo0 6 100 200
OBS - SH[W/m~™2]

DASP CZ-BK

200

100

=100

=200

R =023
MBE = 18,79
ubRMSE = 45.55
AMSE = 48.27

-z00 =100 0 100 200

OBS - SH[W/m™2]

DASP FI-Sod

200

100

-100

MBE = 41.16

=200 WERMSE = 56,57
JAMSE = 70.04
-200 -100 I:I 200
QOBS -5 H[W.n" m A 21
DASP NL-Loo
200 I
100 i
1] Ll
11‘ ’
100 _
AT =038
MEBE = 17.59
=200 ubRMSE = 48,10
AMSE = 51 21

=200 -100 ] 100 200

0OBS - SHIW/m~™2]

DASP DE-Hai

200

100

=100

=200

200

100

=100

=200

o
R? = 0,30
MBE = .2.93
UBRAMSE = 46.69

RMSE = 46, T8 |

=300 =100 0 el -]

OBS - SH[W/m™2]

DASP FR-Pue

A =051
MBE = -4 89
UDAMSE = 43.86
_FIMEE = 44,13 )
-200 -100 100
0BS5S - 5H[Wfr‘n"2]




870

871

872

873

874

875

876

877

A)

MNEE [gC/m~2/year]

1504

751 o 3 . :
L
o, b S '
-75{ ] ¢
~150 ' .
BE-Bra CZ-BK DE-Hai DE-HoH DE-ObeDE-Wue DK-Glu Fl-Hyy Fl-Sod FR-Pue IT-Lav NL-Loo ES-Cnd
B) GPP [gC/m™2/year] .
1600 . s
L ]
12000 4 * ., * * e . R |
L] L]
800+ . * .
400 o * N
BE-Bra CZ-BK DE-Hai DE-HoHDE-ObeDE-Wue DK-Glu Fl-Hyy Fl-Sod FR-Pue [T-Lav MNL-Loo ES-Cnd
G LAI [m~2/m~2]
0
51 .
41 .
3} [ ] : . l l [ ] .
FAE ® : o s
11 * § .

L ]
BE-Bra CZ-BK DE-Hai DE-HoHDE-ObeDE-Wue DK-Glu Fl-Hyy Fl-Sod FR-Pue [T-Lav MNL-Loo ES-Cnd
e OL

s DAS

LAIj for each site averaged over, all seleeted-sites:

e DaASP

A) 5cm SWC [%]

B) 50cm SWC [%]

401

204

Wzs

30

270

360

0 a0 180 270 360
DOY DOY
E) NEE [gC/m~2/y] F) GPP [gC/m~2/y]
7.5
—2.51 2.5
0 90 180 270 360 0 90 180 270 360
DOY —— 0OBS —— OL —— DASP DOY

Form
.| Schrif

Floore L2 Sonsenalin of obeoppod LOBSandihe simulated (Obumd DASRLstutesand-Hloosbased

on-daily-averagesfrom-athyears-2009-to 2018} and-allsites-A}soilbwatercontent{SWCE-at 5-em

Form
Schrif

| Form
Schrif

Form
Schrif

Form
Schrif



882

883

884

885

. Sites with the same PFT show clear differences in the yearly LAI cycle.,
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4. Discussion “«

4.1 Soil water content improvements; <

Our results confirm that assimilation of high quality in-situ SWC data improves the prediction of
SWC by CLMS5, as it has been demonstrated in several other studies (Hung et al., 2022; Mahmood et
al., 2019; Naz et al., 2019; Liu and Mishra, 2017; Han et al., 2015 ). In our study, we were able to
show that this also applies to forest sites with different climates, tree species, and soil properties.,
Additionally, CRNS observations represent SWC for a larger area in better correspondence to the EC
tower footprint. So far, only few studies have used CRNS information in a data assimilation
framework (Rosolem et al., 2014; Han et al., 2015; Baatz et al., 2017, Patil et al., 2021). In line with
our study, these studies show the high potential of CRNS for improved soil moisture prediction with
land surface models, both in terms of SWC prediction as well as in improving soil hydraulic
parameters. Currently, CRNS stations are operated with increasing numbers worldwide (Andreasen
et al., 2017), in hydrological observatories (e.g. Bogena et al., 2018; Lui et al., 2018), as national
networks (Zreda et al., 2012; Evans et al., 2016) or even increasing at continental scales (e.g. Hawdon
et al., 2014; Bogena et al., 2022), which opens up new opportunities for assimilation of CRNS data
in land surface models at various scales.

In our data assimilation approach, we assumed that the CRNS signal shows a constant sensitivity to
SWC down to the penetration depth of the CRNS. However, Schron et al. (2017) have shown that the
integrated neutron signal over a vertical soil column exhibits a strong decrease in sensitivity with
depth and suggested that this physical behavior of neutrons should be taken into account in model
applications. For example, Shuttleworth et al. (2013) developed a simple, physically-based analytical
model to translate model-predicted soil moisture profiles into aboveground fast neutron counts within
a data assimilation framework. A simpler method was proposed by Schron et al. (2017) by using
vertical weighting functions that depend on SWC, atmospheric pressure, horizontal distance and
vegetation height. Therefore, in a follow-up study, we will test whether observation operators that
account for the vertical weights of the different model soil layers according to the decreasing
sensitivity of CRNS with depth will improve our SWC prediction results.

4.2 Evapotranspiration estimation without improvements from SWC DA

Several studies have demonstrated the potential of improved ET prediction using data assimilation of
SWC measurements (Liu and Mishra, 2017; Girotto et al., 2017; Lidard et al., 2011). These studies
focused on regional or global scale and show heterogeneous spatial patterns of improvement to ET
estimation, Baatz et al. (2017) showed that assimilation of CRNS observations altered the ET

estimation in CLM4.5 in parts of their study area by up to 80 mm per year compared to the OL
approach.,

However, in our study with the land surface model CLM5 that data assimilation of SWC does not
improve the ET prediction for European forest sites. We also, found that the impact on ET from

assimilating CRNS observations is similarly limited as assimilation of other in-situ SWC data Since
our study sites cover a variety of climates and soil types, we assume that this result also applies to
other forest sites worldwide with similar tree species.

The lack of improvement in ET prediction in the case of data assimilation of in-situ soil moisture
information is consistent with findings from other studies. Girotto et al. (2017) found a decrease in
ET accuracy after assimilating GRACE data over India and attributed the results to the representation
of irrigation in the model. Similarly, Peters-Lidard et al. (2011) showed mixed results after
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assimilating multiple satellite soil water content products over North America with spatial variation
of improvements and deterioration of ET estimation. Overall, for 9 of the 13 forested study sites our
OL simulations show positive mean bias error indicating that CLM5 underestimates the ET compared
to the FLUXNET observations. These underestimations are-tr-agreementagree with the results shown
in the study by Cheng et al. (2021) showing that CLM5 underestimates ET observations. Additionally,
Nearing et al. (2018) investigated the contribution of model structural errors and model inputs for
four different LSM and concluded that SWC uncertainty was dominated by soil parameter uncertainty
while ET uncertainty was dominated by forcing uncertainty. Without a similar in-depth benchmark
study for CLM5, but from our results and the results of the previously mentioned CLMS5 studies a
similar conclusion can be drawn for CLM5,

A different aspect is that we assume that the EC data are correct to validate our simulation results.
However, the EC-data might be affected by energy balance closure issues (Foken, 2008; Hendricks
Franssen et al., 2010).,

4.4 Methods to improve ET estimation,

There are various approaches to improve modeled ET estimates. For example, Zhang et al. (2020)
identified and optimized four hydraulic and three vegetation parameters in CLM4.0 that improved
ET estimation by 7.3% for the optimization period and 5.3% for the validation period for China.
Similarly, Post et al., (2017) calibrated eight parameters to improve NEE estimation in CLM 4.5 and
a similar approach to optimize vegetation parameters in CLM 5.0 for ET estimation could improve
simulation results. Tang et al. (2015) implemented a root hydraulic redistribution model in CLM4.5
to improve ET estimation but found that their method was only able to improve ET predictions north
of 20°N. They identified the representation of deep roots, soil hydraulic parameterization for certain
soils, meteorological forcings, and the parameterization of the water table dynamics and drainage as
the main limitations to improve ET by their method.,

Denager et al. (2022) used SWC measurements for an agricultural site in Denmark for parameter
calibration of soil texture, LAI, stomata conductance and the root distribution in CLM5 and obtained
improved energy partitioning of ET and SH. However, they also found it difficult to calibrate the
parameters to get an improvement in SH estimation throughout the year and suggested that the
difference in energy balance closure between LSMs and EC flux observations contributes to the bias.,
Fox et al. (2022) concluded that errors in LAI estimations in LSMs lead to substantial flaws in the
representation of carbon, water, and energy fluxes. Furthermore, they conclude that data assimilation
to remove bias in LAI improves LSMs results significantly and is advisable until the prognostically
modeled LAI improves substantially. For example, Zhang et al. (2016) assimilated remotely sensed
LAI data into the Biome-BGC model at two sites and improved both ET and NEE estimates, evaluated
with EC tower measurements. Rahman et al. (2022) showed that the joint LAl and topsoil SWC
assimilation from satellite products improved the ET estimation for the Contiguous United States
compared with independent validation datasets. While data assimilation of topsoil SWC alone only
improved the SWC estimation.,

As mentioned, LAI is identified as a key variable to improve ET estimation and representation of
land carbon processes. Therefore, in future work we will investigate the effects of data assimilation
of LAl and joint state-vegetation parameter estimation on the simulation of carbon, water, and energy
fluxes with CLM5,,
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5. Conclusions,

This paper analyzed the impact of the assimilation of in situ soil water content (SWC) data on SWC

characterization, evapotranspiration (ET), sensible heat flux (SH), gross primary production (GPP)
and net ecosystem exchange (NEE), for 13 forested sites in Europe. Assimilation of SWC, from both
point scale and plot scale observations, with the Ensemble Kalman Filter, using the Community Land
Model version 5 coupled to the Parallel Data Assimilation Framework (CLM5-PDAF) improves
SWC prediction (RMSE reductions between 56% and 64% compared to the open loop run, and
depending on measurement depth). However, assimilation of in situ SWC does not improve the ET
prediction for the investigated European forest sites. For most of the sites, data assimilation showed
almost no effect on ET fluxes (RMSE changes between +/- 1%) and some sites showed strong
negative effects of SWC assimilation on ET predictions ( -20% to -30% change in RMSE)., The
assimilation of in situ SWC from Cosmic Ray Neutron Sensors (CRNS), which determine SWC over

a larger horizontal footprint more in correspondence with the eddy covariance footprint, for three of
the 13 sites, also does not improve ET characterization. These results suggest that improving the
SWC estimation of state-of-the-art LSM such as CLM5 stil-sufferfrom-uncertainties—+a—_is not
sufficient to improve ET estimation for forest sites. To improve ET estimation it is also necessary to

consider the representation of set-hydrelogical-processes-in-forests—e-g—deep-rootLAl in magnitude
and timing, as well as uncertainties in  water uptake-tneertaintiesin-the-representation-of biolegical
processes-of-tree-transpiration-parthy-related-to-uneertatn by roots and, vegetation parameters;, In the

future, to improve modeled ET using data assimilation we will further examine the potential of
assimilating different state variables, like for example leaf area index and updating related vegetation
parameters. In addition, we will apply a measurement operator in the data assimilation framework
that considers the vertical sensitivity of the CRNS signal.
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Code IGBP as is used for FLUXNET MF for mixed forests, ENF for evergreen needle leaf forests

DBF for deciduous broad leaf forests, EBF for evergreen broad leaf forests, WSA for woody savannah.
LON is longitude and LAT latitude.

ds

Site name Country Abbreviation Code LON LAT Elevation Data Mean Mean Typical
[m.as.l.] source annual annual tree
temperature precipitation species
[°C] [mm]
Brasschaat Belgium BE-Bra MF 451 513 16 FLUXNET 9.8 750 Scots pine
Bily Kiiz forest Czech CZ-BK ENF 18.53 49.5 875 FLUXNET 7 1316 Norway
Republic spruce
Hainich Germany DE-Hai DBF 10.45 51.07 430 FLUXNET 8.3 720 Mixed
Beech
Hohes Holz Germany DE-HoH DBF 11.21 52.08 217 COSMOS 10 820 Mixed
Europe beech
Oberbarenburg Germany DE-Obe ENF 13.72 50.78 734 FLUXNET 5.5 996 Norway
spruce
Waiistebach Germany DE-Wue ENF 6.33 50.5 605 COSMO0S 7 1180 Spruce
Europe
Gludsted Denmark DK-Glu ENF 9.33 56.07 86 COSMOS 8.2 1080 Spruce
Europe
Conde Spain ES-Cnd WSA -3.22 37.91 370 FLUXNET 15.8 474 Olive grove
Hyytiala Finland  Fl-Hyy ENF 24.29 61.84 181 LTER 3.8 709 Boreal
Europe Scots pine
Sodankyla Finland FI-Sod ENF 26.63 67.36 180 FLUXNET -1 500 Boreal
Scots pine
Puéchabon France FR-Pue EBF 3.59 43.69 270 FLUXNET 13.5 883 Evergreen
oak
Lavarone Italy IT-Lav ENF 11.28 45.95 1353 FLUXNET 7.8 1291 Coniferous
forest
Loobos Netherlan NL-Loo ENF 5.74 52.16 25 FLUXNET 9.8 786 Scots pine
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Figure 1: Map showing the location of the selected study sites of the FLUXNET (F), eLTER (L) and
1645 COSMOS-Europe (C) networks.
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Figure 2: Scatter plots of observed soil water content at 20 cm depth at nine study sites versus OL and
1650 DAS simulated soil water content. The points represent daily averages for the days observation data are
available. Green points are OL and blue points are DAS results.
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Figure 3: Scatter plots of observed soil water content at 20 cm depth at nine study sites versus OL and
1655 DASP simulated soil water content results at 20 cm depth. The points represent daily averages for the
days observation data are available. Green points are OL and purple points are DASP results.
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Figure 4: Scatter plots of observed soil water content at three CRNS study sites (DE-HoH left column, -
DE-Wue middle column, DK-Glu right column) versus simulation results (OL results in the top row, DAS
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the days on which observation data are available.
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The grey line is the value at 5 cm depth, the blue line at 20 cm depth, and the green line at 50 cm depth.
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classification code for the different forest types (MF: mixed forest, ENF: evergreen needle leaf forest

DBF: deciduous broad leaf forest, EBF: evergreen broad leaf forest, AVG: average over all forest types).
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Figure 9: Comparing the SWC and ET characterization for the OL and DASP simulations using CLM5-
SP. Each point represents the overall average RMSE change for one site. The color of the points indicate
the forest type (MF: mixed forest, ENF: evergreen needle leaf forest, DBF: deciduous broad leaf forest,
EBF: evergreen broad leaf forest, AVG: average over all forest types).
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Figure 10: Scatter plots of observed sensible heat flux at eight study sites versus OL simulation results.« — @
The points represent daily averages for the days on which observation data are available. Pt
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725 FEigure 11; Scatter plots of observed sensible heat flux at eight study sites versus DASP simulation results. -

The points represent daily averages for the days on which observation data are available.
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Figure 12: Open loop (OL) and assimilation scenario (DAS and DASP) yearly averages of A) net
1730 ecosystem exchange (NEE), B) gross primary production (GPP), and C) leaf area index (LAI) for all
selected sites.
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Figure 13: Seasonality of observed (OBS) and simulated (OL and DASP) states and fluxes based on daily

averages from all years (2009 to 2018) and all sites: A) soil water content (SWC) at 5 cm depth, B) SWC

at 50 cm depth, C) evapotranspiration (ET), D) sensible heat flux (SH), E) net ecosystem exchange (NEE),
and F) gross primary production (GPP).
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Figure 14: Seasonality of simulated (DASP) Leaf Area Index for each of the sites.
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5 cm depth. The points represent daily averages for the days on which observation data are available.

J%ASP BE-Bra J%ASP CZ-BK S%ASP DE-Hai
75- 75 75
60 60 60
45 45 45
30 30 30

RMSE = 3.07
ubRMSE = 2.44

RMSE = 8.41 RMSE = 3.66

ubRMSE = 6.87 UbRMSE = 3.29

15- il 15 RS 15 i
% 15 30 45 60 75 %0 % 15 30 45 60 75 90 % 15 30 45 60 75 9
OBS - SWC[%] OBS - SWC[%] OBS - SWC[%]
DASP - DASP - DASP -
90 DE-Obe 90 FI-Hyy 90 FI-Sod
75- 75 75
60- 60 60
45/ 45 45|
30 ] ': » RMSE = 7.16 30 30 RMSE = 6.43
vy v ubRMSE = 4.63 UbRMSE = 6.17
15- YR 15 15 J RS

+ ' N ' N ' | | v '# " v T

% 15 30 45 60 75 90 % 15 30 45 60 75 90 % 15 30 45 60 75 90
OBS - SWC[%] OBS - SWC[%] OBS - SWC[%]

DASP ; DASP 3 DASP _

50 FR-Pue 90 IT-Lav 90 NL-Loo

75- 75 75

60 60 60

45 45 45

30 1 RMSE = 3.51 30 RMSE = 3.37 30 RMSE = 6.49

ubRMSE = 3.48 UbRMSE = 3.36 ubRMSE = 3.73

15 MBE S a6 15 eyl 15 oot

% 15 30 45 60 75 90 00 15 30 45 60 75 90 % 15 30 45 60 75 90
OBS - SWC[%] OBS - SWC[%] OBS - SWC[%]

DASP -

90 ES-Cnd

75-

60-

45

30-

RMSE = 5.17
ubRMSE = 4.93
MBE = 1.57

R =068

15;

O0 15 30 45 60 75 90
OBS - SWC[%]

Figure A2 Scatter plots of observed soil water content at ten study sites versus DASP simulation results«
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at 5 cm depth. The points represent dail

averages for the days on which observation data are available.
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760 Figure A3 : Scatter plots of observed soil water content at ten study sites versus OL simulation results at« — { Fo
averages for the days on which observation data are available.
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Figure A4 : Scatter plots of observed soil water content at ten study sites versus DAS simulation results« ——

at 20 cm depth. The points represent daily averages for the days on which observation data are available.

60



]

DASP -
a0 BE-Bra

75
B0
45
30
15

RMSE = 1.63
ublRMSE = 1.63
MBE = .01

R = 000
Dn 15 30 45 60 75 90
OBS - SWC[%]
DASP _
90 DE-Obe
75
60
45
30 %+ RMSE = 531
¥ ubiRMSE = 3.92
15 el R-pas
Dn 15 30 45 60 75 90
OBS - SWC[%]
DASP -
90 FR-Pue
75
60
45
3D RMSE = 3,73
ubRMSE = 256
15 e
00 15 30 45 60 75 90
OBS - SWC[%)]

DASP -
a0 CZ-BK

75
&0
45
30

RMSE = 7.25
ubBMSE = 5.71

15 F

% 15 30 45 60 75 90
0BS - SWC[%]

GASP Fl-Hyy

75

60

45

300

PRAMSE = 5,52
UBRMSE = 5.88
MEE = 2.8%

AT = 0,60

15

ﬂn 15 30 45 60 75 90
OBS - SWC[%)]
DASP ~
90 IT-Lav
75
60
45
3ﬂ T RAMSE = 4, T2
ubRM5E = 2.11

15 WBE = 4.23

0

0 15 30 45 60 75 90
OBS - SWC[%]

DASP
90

75
60
45
30
15

o

DASP
90

75
60

DE-Hai

"3

RAMSE = 6.44
ubRMSE = 4.65

0 15 30 45 &0 75 90
OBS - SWC[%]

FI-Sod

RAMSE = 5.60
ubRMSE = 5.04

GD 15 30 45 60 75 90
OBS - SWC[%)]
DASP -
90 NL-Loo
715
60
45
30 i AMSE = 2.01
UbRMSE = 1.90

15 e

0

0 15 30 45 &0 75 90
OBS - SWC[%]

Figure A5 : Scatter plots of observed soil water content at ten study sites versus DASP simulation results

770 at 20 cm depth. The points represent daily averages for the days on which observation data are available.

61



775

oL BE-Bra

90
75
60
45
30
15

0O 15 30 45 60 75 90

RMSE = 5.73
ubRMSE = 1.87

oL CZ-BK

90
75
60
45
30
15

RMSE = 15.60
ubRMSE = 7.56
MBE =-13.64
R? =0.04

OBS - SWC[%]

00 15 30 45 60 75 90

OBS - SWC[%]

oL - oL -

od DE-Obe o FI-Hyy

75 75

60 60

45 45

30 RMSE = 11.72 30 =13.82

ubRMSE = 4.29 UbRMSE = 9.63

15 Beav 1 BESH

0

00 15 30 45 60 75 90

OBS - SWC[%]

0 15 30 45 60 75 90
OBS - SWC[%]

QOOL IT-Lav 900L NL-Loo
75 75
60 60
45 45
30 30

15

% 15 30 45 60 75 90

RMSE = 6.54

OBS - SWC[%]

15
0

RMSE = 14.89
UubRMSE = 2.92
MBE = -14.80
R{ =016

0 15 30 45 60 75 90
OBS - SWC[%]

oL DE-Hai

90
75
60
45
30
15

0

RMSE = 10.60
UbRMSE = 3.71
MEE = 9.93
R%=0.59

0 15 30 45 60 75 90
OBS - SWC[%]

oL FR-Pue

a0
75
60
45
30
15

00 15 30 45 60 75 90

RMSE = 13.92
UbRMSE = 4.12
MEBE = -13.29
R’ =0.65

OBS - SWC[%]

Figure A6: Scatter plots of observed soil water content at eight study sites versus OL simulation results«
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1780 Figure A7: Scatter plots of observed soil water content at eight study sites versus DASP simulation results
at 50 cm depth. The points represent daily averages for the days on which observation data are available.
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Figure A8: Time series .for the Clapp-Hornberger shape parameter B (BSW) for each site in the DASP

simulation. The grey line is the value at 5 cm depth, the blue line at 20cm depth, and the green line at

50cm depth.
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Figure A9: Time series .for the soil matric potential for each site in the DASP simulation. The grey line
is the value at 5 cm depth, the blue line at 20cm depth, and the green line at 50cm depth.
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1790 Figure A10: Time series .for the porosity for each site in the DASP simulation. The grey line is the value
at 5 cm depth, the blue line at 20cm depth, and the green line at 50cm depth.
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Code availability, -

The code used in this study is available at https://github.com/HPSCTerrSys/TSMP .
Data availability. «

Data for the European FLUXNET sites is available at http://www.europe-fluxdata.eu/. Some additional

data used in this study is from the eLTER data portal ( https://data.lter-europe.net/) and ICOS data portal
(https://www.icos-cp.eu/). The CRNS data is published in “Dataset of COSMOS-Europe: A European

network of Cosmic-Ray Neutron Soil Moisture Sensors” available at https://doi.org/10.34731/x9s3-kr48

(Bogena and Ney, 2021).
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