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Abstract. Accurate predictive modelling of the ocean’s global carbon and oxygen cycles is challenging because of uncertain-

ties in both biogeochemistry and ocean circulation. Advances over the last decade have made parameter optimization feasible,

allowing models to better match observed biogeochemical fields. However, does fitting a biogeochemical model to observed

tracers using a circulation with known biases robustly capture the inner workings of the biological pump? Here we embed a

mechanistic model of the ocean’s coupled nutrient, carbon, and oxygen cycles into two circulations for the current climate. To5

assess the effects of biases, one circulation (ACCESS-M) is derived from a climate model and the other from data assimilation

of observations (OCIM2). We find that parameter optimization compensates for circulation biases at the expense of altering how

the biological pump operates. Tracer observations constrain pump strength and regenerated inventories for both circulations,

but ACCESS-M export production optimizes to twice that of OCIM2 to compensate for ACCESS-M having lower sequestra-

tion efficiencies driven by less efficient particle transfer and shorter residence times. Idealized simulations forcing complete10

Southern Ocean nutrient utilization show that the response of the optimized system is sensitive to the embedding circulation.

In ACCESS-M, Southern Ocean nutrient and DIC trapping is partially short-circuited by unrealistically deep mixed layers. For

both circulations, intense Southern Ocean production deoxygenates Southern-Ocean-sourced deep waters, muting the imprint

of circulation biases on oxygen. Our findings highlight that the biological pump’s plumbing needs careful assessment to predict

the biogeochemical response to ecological changes, even when optimally matching observations.15

1 Introduction

The ocean’s nutrient, carbon, and oxygen cycles are of central importance for climate and the fertility of the ocean. The

cycling rates and patterns are shaped by the subtle interplay between the ocean circulation and the generation, transport, and

respiration of organic matter (the biological pump) as well as by air–sea gas exchange. Building robust predictive models of

the ocean’s biological pump poses a formidable challenge because of the myriad of biogeochemical processes that must be20

parameterized. Current prognostic earth-system models are computationally expensive, which prohibits systematic parameter
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space exploration. Relatedly, the long timescales of the global ocean circulation make it expensive to spin up earth-system

models by brute-force time stepping and differences among models have been shown to reflect differences in spin-up strategy

(Séférian et al., 2016), compounding the parametric uncertainties. As a result of these computational challenges, simulations

with earth-system models have made widely varying predictions of future ocean biogeochemistry (Bopp et al., 2013; Cocco25

et al., 2013; Henson et al., 2022).

To reduce the parametric uncertainties, biogeochemical parameters can be objectively determined by minimizing the quadratic

mismatch between model-predicted and observed tracer distributions. Systematic parameter optimization is made possible by

embedding the biogeochemical model in climatological steady flow and efficiently solving the generally nonlinear equations

of the system directly for steady state using Newton-type implicit solvers (e.g., Kwon and Primeau, 2006). This approach30

exploits the matrix representation of the discretized advective–diffusive flux-divergence operator (the “transport matrix”, e.g.,

Khatiwala et al., 2005; Primeau, 2005; Chamberlain et al., 2019) and has been applied to a number of biogeochemical cycles

embedded in data-assimilated ocean circulation models (e.g., Primeau et al., 2013; DeVries, 2014; Teng et al., 2014; Holzer

et al., 2014; Pasquier and Holzer, 2017; DeVries and Weber, 2017; Wang et al., 2019, to cite a few).

When the circulation is data-assimilated to provide a realistic representation of the ocean’s advective–eddy-diffusive trans-35

port, optimizing biogeochemical parameters is a natural strategy for obtaining robust representations of the ocean’s biogeo-

chemical cycles. However, Kriest and Oschlies (2015) demonstrated that optimal parameters for the Model of Oceanic Pelagic

Stoichiometry (MOPS; Kriest and Oschlies, 2015) differ depending on the circulation model that is used. This raises the ques-

tions: If the circulation is taken from a climate-model simulation with known biases in the ocean’s physical state, do optimized

biogeochemical parameters still provide a reliable estimate of the ocean’s biogeochemistry, and are the simulated responses of40

the system to either biogeochemical or physical perturbations robust?

To answer these questions, we develop a relatively simple model (dubbed PCO2 here) of the coupled phosphorous, carbon,

and oxygen cycles and contrast the properties of its biological pump and its response to perturbations depending on whether

the model is optimized for a data-assimilated circulation or for a climate-model-derived circulation. The PCO2 model was

constructed with a particular focus on capturing the coupling between oxygen and organic-particle respiration. We use a45

mechanistic formulation of nutrient uptake rather than an observation-based parameterization so that biological production

can fully respond to the embedding circulation (and also to make PCO2 suitable for exploring climate-change scenarios in

future studies). PCO2 improves on the well-established approach of the Ocean Carbon-cycle Model Intercomparison Project

(OCMIP; Najjar et al., 1992) by not constraining the functional form of the particle-flux-divergence profile to be either a power

law or an exponential. Instead, we explicitly model sinking biogenic particles and let them react with the ambient oxygen in a50

simple temperature-dependent model of microbial respiration (DeVries and Weber, 2017; Laufkötter et al., 2017) to determine

the flux divergence and respiration rates mechanistically.

We focus on a decadal-mean circulation derived from the ACCESS1.3 climate model (Chamberlain et al., 2019; Holzer

et al., 2020) for the 1990s. To assess PCO2’s biogeochemistry and biological pump when embedded and optimized in this

climate-model circulation, we compare with PCO2 embedded and optimized in a data-assimilated ocean circulation (OCIM2,55

DeVries and Holzer, 2019). OCIM2 has been optimized so that its transport produces tracer fields that are as close as possible
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to observations. Thus, OCIM2 provides a realistic reference circulation with minimal biases. To explore the effect of optimized

biogeochemical parameters on the response to biogeochemical perturbations, we consider idealized perturbations in which

biological production in the Southern Ocean is intensified to cause a nearly complete nutrient drawdown. Similar perturbations

have been used previously to quantify the Southern Ocean’s key role in supplying the rest of the ocean with preformed nutrients60

(e.g., Sarmiento et al., 2004; Marinov et al., 2006; Holzer and Primeau, 2013) and to illustrate Southern Ocean nutrient trapping

(Primeau et al., 2013). Here, we establish how the response to Southern Ocean nutrient drawdown differs depending on whether

biogeochemistry is optimized for the OCIM2 or ACCESS circulations.

We find that the biogeochemical model can be optimized to fit the observed phosphate, dissolved inorganic carbon, oxy-

gen, and total alkalinity distributions with reasonable fidelity for both data-assimilated and climate-model derived circulations.65

However, the biological pump operates very differently for the OCIM2 and ACCESS-M circulations, largely because of differ-

ences in the sequestration time of regenerated organic matter. The differences in the biological pump in turn produce significant

differences in the response of the system to imposed Southern Ocean nutrient drawdown.

2 Methods

2.1 Biogeochemical Model70

We model the ocean’s coupled phosphorus, carbon, and oxygen cycles using mechanistic representations of nutrient uptake,

particle transport, and respiration. Depending on whether oxygen is prescribed by observations or explicitly modelled, we refer

to the model as the PC or PCO2 model, respectively.

Biological production is approximated as requiring only phosphate as a nutrient and the production of organic carbon is

keyed to phosphate uptake. For simplicity, dissolved organic phosphorus (DOP) is deemed to be not bioavailable, although it75

has been shown to be utilized in oligotrophic regions (Letscher et al., 2016). Nitrate, silicic acid, and iron limitations are not

explicitly modelled either, but we do parameterize the effect of denitrification on respiration as described below. We justify our

approximations a posteriori by the fidelity of the modelled tracers to observations.

We model four distinct phosphorus pools: dissolved inorganic phosphorus (DIP, which is phosphate, PO4), semi-labile DOP,

and fast and slowly sinking particulate organic phosphorus (POPf and POPs). The steady-state model equations for these tracers80

are

T [DIP] = −UP +RDOP + RPOP + Jgeo
DIP

T [DOP] = σUP −RDOP + DPOP

Sf [POPf ] = σf (1−σ)UP −RPOPf
−DPOPf

Ss [POPs] = (1−σf)(1−σ)UP −RPOPs
−DPOPs

(1)

with transport terms (circulation or gravitational settling) on the left and sources and sinks on the right. Specifically, T [X] =

∇· (u [X])−∇· (K∇[X]) is the flux divergence of dissolved tracer X due to advection (velocity u) and eddy diffusion (diffu-
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sivity tensor K). Similarly, Sk [POPk] = ∂z(wk [POPk]) is the flux divergence of POPk sinking with speed wk (where k = f85

or k = s). Note that here particles are only subjected to gravitational sinking; including their advective–diffusive transport does

not significantly change the solutions but greatly increases computational cost. A fraction σ of the phosphorus uptake UP is

allocated to DOP, a fraction σf (1−σ) is allocated to POPf , and the remainder is allocated to POPs, all of which are remineral-

ized back into the DIP pool (through RDOP and RPOP =RPOPf
+RPOPs

). The global phosphate inventory is constant in our

model and prescribed by weakly restoring DIP to the observed global mean [DIP] = 2.17µM via Jgeo
DIP = ([DIP]−[DIP])/τgeo90

with “geological” timescale τgeo = 1Myr. Without prescribing the total amount of phosphate in this way there would be no

unique solution to steady-state Eq. (1). (This contrasts with time-stepped models where, in the absence of external sources and

sinks, the total amount of phosphate is set by the initial conditions.) Remineralization of organic phosphorus and respiration

of organic carbon are modelled as having the same specific (i.e., per molecule) rates so that remineralization preserves the C:P

ratio of organic-matter production (discussed below). We now briefly describe how the remineralization/respiration rates are95

modelled; details of the phosphorus uptake rate per unit volume UP are provided in Appendix A1.

The remineralization of particulate organic matter (POM; either POP or particulate organic carbon, POC) is known to have

relatively simple dependencies on oxygen and temperature that are parameterized following previous work (e.g., Laufkötter

et al., 2017; DeVries and Weber, 2017; Dinauer et al., 2022):

RPOMk
= γk q

T−Tref
10K

10

max([O2], [O
lim
2 ])

max([O2], [Olim
2 ]) +KO2

[POMk], (2)100

where Tref = 20°C and [Olim
2 ] = 5µM defines the oxygen limit below which water is deemed anoxic. Note that Eq. (2) differs

from previous parameterizations in that we include the effect of microbes switching to nitrate for organic-matter oxidization

(denitrification) by explicitly disallowing respiration rates to decline in anoxic waters through the max function in Eq. (2).

This means that respiration continues when [O2] falls below [Olim
2 ] at the same per-molecule rate as would occur if [O2] was

equal to [Olim
2 ] but without utilizing oxygen. (Note that [O2] can fall below [Olim

2 ] in spite of this being explicitly disallowed105

in the oxygen tracer equation (5) discussed below because we smooth step functions for differentiability as described in Ap-

pendix B3.) To limit unrealistic POM accumulation in the bottom grid boxes under anoxic conditions, a small fraction of POM

is dissolved into DOM at rate DPOM = [POM]/τPOM with τPOM = 1yr. Remineralization of dissolved organic matter (DOM;

either DOP or dissolved organic carbon, DOC) is simply approximated as RDOM = [DOM]/τDOM with a globally uniform

time scale τDOM = 2yr.110
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The steady-state model equations for dissolved inorganic carbon (DIC), DOC, fast and slow POC (POCf and POCs), and

particulate inorganic carbon (PIC, which is CaCO3) are

T [DIC] =−(1+ rPIC (1−σ))UC +RDOC + RPOC +DPIC + Jatm
DIC

T [DOC] = σUC −RDOC + DPOC

Sf [POCf ] = σf (1−σ)UC −RPOCf −DPOCf

Ss [POCs] = (1−σf)(1−σ)UC −RPOCs −DPOCs

SPIC [PIC] = rPIC (1−σ)UC −DPIC

(3)

where SPIC [PIC] = ∂z(wPIC [PIC]) is the flux divergence of PIC sinking with speed wPIC. The uptake rate of carbon per unit

volume UC = rC:PUP is keyed to phosphate uptake UP using the stoichiometric C:P ratio rC:P, parameterized here in terms115

of [DIP] (Galbraith and Martiny, 2015, see also Appendix A2). Uptake of DIC results in the production of DOC, POCf, and

POCs in the same proportions as the corresponding phosphorus tracers (determined by σ and σf ; see Eq. (1)). For OCIM2,

we account for the effect of precipitation and evaporation on DIC with “virtual fluxes” (Murnane et al., 1999) as described in

the OCMIP protocol (Najjar and Orr, 1999). The ACCESS-M matrix captures the flux divergence due to water exchange with

the atmosphere directly. The carbonate pump is keyed to the soft-tissue pump via the rain ratio rPIC = PIC:POC, and PIC120

dissolution is parameterized as DPIC = [PIC]/τPIC with τPIC = 1d.

In Equation (3), Jatm
DIC is the DIC source/sink term due to air–sea CO2 exchange, parameterized in terms of surface winds and

sea-ice fractions using the formulation of Wanninkhof (1992) with prescribed preindustrial atmospheric pCO2 = 278µatm.

(We optimize our model for preindustrial conditions, assuming negligible changes in circulation since preindustrial times.) For

OCIM2, we use the National Centers for Environmental Prediction (NCEP) reanalyses for the ice fraction and 6-hourly surface125

winds, while for ACCESS-M we use the corresponding quantities as simulated by the ACCESS climate model. From these

fields, 6-hourly gas-exchange coefficients for CO2 and O2 are computed (to capture gustiness) and time averaged to form an

annual-mean climatology. The effective partial pressure of CO2 in seawater needed for air–sea CO2 exchange is calculated

from the equilibrium carbonate chemistry using the MATLAB CO2SYS function (Lewis and Wallace, 1998; van Heuven et al.,

2011).130

The sinking speeds of the biogenic particles (ws and wf for POM and wPIC for PIC) are constructed from globally uniform

reference sinking speeds (w∗
s , w∗

f , and w∗
PIC) that are multiplied with a dimensionless in-situ viscosity factor αµ to account for

slower terminal velocities in colder (and to a lesser degree in more saline) waters. αµ depends on seawater viscosity and on the

density difference between POM and ambient seawater (Taucher et al., 2014, Appendix A3).

The concentration of modelled total alkalinity (TA) obeys (Murnane et al., 1999)135

T [TA] = 2
(
DPIC − rPIC (1−σ)UC

)
− 21.8(RDOP +RPOPf

+RPOPs −UP)+Jgeo
TA . (4)

The first term represents sources and sinks of TA due to the cycling of carbonate and the second term contains the contributions

from nitrate, phosphate, and sulfate (for further details see Wolf-Gladrow et al., 2007). We approximate the TA inventory as
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being constant and hence set the global mean [TA] to 2420µM via the Jgeo
TA term, analogous to what we do for phosphate. For

OCIM2, “virtual fluxes” are again used to account for concentration or dilution of TA by evaporation and precipitation.140

The concentration of dissolved oxygen [O2] is set by air–sea gas exchange, organic-matter respiration, and phytoplankton

photosynthesis. In steady-state, modelled [O2] obeys

T [O2] = rO2:C

[
UC − (RDOC +RPOCf

+RPOCs) Θ([O2]− [Olim
2 ])

]
+ Jatm

O2
, (5)

where rO2:C is the O2:C stoichiometric ratio of organic matter approximated as globally uniform. The Heaviside (step) function

Θ switches oxygen consumption off when [O2] falls below [Olim
2 ] = 5µM, consistent with the parameterization of anaerobic145

POM respiration in Eq. (2). The air–sea exchange rate Jatm
O2

for oxygen is parameterized similarly to that for CO2 (Wanninkhof,

1992) using the coefficients for oxygen solubility and Schmidt number as tabulated by Wanninkhof (2014).

2.2 Steady-state ocean circulation models

The nonlinear coupled partial differential equations (1), (3), (4), and (5) are discretized on the model grid and the three-

dimensional tracer fields are organized into column vectors. Linear operators such as T and S then become sparse matrices,150

usually referred to as transport matrices, especially when referring to advection–diffusion. The discretized steady-state equa-

tions are coupled nonlinear algebraic equations that are solved using Newton’s method, requiring order 10 iterations (Ap-

pendix B).

2.2.1 OCIM2

The Ocean Circulation Inverse Model version 2 (OCIM2; DeVries, 2014; DeVries and Holzer, 2019) provides a data-assimilated155

advection–eddy-diffusion transport matrix. The OCIM2 data assimilation uses the ventilation tracers CFC-11, CFC-12, radio-

carbon, and 3He, in addition to sea-level height and air–sea heat and fresh-water fluxes. OCIM2 has a horizontal resolution

of 2°× 2° and 24 depth levels with layer thicknesses that increase from 36m at the surface to 634m for the deepest layer.

The OCIM2 transport operator is an N ×N sparse matrix with N ≈ 2× 105 and 3× 106 nonzero elements. OCIM2 arguably

provides the most realistic estimate of the ocean’s climatological steady-state transport and is thus a natural reference against160

which to assess biases in climate-model-derived transport for the current state of the ocean. For detailed analyses of the OCIM2

circulation, including ideal mean age (mean time since surface contact) and mean re-exposure time (mean time until next sur-

face contact), see the work by DeVries and Holzer (2019).

2.2.2 ACCESS-M

As a climate-model-based estimate of the ocean’s advection–diffusion operator, we use a slightly modified version of the165

“preferred” ACCESS1.3 transport matrix of Chamberlain et al. (2019). This matrix was built from the decadal mean volume

fluxes (resolved plus parameterized) for the 1990s from the ACCESS1.3 “historical" runs (Bi et al., 2013a) with nominal 1°×1°

horizontal resolution (finer in latitude near the equator) and 50 depth levels with layer thicknesses that increase from 10m at

the surface to 335m for the deepest layer. For detailed analyses of the circulation captured by the ACCESS1.3 transport matrix,
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including ideal mean age and mean re-exposure time, see the work by Chamberlain et al. (2019) and Holzer et al. (2020). This170

ACCESS1.3 matrix has a size of N ×N with N ≈ 2.7× 106 and 1.8× 107 nonzeros entries, which is an order of magnitude

larger than the OCIM2 matrix.

The tripolar grid of ACCESS1.3 results in a more complex sparsity pattern that slows the factorization of the Jacobian in

Newton’s method (Appendix B1). We therefore coarse-grain the ACCESS1.3 matrix by lumping together 2×2 nearest horizon-

tal neighbors (similar to the “lump-and-spray” approach of Bardin et al. (2014)), which results in about 16× faster factorization.175

This coarse-graining reduces the maximum ideal mean age in the Pacific, but we compensate by reducing the interior back-

ground diffusivity from 0.3 cm2 s−1 to 0.1 cm2 s−1 to match OCIM2 and to retain the original ideal mean age. We refer to

the resulting matrix/circulation model as ACCESS-M, which is of size N ×N with N ≈ 7× 105 and 5× 106 nonzero entries.

We emphasize that high resolution is not important for transport matrices built from the output of an ocean model because the

model’s volume fluxes already contain the mean effects of processes resolved (and parameterized) at higher resolution in the180

parent circulation model.

The most important difference between ACCESS-M and OCIM2 for simulating biogeochemistry stems from differences in

how the mixed layer is modelled. Both matrix models use mean annual maximum mixed-layer depth (MLD). However, while

OCIM2 specifies MLD from observational analyses (de Boyer Montégut et al., 2004), ACCESS-M uses the MLD of the parent

ocean model. Overall, the ACCESS-M MLD is deeper than observed (roughly 1.5–3 times in the subtropical gyres) and has185

important unrealistic features. In the Weddell and Ross Seas, the ACCESS-M MLD reaches all the way to the sea floor and

the deep winter mixed layers of the North Atlantic and Nordic Seas occupy a much larger area than observed (Appendix C).

The deep Southern Ocean mixed layers are due to unrealistic open-ocean convection (Bi et al., 2013a; Heuzé et al., 2013)

and are a key ACCESS-M feature that imprints on the biological pump and affects its responses to perturbations (see below).

Furthermore, ACCESS-M is simply built from time-averaged model volume fluxes, while OCIM2 has a steady transport that is190

optimized to yield propagated tracer concentrations that are as close as possible to observations. ACCESS-M therefore inherits

documented circulation and thermodynamic biases from the parent ocean model (Marsland et al., 2013; Bi et al., 2013b, 2020).

2.3 Parameter Optimization and Tracer Data

We optimize the PC and PCO2 model parameters by minimizing an objective (“cost”) function that measures the quadratic

mismatch with observed DIP, DIC, O2, and TA concentrations and penalizes deviations from a plausible range of values for195

each parameter. Details on the objective function and optimization procedure are provided in Appendix B4.

For DIP observations we use gridded annual mean phosphate from the World Ocean Atlas 2018 (Garcia et al., 2019).

Gridded O2, DIC, and TA observations are taken from the Global Data Analysis Project (Key et al., 2015; Lauvset et al.,

2016, GLODAP v2;). We optimize our models for preindustrial conditions, assumed to be reasonably well represented by

the OCIM2 and ACCESS-M circulations and by the observational DIP, TA, and O2 climatologies. For DIC, we subtract an200

estimate of anthropogenic DIC as propagated from the reconstructed atmospheric CO2 time history since 1720 using the data-

assimilated OCIM2 as done by Holzer et al. (2021b). Observed tracer concentrations are interpolated onto the grid of each

circulation model, and grid cells without observations are ignored in the objective function.
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3 Results

We now focus on the optimized steady state of the PCO2 model and how it differs depending on whether PCO2 is embedded205

in the OCIM2 or ACCESS-M circulation. To examine the sensitivity of optimized model parameters to model complexity, we

will also consider the PC model, for which O2 concentrations are prescribed by observations.

3.1 Fidelity to observed fields

To quantify how well the optimized PCO2 model matches observations, we first examine the volume-weighted modelled–

observed joint probability density functions (PDFs), which are essentially binned model-versus-observation scatter plots. These210

are shown in Fig. 1a–h together with globally averaged depth profiles (Fig. 1j–l) for DIP, O2, DIC, and TA as obtained with

either the OCIM2 or ACCESS-M circulations. Overall, there is good agreement (tight clustering of the PDFs around the 1:1

line) with volume-weigthed root-mean-square errors (RMSE) that are around 20–30 % of the observed standard deviation for

OCIM2 and around 40–50 % for ACCESS-M.

The optimized OCIM2-embedded PCO2 model compares well to other objectively optimized models of the P, C, and O2215

cycles (e.g., Primeau et al., 2013; Pasquier and Holzer, 2016; Holzer, 2022) as quantified by similar RMSEs (PDF panels of

Figure 1). However, unlike these other models, PCO2 has interactive oxygen providing mechanistic respiration and reminer-

alization. Dissolved oxygen, with its large dynamic range from near zero to about 300 µM, is the tracer that has the largest

mismatch with observations at an RMSE of 34 % of the spatial standard deviation from the global mean. The global mean

vertical [O2] profile matches the observations above 1000m but progressively overestimates deeper concentrations, reaching a220

high bias of about 15 µM at 4000m (Fig. 1j).

The optimized ACCESS-M-embedded PCO2 model performs worse for every tracer, with RMSEs that are larger by a factor

of 1.4–2.4 (Fig. 1e–h). In contrast to the OCIM2 PCO2 model, the ACCESS-M PCO2 model underestimates oxygen at low

concentrations. This could in part be due to ACCESS-M’s finer low-latitude resolution, which may allow for more rapid nutrient

supply, POM production, and in turn higher oxygen utilization rates. Despite the large local mismatches visible in the joint225

PDFs, the horizontally averaged ACCESS-M PCO2 tracer profiles fit the observations reasonably well (Fig. 1i–l), with the

exception of [O2] between 400m to 1500m depth where underestimates by up to 30 µM (the largest profile mismatch across

models and tracers) indicate that ACCESS-M PCO2 has underoxygenated intermediate waters.

The basin zonal means of Figures 2 and 3 show striking differences between the OCIM2 and ACCESS-M PCO2 oxygen

and DIC fields. In the Southern Ocean, ACCESS-M PCO2 strongly overestimates [O2] (by up to 80 µM) in the same region230

where ACCESS-M has unrealistic deep mixing (Fig. C1). This overestimate turns out not to be due to increased preformed

oxygen (Fig. S3), which is similar for OCIM2 and ACCESS-M. Instead, the unrealistically deep vertical mixing dramatically

reduces O2 residence times for ACCESS-M such that total oxygen is closer to preformed oxygen in the Southern Ocean

than is the case for OCIM2. This occurs despite the larger ACCESS-M respiration-rate coefficients (γs and γf ) and lower q10

(Table 1) presumably because of the relatively low organic-matter production in the polar Southern Ocean (Fig. 4 below). In the235

mid- and low-latitude Atlantic, the OCIM2 PCO2 generally overestimates oxygen especially in the OMZs, while ACCESS-M
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Figure 1. (a–h) Joint probability density functions (PDFs) of the modelled and observed concentrations for DIP, O2, DIC, and TA as optimized

for the PCO2 model embedded in the OCIM2 (a–d) and ACCESS-M (e–h) circulations. The darker the colors the denser the PDF such that

n% of the data lies outside of the n-th percentile contour. The volume-weighted root-mean-square error (RMSE) is indicated in each panel

along with its ratio (%) to the spatial mean and standard deviation (SD) of the observations. (i–l) Corresponding simulated and observed

global-mean vertical profiles. (Because of interpolation, the observed profiles depend slightly on the grid used.)

PCO2 underestimates oxygen, especially in the thermocline (by up to 80 µM). The underestimates of ACCESS-M PCO2 are

consistent with its generally strengthened export production (discussed with Fig. 4 below), producing more organic matter
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Figure 2. (a–c) Basin zonal means of [O2] from PCO2 embedded in OCIM2 for the Atlantic (a, left), Pacific (b, center), and Indian Ocean

(c, right). (d–f) Model-observation difference. (g–l) As (a–f) but for ACCESS-M. Light gray indicates missing observations (see main text

for details). For all zonal means shown in this work, the Atlantic basin excludes the Gulf of Mexico and the Caribbean, and the Pacific basin

excludes the Sea of Japan so that the averages are more cleanly interpretable.

and hence having higher oxygen demand than OCIM2 PCO2. We find that ACCESS-M mode and intermediate waters have a

weaker preformed oxygen supply (by order 40 µM, supplementary Fig. S3), which also contributes to the large underestimates.240

In the Pacific, both OCIM2 and ACCESS-M generally underestimate O2 in low latitudes and overestimate it elsewhere, but the

underestimate for ACCESS-M is roughly twice that for OCIM2, again consistent with increased oxygen demand and under-

ventilated mode/intermediate waters. In the Indian Ocean, the mismatches are similar in pattern but of larger amplitude for

ACCESS-M PCO2.
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Figure 3. As Figure 2 but for [DIC].

The zonal-mean [O2] and [DIC] mismatches in Figures 2 and 3 approximately mirror each other with a Pearson correlation245

coefficient of about −0.6. To the extent that O2 and DIC have realistic air–sea exchange, this anticorrelation is consistent with

higher oxygen corresponding to reduced oxygen utilization and hence reduced DIC production. The details of the mismatch

with observations are also influenced by errors in air–sea exchange, but the prominent mirroring of the O2 and DIC mismatches

suggests that errors in oxygen utilization are the dominant driver. Regionally in the North Pacific, the overall anticorrelation

does not hold for ACCESS-M suggesting that other factors play a role there.250

When O2 is prescribed from observations (PC model) rather than explicitly modelled, the mismatch improves for most

tracers, despite oxygen not being self consistent. Specifically, we find that relative to PCO2, the RMSEs of the PC model for

DIP and DIC improve by 15 and 3.1 % for OCIM2, and by 1.1 and 5.8 % for ACCESS-M. For TA, the mismatch improves by

1.8 % for ACCESS-M but slightly degrades by 0.5 % for OCIM2.
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3.2 Parameter sensitivity to circulation and model complexity255

How sensitive are the values of the optimized biogeochemical parameters to whether we use the OCIM2 or ACCESS-M

circulation, and how much do they depend on whether we prescribe the oxygen concentration from observations or model

[O2] self-consistently? Recently Kriest et al. (2020) showed that different circulations generally require different parameter

values to best match observations. While Kriest et al. (2020) demonstrated this in the context of the Model of Oceanic Pelagic

Stoichiometry (MOPS; Kriest and Oschlies, 2015) for 5 circulations, here we address the question for 2 other circulations260

(OCIM2 and ACCESS) using an entirely different model of biogeochemistry (PCO2). In addition, we investigate how sensitive

optimized parameter values are to model complexity in the sense of whether oxygen is prescribed (PC) or modelled (PCO2).

The optimized values of the PC and PCO2 parameters for both the OCIM2 and ACCESS-M cases are collected in Table 1.

The maximal phytoplankton concentration pmax and half-saturation constant KDIP control nutrient uptake and are thus key

for each modelled tracer. While pmax shows sensitivity to both circulation and complexity, it is more sensitive to circulation265

as quantified by the mean relative standard deviations of ∆circ(pmax) = 62% and ∆bgc(pmax) = 35%. (See Appendix E for

definitions of ∆bgc and ∆circ.) By contrast, KDIP is less sensitive to both circulation and complexity, lying in a range of

2.0–3.1 µM across models.

The carbonate pump is controlled by the rain ratio rPIC, the fraction 1−σDOM of production allocated to POM, the sinking-

speed parameter w∗
PIC, and the PIC dissolution timescale, τPIC. These parameters are sensitive to circulation with the OCIM2-270

embedded PCO2 exporting more PIC to greater depth: For OCIM2, rPIC (1−σDOM) = 2.3% and wPIC/τPIC = 3500m, while

for ACCESS-M, rPIC (1−σDOM) = 0.77% and wPIC/τPIC = 2100m. The rain ratio is the most sensitive, with ∆circ(rPIC) =

87%.

Key to the strength of the biological pump are DOM and POM export, which are controlled by a number of optimized

parameters: the fraction σDOM of production allocated to DOM, the fraction σf of POP allocated to fast-sinking particles, and275

the POC respiration-rate amplitudes γf and γs, which are themselves dependent on temperature and oxygen via q10, KO2
, Tref ,

and [Olim
2 ]. Each of these parameters is strongly dependent on circulation with ∆circ ranging roughly from 35 to 110 % (notably

γf and γs have ∆circ ≥ 80%). These large sensitivities despite identical observational constraints show that the biological pump

operates differently in the OCIM2 and ACCESS-M circulations.

Given that parameters can be expected to be least biased when optimized for the data-assimilated OCIM2 circulation, how280

well does ACCESS-M PCO2 match observations when solved with OCIM2-optimized parameters? With optimized OCIM2

parameters the fidelity of the ACCESS-M tracers to observations is strongly degraded. Oxygen is most affected (RMSE doubles

to 64 µM) and particularly unrealistic in the Pacific where the tropical upper ocean and the old waters of the deep Pacific are

strongly deoxygenated (supplementary Figures S4–S6). Near the tropical surface this occurs because an increased fraction of

production, which is largely unaffected, is routed to DOC. (The OCIM2-optimized σ is more than twice the ACCESS-M-285

optimized σ.) POM respiration, however, is shifted to greater depth because the respiration amplitudes (γf and γs) are reduced

relative to their ACCESS-M optimized values, which allows POM to sink deeper (greater transfer efficiency). As a result of

deeper POM respiration (relative to the optimized state), oxygen is stripped out of Antarctic Bottom Water (AABW), which
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Table 1. Biogeochemical model parameters. “Opt.” indicates if the parameter was optimized or not. ∆bgc and ∆circ are the sensitivities to

model complexity and circulation (Appendix E).

Symbol Description Opt. OCIM2 ACCESS-M Unit ∆bgc ∆circ

PC PCO2 PC PCO2 % %

pmax maximum phytoplankton concentration yes 5.27 12.8 20.0 23.4 µM 35 62

KDIP phosphate uptake half-saturation constant yes 2.00 2.86 2.98 3.14 µM 14 17

rPIC PIC:POC rain ratio yes 7.04 6.28 2.26 1.02 % 31 87

w∗
PIC PIC reference sinking-speed yes 3970 3490 2010 2060 md−1 5.3 41

σ fraction of total production routed to DOM yes 66.1 63.9 47.8 24.2 % 24 43

σf fraction of POM production routed to POMf yes 16.3 13.7 31.7 10.3 % 42 33

γf POMf remineralization-rate amplitude yes 0.136 0.156 0.999 1.05 d−1 6.5 110

γs POMs remineralization-rate amplitude yes 0.131 0.165 0.560 0.535 d−1 9.7 81

q10 base of remineralization temperature factor yes 1.55 1.78 3.19 4.25 - 15 53

KO2 respiration half-saturation constant yes 7.22 7.43 6.14 3.01 µM 25 36

rO2:C uptake & respiration O2:C stoichiometry yes 1.41 1.49 1.40 1.31 molO2 molC−1 4.3 4.7

τU phytoplankton growth timescale no 30 d

κT growth & mortality e-folding inverse temperature no 0.063 K−1

KI irradiance half-saturation constant no 10 Wm−2

τDOM DOM remineralization timescale no 2 yr

τPOM POM dissolution timescale no 1 yr

τPIC PIC dissolution timescale no 1 d

w∗
f POMf reference sinking speed no 100 md−1

w∗
s POMs reference sinking speed no 10 md−1

Tref reference temperature for the q10 term no 20 °C

[Olim
2 ] oxygen threshold for denitrification no 5 µM

greatly expands the volume of hypoxic waters in the Pacific. For DIP, DIC, and TA, we find RMSEs of 0.32, 54, and 36 µM,

respectively, which is 30–60 % worse than the ACCESS-M optimized fit. While non-optimal parameters by definition degrade290

the fit to observations, these large increases in mismatch with observations underline the central role of circulation biases.

3.3 Biological pump

Can the optimized PCO2 model robustly predict the patterns and strength of the ocean’s biological pump regardless of whether

we use the OCIM2 or ACCESS-M estimates of the current ocean state? To address this question, we consider a number of

simple metrics of the biological pump and contrast the OCIM2 and ACCESS-M cases.295
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Figure 4. Maps and global zonal integrals of the 100-m POC flux and the carbon export production out of the euphotic zone for PCO2

embedded in OCIM2 (top) and ACCESS-M (bottom). Global integrals are indicated on Asia.

3.3.1 POC flux and export production

A commonly used metric of the biological carbon pump is the POC flux through a given depth horizon. Although the POC flux

through the base of the euphotic zone is arguably more robust (Buesseler and Boyd, 2009), here we simply consider the POC

flux through 100m depth and then consider export production (referenced to the base of the euphotic zone), which is a more

robust comprehensive metric of export.300

Figure 4 shows maps and global zonal integrals of the 100-m POC flux. The geographic patterns of the OCIM2 and ACCESS-

M 100-m POC fluxes are broadly similar, but the globally integrated flux of 22PgCyr−1 for ACCESS-M is three times larger

than the 7.4PgCyr−1 flux for OCIM2. Relative to OCIM2, the ACCESS-M POC flux is too large in the subtropical gyres,

indicating too much production fueled by excessive phosphate supply. The ACCESS-M POC flux is also larger in the subpolar

oceans, particularly in the Pacific and Indian sectors of the Southern Ocean and in the North Atlantic along the Gulf Stream305

trajectory. These differences are likely due to the ACCESS-M model’s deeper mixed layers (Fig. C1).

Because carbon can be exported in both particulate and dissolved form, a more comprehensive measure of export is the

export production, that is, the rate of organic-matter production in a given euphotic water column that results in respired DIC

anywhere in the aphotic ocean (Primeau et al., 2013, Appendix D). Figure 4 also shows maps and global zonal integrals of
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export production. Globally integrated export production, which includes export of DOM, is 16PgCyr−1 for OCIM2 and310

36PgCyr−1 for ACCESS-M, considerably larger than the 100-m POC fluxes. The geographic pattern of export production

is generally similar to that of the 100-m POC flux, but for OCIM2 subpolar export is much larger than low-latitude export in

terms of export production than in terms of the 100-m POC flux.

3.3.2 Pump strength and regeneration pathways

A simple metric of the strength of the biological pump is the fraction of the global phosphate inventory that is regenerated, EP ≡315

⟨[DIPreg]⟩/⟨[DIP]⟩, where the angle brackets denote a global volume-weighted integral. We define DIPreg here as DIP that

was remineralized in the aphotic ocean and has not been in contact with the euphotic zone since (Appendix D2). By contrast,

preformed DIP is transported out of the euphotic zone without passing through the biological pump. EP was introduced (as P ∗)

by Ito and Follows (2005) as a metric of pump efficiency, but regional variations of C:P in POM complicate this interpretation

prompting alternate directly carbon-based metrics of pump efficiency (e.g., Holzer et al., 2021b). Remarkably, despite the320

biases of the ACCESS circulation, the OCIM2 and ACCESS-M embedded PCO2 have almost identical pump strengths of

EP ≈ 44% and 43%. These values are within the 39–50 % range of previous inverse models (DeVries et al., 2012; Primeau

et al., 2013; Pasquier and Holzer, 2016; Holzer et al., 2021b), but above the original AOU-based estimate of 36 % by Ito and

Follows (2005).

Does the biological pump operate in the same way for OCIM2 and ACCESS-M? Phosphate can be regenerated through three325

mechanisms in our model: remineralization of POPf, POPs, or DOP. Similarly, DIC can be regenerated through the respiration

of POCf, POCs, and DOC, and additionally through the dissolution of PIC (carbonate pump). To quantify the importance of

each pathway, we partitioned regenerated DIP and DIC using a Green-function approach (Appendix D2). The pie charts of

Fig. 5 show that the dominant contribution comes from biogenic particles, accounting for roughly 73–78 % of regenerated DIP

(and hence EP) and 82–84 % of regenerated DIC, for both circulations. For regenerated DIC, PIC dissolution makes a sizable330

contribution of 25 % for OCIM2 and 23 % for ACCESS-M, consistent with the very deep dissolution of PIC (exponential

profile with e-folding length of 3490m for OCIM2 and 2060m for ACCESS-M).

To better understand how the biological pump sets the size of the regenerated DIP and DIC pools, it is useful to think about

the bulk sequestration time of the regenerated pool and the corresponding export rates. We therefore write the regenerated

inventory (for a given mechanism) as the product of the corresponding globally integrated export production and the corre-335

sponding bulk sequestration time. (Bulk sequestration/residence time is simply defined here as the ratio of inventory over rate

and is thus equal to the regeneration-weighted mean water-reexposure time.) The bulk sequestration times and corresponding

export productions for each regeneration mechanism are plotted as boxes in Fig. 5, with the height of the box being the se-

questration time, the length being the export production, and the area being proportional to the regenerated inventory. Despite

similar POM-regenerated pools, the export production rates from POM are roughly 3× larger for ACCESS-M than for OCIM2,340

compensating for 3× shorter sequestration times. (This is the case for all POM types, whether it be POP or POC, slow or fast.)

For ACCESS-M, strong export rates (wide boxes) are due to rapid uptake (large pmax) and deep mixed layers, while short

sequestration times (short boxes) are due to rapid (large γs or γf ) and thus shallow respiration. This is a striking example of
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Figure 5. (a) DIPreg contributions from POPf, POPs, and DOP (red, orange, blue) for the PCO2 model embedded in OCIM2 represented as

both a pie chart and a bar chart. Pump strength as a percentage is indicated above the pie chart. Each bar represents the regenerated DIP

inventories in terms of the corresponding export rate (width) × bulk re-exposure time (height). (b) As (a) but for ACCESS-M. (c–d) As (a–b)

but for DIC, including the additional contributions from PIC (gray).

how parameter optimization can change the inner workings of the biological pump to compensate for transport biases. We

hasten to add, however, that we do not use POM measurements as a constraint on the model so that the relative contributions345

due to slow and fast POM are likely model specific.

The smaller optimized PIC:POC ratio for ACCESS-M (rPIC = 1.02% compared to 6.28 % for OCIM2; Table 1) com-

pensates ACCESS-M’s larger carbon export, resulting in ACCESS-M and OCIM2 having similar PIC exports (0.82 and

0.73PgCyr−1). We note that while the value of rPIC = 1.02% is optimal for ACCESS-M, it is unrealistically small com-

pared to other estimates that range from roughly 3 to 12 % (Sarmiento et al., 2002; Jin et al., 2006; Kwon et al., 2022). The350
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sequestration times of the PIC-regenerated DIC pools are also similar for the two circulations (670 yr for OCIM2, 540 yr for

ACCESS-M) despite widely different PIC sinking speeds (and thus dissolution depths given the fixed dissolution timescale

τPIC). This points to compensation due to subtle differences in the regeneration-weighted water re-exposure times. Overall, the

carbonate pump contributes about a quarter of the global regenerated DIC inventory, regardless of circulation. The robustness

of PIC export and PIC-regenerated DIC sequestration times and inventories across circulations is likely due to the alkalinity355

constraint, which acts to adjust the PIC pump to match TA observations.

Figure 5 shows that DOM remineralization makes a substantial contribution to the regenerated DIP and DIC inventories.

The sequestration times of DOM-regenerated DIC and DIP are only a few decades as expected given the short 2-yr e-folding

time for semilabile DOM in our model. The sequestration time of DOM-regenerated DIP or DIC for OCIM2 is ∼1.8 times

larger than for ACCESS-M, but its export rate is ∼1.5 times smaller, giving roughly comparable DOM-regenerated DIC pools360

for both circulations. The larger DOC export for ACCESS-M is consistent with its larger nutrient and carbon uptake, in turn

consistent with its deeper mixed layer supplying more nutrients. We emphasize that DOP and DOC are modelled very simply

here with a single uniform lifetime τDOM and that we did not use any DOM observational constraints (which would require

multiple DOM tracers with a spectrum of labilities). Thus, while our diagnostics demonstrate that DOM can be an important

contributor to export production, the specific values of the DOM-driven export obtained here should not be considered to be365

accurate for the real ocean. With OCIM2, DOM accounts for roughly 50 % of the export production while recent work places

the DOM contribution to carbon export at around 20 % (Letscher et al., 2015).

3.3.3 POC transfer efficiency

The different ways in which OCIM2 and ACCESS-M PCO2 achieve optimum fits to the observations are also manifest in the

models’ particle dynamics, examined here in terms of the POC transfer efficiency. The efficiency of POC transfer from depth370

z1 to a deeper depth z2 is simply the ratio Φ(z2)/Φ(z1) where Φ(z) is the POC flux at depth z. The transfer efficiency is a

convenient and observable metric of POC flux attenuation with depth. High transfer efficiency corresponds to lower respiration

rates and hence to particles surviving to greater depth.

Figure 6 shows maps of the POC transfer efficiency from the base of the euphotic zone (z1 = zeu) to 500m deeper (z2 =

zeu+500m) together with [O2] averaged over the z1-to-z2 water column. For OCIM2, the transfer efficiencies of both slow and375

fast particles have patterns that have a strong inverse correlation with the low oxygen concentrations of the Pacific OMZs. At

a given temperature, respiration rates are modulated by the [O2] Michaelis-Menten factor in Eq. (2), so that lower oxygen and

respiration rates result in higher transfer efficiency, as expected. The fast-sinking POCf achieves a 500-m transfer efficiency of

0.75 in the global mean with local values over 0.85 in the Pacific OMZs. The slowly sinking POCs has more time to respire

over a given depth range and hence has a transfer efficiency of only 0.08 in global mean, reaching around 0.25 in the Pacific380

OMZs. The transfer efficiencies are elevated by around 0.05 in high latitudes because of lower respiration in colder waters as

parameterized by the q10 term in Eq. (2).

We note in passing that the reduced respiration in cold waters competes with increased seawater viscosity, which slows

sinking particles down (smaller viscosity factor; see Appendix A3). The slower sinking allows for respiration to act over a
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Figure 6. The transfer efficiency of POCs (a,b) and POCf (c,d) sinking from the base of the euphotic zone at depth zeu to depth zeu +500m

together with the oxygen concentration averaged over the transferred depth range (e,f) for OCIM2 (a,c,e) and ACCESS-M (b,d,f).

longer period of time, compensating for the lower respiration rates. Depending on the value of q10, this compensation could385

in principle erase the temperature dependence of respiration. However, for both models, parameters optimize such that the

compensation is only partial, with the effect of reduced respiration dominating the effect of increased viscosity. The compen-

sation is stronger for OCIM2 PCO2, for which the viscosity effect is empirically equivalent to dividing temperature (in °C) by

roughly a factor of 2.4 in the q10 term, compared to a corresponding factor of only about 1.3 for ACCESS-M PCO2.

The spatial patterns of the transfer efficiency for both fast and slow POC are markedly different for OCIM2 and ACCESS-390

M. The different patterns are a consequence of the different optimal respiration parameters KO2
and q10. For both slow and

fast POC, the highest transfer efficiencies for ACCESS-M occur in subpolar and polar waters, because of the much greater

sensitivity to temperature (about twice as large a value of q10 compounded with weaker viscosity compensation). In terms of

contributions to the regenerated DIC inventory, we note that the deeper POC respiration in the ACCESS-M Southern Ocean is
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compensated in part by the shorter re-exposure times of about 200 yr (Holzer et al., 2020) compared to up to 700 yr for OCIM2395

(DeVries and Holzer, 2019). For ACCESS-M, the temperature dependence dominates the oxygen dependence with KO2
being

2.5 times smaller than for OCIM2. Compared to the OCIM2 PCO2 model, oxygen in ACCESS-M must therefore drop to 2.5

times lower concentrations for the same reduction in respiration, which is a bit more likely to occur because of ACCESS-M’s

lower OMZ oxygen concentrations (Figures 1 and 2). As a result, ACCESS-M transfer efficiencies still show enhancement in

the OMZs by about 0.3 for fast POC and only 0.03 for slow POC.400

3.4 Response to Southern Ocean nutrient drawdown

Given optimal parameters for both embedding circulations, how robust is PCO2’s response to perturbations? Motivated by

previous studies that explored the importance of the iron-limited Southern Ocean as a source of preformed nutrients to the rest

of the ocean (e.g., Sarmiento et al., 2004; Marinov et al., 2006; Primeau et al., 2013; Holzer and Primeau, 2013; Holzer et al.,

2021b), we perturb the system by forcing nearly complete nutrient utilization south of 30°S. This is accomplished by adding a405

DIP uptake rate of the form [DIP]/τ∗ with τ∗ = 0.1 d. In the following we contrast the ensuing responses of the OCIM2 and

ACCESS-M embedded nutrient, carbon, and oxygen cycles.

Our idealized perturbation increases carbon uptake south of 30°S by 260 % for OCIM2 and by 360 % for ACCESS-M. This

achieves nearly complete nutrient utilization south of 30°S, which redistributes DIP (phosphate) globally because the total

amount of phosphate is conserved in our formulation. Phosphate becomes “trapped” in the Southern Ocean (Primeau et al.,410

2013), reducing nutrient concentrations north of 30°S, where biological production is reduced by 25 % for OCIM2 and by 30 %

for ACCESS-M. The dramatic production increase in the Southern Ocean cranks up the global biological pump strength EP to

almost 90 % for both circulations, similar to findings of Primeau et al. (2013).

To visualize the global redistribution of nutrients, Fig. 7 shows the basin zonal averages of the DIP response. For OCIM2

PCO2, intense Southern Ocean nutrient trapping is evident with [DIP] increases of up to 1 µM at depth. The depletion of415

surface nutrients south of 30°S deprives Antarctic Intermediate and Mode Waters (AAIW and AAMW) of the preformed DIP

that they supply in the unperturbed state to the rest of the ocean (e.g., Sarmiento et al., 2004). The abyssal branch of the

overturning circulation (Holzer et al., 2021a) extends elevated Southern Ocean DIP concentrations into the abyssal Pacific and

Indian oceans. In the Atlantic, the nutrient trapping is more confined to high southern latitudes with North Atlantic Deep Water

(NADW) still supplying up to 0.5 µM preformed DIP in the zonal mean (supplementary Figures S1 and S2).420

For ACCESS-M, the Southern Ocean nutrient trapping is less intense than for OCIM2. The contrast with OCIM2 is partic-

ularly striking in the Atlantic sector where increases in DIP barely reach a quarter of the OCIM2 DIP response. The reason for

this contrast lies in ACCESS-M’s unrealistically deep mixed layers in the Weddell and Ross Seas (Appendix C), which are not

present for OCIM2. The nutrient trapping in OCIM2 occurs by POP being regenerated deep in upwelling Circumpolar Deep

Water (CDW), which returns DIP with the surface Ekman divergence to regions of high production where the POP flux to425

depth is maintained. In ACCESS-M, this sinking-POP–upwelling-DIP trapping loop is short circuited in the regions of unreal-

istic deep mixing. In these regions, DIP regenerated at depth is quickly mixed throughout the water column and utilized again

instead of being slowly returned to the surface by upwelling CDW. Because DOP is not bioavailable in our model, phosphorus
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Figure 7. Atlantic, Pacific, and Indian Ocean zonal-mean [DIP] responses to complete nutrient drawdown south of 30°S. (a–c) Perturbed

[DIP] for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [DIP] and base (unperturbed) [DIP]. (g–l) As (a–f) but for

ACCESS-M PCO2.

in the high-mixing regions is in effect siphoned out of the deep-mixing regions as DOP, with little remaining as DIP. (Outside

the deep mixing regions, regenerated DIP is trapped by the same mechanism as for OCIM2.) The zonal-mean DIP depletion430

due to the short-circuit siphon is visible in Figs. 8g and 8k south of 60°S in the Atlantic and Pacific, with weaker depletion

in the Pacific where deep mixing occupies a smaller fraction of the basin. The weaker Southern Ocean nutrient trapping for

ACCESS-M results in a correspondingly weaker response north of 60°S: Above 1000m, ACCESS-M has smaller decreases in

preformed DIP carried northwards by surface currents, AAMW, and AAIW, and at depth ACCESS-M has smaller increases in

regenerated DIP extending northwards with the abyssal overturning of the Pacific and Indian Oceans (Figures S1 and S2).435
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The DIC response shown in the basin zonal means of Fig. 8 is the result of both Southern Ocean nutrient trapping and

changes in air–sea CO2 exchange. Similar to the DIP response, DIC trapped in the Southern Ocean propagates northwards at

depth with AABW for both OCIM2 and ACCESS-M. The DIC response is generally larger than would be expected from the

DIP response using the C:P stoichiometry of POM (which for zero DIP saturates at about 167molCmolP−1; Galbraith and

Martiny, 2015). The extra DIC is supplied by CO2 ingassing driven by the strong surface DIC drawdown, which changes the440

Southern Ocean from net CO2 outgassing to net CO2 ingassing. The global DIC inventory increases by roughly 7 % for both

circulations. For both OCIM2 and ACCESS-M, the Southern Ocean CO2 ingassing weakens the decrease of preformed DIC

(due to intensified uptake) that is propagated via AAMW and AAIW such that the total DIC response is dominated by the

response of regenerated DIC. As for DIP, Southern Ocean DIC trapping is more pronounced for OCIM2 than for ACCESS-M,

which is again a consequence of ACCESS-M’s unrealistic deep mixing in the Weddell and Ross Seas.445

The zonal mean [O2] response quantified in Figure 9 shows less sensitivity to the choice of circulation. For both OCIM2

and ACCESS-M, intensified Southern Ocean production dramatically deoxygenates the ocean driving [O2] in Southern Ocean

sourced water masses (SAMW, AAIW, AABW) to near zero. (The prominent oxygen plume that can be seen in the deep

South Indian Ocean (Fig. 9c and i) is fed by CDW propagating eastward from the Atlantic.) This deoxygenation is driven

by strongly increased respiration which balances the strongly increased Southern Ocean organic-matter production. Strongly450

increased dissolved organic matter propagates northward from the Southern Ocean with SAMW, AAIW, and AABW, shaping

the oxygen response seen in Fig. 9. Increased photosynthetic oxygen production in the Southern Ocean increases [O2] near the

surface, most of which is quickly lost to the atmosphere and thus not able to meet the greater oxygen demand at depth. Outside

of the Southern Ocean, oxygen weakly increases near the surface (by up to 50 µM) and in northern NADW consistent with

decreased production north of 30°S and decreased respiration in NADW, which also manifested in decreased DIC (Fig. 8d,j).455

Because the overall oxygen response is dominated by increased respiration driving [O2] to near zero in much of the ocean, the

difference in the trapping mechanisms between OCIM2 and ACCESS-M is not as pronounced in Fig. 9. For both circulations,

most of the deep Pacific, Indian Ocean, and Southern Ocean become OMZs ([O2]< 20µM) as the global ocean oxygen

inventory is reduced by about 60 %. Nevertheless, for ACCESS-M stronger oxygen decreases in the deep Southern Ocean and

weaker vertical gradients south of 60°S still show the effect of the rapid deep mixing in ACCESS-M. The more rapid vertical460

exchange with the surface oxygen supply in the Ross and Weddell Seas for ACCESS-M prevent the Atlantic and Pacific south

of 60°S from being as strongly deoxygenated as in OCIM2.

It is worth noting that the response to Southern Ocean nutrient drawdown is completely dominated by the circulation. Indeed,

solving ACCESS-M PCO2 with OCIM2 optimal parameters results in responses that are nearly the same as those shown in

Figures 7–9.465

4 Discussion

This study was motivated by the challenges posed in using ocean circulations from climate models to capture the workings of

the biological pump and its effect on the ocean’s oxygen distribution. In particular, how do biases in a circulation model for the
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Figure 8. Atlantic, Pacific, and Indian Ocean zonal-mean [DIC] responses to complete nutrient drawdown south of 30°S. (a–c) Perturbed

[DIC] for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [DIC] and base (unperturbed) [DIC]. (g–l) As (a–f) but for

ACCESS-M PCO2.

current state of the ocean affect our ability to match observations, and if model parameters are optimized to match observations

as well as possible, how do circulation biases affect the response of the biological pump to perturbations? Answers to these470

questions are important for assessing predictions for the future biogeochemical state of the ocean.

To address these issues, we built a model (PCO2) of the coupled nutrient, carbon, and oxygen cycles. The mechanistic

nutrient and carbon uptake and the simpler treatment of DOC that this affords are the key differences between PCO2 and

the SIMPLE-TRIM model of DeVries and Weber (2017), which otherwise share essentially the same formulation of POM

respiration. The fully interactive oxygen of PCO2 is the key difference with OCMIP-style models (Najjar et al., 2007) for475
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Figure 9. Atlantic, Pacific, and Indian Ocean zonal-mean [O2] responses to complete nutrient drawdown south of 30°S. (a–c) Perturbed [O2]

for OCIM2 PCO2. (d–f) Corresponding difference between perturbed [O2] and base (unperturbed) [O2]. (g–l) As (a–f) but for ACCESS-M

PCO2.

which POM flux-divergence profiles are prescribed and organic carbon passes through the semilabile DOC pool before being

respired (e.g., Holzer, 2022).

We modelled a minimal set of biogeochemical tracers (PO4, POP, DOP, DIC, POC, DOP, PIC, O2, TA), in part because

of the greater computational demands of the ACCESS-M circulation even when coarse-grained to nominal 2°× 2° horizontal

resolution. In particular, we used only a single semilabile pool of DOC, as opposed to separate labile, semilabile, and recalci-480

trant pools (e.g., DeVries and Weber, 2017; Kwon et al., 2022). For this single DOC pool, remineralization is modelled using a

simple fixed 2-yr e-folding because on one hand we lack quantitative estimates of its biological and photochemical degradation

and on the other hand neglect of labile and refractory DOC pools justifies a simpler representation of semilabile DOC. By
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the same token, for simplicity neither DOC nor DOP are bioavailable in our model, although in the real ocean DOP provides

phosphorus to P-limited phytoplankton in highly oligotrophic regions (e.g., Letscher and Moore, 2015).485

The absence of an explicit nitrogen cycle means that we cannot make detailed statements about how denitrification might be

affected by circulation changes, but the basic effect of organic-matter oxidization continuing in anoxic regions is parameterized.

We do not model dissolved iron either, but PCO2 captures the large-scale patterns of production because uptake parameters

are optimized against observed nutrient distributions, which are shaped by all processes in the real ocean. We justify these

approximations a posteriori by the high quality of the fit to the observations for the data-assimilated OCIM2 circulation.490

For most parameters the variation of the optimal value with circulation is larger than the variation with model complexity

(meaning prescribed versus modelled oxygen here, i.e., PC vs PCO2), underlining the all-important control of transport on

ocean biogeochemistry. Our findings also show that caution is necessary when comparing parameter values among models.

Unless the circulation is free from biases and the formulation of a given process can be justified from fundamental biology and

chemistry, parameter optimization is not the same as the estimation of fundamental parameters, the value of which could in495

principle be measured directly. Instead, optimized model parameters take on values that tend to compensate for shortcomings of

the circulation and biogeochemical formulation. This generally changes the inner workings of the biological pump with export

production and transfer efficiency adjusting to the circulation model’s re-exposure times. While only two model complexities

have been examined here (PC and PCO2), our main results should apply to more complex biogeochemical models, although

our detailed quantitative findings are of course model specific.500

Even when optimized with the data-assimilated OCIM2 circulation, significant biases in the biogeochemical tracers remain,

pointing to model deficiencies. Remarkably, for the OCIM2 circulation, the remaining biases in the oxygen distribution are

similar to those of a much simpler OCMIP-style model of oxygen also embedded in OCIM2 (Holzer, 2022). This points

to potential issues with the OCIM2 circulation, air–sea exchange, and/or the parameterization of the oxygen dependence of

microbial respiration. An important caveat that must be kept in mind is that the covariance between biological production, air–505

sea exchange, and seasonally varying circulation is not captured with our steady circulation models. In particular, the models

specify the mixed-layer depth to be the climatological annual maximum, which could over-oxygenate high-latitude regions

consistent with the OCIM2-optimized state having too much oxygen in the mid-depth subpolar North Pacific. Note that using

a time-stepped forward model would have the benefit of capturing seasonal and inter-annual variability but would otherwise

likely lead to qualitatively similar results at steeply increased computational cost.510

Remaining model biases could potentially be reduced by using additional observational constraints. For example, POC

observations (e.g., Dinauer et al., 2022) could be used to better constrain particle dynamics, although these are currently only

available for a very sparse set of stations. Also, our results show that DOC transport is an important pathway for carbon

export, suggesting potential value from using DOC observations as constraints. However, typically, total DOC is measured, not

just the semi-labile fraction, so that modelling all DOC pools becomes necessary, which would increase computational cost515

considerably. One could also try to constrain nutrient uptake with satellite phytoplankton measurements, but this would entail

using different functional classes (e.g., Pasquier and Holzer, 2017) and hence again lead to greater model complexity, and the

larger set of parameters would make the optimization more costly.
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The matrix formulation of PCO2 not only allowed for efficient steady-state solutions, and hence parameter optimization, but

also enabled us to diagnose the inner workings of the biological pump. For example, partitioning regenerated DIP according to520

which mechanisms produced it is generally not computationally feasible for forward models. (For forward models, regenerated

DIP is typically either approximately inferred from apparent oxygen utilization (e.g., Ito and Follows, 2005), or computed as

a residual from preformed DIP (e.g., Marinov et al., 2008), neither of which allow further partitioning according to reminer-

alization mechanism.) Here we were able to calculate this partitioning efficiently for steady state as detailed in Appendix D2.

Similarly, export production is computationally prohibitive for forward models, but readily available in the matrix formulation525

using an adjoint approach (Appendix D1).

5 Conclusions

To explore the effects of climate-model circulation biases on the global biological pump, we embedded a steady-sate model

of the ocean’s nutrient, carbon, and oxygen cycles (PCO2) in the ACCESS-model-derived decadal-mean ocean circulation for

the 1990s and contrasted the results with PCO2 embedded in the data-assimilated OCIM2 circulation. The differences between530

the OCIM2 and ACCESS cases in optimized biogeochemical parameters and in their responses to Southern-Ocean nutrient

drawdown lead us to the following main conclusions:

With optimized parameters, the PCO2 model is able to match the observed DIP, DIC, O2, and TA fields with reasonable

fidelity for both circulations, despite some strong biases in the ACCESS circulation. However, the fit for the ACCESS circu-

lation is not as good as for OCIM2, with RMSEs that are roughly 1.4–2.4 times larger. Neither circulation captures all the535

features of the observed O2 distribution. In OMZs, the oxygen concentration is overestimated for OCIM2 and underestimated

for ACCESS-M, which points to biases in both models (possibly in both biogeochemistry and circulation) that are not com-

pensated by parameter optimization. Modelling O2, as compared to prescribing it from observations, increases the RMSEs for

the other tracers regardless of the circulation.

The parameter values optimized for the realistic data-assimilated OCIM2 circulation are not optimal for the ACCESS-M-540

embedded biogeochemistry. Optimal parameter values vary by up to a factor of 7 between OCIM2 and ACCESS-M and using

OCIM2 parameters for ACCESS-M degrades the fit to observations by 30–60 %. This is in agreement with the findings of

Kriest et al. (2020), that “one size does not fit all”. Circulation is a key control on biogeochemistry, with optimal parameter

values varying more with circulation than with the complexity of the biogeochemistry model (Matear and Holloway, 1995).

Despite fitting observed tracers reasonably well, the optimized biological pump operates differently in the two circulations.545

This manifests in the ACCESS-M export production being roughly two times larger and its 100-m POC flux being three times

larger than for OCMI2, which has a 16.4PgCyr−1 export production and a 7.4PgCyr−1 100-m POC flux. Despite these large

export differences, the biological pump strength (quantified by the regenerated fraction of the phosphate inventory) is robust at

43–44 % across embedding circulations. About 30–50 % of the global production is exported as DOC, which contributes less

than ∼20 % of the regenerated DIC inventory for both OCIM2 and ACCESS-M. The remaining 50–70 % of the carbon export550

is carried by POC, with PIC contributing only a few percent.
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Widely different exports with similar pump strengths are reconciled by differences in sequestration times (DeVries et al.,

2012; Holzer et al., 2021b). We find that DOC- and POC-regenerated DIC takes roughly three times as long to return to the

euphotic zone for OCIM2 than for ACCESS-M so that OCIM2 has a higher sequestration efficiency: a smaller export rate acts

over a longer time resulting in similarly sized pools of respired carbon. For the carbonate pump (PIC), deep dissolution leads to555

a sequestration time of roughly 600 yr and accounts for almost a quarter of the regenerated DIC inventory for both circulations.

Differences in particle dynamics shape differences in the biological pump. Globally, POC is respired deeper in OCIM2 com-

pared to ACCESS-M, but regionally the largest differences in transfer efficiency occur in OMZs and at high latitudes through

the oxygen and temperature dependence of respiration. For OCIM2, respiration is optimized to have a weak temperature de-

pendence but a strong oxygen dependence, enhancing transfer efficiency primarily in OMZs. For ACCESS-M, temperature560

dominates variations in respiration enhancing transfer efficiency mostly at high latitudes. In the ACCESS-M Southern Ocean,

deeper remineralization is counteracted by much shorter deep re-exposure times (less than 200 yr compared to up to 700 yr for

OCIM2) resulting in similar global pump strengths.

Despite PCO2 fitting observed tracers, the differences in the biological pump drive differences in the response to Southern

Ocean nutrient drawdown. For OCIM2, strongly stimulated Southern Ocean production leads to intense nutrient trapping565

and increased carbon sequestration in the deep oceans. For ACCESS-M, Southern Ocean nutrient trapping is partially short

circuited by rapid vertical mixing in the unrealistically deep mixed layers of the Weddell and Ross Seas, where the intensified

surface production siphons DIP out of the entire water column. The DIC response is broadly similar to the DIP response, but

outside of the Southern Ocean DIC is not as depleted and there is enhanced DIC leakage with mode/intermediate waters due

to enhanced C:P stoichiometric ratios and CO2 ingassing in the Southern Ocean. Southern Ocean nutrient drawdown leads to570

nearly complete deoxygenation of Southern Ocean sourced water masses: For both circulations, strongly increased POC and

DOC production leads to sharply increased oxygen demand that cannot be met by increased ocean photosynthesis. Because

[O2] is almost driven to zero over much of the deep ocean, differences in the [O2] responses between the two circulations are

only pronounced south of ∼60°S where the rapid deep mixing in ACCESS-M provides better oxygenation.

Our findings show that optimizing biogeochemical parameters to match observed tracers does not guarantee a robust rep-575

resentation of the biological pump. Biases in the circulation influence how the biological pump operates and its response to

perturbations, even when parameters are optimized to match biogeochemical tracer fields. It is thus imperative to quantify the

inner workings of the biological pump in ocean models to assess the response of the carbon and oxygen cycles to climate

change. We hope that our work will lead to future ocean models being assessed not just in terms of the fidelity of their physical

variables, but also in terms of key biogeochemical metrics.580

Code and data availability. The MATLAB code for this work can be found on Zenodo at https://doi.org/10.5281/zenodo.8067684. The

ACCESS-M transport matrix was built from the “historical” ACCESS1.3 CMIP5 model runs, which are available at https://esgf.nci.org.au/

projects/esgf-nci/ and also include temperature, salinity, sea-ice, and wind fields. The irradiance (photosynthetically available radiation) fields

for both the ACCESS-M- and OCIM2-embedded PCO2 are also from the ACCESS1.3 runs. The OCIM2 transport matrix and corresponding
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salinity and temperature fields are available at https://tdevries.eri.ucsb.edu/models-and-data-products/. For OCIM2, sea-ice and surface-585

wind data are from National Centers for Environmental Prediction (NCEP) re-analysis available at https://psl.noaa.gov/data/gridded/data.

ncep.reanalysis.html. The gridded phosphate and silicate observations are from the World Ocean Atlas 2018 (Garcia et al., 2019) available at

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018. The gridded DIC, O2, and TA observations are from GLODAPv2 (Lauvset et al.,

2016) available at https://www.glodap.info/index.php/mapped-data-product/.

Appendix A: Biogeochemistry Model Details590

A1 Biological Phosphate Uptake

Following Pasquier and Holzer (2017), phosphate uptake UP is parameterized as a function of temperature, light, and nutrient

availability:

UP ≡ pmax

τU
eκTT

(
I

I +KI

)2(
[DIP]

[DIP]+KDIP

)2

. (A1)

In Eq. (A1), T is the Celsius temperature and I is the photosynthetically available radiation (PAR). PAR is prescribed through-595

out the water column from the ACCESS1.3 model runs for both the ACCESS-M- and OCIM2-embedded PCO2 models. (PAR

is therefore not coupled to the plankton concentration, precluding any effects from self-shading.) The main difference with the

work of Pasquier and Holzer (2017) is that explicit iron and silicate limitation are not included for simplicity. Phosphate uptake

is modeled to have exponential temperature dependence following Eppley (1972) who tuned κT = 0.063K−1, which was later

validated statistically (e.g., Bissinger et al., 2008). Light availability and nutrient limitation are parameterized as Monod fac-600

tors, the square of which controls the strength of phosphate utilization following the logistic phytoplankton growth model used

by Pasquier and Holzer (2017) and broadly inspired by Galbraith et al. (2010). The optimized parameter pmax represents the

phytoplankton concentration for nutrient and light replete condition (unit Monod factors) and T = 0°C, while τU is a nominal

uptake timescale set to 30 days. To avoid unrealistic nutrient trapping due to under-resolved circulation that occurs in some

marginal seas for our models, we zero out production in the Sea of Japan, the Gulf of Mexico, and the Red Sea.605

A2 Uptake C:P Stoichiometry

The C:P stoichiometry of biological production has been shown to have strong regional deviations from the 106:1 Redfield

value (e.g., Teng et al., 2014). Here we model the C:P of biological production to be identical to the C:P ratio of POM in the

surface ocean, which is known to be strongly correlated with surface [DIP]. Galbraith and Martiny (2015) showed that the P:C

of surface POM can be fit by the linear [DIP] dependence610

rP:C =m [DIP]+ b, (A2)

with slope m= 6.9mmolmol−1 µM−1 and intercept b= 6.0mmolmol−1.

By constraining the parameters m and b of Eq. (A2) using an OCIM2-embedded inverse model of the carbon cycle, including

semi-labile and recalcitrant DOP and DOC pools and a detailed representation of PIC and riverine carbon inputs, Kwon et al.
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(2022) recently provided an independent verification that a linear P:C dependence on [DIP] provides a good fit to observed615

tracers for values of m and b that are consistent with the fits of Galbraith and Martiny (2015). Phytoplankton frugality in very

nutrient-poor regions has been hypothesized to be modelled better by a power-law dependence of P:C on [DIP] (Tanioka and

Matsumoto, 2017; Matsumoto et al., 2020), but Kwon et al. (2022) show that their inverse model is able to fit observations

equally well regardless of whether a linear or power-law relationship is used. We therefore use the simpler linear relationship

Eq. (A2) with rC:P = 1/rP:C and the values of m and b from Galbraith and Martiny (2015).620

A3 Viscosity Effect on Sinking Speeds

Here, we follow a similar approach to that of Taucher et al. (2014) and define a viscosity factor αµ that multiplies a constant

reference sinking-speed (w∗
f , w∗

s , or w∗
PIC) to obtain the local sinking speed (of POMf, POMs, or PIC). The factor αµ is given

in terms of temperature T and salinity S by

αµ(S,T ) =
µ(S,0°C)
µ(S,T )

ρp − ρsw(S,T )

ρp − ρsw(S,0°C)
, (A3)625

where the first term represents the effect of dynamic viscosity µ and the second term the effect of changing buoyancy (ρp

is the particle density and ρsw is seawater density). For ρp we follow Taucher et al. (2014) and set it to a constant value of

ρp = 1060kgm−3, representing an average across the literature (Logan and Hunt, 1987; Bach et al., 2012). For ρsw(S,T )

we use the MATLAB Gibbs-SeaWater (GSW) Oceanographic Toolbox (IOC et al., 2010). For dynamic seawater viscosity,

µ(S,T ), we use the equation of Sharqawy et al. (2010).630

Appendix B: Computational Methods

B1 Steady-State Solver

Equations (1), (3), (4), (5) are discretized and collected into a nonlinear system of equations F (x) = 0, where x is the con-

catenated vector of all the tracers. This nonlinear systems is efficiently solved using Newton or quasi-Newton methods for

root finding, which iteratively update the state vector via xi+1 = xi −J−1
i F i where F i = F (xi) and usually Ji = J(xi) is635

the Jacobian of F at xi. In practice, the Jacobian factors are not updated at every iteration to save computational resources

(Kelley, 2003). Additionally, to reduce the memory required for factorization, we divide the system into smaller subsystems

for P, C, and O2, and then solve the subsystems iteratively until the entire system has converged. Specifically, we first solve the

P subsystem (DIP, POPf, POPs, DOP), then the O2 equation, then the C subsystem (DIC, POCf, POCs, DOC, PIC, TA), and

repeat until F (xi)≈ 0.640

B2 Positivity

In practice, many equations of the PCO2 model are modified to ensure that some variables remain positive. This is useful, for

example, in Monod factors such as that of O2 in Eq. (2), to avoid catastrophic cancellation (e.g., if [O2]≈−KO2
numerically).
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Hence, where positivity of a variable X is required, we replace X with the differentiable approximation to max(X,0) given

by645

max(X,0)≈X0 log(1+ eX/X0), (B1)

where X0 is carefully chosen for every variable X to balance smoothness against accuracy (larger X0 the a smoother but worse

the approximation). Specific values used are X0 = 0.1µM for DIP, 10 µM for DIC and TA, and 1 µM for O2.

B3 Smoothness

Because we are using Newton-type solvers to find the steady state of the tracer equations, we replace discontinuous or non-650

differentiable equations with smooth and differentiable approximations. For example in Eq. (5) where we abruptly turn off

oxygen utilization for [O2]< [Olim
2 ], we approximate the Heaviside function by

Θ(X) =
1

2

(
1+ tanh(X/X0)

)
, (B2)

where X0 controls the smoothness and the same values of X0 are used as in Eq. (B1).

B4 Objective Function655

Our goal is to minimize the mismatch of the steady-state solution to Equations (1), (3), (4), (5) with the corresponding observa-

tions (DIP, DIC, TA, and O2). We measure the difference of tracer X with its observed values Xobs using the volume-weighted

quadratic mismatch metric

fX =

∫
dV (X −Xobs)2∫

dV (Xobs −Xobs)2
, (B3)

where the denominator is the spatial variance of Xobs, which provides a convenient scale for normalizing the misfit.660

The objective function f̂(p) to be minimized is then simply defined as the sum of the mismatch metrics for each constraining

tracer field as

f̂(p) = f[DIP] + f[DIC] + f[TA] + f[O2] + c. (B4)

f̂(p) is a function of the parameters p because [DIP], [DIC], [TA], and [O2] are taken from the p-dependent steady-state solu-

tion. f̂(p) also includes a small penalty c for the parameters, which prevents unrealistic values. In practice, we use MATLAB’s665

unconstrained minimizer, fminunc, to find an optimal p. We note in passing that the minimum of the objective function f̂

determined in this way is not guaranteed to be the global minimum given the complex nature of f̂ . However, during the course

of this research, we optimized many versions of our biogeochemical model and found that they all converged to a similar

minimum.

For the parameter penalty c, we prescribe strict bounds (a and b) on each optimizable parameter p, such that p remains in670

(a,b). We calculate the penalty as c= ω
2

∑
p p̂

2, where the weight ω = 0.001 ensures that the parameter-penalty cost is smaller
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Table B1. Permissible ranges for optimized parameters.

Parameter Range Unit

pmax 1–50 µM

KDIP 0.01–4 µM

rPIC 1–9 %

w∗
PIC 1800–4500 md−1

σ 1–99 %

σf 1–99 %

γf 0.01–1.6 d−1

γs 0.01–0.8 d−1

q10 1–5 -

KO2 2–30 µM

rO2:C 1.3–1.5 molO2 molC−1

than the tracer cost, and p̂= log(p−a
b−p ) transforms p from the interval (a,b) to p̂ on the interval(−∞,+∞). The penalty for

each parameter can be understood as a measure of its negative log-likelihood given a logit-normal distribution on (a,b) as its

prior (with mean 0 and standard deviation 1 for its logit). The specified parameter ranges (a,b) are collected in Table B1.

Appendix C: Key Circulation Characteristics675

Figure C1 shows the mixed-layer depths (MLDs) used in OCIM2 and ACCESS-M. For both transport matrices a large vertical

diffusivity of 0.1m2 s−1 is used within the mixed layer. The MLD patterns are similar across models except at high latitudes.

Most strikingly near the Weddell and Ross Seas the ACCESS-M MLDs reach the sea floor while the observation-based MLDs

used in OCIM2 are only a few hundred meters in these regions. The unrealistically deep mixed layer in the Weddell Sea was

reported for the 500-yr ACCESS1.3 benchmark run of Bi et al. (2013b), although that run did not have the deep mixed layer in680

the Ross Sea that was present in the ACCESS1.3 runs on which ACCESS-M is based.

Appendix D: Biogeochemical Diagnostic Computations

D1 Export Production

Export production via a given carbon species (POCf, POCs, DOC, or PIC), referred to here as a specific export pathway, is

calculated using a Green function approach. Below we detail the computation for POCf as an example; the calculation for the685

other pathways is similar. We first replace nonlinear processes with equivalent linear terms. For POCf we have

Sf [POCf ] = σf (1−σ)UC −Rf [POCf ]−Df [POCf ], (D1)
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Figure C1. Annual maximum mixed-layer depth as used in the OCIM2 (a) and ACCESS-M (b) transport matrices.

where the local respiration and dissolution rates of Eq. (3) have been recast in terms of rate coefficients Rf and Df diagnosed

from the full nonlinear solution as Rf =RPOCf
/[POCf ] and Df =DPOCf

/[POCf ]. Note that with these coefficients Eq. (D1)

and Eq. (3) have the same solution. We may think of POCf in Eq. (D1) as a linear labeling tracer that is attached to the actual690

POCf and participates in nonlinear processes in proportion to the POCf concentration. Linear labeling tracers have been very

useful in a number of contexts (e.g., Holzer et al., 2014; Pasquier and Holzer, 2018; Holzer and DeVries, 2022).

Denoting Af = Sf +Rf +Df , the Green function G(r, t|r′, t′) that is solution to

∂tG+Af G= δ(t− t′)δ(r− r′) (D2)
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gives us the POCf contribution at location r from carbon uptake at r′ through the convolution695

[POCf ](r|r′) =
t∫

−∞

dt′G(r, t|r′, t′)σf (1−σ)UC(r
′). (D3)

In steady-state discretized matrix form, the dt′ integral of the Green function becomes the inverse matrix of the steady-state

operator Af so that

[POCf ] =A−1
f σf (1−σ)diag(UC)V

−1, (D4)

where diag(UC) is a matrix with UC along its diagonal and where we have multiplied on the right by V−1 to obtain the700

contribution per unit r′ volume.

The global export per unit volume due to production at r′ is then obtained by integrating the respiration rate of [POCf ] over

r in the aphotic domain Ωa:

ϕPOCf
(r′) =

∫
Ωa

dr3Rf(r) [POCf ](r|r′). (D5)

In matrix form this becomes705

ϕPOCf
=ΩT

a VRf A
−1
f σf (1−σ)diag(UC)V

−1. (D6)

For computational efficiency, we take the transpose and calculate

ϕT
POCf

= σf (1−σ)V−1diag(UC)A
−T
f Rf VΩa. (D7)

D2 Regenerated and Preformed DIP, DIC, and O2

Preformed concentrations are obtained by propagating euphotic concentrations into the aphotic interior without any interior710

sources or sinks. Preformed concentrations are thus conveniently calculated by solving

T [Xpre] = Θ(z− zeup) ([X]− [Xpre])/τ0, (D8)

where X can denote DIP, DIC, or O2, Xpre its preformed part, and where the term on the right clamps the preformed concen-

tration to the total concentration in the euphotic zone with rapid time scale τ0 = 1s. (There is no sensitivity to the exact value

of τ0 as long as it is much smaller than the relevant transport timescales.) In matrix form, Eq. (D8) becomes715

Xpre = (T+M0)
−1

M0X, (D9)

where T is the transport matrix, X is the vector of simulated DIP, DIC, or O2 concentrations, and M0 is a matrix with the

mask vector for the euphotic zone divided by τ0 along the diagonal.

Conversely, regenerated tracers are obtained by labelling them at regeneration and removing them upon entry into the

euphotic layer. They can thus be calculated by solving720

T [Xreg] =R−Θ(z− zeup) [Xreg]/τ0, (D10)
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where the regenerated tracer Xreg is clamped to zero in the euphotic zone and R is the corresponding regeneration rate per unit

volume (e.g., for POCf-regenerated DIC we use R=RPOCf
). In matrix form, Eq. (D10) becomes

Xreg = (T+M0)
−1

R (D11)

where R is the vector of the discretized R.725

Appendix E: Sensitivity to BGC Model and Circulation

For a given metric or parameter Xb,c that depends on biogeochemical (BGC) model b and circulation c, we define its sensitivity

to the choice of BGC model as

∆Xbgc =
1

ncirc

∑
c

1

Xc

√
1

nbgc

∑
b

(Xb,c −Xc)2, (E1)

where ncirc = 2 is the number of circulations used (OCIM2 and ACCESS-M), nbgc = 2 is the number of BGC models (PC730

and PCO2), and Xc is the mean of Xb,c across BGC models at fixed circulation c. Sensitivity to circulation ∆Xcirc is given by

interchanging b and c in Eq. (E1).
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