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Abstract. Predicting the responses of terrestrial ecosystem carbon to future global change strongly relies on our ability to
model accurately the underlying processes at a global scale. However, terrestrial biosphere models representing the carbon
and nitrogen cycles and their interactions remain subject to large uncertainties, partly because of unknown or poorly con-
strained parameters. Data-assimilation-Parameter estimation is a powerful tool that can be used to optimise these parameters
by confronting the model with observations. In this paper, we identify sensitive model parameters from a recent version of the
ORCHIDEE land surface model that includes the nitrogen cycle. These sensitive parameters include ones involved in parame-
terisations controlling the impact of the nitrogen cycle on the carbon cycle and, in particular, the limitation of photosynthesis
due to leaf nitrogen availability. We optimise these ORCHIDEE parameters against carbon flux data collected on sites from
the Fluxnet network. However, optimising against present-day observations does not automatically give us confidence in the
future projections of the model, given that environmental conditions are likely to shift compared to present-day. Manipulation
experiments give us a unique look into how the ecosystem may respond to future environmental changes. One such type of
manipulation experiment, the Free Air CO2 Enrichment experiment (FACE), provides a unique opportunity to assess vegeta-
tion response to increasing CO2 by providing data at ambient and elevated CO2 conditions. Therefore, to better capture the
ecosystem response to increased CO2, we add the data from two FACE sites to our optimisations, in addition to the Fluxnet
data. We use data from both CO4 conditions of the Free Air CO5 Enrichment experiment, which allows us to gain extra con-
fidence in the model simulations using this set of parameters. We find that we are able to improve the magnitude of modelled
productivity. Although we are unable to correct the interannual variability fully, we start to simulate possible progressive ni-

trogen limitation at one of the sites. Using an idealised simulation experiment based on increasing atmospheric CO5 by 1%

per year over 100 years, we find that th

in-the-optimisatienoptimising against only FluxNet data tends to imply a large fertilisation effect whereas optimising against
FluxNet and FACE data (with all nutrients limitation and acclimation of plant) decrease it significantly.
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1 Introduction

Since the start of the industrial era, the atmospheric CO5 concentration has risen from around 278 ppm in 1850 to 417.2
ppm in 2022 (Friedlingstein et al., 2022). Increases in atmospheric CO5 lead to increases in leaf-scale photosynthesis and
intrinsic water-use efficiency, which in turn have the potential to increase plant growth, vegetation biomass, and soil organic
matter (Walker et al., 2021). Known as CO3 sequestration, this process transfers carbon (C) from the atmosphere into terres-
trial ecosystems. Indeed, terrestrial ecosystems currently remove about 30% of the CO- emitted by human activities each year
(Friedlingstein et al., 2020). However, predicting how this carbon sink will evolve under increasing atmospheric CO2 remains
a challenge, especially due to the large uncertainties in the magnitude of carbon-climate feedbacks. Furthermore, the terrestrial
ecosystem’s ability to store carbon will be influenced by other processes, for example, nutrient limitations (Zaehle and Dal-
monech, 2011) - most notably nitrogen (N), which is a key component controlling the carboxylation activity of the RubisCo in
the photosynthetic tissue of the plant.

The large uncertainties in terrestrial carbon projections are largely related to the uncertainty in land surface models, including
parametric uncertainty, which relates to the parameter values used in each parameterisation (Zaehle et al., 2005). The first
land surface models were developed to provide a physical boundary to meteorology processes. As these models progressed,
terrestrial biogeochemical cycles were implemented, simulating leaf gas exchange through Ball-Berry stomatal conductance
and plant productivity based on Farquhar photosynthesis (Bonan, 2015). More recently, land surface models have moved from
a big leaf model to multi-canopy schemes (Naudts et al., 2015), and started to include the nitrogen cycle and its constraints
on the terrestrial carbon balance (e.g., LPJ: Prentice (2008), OCN: Zaehle and Friend (2010), ORCHIDEE-CN: Vuichard
et al. (2019), CLM: Fisher et al. (2019)). However, with each new process and complexity added to the model, we add more
internal model parameters, which in turn can add more uncertainty. Even though these parameters are generally chosen to
represent measurable real-world quantities (e.g., leaf area, plant root depth), their default values are often issued from specific
experiments studying the processes at different scales to those used in land surface models. Therefore it is important to confront
simulated model outputs against independent data.

There are a lot of data with which we can evaluate model simulations from vast in situ networks (e.g., Fluxnet, Pastorello et al.
(2020)) to state-of-the-art satellite retrievals (e.g., sentinel missions, Malenovsky et al. (2012)). It is important to evaluate land
surface models against these types of data since they help increase confidence in the model simulations. Furthermore, these data

arameter estimation. Parameter estimation

methods can be used to perform parameter optimisation where uncertain parameters are tuned to minimise the difference

can also be used to optimise models through

between simulated model output and observed quantities. Fluxnet eddy-covariance data has already been used to optimise
model parameters in most land surface models; e.g., ORCHIDEE (Kuppel et al., 2012), BETHY (Knorr and Kattge, 2005),
JULES (Raoult et al., 2016), Noah (Chaney et al., 2016) and CLM (Post et al., 2017). However, evaluating and optimising
against historical trends and present-day observations does not necessarily give us confidence in the future projections of the

model, given that future environmental conditions are likely to shift compared to present-day (Wieder et al., 2019).
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Fortunately, manipulation experiments give us a unique look into how the ecosystem may respond to future environmen-
tal change (Van Sundert et al., 2023). One such type of maniptlation-experiment, the Free Air CO5 Enrichment experiments
experiment (FACE; Norby-et-al(2040);-2)provide-Norby et al. (2010); Walker et al. (2018a)), provides a unique opportunity

to assess vegetation response to increasing CO,. FACE experiments are conducted across several vegetation types and typi-

In particular, two decade-long FACE experiments in temperate forests of the southeastern U.S. (Duke and Oak Ridge Na-
tional Laboratory (ORNL)) have been predominately studied to test the representations of carbon—nitrogen cycle processes
in land surface models. A full intercomparison of 11 land surface models (Medlyn et al., 2015) demonstrated how these data
could be used to evaluate models looking at the effect of ambient and elevated CO5 on water (De Kauwe et al., 2013), carbon
(De Kauwe et al., 2014) and nitrogen (Walker et al., 2014; Zaehle et al., 2014). These two sites were further used in Wieder
et al. (2019), where they showed how these experimental manipulations could be incorporated into the model benchmarking
tools to help increase confidence in terrestrial carbon cycle projections. FACE experiments can also be used to identify pro-
cesses that are not well caught by land surface models. For instance, Walker et al. (2019) showed that elevated CO» changed
carbon allocation to the wood, and none of the models tested were able to reproduce this observation. Combined with warming
experiments within a factorial design, the FACE experiments can also be very useful to evaluate how much the model are able
to reproduce the single effect of elevated CO, versus the effect of elevated CO, when other drivers are changing (De Kauwe
et al., 2017). More recently, Sulman et al. (2019) used these two sites to test the effect of adding symbiotic nutrient acquisition
strategies to land surface models and Caldararu et al. (2020) to assess a whole-plant growth optimality approach in improving
the representation of leaf nitrogen content compared to existing empirical approaches. The two sites are also the sites we will
focus on in this study.

We use these sites to check whether the parameterisations and parameters used in a land surface model are able to capture the
ecosystem response to increased CO-. Furthermore, by optimising a land surface model to both ambient and elevated conditions

~we-will-simultaneously, we gain extra confidence in the model projections using this single set of parameters. Ourstuey-with

be-Although ideally we would want to calibrate under ambient conditions and test the model under elevated conditions, known
model structural errors do not guarantee that the model is able to predict changes under different conditions. As such, we

rovide an alternative approach to model calibration, maximising the available information content of the optimisations. Our
study is the first, to our knowledge, to do this with a global land surface model.

Using the ORCHIDEE land-surface model as an example, in this paper, we will-show the potential of using manipulation sites
to not only optimise unknown model parameters but also increase confidence in the optimised model projections by reducing
parameter uncertainty. Furthermore, by optimising parameters linked primarily to the nitrogen cycle, as well as considering

nitrogen-limited FACE sites, we will-get an insight into the nitrogen-limiting effect on the fertilising effect of COs. This study
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also looks at how FACE data can complement Fluxnet data in a general optimisation procedure. As such, we aim to answer the

following questions:

Using data-assimilationparameter estimation, can we improve the representation of the simulated productivity of the new

nitrogen-version of ORCHIDEE over Fluxnet and FACE sites (under both ambient and elevated conditions)?

What is the benefit of adding FACE data on top of Fluxnet data when optimising a land surface model?

— How does the future evolution of terrestrial productivity change when simulated using different sets of optimised param-
eter values?
— Can these experiments help us to describe better the future fertilising effect of CO2 under possible nitrogen limitation?
2 Methods
2.1 Model
2.1.1 The ORCHIDEE land surface model

The ORCHIDEE (ORgainzing Carbon and Hydrology in Dynamic Ecosystems) model is a global terrestrial ecosystem model
developed at IPSL (Institut Pierre Simon Laplace, France). It simulated the energy (Ducoudré et al., 1993), water (de Rosnay
and Polcher, 1998), carbon (Krinner et al., 2005), and nitrogen (Zaehle and Friend, 2010; Vuichard et al., 2019) exchanges
between the land surface and the atmosphere. This model can be run at various spatial resolutions, ranging from site to global
simulations, and over different timescales from one day to thousands of years. ORCHIDEE can be run as a stand-alone model
driven by meteorological forcing or as part of the IPSL Earth System Model (Boucher et al., 2020; Lurton et al., 2020).

In ORCHIDEE, the different types of vegetation are discretised in Functional types (PFTs, Plant Functional Types) defined
by plant metabolism, phenology, type of leaves and local climate. There are a total of 15 PFTs in ORCHIDEE; eight for the
forests, four for the grasslands, two for the crops and one for bare soil. The model describes the different stocks of biomass in
the whole soil-plant continuum. There are nine stocks of biomass in the plant; the leaf, the above and below-ground sapwood,
the above and below-ground heartwood, the fruits, the roots, and the long-term and short-term (available to use) reserves. For
litter, there are six carbon stocks; metabolic, structural and woody above- and below-ground. Finally, there are four stocks for
the soil organic matter; surface, active, slow and passive.

The litter pools are limited by the fall and death of tissues. The pools of organic matter in the soils are alimented by the
decomposition of the organic matter in the different pools of the litter. The decomposition of the organic matter is characterised
by a fixed residence time for each litter and/or soil pool modulated by environmental conditions.

The carbon/nitrogen ratio of leaf biomass is variable, controlled by a supply/demand scheme while the C/N ratio of the other
plant pools is a fixed proportion of the leaf C/N ratio. A specific C/N ratio is set for each soil pool, which varies as a function

of the mineral nitrogen in soils. There are also additional mineral nitrogen pools in soils for ammonium, nitrate, nitrous oxides,
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nitrogen oxides and dinitrogen. The inputs of nitrogen in the soil/plant system are considered deposition, fertiliser and manure
inputs and biological fixation. Nitrogen losses are associated with leaching, lixiviation and emissions of ammonia, nitrous
oxide, nitrogen oxides and dinitrogen.

The nitrogen component for ORCHIDEE was first developed and evaluated inside OCN, a version of the ORCHIDEE
model (Zaehle-and-Friend-(2010))(Zaehle and Friend, 2010). However, at the time, it was not embedded into the operational
ORCHIDEE version used in coupled experiments. This component has been recently updated and is now included in de-
fault ORCHIDEE runs (Vuichard et al., 2019). This has notably permitted studies of the interactions between the carbon and
nitrogen cycles and their effect on gross primary production (GPP). The version of ORCHIDEE used-we use in our study (OR-
CHIDEEV3, r6863) is more recent than the one used Vuichard-et-alk(2649)Jt(Vuichard et al., 2019, r4999). ORCHIDEEv3

r6863) includes the latest developments of the main ORCHIDEE model (mainly small bug fixes). Furthermore, it includes

updates to a few specific N-related processes, notably growth and maintenance respiration. Although this version has been
used in the multi-model ensemble for the Global Carbon Budget 2020 (Friedlingstein et al., 2022)but-, it has not yet been
optimised against independent data. As such, the initial fit of the model to the Fluxnet data is different than that shown in
Vuichard et al. (2019).

2.1.2 Model parameters

An initial list of parameters was compiled based on parameters used in past ORCHIDEE optimisations. This was extended
to include parameters of the new nitrogen module selected using the expert knowledge of the module developers. Using a
Morris sensitivity analysis (Morris, 1991), we removed-all-parameters-showing-ne-—sensitivity—to-remove all parameters to
which the different modelled outputs tested (i.e., net primary product (NPP) and leaf-area index (LAI)) showed no sensitivity.
All remaining parameters were-are optimised in this study (Table 1). These parameters represent key parameters of the model
controlling photosynthesis, carbon and nitrogen allocation, respiration and global nitrogen cycle behaviour (full descriptions
can be found in Appendix A). In addition, the KSoil parameter was-is used to control the initial carbon and nitrogen stocks.
This parameter makes up for the fact that we cannot reconstruct each site’s land-use history and its impacts on the present-day
soil carbon stocks. Instead, we add the KSoil parameter in the optimisation, a multiplication factor applied on some soil carbon
and nitrogen pools (slow, passive and labile) to change their initial values. A similar parameter has been used in many previous
ORCHIDEE optimisation studies to control the initial carbon stocks of the model (e.g., Santaren et al., 2007; Kuppel et al.,
2012; Bastrikov et al., 2018).

For each PFT, the Morris score for each parameter has-been-is normisalised by the most sensitive parameter. The normalised
Morris sensitivity scores are shown in Table 1 and help us understand which are the most sensitive parameters. We see that for
sites with a strong seasonal cycle, i.e., TeBS sites, the specific leaf area (SLA) phenology parameters are most sensitive. For

the evergreen sites, two of the nitrogen parameters NUEqy and Ky atsa, max gain importance ranking as highly as SLA.

2.2 Data-assimilation-Parameter estimation framework



Table 1. List of parameters used for the optimization with descriptions, default (prior) model values, ranges of variation, and normalised

Morris scores denoting the relevant importance of each parameter (labelled "rk" for rank) - darker squares means more sensitive.

Parameter Description
mi
Nitrogen-related-proeesses Nitrogen-related processes
CTEpact Denitrification activity of bacteria (-) te-
CNieaf, max Maximum C/N ratio of the leaves (g¢ [gﬁ]:}v)v 36
CNicaf, min Minimum C/N ratio of the leaves (féQ[gJX/l:}l 11
kn Extinction ratio of N through the canopy (-) 0.1
FCNioot N/C ratio of the roots/wood used to calculate allocation relative to 0.6
FCNy00d the leaf N/C ratio (-) 0.C
NUEop Nitrogen use efficiency of Vemax (umol CO2s ™1 [gnieat] T1) 23
Ryeat . . 0.4
Fraction of N leaf/root that is recycled when leaves are senescent (-)
Rroot 0.1
z Root profile (m) 0.
VMAXTVMAXUPTAKE Maximal Uptake-uptake capacity of roots for ammonium and nitrates 2
QL
VMAX2uprake Maximal-Uptake-eapaeity-of rootsfornitrates2-3-4-2-3-4heightAllocation
KLAt0SA, max Maximum leaf to sapwood area ratio Qp\?\gg\j\{l 40
KLAt0SA, min Minimum leaf to sapwood area ratio Qrpig/g:& 30
Koot Fine root specific conductivity @M 3e-
Ksap Maximal sapwood specific conductivity (\rﬁs:j/\l\ﬁ[\}la;\l)v 2e-
Phenology
SLA Specific leaf area at the time of the leaf productions L‘Ei%j) 0:€
SLAnit Initial Specific leaf area at the bottom of the canopy m 0L
Lagecrit Critical Leaf-Ageleaf age (days) 90
Lan Leaf Fatt-fall (-) 8
Tsenes Critical temperature for senescence (°C) 10
Photosynthesis (carbon assimilation)
k Extinction ratio of the light through the canopy (-) 0.2
Ay 0.7
B, Empirical factors involved in the calculation of fvpd (-, kPa—1) 01
Respiration
FRACgrowthresp Fraction of the GPP that is lost to growth respiration (-) 0.2
Q1o Parameter determining the temperature dependency of the het- 0.
erotrophic respiration (-)
Spinup parameters (site dependent)
KSoil Multiplicative factor for initial soil carbon & nitrogen stocks (-) 0.5




155

160

165

170

175

180

185

s-We perform optimisations by relying on a Bayesian framework to include prior
knowledge on the parameters (x;). Assuming that the errors associated with data observation, model output and parameters
follow Gaussian distributions (Santaren et al., 2014), we seek to obtain a posterior optimal parameter set X, Which corresponds

to the minimum of the cost function J(x):
J(x) = (M(x) —y) "R™HM (x) —y) + (x = x3) " B7 (x — x3). (1)

For a given parameter set x, J(x) measures the mismatch between observations y and the corresponding model outputs M (x),
and the mismatch between the prior, or background, parameter set x; and x. Each of these terms are-is weighted by their error

covariances matrices, R and B for the observations and parameters respectively (Tarantola, 2005). Nete-that-In this study, we

set both matrices to be diagonal. For B, we define the prior distribution of each parameter to be 40% of the prior range. For
Rineludes both-measurement-and-model-errors—, we define the observation error (variance) as the mean-squared difference
between the observations and the prior model simulation so that this variance reflects not only the measurement errors but also
the model errors. Furthermore, since we do not consider error covariances, R is diagonal and therefore we can decompose the
first term of Eq. 1 into different terms for each assimilated datastream:

T %) B (x=—x) ()

where FIx and FACE subscripts are used to denote the FLUXNET and FACE parts of the equation; k; denotes the weightin

using for each datastream, o; denotes the observational error, and M; and y; denote modelled and observed data streams.
There exist many different approaches we can use to find the set of parameters which minimizes-minimise J(x). These range

from simple manual tuning, which are very computationally demanding and inefficient, to more complex algorithms either
based on deterministic gradient descent methods or stochastic random search methods. Using “ORCHIDAS”, the ORCHIDEE
data assimilation tool developed at the Laboratoire des Sciences du Climat et de I’Environnement (Bastrikov et al. (2018)),
we performed a couple of preliminary experiments to determine which algorithm to use. We tested a gradient descent method
based on the L-BFGS-B algorithm (limited memory Broyden—Fletcher—Goldfarb—Shanno algorithm with bound constraints
BFGS; Byrd et al. (1995)) and a random search method based on the genetic algorithm (GA; Goldberg and Holland (1988);
Haupt and Haupt (2004)). We found that the GA method outperformed the gradient method in reducing the cost function.
These initial results are coherent with Bastrikov et al. (2018)’s study, which optimised the gross primary productivity (GPP)
and latent heat fluxes of a former version of ORCHIDEE against a number Fluxnet site measurements and also found that the
GA algorithm outperformed the other methods, notably by allowing a full exploration of all parameter space.

The genetic algorithm consists in applying the laws of evolution to our set of parameters by considering the set of parameters
as a chromosome, with each parameter as a gene. At each iteration, the algorithm fills £ chromosomes with parameter values.
The first pool of chromosomes is created by randomly perturbing the value of the parameter. For the following iterations, the
chromosomes are created from the previous iterations’ chromosomes. Two processes come into play; a) a crossover process,

where we have an exchange of genes between two chromosomes, and b) a mutation process, where random genes are perturbed.
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To ensure that the best chromosomes get the most descendants, each chromosome of each iteration gets ranked in function of

the cost associated with the parameter’s value in the chromosome.
2.3 Insitu data

In this study, we eonsidered-consider two sites from the FACE network in nitrogen-limited temperate forest ecosystems;
Oak-Ridge (ORNL; Norby et al., 2010) - a site dominated by broad-leaf deciduous forests (TeBS, for Temperate Broadleaf
Summergreen Forests) and Duke (DUKE; McCarthy et al., 2010) - a site dominated by needle-leaf evergreen forests (TeNE,

for Temperate Needleleaf Evergreen Forests). The data for these sites come from the FACE Model Data Synthesis project
(Walker et al., 2018a, b, https://facedata.ornl.gov/facemds/). For each site, we used-use the data from two experimental plots
(with their associated error bars); one with unaffected atmospheric COs, i.e. ambient (AMB), and one with elevated atmo-
spheric COy (ELE). Pata-are-provided-with-error bars-Although the DUKE experiment also has ammonium nitrate treatments
athalf of its plots from 2005 onwards (Feng et al., 2010), we only consider the data from the plots without nitrogen fertilization.

The version of ORCHIDEE used-we use in this study has yet to be optimised against Fluxnet data using a Bayesian frame-
work, as it was done with previous nitrogen-free versions of the model (e.g., Kuppel et al., 2012; Peylin et al., 2016). There-
fore, we also eonsidered-consider TeBS and TeNE sites from the FLUXNET2015 dataset (Pastorello et al., 2020). This dataset
provides gap-filled half-hourly meteorological data measured at each site (air temperature, humidity, pressure, wind speed,
rainfall and snowfall rates, shortwave and longwave incoming radiation; see Vuichard and Papale (2015)). It also provides
net carbon flux measurements, as such net ecosystems exchange (NEE) further split into gross primary production (GPP) and
total ecosystem respiration (TER) following a classical night-time vs day-time flux partition Lasslop et al. (2010). For each
of the two vegetation types, sites with over 60% vegetation coverage were-are kept. We exeluded-exclude sites with too large
discrepancies with the prior model output, such as with no apparent seasonal cycle, large data gaps, or with only one year of

data. The list of in situ sites used can be seen in Table 2 partitioned by vegetation type.
2.4 Performed experiments

Before performing the optimisations, for each of the sites in this study, a two-step spin-up was-is performed. The first step
helped-helps to put the prognostic variables, including vegetation state, soil carbon pools, and soil moisture content at equi-
librium. The available meteorological forcing was-is cycled over several millennia (with pre-industrial CO2 concentrations)
to ensure that the long-term net carbon flux was close to zero. After reaching the equilibrium, a second simulation was-is
performed (transient) from the year 1860 to one year before the first forcing year while increasing CO2 concentration at each
simulation year following global historical observations.

Before performing the optimisations, we also conduct a sensitivity analysis on the parameters (as described in Sect. 2.1.2
and shown in Table 1). A sensitivity analysis tests how different the model outputs change with respect to different parameters.
This is done to ensure that only parameters showing some sensitivity to the model outputs are used in the optimisation and
therefore minimising the risk of using parameters that are weakly constrained by the fluxes. This is an important step since we
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Table 2. List of in situ FACE and Fluxnet sites used in the study. The Fluxnet sites are labelled by a country code (first two letters) and site

name (last three letters). The FACE sites are both found in the US. The period corresponds to the available years of data for each of the sites.

Temperate Broadleaf Summergreen (TeBS) | Temperate Needleleaf Evergreen (TeNE)

Site id Years Coordinates | Site id Years Coordinates

Free Air CO2 Enrichment experiment sites
ORNL 1999-2008 35.54,-84.20 | DUKE 1996-2007 35.58,70.5

FLUXNET?201S5 sites

DE-Hai 2000-2012 51.08,10.4 | CZ-Bkl  2004-2008 49.50, 18.54
DK-Sor 1996-2014 55.49,11.64 | DE-Tha  1996-2014 50.96, 13.57
FR-Fon 2005-2014 48.48,2.78 | FR-LBr  1996-2008 44.72,-0.77
IT-Col 1996-2014 41.85,13.59 | IT-Lav 2003-2014 4596, 11.28
IT-PT1 2002-2004 45.20,9.06 | IT-Ren 1998-2013 46.57,11.43
IT-Rol 2000-2008 42.41,11.93 | IT-SRo 1999-2012 43.73,10.28

IT-Ro2 2002-2012 42.39,11.92 | NL-Loo  1996-2013 52.17,5.74
US-Hal 1991-2012 42.54,-72.17 | RU-Fyo  1998-2014 56.46, 32.92
US-MMS  1999-2014 39.32,-86.41 | US-Blo 1997-2007  38.90, -120.63
US-UMB  2000-2014 45.56,-84.71 | US-GLE 2004-2014 41.37,-106.24
US-WCr  1999-2014 45.81,-90.08 | US-Wi4  2002-2005 46.74,-91.17

want to avoid constraining parameters that will have a small impact on the optimisation but have the potential to significantl
degrade the model-data fit against processes not included in the calibration.

Once spun up ;—we-performed-and with the list sensitive parameters, we perform two main sets of optimisations always
starting from this spinup. The first is over the Fluxnet sites only while the second also includes data from the FACE sites. Due

to the CO, fumigation over FACE sites, NEE is not measured at these sites, and therefore, GPP and TER estimates cannot
be derived. Instead, for the FACE sites, we have annual net primary production (NPP) and daily leaf area index (LAI) data.
Throughout this study, we perform multi-site (MS) optimisations, i.e., optimizations executed over multiple sites of
the same PFT simultaneously in order to find one common set of optimised parameters. Each optimization was-is run for 20
iterations, which we found to be sufficient for the system to converge. For each iteration, 32 chromosomes were-are used i.e.,
32 different combinations of parameter values. We feft-leave the last year of each Fluxnet site out of the optimisation to have
independent data for the validation step of the analysis.

The first set of optimizations tested-test two different combinations of gross and net carbon fluxes:
— Flxgr: 2-two MS optimizations against daily GPP and TER, one for all the TeBS sites and one for all the TeNE sites.

- Flxgn: 2-two MS optimizations against daily GPP and NEE, one for all the TeBS sites and one for all the TeNE sites.
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In each case, two fluxes are used in optimisations. Note that GPP and TER are derived from NEE with NEE=TER-GPP.
This means that these data are model-derived estimates, which could introduce additional uncertainty to the results. However,
by separating the fluxes we get a better understanding of the underlying mechanisms constraining two different ecosystem
functions and are able better to diagnose the overestimations or underestimations of the assimilated processes, as initially
discussed in Santaren et al. (2007). We are especially interested in the GPP constraint since this will give us an insight into
plant productivity and will allow us to assess the COs fertilising effect under nitrogen limitation. GPP is also directly used in
the calculation of water use efficiency (WUE), here defined as the ratio between GPP and transpiration, one of the diagnostics
we consider at the end of the study.

We further acknowledge that the data streams are not independent from each other. This poses a challenge when working in a
Bayesian framework, especially when defining the R matrix in Eq. 1. Although there are methods for including the correlation
between different data streams in the R, these are relatively new and require a lot of extra analysis beyond the scope of this
study. Instead, we rely on the standard method of inflating variances (Chevallier, 2007).

The optimal parameters found by optimising against the Fluxnet sites impreved-improve the fit to contemporary data. How-
ever, it was-is unclear whether the predicative skill of the model was-is improved. Therefore, after assessing the Fluxnet results,
the next step was-is to incorporate the FACE sites. Using a simultaneous approach, the FACE and Fluxnet sites swere-are opti-
mised together in this second set of experiments. This approach ensures that the information is not lost between steps, as could
be the case in step-wise approach when the optimisations are done one after the other. The optimisation-was-optimisations are
set up to give a higher weight to the single FACE site in each case{weight, so that kg =1 and kgacg=n in Eg. 2 where n is
the number of Fluxnet sites for the given PFT). Based on our results (see Sect. 3.1) and our motivation to better capture the
productivity of the different ecosystems, we ehose-choose to focus on the former Fluxnet optimisation, i.e. the one against GPP
and NEE. Each of the following FACE site experiments were-are performed simultaneously with a FlxgxTFlxgy optimisation

over the relevant PFT:

- Flxgn-AMB: 2-two optimisations against annual NPP and daily LAI, one each for the DUKE and ORNL sites at ambient

CO;, concentrations, perform simultaneously with a GPP-NEE multisite Fluxnet optimisation.

— Flxgn-ELE: 2-two optimisations against annual NPP and daily LAI, one each for the DUKE and ORNL sites at elevated

COs concentrations, perform simultaneously with a GPP-NEE multisite Fluxnet optimisation.

— Flxgn-BOTH: 2-two optimisations against annual NPP and daily LAI, one each for the DUKE and ORNL sites with both
ambient and elevated CO» concentrations simultaneously, perform simultaneously with a GPP-NEE multisite Fluxnet

optimisation.

For the final part of this study, we eonsidered-consider the sensitivity of the simulated GPP, NPP, and WUE to CO; increase
whilst keeping the other drivers constant. Each of the Fluxnet sites were-is tested by running idealised 100-year-long simula-
tions starting from present-day atmospheric CO3, 380 ppm, and increasing COy by 1% per year, leading to a near tripling of
CO; by the end of the simulation. This was-is done for both the prior and optimised model, using default model parameters

and Flxgn-BOTH model parameters, respectively.
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3 Results and Discussion
3.1 Fluxnet optimisations

The nitrogen cycle version of the ORCHIDEE model used in this study has not yet been optimised against Fluxnet data,
although it has been extensively tuned manually. Therefore, the first step is to see whether the fluxes over the TeBS and TeNE
sites are well represented in the model and whether they can be optimised using observed data and the sensitive parameters
identified in the Morris experiment (Table 1). For the Fluxnet optimisation, two tests are conducted. The best-performing
optimisation will serve as the starting point for the optimisations including data from the FACE sites. In this section, we
present the results from both MS Fluxnet optimisations: Flxgg and Flxgy. Figure 1 shows the mean seasonal cycle across all
Fluxnet sites for each PFT considered. We show the modelled GPP, TER and NEE fluxes against the observed time series.

For the deciduous sites (TeBS; Fig. 1 left-hand column), we see that both GPP and TER are overestimated by the prior
model, and the NEE sink in underestimated. This overestimation is the most severe for TER, where the prior model simulates
a maximum of approximately 9 gCm~2d~! when the maximum TER observed is half that. In contrast, the overestimation
for GPP is very slight found at and after the peak. Both optimisations improve the model-data fit against GPP by correcting
the overestimation found after the peak. Flxgn performs the best, with the average seasonal peak now being the same as the
observations. Flxgr on the other-hand reduces peak below that observed. Similarly, both optimisation now starts production
later in the year degrading the fit to the observations in the early months. In ORCHIDEE, deciduous sites lose all their leaves
in winter and therefore, no photosynthesis occurs before the leaves start growing back in spring. In contrast, the observations
never go to zero, implying there is undergrowth or evergreen vegetation present that we are not accounting for in the model
set-up. When looking at the RMSD of the individual sites, we also see that Flxgn reduces the spread relatively to the prior.
For TER, both optimisations improve the model-data fit over the whole period with Flxgg performing slightly better. This is
not surprising since this optimisation directly considers the TER component of NEE. The optimisations mainly change the
magnitude of the peak and do not correct for its late timing. When looking at the RMSD, we can see that a group of sites are
driving the overestimation of TER with values close to 4.5 - this is corrected for in both optimisations. For NEE, the Flxgn
optimisation performs better than Flxgg, especially in fitting the autumn month. However, because of the overestimation of
summer TER with this parameter set means we do not attain the minimum of the NEE trough. We note that for NEE, the
posterior spreads of RMSE over all sites are the same for both optimisations.

For the evergreen sites (TeNE; Fig. 1 right-hand column), the optimisations improve the GPP underestimation in the prior
model by increasing the peak by approximately 2.5 gCm~2d~!. HOwever, this falls short of correcting of the full overestima-
tion, which is closer to 4 gCm~2d~"'. The Flxgy optimisation performs best with the timing of the average peak closest to the
observed value. However, both optimisations degrade the average fit to TER, increasing the overestimation found when using
the prior set of parameters. Both optimisations move the summer peak up by between 0.5-1 gCm~2d~!, with Flxgy increasing
the most. When considering the fit of the individual sites (right-hard part of each panel), we note that two anomalous sites

are driving this behaviour. These sites (IT-Lav and US-Wi4) have respiration rates much lower than the other sites. Since we
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Figure 1. The main panel in each column shows the PFT-averaged mean seasonal cycles of daily observed and simulated GPP, TER, and
NEE fluxes using different parameter values. The side panels show the model-data RMSD for the daily time series at each site, with the black

horizontal bars showing the mean value across the sites.
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cannot match the respiration rates, we cannot capture the full NEE dip in summer. However, the improved GPP with both
optimisations does mean that the NEE is slight improved compared to the prior mode.

In these optimisations, we have included a parameter, KSoil, which acts as a multiplicative factor of the initial soil and
nitrogen pools (slow, passive and labile). We have used such a parameter in past ORCHIDEE optimisations at Fluxnet sites
(e.g., Kuppel et al., 2012; Peylin et al., 2016; Bastrikov et al., 2018; Bacour et al., 2022) and found it played a large role
in improving the model-data fit against respiration. Therefore, it seems counter-intuitive that we do not improve the fit to
respiration as much as expected when including KSoil in the ORCHIDEE v3 optimisations, especially for the TeNE sites.
The past ORCHIDEE experiments all used a previous version of ORCHIDEE without the nitrogen cycle, so this factor solely
acted on the carbon pools and heterotrophic respiration. Here KSoil multiplies both carbon and nitrogen pools to maintain
the carbon/nitrogen ratio. However, by acting on the nitrogen pools, we directly impact on the mineralization rate and thus
indirectly on plant N uptake, leaf N content, Vmax and, therefore, GPP. Whereas KSoil used only to impact soil respiration, it
now impacts both respiration and GPP, and so the optimisation needs to find a compromise to fit both. To adjust the respiration,
Ksoil is decreased, reducing the carbon and nitrogen pools in the soils, but, at the same time, GPP is significantly reduced,
deteriorating its fit to observations.

Overall, the ORCHIDEE model reasonably represents the TeBS and TeNE carbon fluxes, although respiration in the TeNE
sites is high, even after optimisation. The Flxgy optimisation results in the best-simulated production for both types of vegeta-

tion.
3.2 Incorporating data from the FACE sites

Given the results from the previous section, and our motivation to improve the model performance regarding ecosystem pro-

ductivity, we will further include the FACE data to the Flxgn optimisation.
3.2.1 Improving simulated NPP values

At ORNL, we can see in Fig. 2 that the uncalibrated version of ORCHIDEE (prior) overestimates the yearly NPP both under
ambient and elevated conditions. This is consistent with prior GPP overestimation observed at the TeBS Fluxnet sites (Fig. 1).
When using parameters from the Fluxnet only optimisation (Flxgy), we partly reduce this overestimation. For both CO4
conditions, including FACE data as an additional constraint to the optimisation (Flxgn-AMB, Flxgn-ELE and Flxgy-BOTH)
improves the estimation of NPP compared to solely relying on the data from the Fluxnet sites. Under all atmospheric CO9
conditions, Flxgn-ELE reduces the RMSD the most followed by Flxgn-BOTH and then by Flxgn-AMB. We would expect the
latter to perform best at fitting NPPayp since it uses the obse