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Abstract.  6 
Machine learning (ML) is increasing in popularity in the field of weather and climate modelling. Applications range 7 
from improved solvers and preconditioners, to parameterization scheme emulation and replacement, and more recently 8 
even to full ML-based weather and climate prediction models. While ML has been used in this space for more than 9 
25 years, it is only in the last 10 or so years that progress has accelerated to the point that ML applications are becoming 10 
competitive with numerical knowledge-based alternatives. In this review, we provide a roughly chronological 11 
summary of the application of ML to aspects of weather and climate modelling from early publications through to the 12 
latest progress at the time of writing. We also provide an overview of key ML terms, methodologies, and ethical 13 
considerations. Finally, we discuss some potentially beneficial future research directions. Our aim is to provide a 14 
primer for researchers and model developers to rapidly familiarize and update themselves with the world of ML in the 15 
context of weather and climate models. 16 

1. Introduction 17 

Current state-of-the-art weather and climate models use numerical methods to solve equations representing the 18 
dynamics of the atmosphere and ocean on meshed grids. The grid-scale effects of processes that are too small to be 19 
resolved are either represented by parametrization schemes or are prescribed. These numerical weather and climate 20 
forecasts are computationally costly and are not easy to implement on specialized compute resources such as GPUs 21 
(although there are efforts underway to do so, for example in LFRic (Adams et al. 2019)). One of the main approaches 22 
to improving forecast accuracy is to increase model resolution (reduced timestep between model increments and/or 23 
decreased grid spacing), but due to the high computational cost of this approach, improvements in model skill are 24 
hampered by the finite supercomputer capacity available. An additional pathway to improve skill is to improve the 25 
understanding and representation of subgrid-scale processes, however this is again a potentially computationally costly 26 
exercise. 27 
In the remainder of this introduction, we overview the state of machine learning in weather and climate research 28 
without always providing references; we instead provide relevant references in the detailed sections that follow. 29 
Machine learning is an increasingly powerful and popular tool. It has proven to be computationally efficient, as well 30 
as being an accurate way to model subgrid-scale processes. The term “Machine learning” (ML) was first coined by 31 
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Arthur Samuel in 1952 to refer to a “field of study that gives computers the ability to learn without being explicitly 42 
programmed”1.  Learning by example is the defining characteristic of ML. 43 
The growing potential for ML in weather and climate modelling is being increasingly recognized by meteorological 44 
agencies and researchers around the world. The former is evidenced by the development of strategies and frameworks 45 
to better support the development of ML research, such as the Data Science Framework recently published by the Met 46 
Office in the UK2. The latter is made clear by the explosion in publications from academia, government agencies and 47 
private industry in this space, as demonstrated by the rest of this review. Figure 1 shows the number of publications 48 
cited in this review using different categories of ML algorithms by year, and clearly illustrates the increase in the 49 
uptake of ML methods by the research community.  50 
This is not necessarily an unbiased sample of the use of different architectures in the literature, since the selection of 51 
papers cited in this review focuses on telling the story of the growth of the use of ML in weather and climate modelling 52 
over time, rather than being a comprehensive list of all uses of ML in the literature.  53 
There are established techniques and aspects of the weather and climate modelling lifecycle that would already be 54 
considered ML by many. For example, linear regression†3, principal component analysis, correlations, and the 55 
calculation of teleconnections can all be considered types of ML. Data Assimilation techniques could also be 56 
considered a form of ML. There are, however, other classes of ML (e.g. Neural Networks†, Decision Trees†, etc.) 57 
which are much less widely used within the weather and climate modelling space and have great potential to be of 58 
benefit. There is growing interest in, and increasingly effective application of, these ML techniques to take the place 59 
of more traditional approaches to modelling. The potential for ML in weather and climate modelling extends all the 60 
way from replacement of individual sub-components of the model (to improve accuracy and reduce computational 61 
cost) to full replacement of the entire numerical model. 62 
While ML models are typically computationally costly during training, they can provide very fast predictions at 63 
inference† time, especially on GPU hardware. They often also avoid the need to have full understanding of the 64 
processes being represented and can learn and infer complex relationships without any need for them to be explicitly 65 
encoded. These properties make ML an attractive alternative to traditional parametrization, numerical solver, and 66 
modelling methods. 67 
Neural Networks (NNs, explained further in Section 2.1) in particular are an increasingly favored alternative approach 68 
for representing sub-grid-scale processes or replacing numerical models entirely. They consist of several 69 
interconnected layers of nonlinear nodes†, with the number of intermediate layers depending on the complexity of the 70 
system being represented. These nodes allow for the encoding of an arbitrary number of interrelationships between 71 
arbitrary parameters to represent the system, removing the need to explicitly encode these interrelationships into a 72 
parameterization or numerical model. 73 

 
1 http://infolab.stanford.edu/pub/voy/museum/samuel.html, accessed 7th February 2023 
2 https://www.metoffice.gov.uk/research/foundation/informatics-lab/met-office-data-science-framework, accessed 7 
February 2023 
3 Henceforth, the first occurrence of each term described in the glossary is marked with the symbol "†" 
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 112 
Figure 1: A stacked bar graph of the number of publications cited in this review using different categories of ML algorithms by per 113 
year. For a description of Neural Networks and Decision Trees see Section 2.1 and 2.2 respectively. The ‘Other’ category is a 114 
collection of ML model types other than decision trees and neural networks, each of which only had one or two examples of use in 115 
this review. This included custom supervised and self-supervised algorithms, support vector machines and relevance vector 116 
machine models, regression models, unsupervised learning models, reservoir computing models and non-NN gaussian models. 117 
This figure includes all references from this review except for: seminal ML papers that are on new ML methods (e.g., foundational 118 
ML papers from outside the domain of weather and climate modelling), review papers, any paper cited that concerns a topic which 119 
is out of scope (e.g., nowcasting), and any other paper which does not present a new method directly applicable to weather and 120 
climate modelling. The full table of citations is provided in the appendix. 121 
 122 
 123 
One challenge that must be overcome before there will be more widespread acceptance of ML as an alternative to 124 
traditional modelling methods is that ML is seen as lacking interpretability. Most ML models do not explicitly 125 
represent the physical processes they are simulating, although physics constrained ML is a new and growing field 126 
which goes some way to addressing this (see Section 6). Furthermore, the techniques available to gain insight into the 127 
relative importance and predictive mechanism of each predictor (i.e. the model outputs) are limited. In contrast, 128 
traditional models are usually driven by some understanding and/or representation of the physical mechanisms and 129 
processes which are occurring. This makes it possible to more easily gain insight into what physical drivers could 130 
explain a given output. The “black box” nature of many current ML approaches to parametrization makes them an 131 
unpopular choice for many researchers (and can be off-putting for decision makers) since, for example, explaining 132 
what went wrong in a model after a bad forecast can be more challenging if there are processes in the model which 133 
are not, and cannot, be understood through the lens of physics. However, increasing attention is being paid to the 134 
interpretability of ML models (e.g., McGovern et al., 2019; Toms et al., 2020; Samek et al., 2021), and there are 135 
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existing methods to provide greater insight into the way physical information is propagated through them (e.g., 139 
attention maps, which identify the regions in spatial input data that have the greatest impact on the output field, and 140 
ablation studies, which involve comparing reduced data sources and/or models to the original models that have full 141 
access to available data, to gain insight into the models). 142 
As with their traditional counterparts, ML-based parametrizations and emulators are typically initially developed in 143 
single-column models, aquaplanet configurations, or otherwise simplified models. There are many examples of ML-144 
based schemes which have been shown to perform well against benchmark alternatives in this setting, only to fail to 145 
do so in a realistic model setting. A common theme is that these ML schemes rapidly excite instabilities in the model 146 
as errors in the ML parametrization push key parameters outside of the domain of the training data as the overall 147 
model is integrated forward in time, leading to rapidly escalating errors and to the model ‘blowing up’. Similarly, 148 
many ML-based full model replacements perform well for short lead times, only to exhibit model drift and a rapid 149 
loss of skill for longer lead times due to rapidly growing errors and the model drifting outside its training envelope.  150 
In recent years, however, progress has been made in developing ML parametrizations which are stable within realistic 151 
models (i.e. not toy models, aquaplanets etc.), and ML-based full models which can run stably and skillfully to longer 152 
lead times. This is usually achieved through training the model on more comprehensive data, employing ML 153 
architectures which keep the model outputs within physically real limits, or imposing physical constraints or 154 
conservation rules within the ML architecture or training loss functions†.  155 
There are still challenges and possible limitations to an ML approach to weather and climate modelling. In most cases, 156 
a robust ML model or parameterization scheme should be able to:  157 

• remain stable in a full (i.e. non-idealized) model run, 158 
• generalize to cases outside its training envelope, 159 
• conserve energy and achieve the required closures. 160 

Additionally, for an ML approach to be worthwhile it must provide one or more of the following benefits: 161 
• For ML parametrization schemes: 162 

o a speedup of the representation of a subgrid-scale process vs. when run with a traditional 163 
parametrization scheme. This can make the difference between the scheme being cost-effective to 164 
run or not - when it is not cost-effective the process usually needs to be represented with a static 165 
forcing or boundary condition file, 166 

o a speedup of the model vs. when run with traditional parametrization schemes, 167 
o improved representation of sub-grid process(es) over traditional parameterization schemes, as 168 

measured by metrics appropriate to the situation,  169 
o improved overall accuracy/skill of the model when run with traditional parametrization schemes, 170 
o insight into physical processes not provided by current numerical models or theory. 171 

• For full ML models: 172 
o a speedup of the model vs. an appropriate numerical model control, 173 
o improved overall accuracy/skill of the model vs. an appropriate numerical model control, 174 
o skillful prediction to greater lead times than an appropriate numerical model control, 175 
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o insight into physical processes not provided by current numerical models or theory 179 
Furthermore, in some cases of ML approaches to weather and climate modelling problems (particularly for full model 180 
replacement) the work is led by data scientists and ML researchers with limited expertise in weather and climate model 181 
evaluation. This can lead to flawed, misleading or incomplete evaluations. Hewamalage et al. (2022) have sought to 182 
rectify this problem by providing a guide to forecast evaluation for data scientists.  183 
The scope of this review is deliberately limited to the application of ML within numerical weather and climate models 184 
or for their replacement. This is done to keep the length of this review manageable. ML has enormous utility for other 185 
aspects of the forecast value chain such as observation quality assurance, data assimilation, model output 186 
postprocessing, forecast/product generation, downscaling, impact prediction, decision support tools, etc. A review of 187 
the application of, and progress in, ML in these areas would be of great value but is outside the scope of this review 188 
and is left to other work. Molina et al. (2023) have provided a very useful review of ML for climate variability and 189 
extremes which is highly complementary to this review. They draw similar lines of delineation in the earth system 190 
modelling (ESM) value chain to those mentioned above; describing them as “initializing the ESM, running the ESM, 191 
and postprocessing ESM output”. They examine each of these steps in turn, with a focus on the prediction of climate 192 
variability and extremes. Here we take a different approach, focusing on one part of the value chain (running the 193 
ESM), but looking in more detail at this one part. Additionally, here we consider climate modelling in the context of 194 
multiyear and free-running multidecadal simulations, but exclude the topic of ML for climate change projections, 195 
climate scenarios, and multi-sector dynamics. This is again in the interests of ensuring the scope of the review is 196 
manageable, rather than because these topics are not worthy of review. On the contrary, a review dedicated to the 197 
utility of machine learning in this area would be of enormous value to the community, but cannot be adequately 198 
explored here. A brief introduction to key ML architectures and concepts, including suggested foundational reading, 199 
is also provided to aid readers who are unfamiliar with the subject.  200 
The remainder of this review is structured as follows: In Section 2 an introduction to the two ML architectures most 201 
prevalent in the review is provided, followed by a suggested methodological approach to applying ML to a problem, 202 
and finally a brief overview of some of the major ML architectures and algorithms. With this background in place, the 203 
application of ML in weather and climate modelling is explored in the following five sections: In Section 3, ML use 204 
in sub-grid parametrization and emulation, along with tools and challenges specific to this domain, are covered. 205 
Zooming out from subgrid-scale to processes resolved on the model grid, in Section 4 the application of ML for the 206 
partial differential equations governing fluid flow is reviewed. Expanding scope further again to consider the entire 207 
system, the use of ML for full model replacement or emulation is reviewed in Section 5. In Section 6 the growing field 208 
of physics constrained ML models is introduced, and in Section 7 a number of topics tangential to the main focus of 209 
this review are briefly mentioned. Setting the work covered in the previous sections in a broader context, a review of 210 
the history of, and progress in, ML outside of the fields of weather and climate science is presented in Section 8. In 211 
Section 9 some practical considerations for the integration of ML innovations into operational and climate models are 212 
discussed, followed by a short introduction to some of the ethical considerations associated with the use of ML in 213 
weather and climate modelling in Section 10. In Section 11, some future research directions are speculated on, and 214 
some suggestions are made for promising areas for progression. Finally, a summary is presented in Section 12, and a 215 
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Glossary of Terms is provided after the final Section to aid the reader in their understanding of key concepts and 233 
words.  234 
 235 

2. A Quick Introduction to Machine Learning  236 

While the scope of this paper is a review of ML work directly applicable to weather and climate modelling, an abridged 237 
introduction to some key fundamental ML concepts is provided here to aid the reader. Suggested starting points for 238 
interested readers, including guidance on the utility of different model architectures and algorithms, and the 239 
connections between different applications and approaches, are as follows:  240 

• Hsieh (2023) provides a thorough textbook on environmental data science including statistics and machine 241 
learning 242 

• Chase et al (2022a, 2022b) provide an introduction to various machine learning algorithms with worked 243 
examples in a tutorial format and an excellent on-ramp to ML for weather and climate modelling  244 

• Russell & Norvig (2021) provide a comprehensive book regarding artificial intelligence in general 245 
• Goodfellow et al. (2016) provide a well-regarded book on deep learning theory and modern practise 246 
• Hastie et al. (2009) provide a book on statistics and machine learning theory 247 

This introductory section is a brief exposition of the concepts most central to this review. Definitions for this section 248 
can be found in the glossary. 249 
The majority of ML methods which have found traction in weather and climate modelling were first developed in 250 
fields such as computer vision, natural language processing and statistical modelling. Few, if any, of the methods 251 
mentioned in this paper could be considered unique to weather and climate modelling, however, they have in many 252 
cases been modified to a greater or lesser extent to suit the characteristics of the problem. In this review, the term 253 
algorithm refers to the mathematical underpinnings of a machine learning approach. By this definition, decision trees 254 
(DTs), NNs, linear regression and Fourier transforms are examples of algorithms. The two most relevant algorithms 255 
for this review are DTs and NNs. Many ML algorithms can be thought of as optimizing a nonlinear regression, with 256 
deep learning utilizing an extremely high-dimensional model. There is no consensus on the definition of ML, with the 257 
term encompassing relatively large or small topical domains depending on who is asked. A good rule of thumb, 258 
however, is that any iterative computational process that seeks to minimize a loss function or optimize an objective 259 
function can be considered to be a form of ML. Some of the chief concerns in machine learning are generalizability 260 
of the models, how to train (optimise the variables of) the model, and how to ensure robustness. The inputs and outputs 261 
of machine learning models are the often same as physical models or model components.The term architecture in 262 
machine learning refers to a specific way of utilizing an algorithm to achieve a modelling objective reliably. For 263 
example, the U-Net† architecture is a specific way of laying out a NN which has proven effective in many applications. 264 
The extreme gradient boosting decision tree† architecture is a specific way of utilizing DTs which has proven reliable 265 
and effective for an extraordinary number of problems and situations and is an excellent choice as a first tool to 266 
experiment with machine learning. 267 
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 A major current focus of ML research in the context of weather and climate modelling is new NN-based architectures 311 
and algorithms, and improved training regimes. Many other algorithms have been and continue to be employed in 312 
machine learning more broadly, but are not pertinent to this review. 313 
A key point for ML researchers to be aware of is the critical importance of approaching model training carefully. 314 
There are many pitfalls which can result in underperformance, unexpected bias or misclassification. For instance, 315 
adversarial examples† can occur ‘naturally’, and systems which process data can be subject to adversarial attack† 316 
through the intentional supply of data designed to fool a trained network.  317 

2.1. Introduction to Neural Networks 318 

NNs can be regarded as universal function approximators (Hornik et al., 1989; see also Lu et al., 2019). Further, NN 319 
architectures can theoretically be themselves modelled as a very wide feed-forward† NN with a single hidden layer. 320 
A Fourier transform is another example of a function approximator, although it is not universal since not all functions 321 
are periodic. NNs can therefore theoretically be candidates for accurate modelling of physical processes, although in 322 
practise they cannot always reliably interpolate beyond their training envelope and as such may not generalize to new 323 
regimes.ML models are typically introduced in the literature as being either classification† or regression† models, and 324 
either supervised† or unsupervised†.  325 
The mathematical underpinning of a NN can be considered distinctly in terms of its evaluation† (i.e., output, or 326 
prediction) step and its training update step. The prediction step can be considered as the evaluation of a many-327 
dimensional arbitrarily complex function.  328 
The simplest NN is a single-input, single node network with a simple activation† function. A commonly used activation 329 
function for a single neuron is the sigmoid function, which helpfully compresses the range between 0 and 1 while 330 
allowing a nonlinear response. A classification model will employ a threshold to map the output into the target 331 
categories. A regression model seeks to optimize the output result against some target value for the function. Larger 332 
networks make more use of linear activations and may utilise heterogenous activation function choices at different 333 
layers.  334 
Complex NNs are built up from many individual nodes, which may have heterogenous activation functions and a 335 
complex connectome†. The forward pass†, by which inputs are fed into the network and evaluated against activation 336 
functions to produce the final prediction, uses computationally efficient processes to quickly produce the result. 337 
The training step for a NN is far more complex. The earliest NNs were designed by hand rather than through 338 
automation. The training step applies a back-propagation† algorithm to apply adjustment factors to the weights† and 339 
biases† of each node based on the accuracy of the overall prediction from the network. 340 
Training very large networks was initially impractical. Both hardware and architecture advances have changed this, 341 
resulting in the significant increase in application of NNs to practical problems. Most NN research explores how to 342 
utilize different architectures to train more effective networks. There is little research going into improving the 343 
prediction step as the effectiveness of a network is limited by its ability to learn rather than its ability to predict. Some 344 
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research into computational efficiency is relevant to the predictive step. NNs can still be technically challenging to 352 
work with, and a lot of skill and knowledge are needed to approach new applications. 353 
The major classes of NN architectures most likely to be encountered are: 354 

• Small, fully-connected networks, which are less commonly featured in recent publications but are still 355 
effective for many tasks and are still being applied and may well be encountered in practice 356 

• Convolutional† architectures, first applied to image content recognition, which match the connectome of the 357 
network to the fine structure of images in hierarchical fashion to learn to recognize high-level objects in 358 
images 359 

• Recurrent token-sequence architectures, first applied to natural language processing, generation and 360 
translation; applicable to any time-series problem. Now also applied to image and video applications, and 361 
mixed-mode applications such as text-to-image or text-to-video 362 

• Transformer architectures†, based on the attention mechanism† to provide a non-recurrent architecture which 363 
can be trained using parallelized training strategies. This allows larger models to be trained. Originally 364 
developed for sequence prediction and extended to image processed through vision transformer architectures.  365 

2.2. Introduction to Decision Trees 366 

DTs are a series of decision points, typically represented in binary fashion based on a simple threshold. A particular 367 
DT of a particular size maps the input conditions into a final 'leaf' node which represents the outcome of the decisions 368 
up to that point. 369 
A random forest† (RF) is the composition of a large number of DTs assembled according to a prescribed generation 370 
scheme, which are used as an ensemble. A gradient boosted decision tree (GBDT) is built up sequentially, where each 371 
subsequent decision tree attempts to model the errors of the stack of trees built up thus far. This approach outperforms 372 
RFs in most cases. 373 
The DT family of ML architectures are very easy to train and are very efficient. They are well documented in the 374 
public domain and in published literature. DTs are statistical in nature and are not capable of effectively generalizing 375 
to situations which are not similar to those seen during training. This can be an advantage when unbounded outputs 376 
would be problematic, however can lead to problems where an ability to produce out-of-training solutions is necessary. 377 
Additionally, current DT implementations require all nodes (of all trees in the case of RFs and GBDTs) to be held in 378 
memory at inference time, making them potentially memory heavy.  379 

2.3. Methodologies for Machine Learning 380 

It is challenging to provide simplified advice for how to approach problem-solving in ML. There are few strict 381 
theoretical reasons to choose any one of the variety of architectures which are available. The authors would also 382 
caution against assuming that results in the literature are the product of a detailed comparison of alternative 383 
 384 
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 394 
Figure 2: A methodological flowchart illustrating a suggested approach to applying ML to a research problem.  395 
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architectures, or assuming that a deep learning approach is going to be easy or straightforward. It will often be the 396 
case that multiple machine learning architectures may be similarly effective, and determining the optimal 397 
architecture is likely to involve extensive iteration. Any specific methodology is also likely to reflect the intuitions 398 
(or biases), knowledge, and background of the authors of that methodology.  399 
Nonetheless, there is an appetite from many scientists for reasonable ways to 'get started' and to provide some 400 
assistance for practical decision-making, particularly if approaching the utilization of machine learning for the first 401 
time or in a new way. Figure 2 provides a set of suggested steps and decision points to help readers approach a new 402 
challenge with ML.  403 
The flowchart presented in Figure 2 provides an overview of methodological steps that can be taken when using ML 404 
to solve a problem, however it does not give much insight into the pros and cons of the common ML architectures 405 
available and used in the literature. Table 1 provides a brief summary of the major ML architectures and algorithms 406 
used by the studies cited in this review and gives a short note on some of their pros and cons. This table is not 407 
exhaustive, and readers are strongly encouraged to use it as a starting point for further exploration, rather than a 408 
definitive guide. The relative strengths and weakness of each ML architecture can be subtle, and highly dependent on 409 
the use case, their application, and their tuning. Establishing a good understanding of the ML architecture being used 410 
is a critical step for any scientist intending to delve into ML modelling. Interested readers should also refer to Chase 411 
et all (2022b), where a similar table is presented that covers a wider variety of traditional methods but fewer neural 412 
network approaches. 413 
An increasingly diverse array ML architectures are being applied to an ever-growing variety of challenges. These 415 
architectures all have sub-variants and ancestor architectures which may not be represented, all of which may be found 416 
to be of use for weather and climate modelling applications. Other concerns, such as data normalization, training 417 
strategies, and capturing physicality become as relevant as the choice of architecture once a certain level of 418 
performance is achieved.  419 
Figure 3 shows a summary of the ML architectures and algorithms used by the studies cited in this review, including 420 
the number of times each architecture is used. It can be seen from this that the two most frequently used general 421 
categories of architecture are Fully Connected NNs (FCNNs) and Convolutional NNs (CNNs) of various sub-types.  422 
However, some of the most significant recent research findings come from new architectures which by definition 423 
cannot have wide adoption yet (these are grouped under the ‘Mixed/custom NN’ category in Figure 3). 424 
In some cases, little justification is given for the ML architecture used in a study, and readers are therefore cautioned 425 
against using the relative popularity of a particular ML architecture in the literature as a guide for its suitability for a 426 
given task.  427 
Furthermore, ML models increasingly use a mix of different algorithms and architectures. For example, a common 428 
combination is fully-connected NN layers, convolutional NN layers, and LSTM layers. For the purposes of Figure 3, 429 
the authors have endeavoured to categorise the ML architectures used in the studies in this review as accurately as 430 
possible, with complex architectures being placed in the “Mixed/custom NN” category, however, where an 431 
architecture was mostly but not entirely aligned with a single category, it was placed in that category. For example, 432 
 433 
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Approach Description Pros Cons 

Simple 

regression 

techniques 

Includes linear regression and logistic 

regression. See Chase et al. (2022b) 

for more detail. 

Explainable and well-

understood. 

Can only capture 

simple relationships. 

Decision Tree  Consists of a series of branching 

decisions, culminating is a number of 

decision ‘leaves’. The decision points 

are trainable.  

Provides the basis for understanding 

more complex decision tree and 

regression tree approaches. 

Easily explainable. 

Computationally tractable and 

fast 

Unable to fully model 

complex problems. 

Cannot make 

predictions outside 

the training envelope. 

Random Forest 

(RF) 

A random forest consists of many 

decision trees, which form an 

ensemble and the average result is 

taken. The construction of the trees 

uses randomness. 

Versatile and effective. 

Computationally tractable and 

fast. 

Allows focus on the input 

variables rather than on 

process or model definition. 

Usually performs 

slightly less well than 

gradient boosted 

decision trees. 

Gradient Boosted 

Decision Trees 

(GBDT) 

Akin to Random Forecasts, however 

each additional member is used to 

predict the residual error of the 

ensemble so far. 

Is often sufficient for a given 

problem, and should thus be 

considered as a baseline for 

measuring more complex ML models 

against. 

A highly versatile and reliable 

approach. 

Computationally tractable and 

fast. 

Allows focus on the input 

variables rather than on 

process or model definition. 

Feature importance plots can 

guide intuition. 

Has practical 

limitations at scale 

due to large memory 

requirements at 

inference time.  

Limited ability to 

simulate complex 

systems compared to 

other ML approaches 

such as NNs.  

Cannot  make 

predictions outside 

the training envelope 

without customized 

leaves. 
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Vector Machines Support Vector Machines (SVMs) 

and Relevance Vector Machines 

(RVMs) are supervised models used 

for regression and classification. 

RVMs have the same functional form 

as SVMs, but are a probabilistic 

classification based on Bayesian 

inference. Vector Machines seek to 

define the optimal division between 

classes by finding the hyperplanes 

which have the largest distance to the 

nearest training-data point of any 

class. 

Can be used for similar 

problems as GBDTs. 

Computationally efficient and 

often effective. 

Mathematically appealing. 

Capable of modelling 

nonlinear functions. 

Now less-used 

compared to random 

forests and GBDTs. 

Single neuron See Chase et al. (2022b) for a 

description of the structure of a 

perceptron. 

Forms the conceptual and structural 

basis for all NN architectures.  

Unused in practice outside of 

a larger NN architecture. 

Unable to model 

most problems in 

isolation. 

Fully-Connected 

feed-forward 

Neural Network 

(FCNN) 

Consists of multiple layers of 

neurons, with each neuron being 

connected to every neuron in the 

subsequent layer.  

Still quite widely used in weather and 

climate modelling, in spite of 

declining use in other machine 

learning domains. Is often sufficient 

and should be considered as a 

baseline for measuring more complex 

architectures against.  

Effective for applications such 

as parametrization scheme 

emulation and PDE solver 

preconditioning. 

Relatively simple to work 

with.  

Computationally tractable. 

Unable to effectively 

train beyond a certain 

size or depth, and 

thus is increasingly 

being replaced with 

more complex 

architectures as ML 

moves to deeper 

NNs.  
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Bayesian 

networks 

A system (probabilistic graphical 

model) comprised of nodes which 

together predict both an expected 

value and a likelihood. Each node is 

associated with a probability function 

that provides a probability (or 

distribution) of the variable 

represented by the node. 

Effective for refining an 

expert or knowledge-based 

model by incorporating 

additional observations. 

Capable of dealing with both 

semantic concepts and 

physical processes. 

Determining an 

optimal model can be 

challenging and 

training times are 

prohibitive for large 

networks. 

Deep Bayesian 

Networks 

Deep Bayesian techniques attempt to 

capture the model complexity of deep 

neural networks while retaining the 

ability to predict a distribution of 

outcomes, a probabilistic model and a 

clear information-theoretical bases. 

Used to obtain a more realistic 

expression of uncertainty. 

Effective in modelling where 

causal relationships aren’t 

understood. 

Not as well explored 

as neural networks in 

recent literature. 

Convolutional 

Neural Network 

(CNN) 

Involves convolving a (usually 2D 

image, but can also be 1D temporal, 

for example) input field with a filter 

function (often a top hat function†) to 

extract features on different spatial 

scales. 

Conceptually useful in understanding 

how a neural network can build up an 

abstract or 'big picture' definition of a 

process in its hidden layers by 

assembling fine-scale features. 

The go-to network for image-

based problems.  

Proven effective on many 

problems and is well-covered 

in the literature. 

May require more 

significant hardware 

such as a modern 

GPU. 

 

Residual Neural 

Network 

(ResNet) 

ResNets are a form of CNN including 

skip connections, whereby the inputs 

of a number of convolutional layers 

are appended to the outputs of those 

layers to retain information lost 

through the weights in the 

convolutional layers.  

These skip connections make it 

possible to train much deeper 

convolutional networks than would 

be possible otherwise.  

Allows very deep networks to 

be efficiently trained. 

Allows an iterative build-up of 

network size by experimenting 

with the number of residual 

layers. 

Could be a good choice to 

couple with physically 

interpretable layers. 

Somewhat more 

computationally 

costly than other deep 

architectures. 
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U-Net Derives its name from the shape of 

the network as it is commonly shown 

diagrammatically (it forms a “U” 

shape).  

Consists of a series of downsampling 

convolutional layers, each of which 

further abstracts the information in 

the inputs (forming the first half of 

the “U”). These are then upsampled 

again to the original resolution of the 

input data (forming the second half of 

the “U”). Each downsampling step 

has its output appended to the input 

of the corresponding upsampling step 

(a form of skip connection).  

Effective for many purposes 

and widely used in 

classification and image 

segmentation. Has also seen 

uptake for nowcasting 

applications and prediction of 

multiyear timescale ocean 

variables.  

No serious 

drawbacks. Has 

somewhat given way 

to more complex 

architectures recently  

Deep Operator 

Network 

(DeepONet) 

A NN which is designed to learn the 

mappings between inputs and outputs 

of the mathematical operators 

underpinning processes, rather than 

directly predicting the outputs of the 

processes themselves. Was developed 

in the context of fluid dynamics and 

differential operators.  

An important theoretical component 

of the Adaptive Fourier Neural 

Operator used in FourCastNet 

(Pathak et al., 2022). 

Provides a strong theoretical 

basis for learning the 

underlying function space of a 

data set. 

Highly effective for fluid 

dynamics and idealized 

systems.  

Can retain the properties of 

the learned operators. For 

example, can exhibit 

translational and scale 

invariance where that property 

holds for the operator in 

question.  

 

Conceptually not 

straightforward.  

Requires strong 

mathematical and 

machine learning 

expertise to apply 

effectively to new 

challenges. 
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Graph Neural 

Network (GNN) 

Models data as a set of 

interconnected nodes and edges (as 

opposed to assuming data is on a 

regular grid). 

Underpins Keisler (2022) and 

GraphCast (Lam et al., 2022)  

Does not require data to be on 

a grid or distributed in a 

uniform manner.  

Capable of incorporating 

teleconnections, nonlocal 

relationships, and other 

complex variable 

relationships. 

Costly to train. 

Discriminator  A NN is trained to discriminate 

between two examples and identify 

the “real” one. Is used to estimate 

whether a sample is from the 

observations or the model. Forms one 

part of a GAN. 

 

Can be used in place of a 

manually-defined loss 

function to train without over-

emphasizing any individual 

metrics or variables. 

Can be used as an effective 

loss function when training 

Can be used independently to 

evaluate model realism. 

Comes closest to human 

subjective evaluation of image 

quality.  

Is more likely to 

require more machine 

learning domain 

knowledge to resolve 

issues.  

Generative 

Adversarial 

Network (GAN) 

Combines a generator network with a 

discriminator and trains them in an 

adversarial manner: the discriminator 

tries to differentiate the generator 

from ground truth, the generator tries 

to trick the discriminator. Eventually 

the discriminator can’t differentiate 

the generator from ground truth.  

May be part of a multi-phase training 

strategy in order to improve realism 

after initial optimization. 

Produce results which 

prioritize realism over 

accuracy (could also be a con). 

Is less prone to the blurring 

that results from training to 

simpler loss functions and 

thus can be more effective in 

producing sharp images and 

predicting statistical extremes.  

Increases training 

costs. 

Favors a ‘good 

looking’ answer over 

a correct answer. 

Can be difficult to 

train as the generator 

and discriminator 

must be kept 

balanced (one can 

outperform the other 

leading to mode 

collapse – a false 

minima).  
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Recurrent Neural 

Network (RNN) 

Any neural network where the output 

of previous predictions are provided 

to a sequence-based model. Multiple 

sub-types of the RNN exist. 

A simple RNN design can 

model many problems 

effectively. 

A recurrent architecture 

allows access to and 

inspection of the belief state at 

each iteration. 

Recurrent approaches 

can accumulate errors 

quickly.  

Relationships which 

act over longer time-

frames or distances 

than the recurrence 

length may not be 

captured. 

Choosing the length 

of the sequence may 

be a challenge. 

Long Short Term 

Memory (LSTM) 

Network 

Contains modified neurons with a 

memory component and the ability to 

retain or forget information. Is 

applied to sequence inputs and can 

learn the sequential scales in which 

information is encoded (e.g., what 

timescales in a timeseries are 

pertinent for future prediction). 

Has been combined with the ideas 

underpinning  CNNs to create 

Convolutional LSTMs (ConvLSTM), 

which fit for both timescales of 

relevance and spatial features of 

relevance. 

An effective alternative to a 

recurrent network which has 

proven very good at modelling 

time-series.  

A proven and effective 

mechanism for dimensionality 

reduction to allow the training 

of large networks. 

May not include 

spatial relationships 

(unless it’s a 

ConvLSTM), and 

may be more 

complex than needed 

for some problems. 

Less explainable than 

an attention 

mechanism. 

Has a bias towards 

closer points in a 

sequence (e.g., will 

be biased towards the 

recent past over a 

longer timescale in 

time series 

prediction). 
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Attention 

Mechanism 

Often used in conjunction with other 

architectures as a feature 

extraction/dimensionality reduction 

method.  

A NN is trained to learn the degree of 

importance of each input datapoint on 

each other one in a sequence.  

Attention mechanism-based NNs are 

rapidly overtaking LSTMs as the 

method of choice for modelling 

sequence-based information. 

 

   

Unlike LSTMS, attention 

mechanisms are not biased 

towards relationships between 

near points in a sequence. 

Rather, attention mechanisms 

treat all points in an input 

sequence equally and retain 

the learned attention mappings 

between each point.   

In the context of weather and 

climate modelling, the learned 

attention mappings between 

points can be a useful tool for 

assessing the degree to which 

a NN has learned physically 

realistic teleconnections.  

More costly to train 

than an LSTM for the 

same problem 

because attention 

mechanisms have 

more free parameters. 

 

 

 

Transformer The transformer architecture 

combines an attention mechanism 

with an autoregressive approach 

whereby each previously predicted 

step in a sequence is an input into the 

prediction of the next step. 

Transformer architectures underpin 

the current generation of language 

models such as ChatGPT. 

Transformers are now often included 

as part of other architectures for input 

dimensionality reduction. 

A proven and effective 

mechanism for dimensionality 

reduction to allow the training 

of large networks. 

While the uptake of 

transformer architectures in 

weather and climate modelling 

is still small, their impressive 

performance for sequence 

prediction suggests they could 

have great for the field.  

Transformers can be 

difficult to train due 

to a tendency to 

overemphasize the 

recurrent component 

of the network over 

new inputs in the 

early stages of 

training.  

 

 470 
Table 1: A summary of major ML architectures and algorithms used by the studies cited in this review. Interested readers should 471 
also refer Chase et all (2022b) where a similar table is presented that covers a wider variety of traditional methods but fewer neural 472 
network approaches. 473 
 474 
an LSTM model with a small number of feed-forward layers would be categorised as a Recurrent NN. Since many 475 
contemporary ML models combine multiple architectural elements and algorithms into the one model, it is somewhat 476 
of an oversimplification to consider each of these in isolation, and while starting with a simple model design with a 477 
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limited selection of layer types is advisable to aid interpretability, there is no reason they cannot be combined or used 488 
in conjunction with each other if this improves the performance of the model. 489 
Adapting, optimizing and debugging issues with machine learning systems can be very complex (especially so for 490 
large NNs), and is likely to require both machine learning expertise and domain knowledge (i.e. scientific knowledge). 491 
XGBoost provides the ability to generate chart showing the importance of the features in the model which can be very 492 
helpful. Shapley Additive Explanations (Lundberg and Lee 2017) can provide insights into feature importance for any 493 
model including NNs. 494 
 495 

 496 
Figure 3: A count of the ML architectures and algorithms used by the studies cited in this review. As with Figure 1, this figure 497 
includes all references from this review except for: seminal ML papers that are on new ML methods (e.g., foundational ML papers), 498 
review papers, any paper cited that concerns a topic which is out of scope (e.g., nowcasting), and any other paper which does not 499 
present a new method directly applicable to weather and climate modelling. The full table of citations is provided in the appendix. 500 
 501 

3. Sub-grid parametrization and emulation 502 
Subgrid-scale processes in numerical weather and climate models are typically represented via a statistical 503 
parameterization of what the macroscopic impacts of the process would be on resolved processes and parameters. 504 
These are commonly referred to as parameterization schemes, and can be very complex and relatively computationally 505 
costly. For example, in the European Centre for Medium-Range Weather Forecast’s (ECMWF) Integrated Forecasting 506 
System (IFS) model they account for about a third of the total computational cost of running the model (Chantry et al. 507 
2021b). They also require some understanding of the underlying unresolved physical processes. Examples of subgrid-508 
scale processes which are typically currently parameterized in operational systems include gravity wave drag, 509 
convection, radiation, subgrid-scale turbulence, and cloud microphysics. As additional complexity (for example 510 
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representation of aerosols, atmospheric chemistry, land surface processes, etc.) is added to numerical models, the 525 
computational cost will only increase. 526 
ML presents an alternative approach to representing subgrid-scale processes, either by emulating the behavior of an 527 
existing parametrization scheme, emulating the behavior of sub-components of the scheme, by replacing the current 528 
scheme or sub-component entirely with an ML-based scheme, or by replacing the aggregate effects of multiple 529 
parametrization schemes with a single ML model. 530 
ML emulation of existing schemes or sub-components has the advantage of maintaining the status quo within the 531 
model; no or minimal re-tuning of the model should be required since the ML emulation is trained to replicate the 532 
results of an already-tuned-for scheme. Because of this, the main benefit of this approach is that it reduces the 533 
computational cost of running the parametrization scheme. On the other hand, full replacement of an existing 534 
parameterization scheme or sub-component with an ML alternative has the potential to be both computationally 535 
cheaper and also an improvement over the preceding scheme.   536 
In the following subsections, a review of the literature on aspects of ML for the parametrization and emulation of 537 
subgrid-scale processes is presented.  538 

3.1. Early work on ML parametrization and ML emulations 539 

A popular target for applying ML in climate models is radiative transfer, since it is one of the more computationally 540 
costly components of the model. As such, many early examples of the use of ML in sub-grid parametrization schemes 541 
focus on aspects of this physical process. Chevallier et al. (1998) trained NNs to represent the radiative transfer budget 542 
from the top of the atmosphere to the land surface, with a focus on application in climate studies. They incorporated 543 
the information from both line-by-line and band models in their training to achieve competitive results against both 544 
benchmarks. Their NNs achieved accuracies comparable to or better than benchmark radiative transfer models of the 545 
time, while also being much faster computationally.  546 
In contrast to the ML based scheme developed by Chevallier et al. (1998), which could be considered an entirely new 547 
parametrization scheme, Krasnopolsky et al. (2005) used NNs to develop an ML based emulation of the existing 548 
atmospheric longwave radiation parametrization scheme in the NCAR Community Atmospheric Model (CAM). The 549 
authors demonstrated speedups with the NN emulation of 50-80 times the original parameterization scheme.  550 
Emulation of existing schemes has since then become a popular method for achieving significant model speedups. For 551 
example, Gettelman et al. (2021) investigated the differences between a General Circulation Model (GCM) with the 552 
warm rain formation process replaced with a bin microphysical model (resulting in a 400% slowdown) and one with 553 
the standard bulk microphysics parameterization in place. They then replaced the bin microphysical model with a set 554 
of NNs designed to emulate the differences observed, and showed that this configuration was able to closely reproduce 555 
the effects of including the bin microphysical model, without any of the corresponding slowdown in the GCM.  556 
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3.2. ML for coarse graining 559 

Coarse graining involves using higher resolution model or analysis data to map the relationship between smaller scale 560 
processes and a coarser grid resolution. It can be used to develop parameterization schemes without explicitly 561 
representing the physics of smaller scale processes. 562 
This has proven to be a popular method for developing ML-based parametrization schemes. Brenowitz & Bretherton 563 
(2018) used a near-global aqua planet simulation run at 4 km grid length to train a NN to represent the apparent sources 564 
of heat and moisture averaged onto 160 km2 grid boxes. They then tested this scheme in a prognostic single column 565 
model and showed that it performed better than a traditional model in matching the behavior of the aqua planet 566 
simulation it was trained on. Brenowitz & Bretherton (2019) built on this work by training their NN on the same global 567 
aqua-planet 4 km simulation, but then embedded this scheme within a coarser resolution (160 km2) global aqua planet 568 
GCM. Embedding NNs within GCMs is challenging because feedbacks between NN and GCM components can cause 569 
spatially extended simulations to become dynamically unstable within a few model days. This is due to the inherently 570 
chaotic nature of the atmosphere in the GCM responding to inputs from the NN which cause rapidly escalating 571 
dynamical instabilities and/or violate physical conservation laws. The authors overcame this by identifying and 572 
removing inputs into the NN which were contributing to feedbacks between the NN and GCM (Brenowitz et al. 2020), 573 
and by including multiple time steps in the NN training cost function. This resulted in stable simulations which 574 
predicted the future state more accurately than the course resolution GCM without any parametrization of subgrid-575 
scale variability, however the authors do observe that the mean state of their NN-coupled GCM would drift, making 576 
it unsuitable for prognostic climate simulations. 577 
Rasp et al. (2018) trained a deep NN† to represent all atmospheric subgrid processes in an aquaplanet climate model 578 
by learning from a multiscale model in which convection was treated explicitly. They then replaced all sub-grid 579 
parameterizations in an aquaplanet GCM with the deep NN, and allowed it to freely interact with the resolved 580 
dynamics and the surface-flux scheme. They showed that the resulting system was stable and able to closely reproduce 581 
not only the mean climate of the cloud-resolving simulation but also key aspects of variability in prognostic multiyear 582 
simulations. The authors noted that their decision to use deep NNs was a deliberate one, because they proved more 583 
stable in their prognostic simulations than shallower NNs, and they also observed that larger networks achieved lower 584 
training losses. However, while Rasp et al. (2018) were able to engineer a stable model that produced results close to 585 
the reference GCM, small changes in the training dataset or input and output vectors quickly led to the NN producing 586 
increasingly unrealistic outputs and causing model blow-ups (Rasp 2020). Consistent with this, Brenowitz & 587 
Bretherton (2019) report that they were unable to achieve the same improvements in stability with increasing network 588 
layers found by Rasp et al. (2018). 589 

3.3. Overcoming instability in ML emulations and parametrizations  590 

O’Gorman & Dwyer (2018) tackled the instabilities observed in NN-based approaches to subgrid-scale 591 
parameterization by employing an alternative ML method; Random Forests (RFs; Breiman 2001; Tibshirani & 592 
Friedman 2001). The authors trained a RF to emulate the outputs of a conventional moist convection parametrization 593 
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scheme. They then replaced the conventional parameterization scheme with this emulation within a global climate 604 
model, and showed that it ran stably and was able to accurately produce climate statistics such as precipitation 605 
extremes without needing to be specially trained on extreme scenarios. RFs consist of an ensemble of DTs, with the 606 
predictions of the RF being the average of the predictions of the DTs which in turn exist within the domain of the 607 
training data. RFs thus have the property that their predictions cannot go outside of the domain for their training data, 608 
which in the case of O’Gorman & Dwyer (2018) ensured conservation of energy and nonnegativity of surface 609 
precipitation (both critically important features of the moist convection parametrization scheme) were automatically 610 
achieved. A disadvantage of this method however is that it requires considerable memory when the climate model is 611 
being run to store the tree structures and predicted values which make up the RF.  612 
Yuval & O’Gorman (2020) extended on the ideas in O’Gorman & Dwyer (2018), switching from emulation of a single 613 
parametrization scheme to emulation of all atmospheric sub grid processes. They trained an RF on a high-resolution 614 
three-dimensional model of a quasi-global atmosphere to produce outputs for a course-grained version of the model, 615 
and showed that at course resolution the RF can be used to reproduce the climate of the high-resolution simulation, 616 
running stably for 1000 days.  617 
There are some drawbacks to a RF approach compared to a NN approach however; namely that NNs may provide the 618 
possibility for greater accuracy than RFs, and also require substantially less memory when implemented. Given that 619 
GCMs are already memory intensive this can be a limiting factor in the practical application of ML parametrization 620 
schemes. Furthermore, there is the potential to implement reduced precision NNs on Graphics Processing Units 621 
(GPUs) and Central Processing Units (CPUs) which still achieve sufficient accuracy, leading to substantial gains in 622 
computational efficiency. Motivated by these considerations, Yuval et al. (2021) trained a NN in a similar manner to 623 
how the RF in Yuval & O’Gorman (2020) was trained, using a high resolution aqua-planet model and aiming to coarse 624 
grain the model parameters. They overcame the model instabilities observed to occur in previous attempts to use NNs 625 
for this process by wherever possible training to predict fluxes and sources and sinks (as opposed to the net tendencies 626 
predicted by the RF in Yuval & O’Gorman (2020)), thus incorporating physical constraints into the NN 627 
parametrization. The authors also investigated the impact of reduced precision in the NN, and found that it had little 628 
impact on the simulated climate.  629 

3.4. From aquaplanets to realistic land-ocean simulations 630 

All of the studies discussed in this section so far which were tested in a full GCM have used aqua planet simulations. 631 
Han et al. (2020) broke away from this trend by developing a Residual NN† (ResNet) based parametrization scheme 632 
which emulated the moist physics processes in a realistic land-ocean simulation. Their emulation reproduced the 633 
characteristics of the land-ocean simulation well, and was also stable when embedded in single column models.  634 
Mooers et al. (2021) represents a subsequent example of an ML emulation of atmospheric fields with realistic 635 
geographical boundary conditions, where the authors developed feed-forward NNs to super-parametrize subgrid-scale 636 
atmospheric parameters and forced a realistic land surface model with them. Super-parametrization is distinct from 637 
traditional parameterization in that it relies on solving (usually simplified) governing equations for subgrid-scale 638 

Deleted: eural 639 
Deleted: etwork640 

Deleted: D641 
Deleted: sub grid-scale642 
Deleted: sub grid-scale643 



   
 

   

 
22 

processes rather than heuristic approximations of these processes. They employed automated hyperparameter 644 
optimization† to investigate a range of neural network architectures across ~250 trials, and investigated the statistical 645 
characteristics of their emulations. While the authors found that their NNs had a less good fit in the tropical marine 646 
boundary layer, attributable to the NN struggling to emulate fast stochastic signals in convection, they also reported 647 
good skill for signals on diurnal to synoptic timescales.  648 
Brenowitz et al. (2022) sought to address the challenge of emulating fast processes. They used FV3GFS (Zhou et al., 649 
2019; Harris et al., 2021; a compressible atmospheric model used for operational weather forecasts by the US National 650 
Weather Service) with a simple cloud microphysics scheme included to generate training data and used this to train a 651 
selection of ML models to emulate cloud microphysics processes, including fast phase changes. They emulated 652 
different aspects of the microphysics with separate ML models chosen to be suitable to each task. For example, simple 653 
parameters were trained with single-layer NNs, while parameters which are more complex spatially were trained with 654 
RNNs (e.g., rain falls downwards and not upwards, so it is sequential in timesteps through the atmosphere – a feature 655 
which can be represented by an RNN). They then embedded their ML emulation in FV3GFS. They found that their 656 
combined ML simulation performed skillfully according to their chosen metrics, but had excessive cloud over the 657 
Antarctic Plateau. 658 
All of these studies, however, did not test their parameterizations in prognostic long-term simulations.  659 

3.5. Testing with prognostic long-term simulations 660 

A barrier to achieving stable runs with minimal model drift with ML components is the fact that generic ML models 661 
are not designed to conserve quantities which are required to be conserved by the physics of the atmosphere and ocean. 662 
Beucler et al. (2019) proposed and tested two methods for imposing such constraints in a NN model; (1) constraining 663 
the loss function or (2) constraining the architecture of the network itself. They found that their control NN with no 664 
physical constraints imposed performed well, but did so by breaking conservation laws, bringing into question the 665 
trustworthiness of such a model in a prognostic setting. Their constrained networks did however generalize better to 666 
unforeseen conditions, implying they might perform better under a changing climate than unconstrained models. 667 
Chantry et al. (2021b) trained a NN to emulate the non-orographic gravity wave drag parameterization in the ECMWF 668 
IFS model (specifically cycle 45R1, ECMWF, 2018) and were able to run stable, accurate simulations out to 1 year 669 
with this emulation coupled to the IFS. While the authors note that RFs have been shown to be more stable (e.g., 670 
O’Gorman & Dwyer (2018) and Yuval & O’Gorman (2020), as described above, and Brenowitz et al. (2020)), they 671 
chose to focus on NNs since they have lower memory requirements and therefore promise better theoretical 672 
performance. The authors assessed the performance of their emulation in a realistic GCM by coupling the NN with 673 
the IFS, replacing the existing non-orographic gravity wave drag scheme, and performed 120 hour, 10 day, and 1 year 674 
forecasts at ~25 km resolution in a variety of model configurations. The authors showed that their emulation was able 675 
to run stably when coupled to the IFS for seasonal timescales, including being able to reproduce the descent of the 676 
Quasi-biennial Oscillation (QBO). Interestingly, while the authors initially aimed to ensure momentum conservation 677 
in a manner similar to Beucler at al. (2021), they found that this constraint led to model instabilities and that a better 678 
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result was achieved without it. One possible explanation for this is that Beucler at al. (2021) assessed their NNs in an 681 
aquaplanet setting. Nonetheless, Chantry et al. (2021b) noted that since their method was not identical to Beucler et 682 
al. (2021), improved stability could potentially be achieved by following their method more precisely. The 683 
computational cost of the NN emulation developed by Chantry et al. (2021b) was found to be similar that of the 684 
existing parametrization scheme when run on CPUs, but was faster by a factor of 10 when run on GPUs due to the 685 
reduction in data transmission bottlenecks. 686 
The first study to successfully run stable long-term climate simulations with ML parametrizations was Wang et al. 687 
(2022a), who extended on the work of Han et al. (2020) by constructing a ReNet to emulate moist physics processes. 688 
They used the residual connections from Han et al. (2020) to construct NNs with good nonlinear fitting ability, and 689 
filtered out unstable NN parametrizations using a trial-and-error analysis, resulting in the best ResNet set in terms of 690 
accuracy and long-term stability. They implemented this scheme in a GCM with realistic geographical boundary 691 
conditions and were able to maintain stable simulations for over 10 years in an Atmospheric Model Intercomparison 692 
Project (AMIP)-style configuration. This was more akin to a hybrid ML-physics based model than a traditional GCM 693 
with ML-based parametrization, because rather than embedding the ResNet in the model code, the authors used a NN-694 
GCM coupling platform through which the NNs and GCMs could interact through data transmission. This is in 695 
contrast to the approach employed in the Physical-model Integration with Machine Learning4 (PIML) project and 696 
Infero5, which are both described in Section 3.11. One advantage to this approach noted by the authors is that it allows 697 
for a high degree of flexibility in the application of the ML component, however is likely to be less efficient than a 698 
fully-embedded ML model, due to the potential for data transmission bottlenecks. 699 

3.6. Training with observational data 700 

An alternative to using more complex and/or higher resolution models for training data is to train using direct 701 
observational data. For example, Ukkonen & Mäkelä (2019) used reanalysis data from ERA5 and lightning 702 
observation data to train a variety of different types of ML models to predict thunderstorm occurrence; this was then 703 
used as a proxy to trigger deep convection. ML models assessed were logistic regression, RFs, GBDTs, and NNs, with 704 
the final two showing a significant increase in skill over convective available potential energy (CAPE; a standard 705 
measure of potential convective instability). One of the challenges of accurately reproducing the large-scale effects of 706 
convection is correctly identifying when deep convection should occur within a grid cell. The authors proposed that 707 
an ML model such as those they assessed could be used as the “trigger function” which activates the deep convection 708 
scheme within a GCM. 709 

3.7. ML for super parameterization 710 

Revisiting the topic of super parametrized subgrid-scale processes introduced above, the use of ML for this approach 711 
was investigated in depth by Chattopadhyay et al. (2020). The authors introduced a framework for NN-based super 712 

 
4https://turbo-adventure-f9826cb3.pages.github.io accessed 7th February 2023 
5https://infero.readthedocs.io/en/latest/ accessed 7th February 2023 
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parametrization, and compared the performance of this method against NN-based traditional parametrization (i.e., 719 
based on heuristic approximations of subgrid-scale processes) and direct super parameterization (i.e., explicitly 720 
solving for the subgrid-scale processes) in a chaotic Lorenz '96 (Lorenz 1996) system that had three sets of variables, 721 
each of a different scale. They found that their NN-based super parameterization outperformed direct super 722 
parameterization in terms of computational cost, and was more accurate than NN-based traditional parametrization. 723 
The NN-based super parameterization showed comparable accuracy to direct super parameterization in reproducing 724 
long-term climate statistics, but was not always comparable for short-term forecasting.  725 

3.8. Stochastic parametrization schemes 726 

A more recent approach to the representation of subgrid-scale processes is via stochastic parameterization schemes, 727 
which can represent uncertainty within the scheme. There has been less focus on replacing these schemes with ML 728 
alternatives than non-stochastic schemes, however some progress has been made. Krasnopolsky et al. (2013) used an 729 
ensemble of NNs to learn a stochastic convection parametrization from data from a high-resolution cloud resolving 730 
model. In this case, the stochastic nature of the parametrization was captured by the ensemble of NNs. Gagne et al 731 
(2020b) took a different approach, investigating the utility of generative adversarial networks (GANs) for stochastic 732 
parametrization schemes in Lorenz ‘96 (Lorenz 1996) models. In this case, the GAN learned to emulate the noise of 733 
the scheme directly, rather than implicitly representing it with an ensemble. They described the effects of different 734 
methods to characterize input noise for the GAN, and the performance of the model at both weather and climate 735 
timescales. The authors found that the properties of the noise influenced the efficacy of training. Too much noise 736 
resulted impaired model convergence and too little noise resulted in instabilities within the trained networks.  737 

3.9. ML parametrization and emulation for land, ocean, and sea ice models  738 

Models of the atmosphere make up one component of the Earth system, however for timescales beyond a few days, 739 
simulating other components of the Earth system becomes increasingly important to maintain accuracy. The 740 
components which are most often included in coupled Earth system models in addition to the atmosphere are the 741 
ocean, sea ice, and the land surface. Reflective of this, ML approaches to parameterization of subgrid-scale processes 742 
are not limited to the atmosphere, and progress has been made in the use of ML for land, ocean and sea ice models as 743 
well. 744 
On the ocean modelling front, Krasnopolsky et al. (2002) presented an early application of NN for the approximation 745 
of seawater density, the inversion of the seawater equation of state, and a NN approximation of the nonlinear wave-746 
wave interaction. More recently, Bolton & Zanna (2019) investigated the utility of Convolutional Neural Networks 747 
(CNNs) for parametrizing unresolved turbulent ocean processes and subsurface flow fields. Zanna & Bolton (2020) 748 
then investigated both Relevance Vector Machines† (RVMs) and CNNs for parameterizing mesoscale ocean eddies. 749 
They demonstrated that because RVMs are interpretable, they can be used to reveal closed-form equations for eddy 750 
parameterizations with embedded conservation laws. The authors tested the RVM and CNN parameterizations in an 751 
idealized ocean model and found that both improved the statistics of the coarse resolution simulation. While the CNN 752 
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was found to be more stable than the RVM, the advantage of the RVM was the greater interpretability of its outputs. 758 
Finally, Ross et al. (2023) developed a framework for benchmarking ML based parametrization schemes for subgrid-759 
scale ocean processes. They used CNNs, symbolic regression, and genetic programming methods to emulate a variety 760 
of subgrid-scale forcings including measures of potential vorticity and velocity, and developed a standard set of 761 
metrics to evaluate these emulations. They found that their CNNs were stable and performed well when implemented 762 
online, but generalized poorly to new regimes. 763 
Focusing instead on sea ice, Chi & Kim (2017) assessed the ability of two NN models; a fully connected NN and an 764 
LSTM, to predict Antarctic sea ice concentration up to a year in advance. Their ML models outperformed an 765 
autoregressive model comparator, and were in good agreement with observed sea ice extent. Andersson et al. (2021) 766 
improved upon this work with their model IceNet, A U-Net ensemble model which produced probabilistic Arctic sea 767 
ice concentration predictions to a 6-month lead time. The authors compared IceNet to the SEAS5 dynamical sea ice 768 
model (Johnson et al., 2019) and showed an improvement in the accuracy of a binary classification of ice/no ice for 769 
all lead months except the first month. Horvat & Roach (2022) used ML to emulate a parameterization of wave-770 
induced sea ice floe fracture they had developed previously, in order to reduce the computational cost of the scheme. 771 
When embedded in a climate simulation, their ML scheme resulted in an overall categorical accuracy (accounting for 772 
the fact that it was only called where needed) of 96.5%. However, the authors did note that since their ML scheme 773 
was trained on present day sea ice conditions, it may have reduced success under different climate scenarios, and they 774 
recommend retraining using climate model sea-ice conditions to account for this. Rosier et al. (2023) developed 775 
MELTNET, a ML emulation of the ocean induced ice shelf melt rates in the NEMO ocean model (Gurvan et al., 776 
2019). MELTNET consisted of a melt rate segmentation task, followed by a denoising autoencoder network which 777 
converted the discrete labelled melt rates to a continuous melt rate. The authors demonstrated that MELTNET 778 
generalized well to ice shelf geometries outside the training set, and outperformed two intermediate-complexity melt 779 
rate parameterizations, even when parameters in those models were tuned to minimize any misfit for the geometries 780 
used. Given the computational cost of sea ice parametrizations is relatively high for the timescales on which sea ice 781 
evolution is important (namely, seasonal to climate timescales), and given the promising results in emulating these 782 
parametrizations demonstrated in the literature, ML based emulation of these schemes is a strong candidate for 783 
inclusion into future dynamical coupled modelling systems.  784 
Finally, considering Earth’s surface, most of the focus of ML innovations in this context has focused on land use 785 
classification (e.g, Carranza-García et al, 2019; Digra et al., 2022) and crop modelling (e.g., Virnodkar et al., 2020; 786 
Zhang et al., 2023). The rate of publication of ML applications for land surface models has been slower, however 787 
there has nonetheless been steady progress in this space in recent years. Pal & Sharma (2021) presented a review of 788 
the use of ML in land surface modelling which provides an excellent primer of the state of the field to that point. They 789 
include in their review an overview of land surface modelling components and processes, before reviewing the 790 
literature on the use of ML to represent them. They separate their review into attempts to predict and parametrize 791 
different variables or aspects of the model, including evapotranspiration (Alemohammad et al., 2017; Zhao et al., 792 
2019; Pan et al., 2020), soil moisture (Pelissier et al., 2020), momentum and heat fluxes (Leufen & Schädler, 2019), 793 
and parameter estimation and uncertainty (Chaney et al., 2016; Sawada, 2020; Dagon et al., 2020). They also provide 794 

Deleted: i795 

Formatted: Font:

Formatted: Font:



   
 

   

 
26 

a useful summary of the ML architectures that have been used in publications they have discussed. More recently, He 796 
et al. (2022) developed a hybrid approach to modelling aspects of the land surface, where a traditional land surface 797 
model was used to optimize selected vegetation characteristics, while a coupled ML model simulated a corresponding 798 
three-layer soil moisture field. The estimated evapotranspiration from this hybrid model was compared to observations 799 
and it was found that it performed well in vegetated areas but underestimated the evapotranspiration in extreme arid 800 
deserts. The ready application of ML to aspects of land surface modelling, and the relative sparsity of publications in 801 
this space suggests that it is a fertile domain for further research and development. 802 

3.10. ML for representing or correcting a sub-component of a parametrization scheme 803 

An alternative method to replacing or emulating an entire parametrization scheme or schemes with ML is to target the 804 
most costly or troublesome sub-components of the scheme, and either replace those or make corrections to them.  805 
Ukkonen et al. (2020) trained NNs to replace gas optics computations in the RTE-RRTMGP (Radiative Transfer for 806 
Energetics and Rapid and accurate Radiative Transfer Model for General circulation models applications-Parallel; 807 
Pincus et al., 2019) scheme. The NNs were faster by a factor of 1-6, depending on the software and hardware platforms 808 
used. The accuracy of the scheme remained similar to that of the original scheme.   809 
Meyer et al. (2022) trained a NN to account for the differences between 1D cloud effects in the European Centre for 810 
Medium Range Weather Forecasting (ECMWF) 1D radiation scheme ecRad and 3D cloud effects in the ECMWF 811 
SPARTACUS (SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides) solver. The 1D cloud effects solver 812 
within ecRad, Tripleclouds, is favored over the 3D SPARTACUS solver because it is five times less computationally 813 
expensive. The authors show that their NN can account for differences between the two schemes with typical errors 814 
between 20% and 30% of the 3D signal, resulting in an improvement in Tripleclouds’ accuracy with an increase in 815 
runtime of approximately 1%. By accounting for the differences between SPARTACUS and Tripleclouds rather than 816 
emulating all of SPARTACUS, the authors were able to keep Tripleclouds unchanged within ecRad for cloud-free 817 
areas of the atmosphere, and utilize the NN 3D correction elsewhere.  818 

3.11. Bridging the gap between popular languages for ML and large numerical models 819 

A common toolset for researchers to develop and experiment with different ML approaches to problems is Python 820 
libraries such as pytorch, scikit-learn, tensorflow, keras, etc., or other dynamically-typed, non-precompiled languages. 821 
In contrast, numerical weather models are almost universally written in statically-typed compiled languages, 822 
predominantly Fortran. To make use of ML emulations or parameterizations in the models thus requires that they be: 823 
(1) treated as a separate model periodically coupled to the main model (as is done between atmosphere and ocean 824 

models for example), or  825 
(2) be manually re-implemented in Fortran, or  826 
(3) that the pre-existing libraries used are somehow be made accessible within the model code.  827 

Wang et al. (2022a; mentioned already above) opted for method 1, developing what could be considered a hybrid ML-828 
physics based model rather than a traditional GCM with ML-based parametrization. In their study, the authors used a 829 
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NN-GCM coupling platform through which the NNs and GCMs could interact through data transmission. One 831 
advantage to this approach noted by the authors is that it allows for a high degree of flexibility in the application of 832 
the ML component, however, is likely to be less efficient than a fully-embedded ML model, due to the potential for 833 
data transmission bottlenecks. This framework was then formalized by Zhong et al. (2023). 834 
There are many examples where method 2 was used, such as Rasp et al. (2018), Brenowitz & Bretherton (2018), 835 
Gagne et al. (2019) and Gagne et al. (2020a). The obvious disadvantage of this approach is that every change to the 836 
ML model being used requires reimplementation in the Fortran, and if the aim is to test a suite of ML models, this 837 
approach becomes untenable. Furthermore, this approach poses greater technical barriers for scientists developing 838 
ML-based solutions for numerical model challenges, since they must be sufficiently proficient in Fortran to 839 
reimplement models in it, rather than using existing user-friendly Python toolkits. 840 
A solution lying somewhere between methods 2 and 3 was developed by Ott et al. (2020), who developed a Fortran-841 
Keras Bridge (FKB) library that facilitated the implementation of Keras-like† NN modules in Fortran, providing a 842 
more modular means to build NNs in Fortran code. This however did not fully overcome the drawbacks posed by 843 
method 2 on its own; implementation of layers in the Fortran is still necessary, and any innovations in the Python 844 
modules being used would need to be mirrored in the Fortran library.  845 
Finally, method 3 is being tackled by the Met Office in the PIML6 project, and by ECMWF with an application called 846 
Infero7. These projects both seek to develop a framework which can be used by researchers to develop ML solutions 847 
to modelling problems in Python, and then integrate them directly into the existing codebase of the physical model 848 
(e.g., the Unified model at the UK Met Office). The approach used is to directly expose the compiled code 849 
underpinning the Python modules within the physical model code.  850 

4. Application of ML for the partial differential equations governing fluid flow  851 

The representation and solving of the partial differential equations (PDEs) governing the fluid flow and dynamical 852 
processes in the oceans and atmosphere can be considered the backbone of weather and climate models. The solvers 853 
used to find solutions to these equations are typically iterative, and must solve the dynamics-governing equations of 854 
their model on every timestep and at every grid point. There has been growing interest in using ML to facilitate 855 
speedups and computational cost reductions in the preconditioning and execution of these solvers. Preconditioners are 856 
used to reduce the number of iterations required for a solver to converge on a solution, and usually do so by inverting 857 
parts of the linear problem. Many earlier studies focused on using ML to select the best preconditioner and/or PDE 858 
solver from a set of possible choices (e.g. Holloway & Chen, 2007; Kuefler & Chen, 2008; George et al., 2008; Peairs 859 
& Chen, 2011; Huang et al., 2016; and Yamada et al., 2018). Ackmann et al. (2020) approached the preconditioner 860 
part of the system more directly, using a variety of ML methods to directly predict the pre-condition of a linear solver, 861 
rather than using a standard preconditioner. Rizzuti et al. (2019) focused on the solver, using ML to apply corrections 862 
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to a traditional iterative solver for the Helmholtz equation. Going a step further, a number of studies have used ML to 863 
replace the linear solver entirely (Ladický et al., 2015; Yang et al., 2016; Tompson et al., 2017). 864 
Representation of the fluid equations in a gridded model poses a challenge because of the inability to resolve fine 865 
features in their solution. This leads to the use of course-grained approximations to the actual equations, which aim to 866 
accurately represent longer-wavelength dynamics while properly accounting for unresolved smaller-scale features. 867 
Bar-Sinai et al. (2019) trained a NN to optimally discretize the PDEs based on actual solutions to the known underlying 868 
equations. They showed that their method is highly accurate, allowing them to integrate in time a collection of 869 
nonlinear equations in 1 spatial dimension at resolutions 4× to 8× coarser than was possible with standard finite-870 
difference methods. 871 
Building on this, Kochkov et al. (2021) developed a ML-based method to accurately calculate the time evolution of 872 
solutions to nonlinear PDEs which used grids an order of magnitude coarser than is traditionally required to achieve 873 
the same degree of accuracy. They used convolutional NNs to discover discretized versions of the equations (as in 874 
Bar-Sinai et al., 2019), and applied this method selectively to the components of traditional solvers most affected by 875 
coarse resolution, with each NN being equation specific. They utilized the property that the dynamics of the PDEs 876 
were localized, combined with the convolutional layers of their NN enforcing translation invariance†, to perform their 877 
training simulations on small but high-resolution domains, making the training set affordable to produce. An 878 
interesting feature of their training approach, which is growing in popularity, was the inclusion of the numerical solver 879 
in the training loss function: the loss function was defined as the cumulative pointwise error between the predicted 880 
and ground truth values over the training period. In this way, the NN model could see its own outputs as inputs, 881 
ensuring an internally-consistent training process. This had the effect of improving the predictive performance of the 882 
model over longer timescales, in terms of both accuracy and stability. Finally, the authors demonstrated that their 883 
models produced generalizable properties (i.e., although the models were trained on small domains, they produced 884 
accurate simulations over larger domains with different forcing and Reynolds number). They showed that this 885 
generalization property arose from consistent physical constraints being enforced by their chosen method. 886 
An alternative to using ML to discover discretized versions of the PDE equations is to instead use NNs to learn the 887 
evolution operator of the underlying unknown PDE, a method often referred to as a DeepONet†. The evolution operator 888 
maps the solution of a PDE forwards in time and completely characterizes the solution evolution of the underlying 889 
unknown PDE. Because it is operating on the PDE, it is scale invariant and so bypasses the restriction of other methods 890 
that must be trained for a specific discretization or grid scale. Interest in, and the degree of sophistication of, 891 
DeepONets has grown rapidly in recent years (e.g., Lu et al., 2019; Wu & Xiu, 2020; Bhattacharya et al., 2020; Li et 892 
al., 2020a; Li et al., 2020b; Li et al., 2020c; Nelsen & Stuart, 2021; Patel et al., 2021; Wang et al., 2021; Lanthaler et 893 
al. 2022), to the point where the method is showing promising speedups: 3x faster than traditional solvers in the case 894 
of Wang et al. (2021).  895 
The application of ML to the solving of PDEs and the preconditioning of PDE solvers has been a fruitful avenue of 896 
research to date. It has led to innovations which have proven useful even outside of the immediate field (e.g., Pathak 897 
et al. 2022 adapted innovations from DeepONets to use in fully ML-based weather models - this is discussed further 898 
in the next Section). This is likely in part because there are many areas of engineering and science which are active in 899 
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progressing relevant research, leading to a greater overall pace of innovation. ML-based PDE solvers and 900 
preconditioners have not yet been tested in a physical weather and climate model. There are few theoretical reasons 901 
this could not occur and, if effective, result in significant computational efficiencies for traditional physical model 902 
architectures. This poses an interesting avenue for further research. 903 

5. Numerical model replacement/emulation 904 

The shift from using ML to emulate or replace parametrization schemes to using ML to replace the entire GCM has 905 
been made plausible by the increasing volume of training data available. The focus in this section will be on the 906 
challenge of completely replacing a GCM with a ML model.  907 
There has been a flurry of activity in the use of ML for nowcasting (e.g. Ravuri et al., 2021), however, since the focus 908 
of this review is on weather and climate applications, these studies will not be elaborated on.   909 

5.1. Early work – 1D deterministic models 910 

Work on the use of ML to predict chaotic time-domain systems initially focused on 1-D problems, including 1-D 911 
Lorenz systems (e.g. Karunasinghe & Liong, 2006; Vlachas et al., 2018). Of particular interest is Vlachas et al. (2018), 912 
who used Long Short-Term Memory Networks (LSTMs†), which are well-suited to complex time domain problems. 913 
Convolutional LSTMs (ConvLSTMs), which combine convolutional layers with an LSTM mechanism, were 914 
introduced in the meteorological domain by Shi et al. (2015) for precipitation nowcasting. They have since seen wide 915 
adoption in other areas (e.g., Yuan et al., 2018; Moishin et al., 2021; Kelotra & Pandey, 2020). Their success in other 916 
domains suggests that revisiting their utility for weather and climate modelling could be worthwhile.  917 

5.2. Moving to spatially extended deterministic ML-based models 918 

Replacing a GCM entirely with an ML alternative was first suggested and tested in a spatially-resolved global 919 
configuration by Dueben and Bauer (2018), although for this study they only sought to predict a single variable 920 
(geopotential height at 500 hPa) on a 6 degree grid. Scher (2018) trained a CNN to predict the next model state of a 921 
GCM based on the complete state of the model at the previous step (i.e., an emulator of the GCM). Since this work 922 
was intended to be a proof-of-concept, the authors used a highly simplified GCM with no seasonal or diurnal cycle, 923 
no ocean, no orography, a resolution of ~625 km in the horizontal, and 10 vertical levels. Nonetheless, their ML model 924 
showed impressive capabilities; it was able to predict the complete model state several timesteps ahead, and when run 925 
in an iterative way (i.e., by feeding the model outputs back as new inputs) was able to produce a stable climate run 926 
with the same climate statistics as the GCM, with no long-term drift (even though no conservation properties were 927 
explicitly built into the CNN). Scher & Messori (2019) then extended on this, but continued the proof-of-concept 928 
approach. They investigated the ability of NNs to make skillful forecasts iteratively a day at a time to a lead time of a 929 
few days for GCMs of varying complexity, and explored a combination of other factors, including number of training 930 
years, the effects of model retuning, and the impact of a seasonal cycle on NN model accuracy and stability. 931 
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Weyn et al. (2019) aimed to predict a limited number of variables, focusing on the NWP to medium range time domain. 936 
They trained a CNN to predict 500 hPa geopotential height and 300 to 700 hPa geopotential thickness over the 937 
Northern Hemisphere to up to 14-days lead time, showing better skill out to 3 days than persistence, climatology, and 938 
a dynamics-based barotropic vorticity model, but not better than an operational full-physics weather prediction model.  939 
Weyn et al. (2020) then improved on this significantly, with a Deep U-Net style CNN trained to predict four variables 940 
(geopotential height at 500 and 1000 hPa, 300 to 700 hPa geopotential thickness, and 2 m temperature) globally to 14 941 
days lead time. A major innovation in this study was their use of a cubed-sphere grid, which minimized distortions 942 
for planar convolution algorithms while also providing closed boundary conditions for the edges of the cube faces. 943 
Additionally, they extended their previous work to include sequence prediction techniques, making skillful predictions 944 
possible to longer lead times. Their improved model outperformed persistence and a coarse resolution comparator (a 945 
T42 spectral resolution version of the ECMWF IFS model, with 62 vertical levels and ~2.8 degree horizontal 946 
resolution) to the full 14 days lead time, but was not as skillful as a higher resolution comparator (a T63 spectral 947 
resolution version of the IFS model with 137 vertical levels and ~1.9 degree horizontal resolution) or the operational 948 
subseasonal-to-seasonal (S2S) version of the ECMWF IFS.  949 
Clare et al. (2021) tackled a short falling of many of the ML weather and climate models developed to this point, 950 
namely that most were deterministic, limiting their potential utility. To address this, they trained a NN to predict full 951 
probability density functions of geopotential height at 500 hPa and temperature at 850 hPa at 3 and 5 days lead time, 952 
producing a probabilistic forecast which was comparable in accuracy to Weyn et al. (2020). 953 
Choosing to focus on improved skill rather than the question of probabilistic vs deterministic models, Rasp & Thuerey 954 
(2021) developed a ResNet model trained to predict geopotential height, temperature and precipitation to 5 days lead 955 
time and assessed it against the same set of physical models as Weyn et al. (2020). Their model was close to as skillful 956 
as the T63 spectral resolution version of the IFS model, and had better skill to the 5 day lead time than Weyn et al. 957 
(2020). 958 
Keisler (2022) took an ambitious step forward, training a Graph Neural Network† (GNN) model to predict 6 physical 959 
variables on 13 atmospheric levels on a 1-degree horizontal grid, which the authors claim is ~50-2000 times larger 960 
than the number of physical quantities predicted by the models in Rasp & Thuerey (2021) and Weyn et al. (2020). 961 
Their model worked by iteratively predicting the state of the 6 variables 6 hours into the future (i.e., the output of each 962 
model timestep was the input into the next timestep), to a total lead time of 6 days. The authors showed that their 963 
model outperformed both Rasp & Thuerey (2021) and Weyn et al. (2020) in the variables common to all three studies. 964 
They suggested that the gain in skill seen over previous studies was due to the use of more channels† of information, 965 
and the higher spatial and temporal resolution of their model. Finally, they showed that their model was more skillful 966 
than NOAA’s GFS physical model to 6 days lead time, but not as skillful as ECMWF’s IFS.  967 
Lam et al. (2022) also used GNNs to build their ML-based weather and climate model, GraphCast. This model was 968 
the most skillful ML-based weather and climate model at the time of writing this review. While the first ML-based 969 
weather and climate model to claim to exceed the skill of a numerical model was Pangu-Weather (Bi et al., 2022; 970 
described in greater detail in the following subsection), GraphCast exceeded the skill of both the ECMWF 971 
deterministic operational forecasting system, HRES, and also Pangu-Weather. Furthermore, Lam et al. (2022) paid 972 
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particular attention to evaluating their model and HRES against appropriate measures, and included existing model 988 
assessment scorecards from ECMWF to evaluate them. GraphCast capitalized on the ability of GNNs to model 989 
arbitrary sparse interactions by adopting a high-resolution multi-scale mesh representation of the input and output 990 
parameters. It was trained on the ECMWF ERA5 reanalysis archive to produce predictions of five surface variables 991 
and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25° grid. It made predictions on a 6-hourly 992 
timestep and was run autoregressively to produce predictions to a 10-day lead time. The authors demonstrated that 993 
GraphCast was more accurate than HRES on 90.0% of the 2760 variable and lead time combinations they evaluated.  994 

5.3. Ensemble generation with ML-based models 995 

A common criticism of ML approaches to weather and climate prediction is the difficulty of representing uncertainty, 996 
and/or the tails of the distribution of predicted parameters. One common method to represent the range of possible 997 
outcomes (including extremes) under different sources of uncertainty is through a well-calibrated ensemble of 998 
predictions. There are a growing number of examples where ensemble generation is  considered, many of which fall 999 
into the category of full-model replacement.  1000 
 1001 
Weyn et al. (2021) explored probabilistic ML predictions using an ensemble of NNs similar to the single-member NN 1002 
described in Weyn et al. (2020). The authors expanded the number of variables predicted from 4 to 6, and produced 1003 
forecasts to 6 weeks lead time - considerably longer than any comparable work at the time of writing this review.They 1004 
considered a variety of initial condition perturbation strategies, and explored the impact of model error by varying the 1005 
initial values of the model weights during training to create a multi-model ensemble. They used a combination of the 1006 
multi-model ensemble generation approach and initial condition perturbations to generate a ‘grand ensemble’ of 320 1007 
members. They used established metrics for ensemble performance such as RMSE-spread plots, and found that the 1008 
320-member grand ensemble combining the multi-model ensemble with initial condition perturbations performed only 1009 
slightly better than the multi-model ensemble alone at 14 day lead times. The skill of the ensemble mean of the system, 1010 
a control member, and the full ensemble were assessed against the same metrics from the ECMWF sub-seasonal to 1011 
seasonal (S2S) prediction system. Their grand ensemble had lower skill than the S2S system at shorter lead times, but 1012 
was comparable in skill at longer lead times. Their skill assessment used standard probabilistic skill measures such as 1013 
continuous ranked probability score and the ranked probability skill score, which are not present in the other studies 1014 
discussed in this Section.The next major ML model to be tested in an ensemble mode was FourCastNet, presented by 1015 
Pathak et al. (2022), who leveraged the work on DeepONets described in Section 4. In particular, the authors used a 1016 
type of DeepONet called a Fourier Neural Operator (FNO). FourCastNet produced predictions of 20 variables 1017 
(including challenging-to-predict variables such as surface winds and precipitation) on five vertical levels with 0.25 1018 
degree horizontal resolution, and had competitive skill against the ECMWF IFS to 1 week lead time. The high 1019 
horizontal resolution of their model enabled it to resolve extreme events such as tropical cyclones and atmospheric 1020 
rivers, and the speed of the model facilitated the generation of large ensembles (up to 1,000’s of members).  1021 
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The authors explored the potential of their ensemble forecasts by generating a 100-member ensemble from initial 1060 
conditions perturbed with Gaussian random noise. They showed that the FourCastNet ensemble mean had lower 1061 
RMSE and a higher anomaly correlation coefficient than a single-value prediction at longer lead times (beyond ~3-4 1062 
days), although the ensemble mean performed slightly worse than the single value forecast at shorter lead times. The 1063 
authors attributed this relative decrease in performance at shorter lead times to the ensemble mean smoothing out fine-1064 
scale features. Unfortunately, the authors did not examine the spread of the ensemble with lead time or evaluate the 1065 
model using probabilistic skill metrics (in contrast to Weyn et al., 2021), and while they did consider the capacity of 1066 
FourCastNet to predict extremes, they did not do so in an ensemble context. 1067 
Hu et al. (2023) improved on the relatively simple ensemble perturbation approach employed by Pathak et al. (2022) 1068 
in their model, a Swin (sliding window) Transformer-based Variational Recurrent Neural Network (SwinVRNN). 1069 
This model combined a Swin Transformer Recurrent Neural Network (SwinRNN) predictor with a Variational Auto-1070 
Encoder perturbation module. The perturbation module learned the multivariate Gaussian distributions of a time-1071 
variant stochastic latent variable from the training data. The SwinRNN predictor was deterministic, but could be used 1072 
to generate ensemble predictions by perturbing model features using noise sampled from the distribution learned by 1073 
the perturbation module. Unlike the approach used by Pathak et al. (2022), this strategy ensured that the perturbations 1074 
applied at each spatial location in ensemble generation were appropriate for the location and variable in question. 1075 
Furthermore, the training strategy employed by Hu et al. (2023) accounted for both the error in the deterministic 1076 
predictions and the error in the learned perturbation distribution, effectively optimizing forecast accuracy and 1077 
ensemble spread at the same time. The authors assessed both the ensemble spread, and ensemble mean accuracy of 1078 
their model, and found that it had a better ensemble spread than simpler alternative ensemble generation strategies. 1079 
They also found that it had lower latttude-weighted RMSE than the ECMWF IFS to 5 days lead time for 2m 1080 
temperatures and total precipitation. ECMWF data beyond 5 days was not shown, but the SwinVRNN models had 1081 
latitude-weighted RMSE values lower than a weekly climatology baseline for three of the four variables shown to 14 1082 
days lead time. Bi et al. (2022) achieved a significant milestone with their model Pangu-Weather, the first ML-based 1083 
model to perform better than the ECMWF IFS to a lead time of 7 days based on RMSE and Anomaly Correlation 1084 
Coefficient (ACC) across several variables including geopotential height and temperature at 500 hPa. While they did 1085 
explore the utility of Pangu-Weather for ensemble generation, their approach was more simplistic than that 1086 
demonstrated by Hu et al. (2023). Pangu-Weather featured two major innovations over previos contributions to this 1087 
space: 1088 

1. It used 3D (latitude, longitude and height) input grids trained against 3D output grids. This enabled different 1089 
levels of the atmosphere to share information, which was not possible in FourCastNet in spite of predicting 1090 
variables on multiple atmospheric levels, because the levels were treated independently. In contrast, Pangu-1091 
weather adopted a 3D convolutional method that the authors name the 3D Earth-specific transformer 1092 
(3DEST), which enabled the flow of information both horizontally and vertically.  1093 

2. It was made up of a series of models trained with different prediction time gaps. The motivation for this was 1094 
that, as noted by the authors, when the goal is to produce forecasts to 5 days (for example), but the timestep 1095 
of the basic forecast model is relatively short (e.g. 6 hours), many iterative executions of the model are 1096 
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required, with the errors of each iteration feeding onto the next. A shorter model timestep results in greater 1100 
overall errors (due to more iterations being required to reach the final forecast lead time), and a longer model 1101 
timestep reduces this error. Motivated by this, the authors trained several versions of their model to predict 1102 
to different timesteps on a single iteration. The overall forecast to a given lead time was then constructed 1103 
using the longest possible timesteps. For example, for a 7-day forecast, a 24-hour forecast is iterated 7 times, 1104 
whereas for a 23-hour forecast, a 6-hour forecast is iterated 3 times, followed by a 3-hour forecast 1 time, 1105 
and 1-hour forecast 2 times. The authors noted that this strategy was not effective to multiweek or longer 1106 
timescales; they reported that training the model with a 28-day timestep was difficult, for example, and 1107 
suggested that more powerful or complex ML methods would be required to achieve this.  1108 

As well as the relatively broad measures of RMSE and ACC, the authors assessed the ability of their system to 1109 
represent the intensity and track of selected tropical cyclones. They found that Pangu-Weather predicted the tracks of 1110 
the cyclones considered with a high degree of accuracy compared to the ECMWF IFS, however it underestimated 1111 
cyclone intensity. The authors attributed this to the training data they used (ERA5) also underestimating cyclone 1112 
intensity. As noted above, the authors also explored the potential for producing useful ensemble forecasts.  To assess 1113 
ensemble predictions, they perturbed the initial state of the system with Perlin noise vectors to produce a 100-member 1114 
ensemble of forecasts and calculated the RMSE and ACC of the ensemble mean for selected variables. As in Weyn et 1115 
al. (2021), the authors noted that the ensemble mean forecasts performed worse than a single deterministic forecast 1116 
for shorter lead times (e.g., 1 day), but better for longer lead times. Unfortunately, as with Pathak et al. (2022),  Bi et 1117 
al. (2022) did not investigate the properties of the spread of the ensemble or assess its skill using standard probabilistic 1118 
skill metrics, and their approach to ensemble generation was much simpler than that of Hu et al. (2023). 1119 
As already mentioned above, the skill of Pangu-Weather was exceeded by GraphCast, although Lam et al. (2022) only 1120 
assessed GraphCast in a deterministic setting. Nonetheless, there is nothing stopping GraphCast from being used to 1121 
generate emsemble forecasts in a manner similar to Pangu-Weather. The authors of this review look forward to a more 1122 
in-depth intercomparison of the pure ML models in the literature, including an assessment of their performance for 1123 
ensemble predictions.  1124 
Although the ensemble systems presented in Weyn et al. (2021) and Hu et al. (2023) had lower overall accuracy than 1125 
the other models discussed in this section, they still represented the most comprehensive analysis of the behavior and 1126 
performance of ensemble ML models (in terms of considering optimal ensemble perturbation strategies, and 1127 
quantifying the ensemble behavior) at the time of writing this review. Further investigation into the best methods to 1128 
generate and evaluate pure ML model ensembles would be a highly beneficial contribution to the field.   1129 

5.4. Moving to more extensible models 1130 

As the effectiveness of ML approaches are increasingly demonstrated in the literature, additional factors become clear 1131 
in considering these models for both research and application. In a research setting, the ability to readily perform 1132 
transfer learning to new problems and reduce training costs will be significant in supporting adoption by other 1133 
researchers.  1134 
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This need for greater flexibility in both the input data sources and predictive outputs of ML weather and climate 1162 
models was recognized by Nguyen et al. (2023), who developed a transformer architecture-based ML model called 1163 
ClimaX. This model was designed as a foundational model, trained initially on datasets derived from the CMIP6 1164 
(Eyring et al., 2016) dataset, and able to be readily retrained to specific tasks using transfer learning. The authors 1165 
demonstrated the skill of ClimaX against simpler ML models, and in some cases a numerical model (ECMWF IFS), 1166 
for a variety of tasks including weather prediction, sub-seasonal prediction, climate scenario prediction, and climate 1167 
downscaling. The authors showed that ClimaX was able to make skillful predictions in scenarios unseen during the 1168 
initial CMIP6 training phase. Furthermore, ClimaX used novel encoding and aggregation blocks in its architecture to  1169 
enable greater flexibility in the types of variables used for training, and to reduce training costs when a large number of 1170 
different input variables were used.  1171 

5.5. Benchmark datasets for ML weather models 1172 

Providing open benchmark data for machine learning challenges has been as transformational for the machine learning 1173 
field as improved algorithms, the publication of papers, or improvements in hardware.  1174 
As the interest and activity in the use of ML as a potential alternative to knowledge-based numerical GCMs has grown, 1175 
the need for consistent benchmarks for the intercomparison of ML-based models has become increasingly clear. Rasp 1176 
et al. (2020) addressed this need with the introduction of WeatherBench. On this platform, the authors provided data 1177 
derived from the ERA5 archive that has been simplified and streamlined for common ML use cases and use by a broad 1178 
audience. They also proposed a set of evaluation metrics which facilitate direct comparison between different ML 1179 
approaches, and provided baseline scores in these metrics for simple techniques such as linear regression, some deep 1180 
learning models and some GCMs. Since the publication of WeatherBench, more benchmark datasets tailored to other 1181 
domains have been created, including RainBench (de Witt et al., 2020), WeatherBench Probability (Garg et al., 2022), 1182 
and ClimateBench (Watson-Parris et al., 2022). Weyn et al. (2020) chose datasets and assessment metrics consistent 1183 
with WeatherBench to facilitate intercomparison of results. Rasp & Thuerey (2021) directly used the benchmarks 1184 
provided by WeatherBench in their assessment. They demonstrated that their model outperformed previous 1185 
submissions to WeatherBench, highlighting its value as a tool to allow intercomparability of ML-based weather 1186 
models. Other examples of studies using WeatherBench data and analysis methods are Clare et al. (2021) and Weyn 1187 
et al. (2021). The parameters of a good benchmark dataset were further elucidated by Dueben et al. (2022), who 1188 
provided an overview of the current status of benchmark datasets for ML in weather and climate in use in the research 1189 
community and provided a set of guidelines for how researchers could build their own benchmark datasets.   1190 
At the time of writing this review, assessments of ML-based models had chiefly (but not exclusively) focused on 1191 
simple statistics like globally-averaged RMSE, and not reported in detail on the degree to which they accurately 1192 
captured specific processes such as cyclone formation, climate drivers such as the El Nino Southern Oscillation, or 1193 
large scale structures such as the jetstreams. A useful contribution from the scientific community would be to better 1194 
quantify and articulate a suite of tests and statistics that could form a 'report card' to provide better insight into the 1195 
value of new ML models.  1196 
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It should also be noted that all of the major milestones and high-profile ML models described in this section so far 1201 
have relied to some degree or another on reanalysis datasets produced by physics-based models. The provision of 1202 
higher resolution and higher quality open datasets have the potential to drive progress in this area as much as, if not 1203 
more than, improvements and further research into ML algorithms. 1204 

5.6. A hybrid approach 1205 

Arcomano et al. (2022) present an approach which straddles the theme of this section and that of the following section 1206 
(physics-constrained ML models). Following Wikner et al. (2020), they used a numerical atmospheric GCM and a 1207 
computationally-efficient ML method called reservoir computing in a hybrid configuration called Combined Hybrid-1208 
Parallel Prediction (CHyPP). Their hybrid model is more accurate than the GCM alone for most state variables to a 1209 
lead time of 7-8 days. They also demonstrate the utility of their hybrid model for climate predictions with a 10-year 1210 
long climate simulation, for which they showed that the hybrid model had smaller systematic errors and more realistic 1211 
variability than the GCM alone. 1212 

5.7. ML for predicting ocean variables 1213 

More recently, greater attention has been paid to the application of ML to the ocean, particularly for seasonal to multi-1214 
year prediction. Initial work in this space focused on directly predicting key indices such as the NINO 3.4 index. For 1215 
example, Ham et al. (2019) trained a CNN to produce skillful El Niño Southern Oscillation (ENSO) forecasts with a 1216 
lead time of up to one and a half years. A limiting factor for the application of ML to ocean variables is the lack of 1217 
availability of observational data for training. To overcome this, the authors used transfer learning† to train their model 1218 
first on historical simulations, and then on a reanalysis from 1871 to 1973. Data from 1984 to 2017 was reserved for 1219 
validation. Ham et al. (2021) improved on this by including information about the current season in the network inputs 1220 
as one-hot vectors†. Including this seasonality information led to an overall increase in skill relative to the model in 1221 
Ham et al. (2019), in particular for forecasts initiated in boreal spring, a season which is particularly difficult to predict 1222 
beyond.  1223 
Kim et al. (2022) improved on the performance of the 2D CNNs used in Ham et al. (2019) and Ham et al. (2021) for 1224 
predicting ENSO by instead using a convolutional LSTM network with a global receptive field †. The move to a larger 1225 
(global) receptive field for the convolutional layers enabled the network to learn the large-scale drivers and precursors 1226 
of ENSO variability, and the use of a recurrent† architecture (in this case LSTM) facilitated the encoding of long-term 1227 
sequential features with visual attention†. This led to a 5.8% improvement of the correlation coefficient for Nino3.4 1228 
index prediction and 13% improvement in corresponding temporal classification with a 12-month lead time compared 1229 
to a 2D CNN.  1230 
Taylor & Feng (2022) moved from prediction of indices to spatial outputs, training a Unet-LSTM† model on ECMWF 1231 
ERA5 monthly mean Sea Surface Temperature (SST) and 2-m air temperature data from 1950-2021 to predict global 1232 
2D SSTs up to a 24-month lead time. The authors found that their model was skillful in predicting the 2019-2020 El 1233 
Niño and the 2016-2017 and 2017-2018 La Niñas, but not for the 2015-2016 extreme El Niño. Since they did not 1234 
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include any subsurface information in their training data (in contrast to Ham et al. (2019) and Ham et al. (2021), who 1235 
included ocean heat content), they concluded that subsurface information may have been relevant for the evolution of 1236 
that event.  1237 
It is clear from the small number of (but rapidly evolving) studies in this space that there is great promise for the use 1238 
of ML for seasonal and multi-year prediction of ocean variables, with many avenues to pursue to achieve potential 1239 
skill gains.  1240 

5.8. ML for climate prediction 1241 

The literature on the use of ML for prediction on seasonal to climate timescales is still relatively sparse compared to 1242 
its use for nowcasting and weather prediction. Some examples have been covered in previous sections, such as Weyn 1243 
et al. (2021) on subseasonal to seasonal timescales in the atmosphere, and Ham et al. (2019), Ham et al. (2021), Kim 1244 
et al. (2022) and Taylor & Feng (2022) on seasonal to multiyear timescales in the ocean. A major cause for this sparsity 1245 
is that deep learning typically requires large training datasets, and the available observation period for the earth system 1246 
is too short to provide appropriate training data for seasonal to climate timescales in most applications. On the 1247 
subseasonal to seasonal end, this may be overcome by including more slowly-varying fields in the training (e.g. ocean 1248 
variables), by designing models to learn the underlying dynamics which drive long-term variability, and by including 1249 
more physical constraints on the models. On the climate end these same methods could be beneficial, as well as 1250 
transfer learning, as is done in Ham et al. (2019), and data augmentation† techniques. Additionally, interest is 1251 
increasing in the use of ML to predict weather regimes and large-scale circulation patterns, which may prove beneficial 1252 
in informing seasonal and climate predictions (Nielsen et al., 2022). Watson-Parris (2021) argued that the differences 1253 
between NWP to multiyear prediction and climate modelling mean that the ML approaches best suited to each can be 1254 
very different. This may also help to explain why the rapid pace of advances in ML based weather models has not 1255 
translated into a similar trend in climate modelling. 1256 
Despite this, with the growing maturity of the field of ML for weather and climate prediction, there is every reason to 1257 
believe the challenges of prediction on seasonal to climate timescales can be overcome.  1258 

6. Physics constrained ML models 1259 

As has been briefly touched on in previous sections, a promising and increasingly popular method for improving the 1260 
performance of ML applications in weather and climate modelling is to include physics-based constraints in the ML 1261 
model design (e.g. Karpatne et al., 2017; de Bézenac et al., 2017; Beucler et al., 2019; Yuval et al., 2021; Beucler et 1262 
al., 2021; Harder et al., 2022). This can be done through the overall design and formulation of the model, and through 1263 
the use of custom loss functions which impose physically-motivated conservations and constraints.  1264 
An excellent review of the possible methods for incorporating physics constraints into ML models for weather and 1265 
climate modelling, along with 10 case studies of noteworthy applications of these methods, is presented in Kashinath 1266 
et al. (2021). The scope of Kashinath et al. (2021) is broad and includes studies not applied directly in the context of 1267 
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weather and climate modelling, but applicable to it. Rather than repeat the total of this summary here, the reader is 1270 
directed to this review.  1271 
A class of physics-leveraged ML which has grown rapidly in popularity is Physics Informed Neural Networks 1272 
(PINNs). These are discussed in Kashinath et al. (2021), but have also become a very active area of research since the 1273 
publication of that review. A more up-to-date review of this class of NNs is presented by Cuomo et al. (2022), along 1274 
with a review of other related Physics guided ML architectures. 1275 
While PINNs are an exciting and promising new NN architecture, they still face some challenges. For example, they 1276 
have had little success simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent 1277 
behavior. Wang et al. (2022b) attributed this to the inability of PINNs to represent physical causality, and developed 1278 
a solution by re-formulating the loss function of a PINN to explicitly account for physical causality during model 1279 
training. They demonstrated that this modified PINN was able to successfully simulate chaotic systems such as a 1280 
Lorenz system, and the Navier-Stokes equations in the turbulent regime; something which traditional PINNs were 1281 
unable to do.  1282 
Nonetheless, recent work with PINNs has led to some interesting results for weather and climate simulation: Bihlo & 1283 
Popovych (2022) used PINNs to solve the shallow-water equations on a rotating sphere, as a demonstration of their 1284 
utility in a meteorological context, and Fuhg et al. (2022) developed a modified PINN to solve interval and fuzzy 1285 
partial differential equations, enabling the solving of PDEs including uncertain parameter fields. 1286 

7. Other applications of ML and considerations for the use of ML in Weather and Climate Models 1287 

Aside from the most active areas of development in the use of ML in weather and climate models discussed in the 1288 
sections above, there are a few areas of the literature worth mentioning that are adjacent to the main focus of this 1289 
review. These topics are covered in the following subsections.  1290 

7.1. Nudging 1291 

Rather than replacing a component or components of a GCM with an ML alternative to gain skill improvements, Watt-1292 
Meyer et al. (2021) focused on using corrective nudging to reduce model biases and the errors they can introduce 1293 
through feedbacks. The authors used RFs to learn bias-correcting tendencies from a hindcast nudged towards 1294 
observations. They then coupled this RF to a prognostic simulation and attempted to correct the model drift with the 1295 
learned nudging tendencies. While this simulation ran stably over the year-long test period and showed improvements 1296 
in some variables, the errors in others were observed to increase. So far studies in this space seem to be limited to 1297 
Watt-Meyer et al. (2021), however this method seems promising, so hopefully interest in developing this approach 1298 
further will grow in the future. 1299 

7.2. Uncertainty quantification 1300 

A common criticism of some ML models such as NNs is that it is difficult to represent the uncertainty of their outputs. 1301 
Some examples of studies that have sought to overcome this have already been mentioned in Section 3.8, and there 1302 
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are other examples in the literature (e.g. Grigo & Koutsourelakis, 2019; Atkinson, 2020; Yeo et al., 2021; O'Leary et 1322 
al., 2022), however it is nonetheless still a relatively underexplored aspect of ML models for physical systems. Psaros 1323 
et al. (2022) suggest that this may be because they are also under-utilized within the broader deep learning community, 1324 
and it is thus a developing field that is not universally trusted and understood yet. They also point out that the physical 1325 
considerations inherent to ML applied to physical systems often make them more complicated and computationally 1326 
expensive than standard ML applications, further disincentivizing the inclusion of uncertainty quantification in an 1327 
already complex problem.  1328 
Only recently has attention to this aspect of ML become sufficient to motivate the collection of methods into a 1329 
consistent framework, a good example of which is the aforementioned Psaros et al. (2022), who presented a 1330 
comprehensive review of the methods for quantifying uncertainty in NNs and provided a framework for applying 1331 
these methods.  1332 
A related topic which is facing similar challenges is the question of explainability of ML approaches; often there is 1333 
value in understanding the relative roles and importance of predictors in an ML model, or the relative significance of 1334 
different regions of the predictor data. Flora et al. (2022) provide a good overview of approaches to this and compare 1335 
their relative drawbacks and benefits.  1336 

7.3. Capturing extremes 1337 

While there is now an abundance of examples of ML being used for model parameterization schemes, full model 1338 
replacement, downscaling, and PDE solvers (much of which is covered in this review), there are relatively few 1339 
examples which address the question of how well ML approaches can reproduce extreme events and statistics, both 1340 
in terms of the distribution of values predicted in a single-member (i.e., non-ensemble and non-probabilistic) ML 1341 
model and in terms of the distribution of predicted outcomes in a probabilistic or ensemble ML model. 1342 
Both Pathak et al. (2022) and Bi et al. (2022), introduced in Section 5.2, investigated the ability of their models to 1343 
correctly represent extremes, using a similar approach. They divided their test dataset into 50 percentile bins 1344 
(distributed logarithmically by Pathak et al. (2022) and linearly by Bi et al. (2022)) between the 90th and 99.99th 1345 
percentiles, and computed the relative quantile error between their forecast and ground-truth as a function of lead-1346 
time. Pathak et al. (2022) note that they set their highest percentile bin at 99.99% because of the small sample of 1347 
datapoints beyond this percentile making a statistically significant analysis difficult. Both Pathak et al. (2022) and Bi 1348 
et al. (2022) found that their models consistently under-forecast extremes to a greater degree than the ECMWF IFS. 1349 
Watson (2022) presents a strong argument for the need for a greater focus on the ability of ML weather and climate 1350 
models to be able to predict extremes in order for them to meet the needs of users. They present a summary of some 1351 
examples of ML models which have sought to predict extreme events according to certain return period definitions. 1352 
The example most relevant for this review is Lopez-Gomez et al. (2023), who used a NN with a custom loss function 1353 
that preferentially weighted extremes to predict global extreme heat. They found that their custom loss function led to 1354 
improved representation of the tails of the distribution (i.e., predictions of extreme heat), and, interestingly, did not 1355 
result in any major loss of performance for the middle of the distribution. 1356 
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The under-prediction of extremes seen in Pathak et al. (2022) and Bi et al. (2022) is consistent with the findings of 1357 
Lopez-Gomez et al. (2023), given that neither were not optimized for predicting extremes. These findings all point to 1358 
the idea that in order for ML weather and climate models to be able to skillfully predict extreme events, model training 1359 
regimes, loss functions and architectures will need to be employed which take into consideration ways to optimize for 1360 
these regimes.  1361 

7.4. Object identification within models 1362 

An alternative to achieving greater model accuracy and skill for predicting extremes through increasing resolution of 1363 
the entire model grid is to develop techniques to identify critical systems and physical phenomena within the model, 1364 
and embed higher resolution temporary subgrids or specialized models within the larger GCM to more accurately 1365 
simulate those processes. A challenge to overcome to achieve this is automatically identifying key model features, 1366 
since it typically requires a labelled dataset. This requirement can however be avoided, and a variety of both supervised 1367 
and unsupervised machine learning approaches to object detection have been demonstrated in the literature.  1368 
Mudigonda et al. (2017) were a relatively early example of the application of ML to this challenge. They investigated 1369 
the feasibility of using a variety of NN architectures to identify storms, tropical cyclones and atmospheric rivers within 1370 
model data, with promising results. Prabhat et al. (2021) provided a valuable resource to the community with their 1371 
development of ClimateNet, a labelled open dataset and ML model for the segmentation and identification of tropical 1372 
cyclones and atmospheric rivers. This was used by Kapp‐Schwoerer et al. (2020) to train a NN to identify and track 1373 
these extreme events in Community Atmosphere Model 5 (CAM5; Conley et al. 2012) data. O’Brien et al. (2021) 1374 
considered the need for uncertainty quantification in object identification, using a Baysean approach to build an 1375 
atmospheric river detection framework. Finally, Rupe et al. (2023) took a physics-informed approach to object 1376 
detection, defining ‘local causal states’ using speed-of-light causality arguments to identify regions of organized 1377 
coherent flow and bypassing the requirement for labelled datasets. They demonstrated the utility of their approach for 1378 
the unsupervised identification and tracking of hurricanes and other examples of extreme weather events. 1379 
While there are unsupervised learning approaches which have shown value for object detection in weather and climate 1380 
data (e.g. Rupe et al., 2023), a major limitation of this area of research is the shortage of labelled datasets for supervised 1381 
learning methods , with ClimateNet being an isolated example. 1382 

7.5. GPUs and specialized compute resources 1383 

GPUs and TPUs are specialized hardware which are well suited to highly parallelizable matrix operations, ideal for 1384 
solving neural network operations. TPUs have been developed specifically for deep learning applications. Both GPUs 1385 
and TPUs are likely to be available on many of the next generation of supercomputers, but much of the current Fortran-1386 
based numerical weather and climate model infrastructure cannot be run on them in their current state. Data 1387 
bottlenecks also exist between the GPUs (which have their own on-board memory) and the main memory accessible 1388 
to the CPU. While efforts are underway to make numerical and climate models better suited to GPUs, for example 1389 
with the development of LFRic (Adams et al. 2019), the new weather and climate modelling system being developed 1390 
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by the UK Met Office to replace the existing Unified Model (Walters et al. 2017), there is still a long way to go before 1391 
entire weather and climate models can be reliably run on GPU or other specialized compute architectures. At the same 1392 
time, some neural network designs are aimed squarely at the partial differential equation solving at the core of 1393 
numerical methods. Since neural network evaluation utilizes simpler mathematical operations than current PDE 1394 
solvers, they offer the prospect of significant computational advantages on non-specialized (i.e., CPU) hardware. 1395 

8. Perspectives on machine learning from computer science 1396 

This section provides a brief perspective on weather and climate modelling from the computer science domain and 1397 
aims to provide the earth system scientist with a short list of the main relevant innovations in computer science. As 1398 
was noted in Section 1, ML models are often regarded as black-boxes, largely because of the design of many prominent 1399 
ML systems. In principle, it is not quite right to refer to the trained model as "a machine learning model", in the sense 1400 
that the process of training the model is “machine learning”, once the model is trained it is definable by a set of 1401 
mathematical equations and coefficients, much like any physical, statistical, or theoretical model. Thus the machine 1402 
learning refers to the training process, not the model itself.  The essence of ML is the level of automation involved. 1403 
Even in typical ML models such as large NNs, the model architecture is typically specified manually by the data 1404 
scientist or physical scientist involved. The automated derivation of model architecture and composition is not yet 1405 
mature for large models, although it is explored through evolutionary programming techniques whereby the learning 1406 
of architecture as well as parameterization is automated.  1407 
The complex nature of the Earth system means that ML models which seek to emulate it (or subcomponents of it) will 1408 
likely also need to be quite complex, and will contain a mixture of ML architectures and algorithms. This is borne out 1409 
by the increasing degree of complexity and variety seen in the ML models in the literature reviewed in previous 1410 
sections.  1411 
A large degree of the current research focus is on very large or deep NNs which rely both on the universal 1412 
approximation theorem and practical experimentation to capture a prediction function without needing to explicitly 1413 
represent the processes being modeled. In a conceptually similar fashion to how a Fourier decomposition can represent 1414 
any wavelike function, the universal approximation theorem establishes that a NN may approximate any function, 1415 
subject to its size and the required degree of accuracy (Hornik, Stinchcome and White 1989). Deep learning has been 1416 
highly effective in approaching many problems, but many limitations are acknowledged, as evidenced by the current 1417 
widespread focus on trustworthy computing and efforts towards explainable ML systems. Some ML models take a 1418 
direct approach to modelling the uncertainty of the system being simulated by representing the model state variables 1419 
as a probability distribution or degree of confidence. Many contemporary weather and climate model derive their 1420 
probabilistic outputs from an ensemble of perturbed members, however an alternative approach is to represent each 1421 
part of the belief state† of the model as a distribution or likelihood, built up either empirically or by fitting a gaussian 1422 
or other known distribution (e.g., Clare et al., 2021). 1423 
A timeline of some key innovations in ML is presented in Figure 4. The scale of the timeline is broken between 1956 1424 
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 1491 
Figure 4: A timeline of key breakthroughs in ML.  1492 
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 1493 
and 1974, and Taking that gap in progress into account, it is clear from this visualization that the rate of innovation in 1494 
ML has increased significantly over the last 35 or so years. This is likely driven by a range of factors including the 1495 
increasing availability of compute resources suited to ML applications, and the explosion of available data for training.  1496 
This history shows the degree and rate of research into processing images, text and other sequences based on semantic 1497 
understanding of content, but does not demonstrate capturing physical processes as a core element. Advances in the 1498 
weather and climate modelling domain have a more explicit goal of properly portraying real physical processes. 1499 
Bringing these concepts together promises to uplift capability in both fields. 1500 

9. Practical Perspectives on Machine Learning for Weather and Climate Models 1501 

A major driver of research into, and improvement of, weather and climate models is increasing the skill of operational 1502 
forecast systems, and increasing the accuracy and trustworthiness of climate projections. Therefore, an important 1503 
consideration for ML in the context of weather and climate models is the need for it to ultimately be integrated into a 1504 
complete predictive system with practical application for forecasting or climate projections.  1505 
However, the research findings covered in this review, in spite of being compelling, are yet to make major changes to 1506 
operational modelling systems, or standard climate projections. 1507 
 We have identified three major challenges facing the transition of ML-based innovations into operational settings. 1508 
Similar challenges are faced in the context of climate projections, however since these are out of scope for this review 1509 
we do not discuss them directly, and instead leave them as a topic for other publications. 1510 
The first challenge is the need to assess when a research finding is sufficiently compelling and robust to justify 1511 
integration into established operational systems. Since the major function of operational meteorological services is to 1512 
inform of future conditions, largely for managing risk or optimizing benefits, a conservative approach is taken to 1513 
changing these systems. The utmost premium is put on accuracy, resilience, reliability, and solid scientific foundation, 1514 
and many novel research finding require extensive further evaluation and development before they can be considered 1515 
ready for inclusion into operational systems. Understanding when to invest this degree of effort in bringing a research 1516 
innovation into a major model or scientific configuration upgrade can be difficult.  1517 
The second major challenge is establishing the right balance between potentially unwieldy monolithic ML models 1518 
which predict all variables of interest, and many smaller limited scope models which each focus on predicting one or 1519 
a small number of variables well. The former option is more similar to current dynamical systems, while the latter 1520 
option is potentially more easily achievable using an ML approach, but risks becoming difficult to manage due to the 1521 
proliferation of small, separate systems. The early effectiveness of limited-purpose ML models provides the ability to 1522 
augment existing services without disruption, however aside from the logistical complexity of many small systems, a 1523 
risk associated with this approach is that inconsistencies between predictions may arise from their independent 1524 
forecasts, leading to confusion from users and an erosion of trust. 1525 
Finally, the third major challenge is how to best monitor and maintain the skill of ML-based systems in a real-time 1526 
operational context. Explainability of ML systems is an emerging field, and is not yet sufficiently mature for 1527 
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application to real-time operational monitoring. Until this changes, the ongoing trustworthiness of operational ML 1845 
systems will be difficult to demonstrate. Similarly, online learning in ML weather and climate models is not yet a well 1846 
explored research area. The use of online learning is likely to be important for operational ML models to be able to 1847 
develop resiliency and maintain good skill over time, so more work will be needed in this area before these models 1848 
can see greater uptake in operational systems.  1849 
In addition to these major challenges, agencies looking to incorporate ML components into their operational systems 1850 
must consider that: 1851 

• the explainability of ML model errors in the case of poor forecasts that may come under scrutiny,  1852 
• the robustness of ML models to real-time data issues such as data dropouts or input data degradation must be 1853 

established, and 1854 
• the lack of infrastructure in these agencies to support ML models in an operational setting will need to be 1855 

addressed. 1856 

Operational development is typically quite incremental, and it is likely that progress will be made in small achievable 1857 
steps along the evolving technical frontier. However promising and fascinating as a research direction, full model 1858 
replacement with ML alternatives is currently not mature enough for an operational setting. Instead, the authors predict 1859 
that the first types of ML systems to be seen in operations will include parameterization scheme replacements and 1860 
emulators, solver replacements, super-resolution, new approaches to data assimilation of novel observation sources, 1861 
and both pre- and post-processing applications (although of course not all of these have been covered in this review). 1862 
It is expected that the research into, and application of, ML methods will represent a growing proportion of weather 1863 
and climate model research, with increasingly sophisticated and skillful model components finding their way into 1864 
major model releases over the coming years. These components are appealing for both computational and model skill 1865 
reasons, and are expected to be highly promising avenues of research. 1866 

10. Ethical considerations for Machine Learning for Weather and Climate Models 1867 

Not all papers in this review included a discussion of the ethical considerations associated with using machine learning, 1868 
nor necessarily touched on what constitutes a sufficiently rigorous verification methodology for machine learning 1869 
models. There is a clear relationship between ethical considerations, the explainability of models, and the rigor of 1870 
verification applied to ensure that models behave as expected under a variety of conditions (and do not include 1871 
unexpected behaviours). 1872 
While this review paper does not provide an introduction to AI and ML ethics in general, a brief overview of some 1873 
of the important considerations for the application of ML in the context of weather and climate modelling is 1874 
provided in this section. Ethical frameworks vary in different cultural and geographical contexts, and for a more 1875 
general introduction to the ethical considerations surrounding AI and ML, the reader is directed to the paper 1876 
Recommendations on the Ethics of Artificial Intelligence (United Nations Educational, Scientific and Cultural 1877 
Organisation (UNESCO), 2022). 1878 
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For ML applied to weather and climate modelling, some considerations to ensure sufficient robustness and reliability 1918 
include whether: 1919 

• testing, training and validation data sets are sufficiently representative of the data in general 1920 
• potential causal correlations between testing, training and validation data have been treated correctly  1921 
• trained models have been tested for reliability against adversarial examples 1922 
• data augmentation (e.g. noise addition) has been utilized to enhance model robustness 1923 
• an evaluation of the potential for model drift has been performed 1924 
• the training data is biased in a way which results in ethical unfairness (for example – remote communities 1925 

may not receive equal-skill predictions due to a lack of observational training data in remote areas,  1926 
• the machine learning method is compared to a suitable alternative, such as a known physical model in 1927 

addition to any comparisons to machine learning models or the provision of aggregate statistics 1928 
• the data that has been used has been gathered ethically, and any personal information has been treated 1929 

properly (such as when processing weather reports from individuals) 1930 
• the authors have identified any caveats regarding ethics, reliability, robustness or explainability 1931 
• the authors have investigated the physical realism of the predictions from ML models 1932 

This list is not comprehensive, however. A thorough overview of the explainability, reliability, ethics, and 1933 
verification of ML models in weather and climate has not been covered in prior literature and the field will 1934 
benefit from further work in this area. 1935 

11. Future research directions 1936 

The already-demonstrated and potential future applications for ML in weather and climate modelling are significant 1937 
in number, and identifying the most fruitful avenues for future research can seem overwhelming. A good 1938 
understanding of the current state of the weather and climate modelling field, along with knowledge of the key 1939 
developments in ML research, are required to assess the potential benefits of a given research direction.  1940 
As can be seen from the timeline of machine learning presented in Figure 4, older techniques can prove to be 1941 
relevant many years later, and there are many techniques from computer science which may become relevant for 1942 
contemporary weather and climate modelling problems and research.  1943 
Furthermore, due to the general applicability of many ML approaches, research progresses in one subdomain may 1944 
have implications and benefits for another. For example, DeepONets were developed for, and shown to be 1945 
successful for, solving PDEs, but were adopted by Pathak et al. (2022) for their pure ML model FourCastNet with 1946 
great success.  1947 
To help the reader navigate the myriad research areas where ML for weather and climate modelling could be 1948 
progressed, five categories of future research directions are presented in Figure 5, along with some specific areas of 1949 
research, and benefits that could arise from them.  1950 
These categories are not mutually exclusive – indeed there is overlap between the research areas and benefits 1951 
highlighted in each category (for example, some research foci in Categories 2 and 3 are also applicable to Category 1952 
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5). The groupings are instead intended to help guide the focus of researchers, and to provide a quick overview of the 1986 
key topics where the community would most benefit from research progress.  1987 
 1988 
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 1994 
Figure 5: Five categories for future ML research, including suggested research focusses for the community in each 1995 
category, and potential benefits which could be realized by research and development progress. 1996 
 1997 
Many of the research areas presented are complementary to each other, for example progress in making ML models 1998 
more affordable to train (Category 1) will increase the utility of ML solutions to a wider community of researchers, 1999 
and will likely accelerate the rate of progress in the other categories. Progress in the use of physically-informed 2000 
approaches (e.g. Category2, area a., or Category 3, area c.) could also lower the training cost of models by reducing 2001 
the degree of redundancy in the model. On the other hand, approaches such as Category 3, area f., leading to an 2002 
outcome such as benefit vi. would potentially reduce the demand for more cheaply trainable models, since they 2003 
could be readily turned to a variety of tasks, saving researchers the need to train their own model from scratch.  2004 
The research areas and ideas presented here are by no means a comprehensive list. Rather they are intended to be 2005 
used as a source of inspiration, and the authors of this review are excited to see where the community chooses to 2006 
focus their efforts in the coming years.  2007 

12. Conclusions 2009 

In this review we have presented a comprehensive survey of the literature on the use of ML in weather and climate 2010 
modelling. 2011 
We have found that the ML models being most often explored include RFs and NNs, with a high prevalence of FCNNs 2012 
and CNNs. We have also identified some recent innovations which have proven to be highly effective in the weather 2013 
and climate modelling space, including DeepONets and variants thereof, Graph NNs, and PINNs. 2014 
This review has demonstrated that ML is being successfully applied to many aspects of weather and climate modelling. 2015 
We have presented examples from the literature of its application in (1) the emulation and replacement of subgrid-2016 
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scale parametrizations and super-parametrizations, (2) preconditioning and solving of resolved equations, (3) full 2033 
model replacement, and (4) a selection of other adjacent areas. 2034 
Nonetheless, there are still many research challenges to overcome, including: 2035 

• addressing the instabilities excited in physical models due to the inclusion of ML components; 2036 
• increasing the ease of technical integration (in particular, Fortran compatibility);  2037 
• memory and computational concerns; 2038 
• representing a sufficient number of physical parameters and increasing physical and temporal resolution in 2039 

ML-based weather and climate model implementations (which currently feature reduced fields and levels 2040 
compared to physics-based numerical models); 2041 

• moving from a focus on individual parts of the earth system (i.e., the atmosphere, the ocean, the land surface 2042 
etc.) to tackling the challenges associated with coupled models (i.e., where models of individual components 2043 
of the earth system are coupled together). Increasingly, operational weather and climate models are coupled 2044 
land-atmosphere-ocean-sea-ice models in order to more accurately represent the relevant timescales and 2045 
processes in the earth system, and ML modelling efforts need to reflect this; 2046 

• more thorough evaluation of the physical realism of ML-based predictions, at various length-scales, across 2047 
parameters, and looking at the three-dimensional structures 2048 

• Exploring the use of generalized discriminators to augment traditional loss functions in model training (to 2049 
achieve a multivariate generalized objective function)  2050 

• the need for more good quality training data; and 2051 
• the practical challenges of integrating ML components or models into an operational setting. 2052 

This list, together with Section 11, provides a set of focus areas for future research efforts.  2053 
If the current trend in skill gains in full ML weather and climate models continues, it is possible they will eventually 2054 
be considered viable alternatives to traditional numerical models. However, in the meantime it is likely that ML 2055 
components will replace an increasing number of physics-based model components, with models the near-term future 2056 
being hybrid ML-physical models. A likely future scenario is one where the best weather and climate models are a 2057 
blend of ML and physics-based components, deriving skill from both data driven and physical methodologies.  2058 
Some possible avenues through which increases in ML-based weather and climate model skill might be achieved is 2059 
by operating at higher resolutions, resolving more processes which are implicit in the training data, or by undertaking 2060 
experiments on synthetic data to address the paucity of real-world data. 2061 
Another benefit of ML approaches to weather and climate modeling is the relative computational cheapness of ML 2062 
alternatives to current physics-based modelling systems. This has the potential to open the door to experiments that 2063 
would not be feasible otherwise. For example, experiments requiring a very large ensemble would be more feasible 2064 
with a computationally cheap ML approach.  2065 
The literature reviewed here indicates that ’out of the box’ ML approaches and architectures are not effective when 2066 
used in a weather and climate modelling context. Rather, ML architectures must be adapted to satisfy conservation of 2067 

Deleted: multi-objective training strategies which 2068 
incorporate multiple predicted parameters, physical realism 2069 
concerns, the capture of statistically extreme values and 2070 
fine scale structures¶2071 

Formatted: Font: 10 pt, English (US)

Deleted: a more likely scenario 2072 
Deleted: is that 2073 

Deleted: ¶2074 



   
 

   

 
49 

energy, represent physically realistic predictions and processes, and maintain good model stability. At the same time, 2075 
computational and memory tractability must be maintained. 2076 
Advances in the sophistication, complexity and efficiency of ML architectures are being heavily invested in for many 2077 
use cases in other disciplines and in the private sector (e.g., condition-action pose estimation, text to video generation, 2078 
stable diffusion/text to image, chatbots, facial recognition, semantic image decomposition, etc.). In order to capture 2079 
the full benefits of ML for the weather and climate modelling domain, academic and operational agencies will need 2080 
to continue to support research in this space. This includes contributing to the research effort through foci such as 2081 
those highlighted in Section 11 and in this section, and through addressing the particular challenges facing agencies 2082 
interested in the operational and/or realtime deployment of ML based models as the basis for services or the provision 2083 
of advice (discussed in Section 9). 2084 
 2085 
Interest and progress in the application of ML to weather and climate modelling has been present for close to 30 years, 2086 
and has begun to accelerate rapidly in the last few years. There is good reason to believe that ML as a tool will have 2087 
transformational benefits  and offers great potential for further application in weather and climate modelling.  2088 

Machine Learning Glossary of Terms 2089 

This glossary includes terms which the reader will come across frequently in machine learning literature for the 2090 
weather and climate, as well as in machine learning literature generally. Most of these terms are used in this paper 2091 
while others support further reading. 2092 
Activation Function. The function which produces a neuron’s outputs given its inputs. Commonly, this includes a 2093 
learned bias term which is added to the data inputs before evaluation with a single function to produce the output 2094 
value. Examples of the functions used include linear, sigmoid and tanh. 2095 
Adversarial attack. The deliberate use of malicious data input in a real-world setting intended to cause a 2096 
misclassification, underperformance or unexpected behaviours. Examples include emails designed to avoid spam 2097 
filters, or images that have been modified to avoid recognition.  2098 
Adversarial example. A specialised input which results in a misclassification or underperformance of a predictive 2099 
model. An example of this concept is an image which has had subtle noise added to it resulting in a copy of that image 2100 
which is visually indistinguishable from the original, but which nonetheless causes a misclassification. The term 2101 
‘adversarial’ is used to refer to the way the example fools the model and is not necessarily intended to convey the 2102 
sense of malicious intent, although the term is often applied in that fashion. Adversarial examples demonstrate that 2103 
machine learning models may be more brittle than expected based on ordinary training data alone. To increase model 2104 
robustness, adversarial examples may be generated and added to the training set. Data augmentation techniques such 2105 
as flipping, warping and adding noise (any many other techniques) are also used to generate additional training data 2106 
to increase robustness and performance. 2107 
Attention mechanism. A mechanism to allow sequence prediction models to increase the importance of key terms 2108 
within that sequence which may be nonlocal and modified in meaning according to the other terms of the sequence. 2109 
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API. Application Programming Interface. A set of programming functions, methods or protocols by which to build 2137 
and integrate applications. APIs may be "web" APIs or imported from software packages in which case they are more 2138 
often referred to as libraries. 2139 
Autoencoder. A neural network architecture which learns to produce a 'code' for an input sequence from which the 2140 
original data can be retrieved. The code is shorter than the original input sequence. Applications include data 2141 
compression and denoising data. 2142 
Back propagation. A process of utilising the errors from a prediction to update the weights and biases of a neural 2143 
network. 2144 
Batch. See training batch. 2145 
Batch normalisation. Data normalisation which aligns the means and variances of input data to a model. For 2146 
computational reasons, this is performed separately for each training batch. 2147 
Belief state. The current state of the world which is believed to be true according to a model. A common architecture 2148 
in realtime applications whereby a belief state is updated according to an update function on the basis of new 2149 
observations. 2150 
Channel. An additional dimension to data which is usually not a spatial dimension. Examples include the red, green 2151 
and blue intensity images which comprise a colour image. Another example could be to represent both temperature 2152 
and wind speed as channels.  2153 
Classification. A model which attempts to diagnose or predict the category, label, class or type that an example falls 2154 
within. 2155 
Climatology. Refers to the usual past conditions for a location at a time of year. Usually calculated by temporal mean 2156 
across years of a dataset, for a given time interval within those years (e.g., for a dataset of monthly mean values 2157 
spanning all months of all years from 1990 to 2020, the monthly mean climatology would be obtained by averaging 2158 
across all the Januarys from each year, all the Februarys, etc., to obtain an "average January", an "average February", 2159 
etc.). Climatologies are often used in the same manner as persistence as a baseline prediction against which to measure 2160 
a predictive model. For example, a model predicting a value for January could be compared to the climatological 2161 
monthly mean value for January. This helps answer the question "is my model a better source of information than 2162 
using the average past conditions from this time of year?". 2163 
Connectome. The connections between nodes in a neural network. Examples include fully-connected, partially-2164 
connected, skip-layer connections, recurrent connections and others. The 'wiring diagram' for the network.  2165 
Convolutional neural network. A neural network architecture commonly applied to images which utilises a 2166 
convolutional (spatially connected) kernel applied in a sliding window fashion with a narrow receptive field to 2167 
encourage the network to generalise from fine scale structure to higher levels of abstraction.  2168 
Data augmentation. The practice of modifying input data in supervised learning to produce additional examples. 2169 
This can make networks more robust to new inputs and address issues of brittleness to adversarial examples. An 2170 
example of data augmentation is using rotated or reflected versions of the same image as independent training samples.  2171 
Data driven. A generalised term used to indicate a primary reliance or dependence on the collection or analysis of 2172 
data. Used in contrast to process driven or theory driven. 2173 
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Decision tree. A tree-like, or flowchart-like, branching model representing a series of decisions and their possible 2178 
consequences. Each internal node represents a 'test' (i.e. decision threshold) and each leaf node represents a class label 2179 
or collection of possible outcomes. 2180 
Deep NN. A neural network with many layers. Deeper, thinner networks have generally beenmore popular in recent 2181 
times than wider, shallower ones but this is not always the case (see e.g. Zagoruyko & Komodakis, 2016) 2182 
DeepONet. A neural network architecture relying on universal approximation theorem to train a neural network to 2183 
represent a mathematical operation (the operator), such as a partial differential equation or dynamic system. 2184 
Discriminator model. A model which distinguishes or discriminates between synthetic data and real-world 2185 
observations. Often used in conjunction with a generator. In this case, the overall goal is to produce a generator which 2186 
is capable of fooling the discriminator, producing highly realistic images. This process is used in Generative 2187 
Adverserial Networks. 2188 
Dropout layer. A neural network layer which is only partially connected, often with a stochastic dropout chance. This 2189 
has been shown experimentally to improve neural network robustness in many architectures by reducing overfitting. 2190 
Epoch. A single complete training pass through all available training data, e.g. learning from all samples, or learning 2191 
from all mini-batches, according to the training strategy. Multiple training epochs will typically be utilised although 2192 
alternative strategies do exist. 2193 
Feed-forward network. A neural network composed of distinct 'layers', where the outputs of one layer never feed 2194 
back into earlier layers. This avoids the needs for any iterative solver approaches and results in a very computationally 2195 
efficient 'forward pass'. 2196 
Generative adversarial network. A two-part neural network architecture comprising a generator and a discriminator, 2197 
which are co-trained to produce realistic outputs which are hard to distinguish from real-world data. The discriminator 2198 
replaces the traditional loss function.  2199 
Generator model. A model which produces a synthetic example of a particular class, such as a synthetic image or 2200 
synthetic language. Examples include language or image generation. These are used as part of Generative Adverserial 2201 
Networks among other applications. 2202 
Global receptive field. Where every part of the input region can influence or stimulate a response in a model (e.g. a 2203 
fully-connected neural network). 2204 
GPU. Graphical Processing Unit. A hardware device specialised for fast matrix operations, originally created to 2205 
support computer graphics, particularly for games. 2206 
Gradient boosted decision tree. Also referred to as extreme gradient boosting. A random forest architecture which 2207 
combines gradient boosting with decision tree ensembles.  2208 
Gradient boosting. An approach to model training where each additional ensemble member attempts to predict the 2209 
cumulative errors of previously trained members. 2210 
Graph neural network. A class of neural networks designed to process data which is described by a graph (or 2211 
tree/network) data structure. See Scarselli et al. (2008), Kipf & Welling (2016), and Battaglia et al. (2018) for more 2212 
information and examples.  2213 
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Hidden layer. A layer which is intermediate between the input layer and the output layer of a network or tree structure. 2220 
Hidden layers may be used to encode 'hidden variables' which are latent to a problem but not able to be directly 2221 
observed. 2222 
Hierarchical temporal aggregation. A mechanism of composing neural networks which are trained for different lead 2223 
times to produce an optimal prediction at all time horizons. 2224 
Hierarchical temporal memory. Fundamentally different to hierarchical temporal aggregation. A complex deep 2225 
learning architecture which uses time-adjacency pooling. 2226 
Hyperparameter. A parameter which is not derived via training. Examples include the learning rate and the model 2227 
topology.  2228 
Hyperparameter search (or Hyperparameter optimization). The process of determining optimal hyperparameters. 2229 
This term may also be used to encompass the model selection problem. This process is automated in some cases. 2230 
Input layer. A layer which is composed of input nodes. Typically machine learning models will have one input layer 2231 
at depth zero (i.e. with no preceding layers) and no input nodes at greater depths. 2232 
Input node. A node which represents an input or observed value. 2233 
K-fold cross-validation. A process of changing the validation and test data partitions during different iterations of 2234 
training. This allows more of the training and validation data to be used while minimising overfitting. Some definitions 2235 
include test data in this process but that is not ideal as the final test is no longer statistically independent. 2236 
Keras. A streamlined API for creating neural networks, integrated with Tensorflow. Originally built on the Theano 2237 
framework for general mathematical evaluation. PyTensor and Aesara are related packages. 2238 
Kernel trick. For data sets which are not linearly separable, first multiplying the data by a nonlinear function in a 2239 
higher dimension can result in a linearly separable higher-dimensional data set to which a simpler method can be used 2240 
to model the data. 2241 
Knowledge based systems. A broad term from artificial intelligence meaning a system which that uses reasoning and 2242 
a knowledge base to support decision making. Knowledge is represented explicitly and a reasoning or inference engine 2243 
is used to arrive at new knowledge. 2244 
Layer. In tree or feed-forward network structures (e.g. decision trees and feed-forward neural networks), a layer refers 2245 
to the set of nodes at the same depth within a network.  2246 
Leaf node. Aka output node. A node which does not have any child nodes.  2247 
Long short term memory network. A recurrent neural network architecture which processes sequences of tokens 2248 
utilising a 'memory' component which can store information from tokens early in a sequence for use in prediction of 2249 
tokens much later in a sequence. Typical applications include language prediction and time-series prediction of many 2250 
kinds. 2251 
Loss function (also known as target function, training function, objective function, penalty score, error function, 2252 
heuristic function, minimisation function). A differentiable function which is well-behaved, such that smaller values 2253 
represent better model performance and larger values represent worse performance. An example would be the root-2254 
mean-squared-error of a prediction compared to the truth or target value. 2255 
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Mini batch. A subset or 'mini batch' of the training data. Utilised for multiple reasons, including computational 2259 
efficiency and to reduce overfitting. Aggregate error over a mini-batch is be learned rather than per-sample errors. 2260 
This is the typical contemporary approach. See also training batch for in-depth discussion. 2261 
Neural network. A composition of 'input nodes', 'connections', 'nodes', 'layers', 'output layers' and 'activation 2262 
functions' which are capable of complex modelling tasks. Originally designed to simulate human neural functioning 2263 
and subsequently applied to a range of applications. 2264 
Node. Aka vertex. A small data structure in a network, tree or graph structure which is connected by edges. A node 2265 
may represent a real-world value (such as a location) or an abstract value (such as in a neural network), or a decision 2266 
threshold (such as in a decision tree).  2267 
Normalisation. A technique applied in many areas of mathematics, science and statistics which is also very important 2268 
to machine learning and neural networks. In a general sense, this refers to expressing values within a standard range. 2269 
Very often, the range of expected values is mapped onto the range 0 to 1, to allow physical variables with different 2270 
measurement units to be compared on equal scale. Such normalisation may be linear or nonlinear, according to a 2271 
simple or more complex function, and either drawn from known physical limits or from the variation observed in the 2272 
data itself. 2273 
One-hot vector. A vector of 1s and 0s, in which only one bit is set to 1. Typically produced during the first step in 2274 
machine learning for language processing to create a word or feature embedding in a process called tokenisation or 2275 
encoding. The length of the vector is commonly equal to the number of categories or symbols.  2276 
Output layer. A layer which comprises the leaf nodes or output nodes of a tree or network. 2277 
Perceptron. A single-layer neural network architecture for supervised learning of binary classification. Originally 2278 
built as an electronic hardware device encoding weights with potentiometers and learning with motors. A multi-layer 2279 
perceptron is the same thing as an ordinary neural network.  2280 
Persistence. Refers to the practice of treating some past observation or reanalysis (usually immediately prior to the 2281 
starting point of the prediction period) as the future prediction and "persisting" this one state forward to every 2282 
prediction lead time. The predictive model is then compared to this persistence prediction, essentially assessing the 2283 
performance of the model against a steady state prediction. This, along with climatology, is often used as a baseline 2284 
or bare minimum prediction to beat (i.e., a prediction better than persistence could be considered skilful vs 2285 
persistence). This answers the question " is my model a better source of information than using what happened just 2286 
before now?". 2287 
Physically-informed machine learning. Also known as physics-informed machine learning. Machine learning is 2288 
considered physically informed when some aspect of physics is included in any way. Examples include adding a 2289 
physical component to the loss function (e.g. to enforce conservation of physical properties) or using an activation 2290 
function with physically realistic properties.  2291 
Predictive step, forward pass, evaluation. The process of calculating a model prediction from a set of input 2292 
conditions. Distinct from the training phase or back-propagation step. 2293 
PyTorch. A widely adopted framework for neural networks in Python. 2294 
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Random forest. An architecture based on decision tree ensembles where each decision tree is initialised semi-2295 
randomly and an average of all models is used for prediction. This is typically more accurate than a single decision 2296 
tree but less accurate than a gradient-boosted decision tree and so is now less-used. The term random forest is still 2297 
commonly used when in fact the implementation is a gradient boosted decision tree. 2298 
Receptive field. The size or extent of a region in the input which can influence or stimulate a response in a model, 2299 
e.g. the size of a convolutional kernel, the size of a sliding window 2300 
Rectified Linear Unit (ReLU). An activation function commonly used in DNNs. Defined as max(0, X). This function 2301 
is used as it is computationally cheap and avoids problems of vanishing gradients. 2302 
Recurrent network. A neural network which does pass the output from nodes of the network back into the input of 2303 
others. Infinite recurrence is avoided by setting a specific number of iterations for the recurrence. These are often 2304 
depicted in diagrams as separate layers but the implementation is through internal recurrent connections. 2305 
Regression. A model which attempts to diagnose or predict an exact value by statistically relating example input 2306 
values to desired values. 2307 
Relevance vector machine. A sparse Bayesian model utilising the kernel trick in similar fashion to a support vector 2308 
machine. 2309 
Representation error. Error which is introduced due to the inexactness of representing the real world in the model 2310 
belief state. Examples may include topography smoothing, point-to-grid translations, model grid distortions near the 2311 
poles, or the exclusion of physical characteristics which are not primary to the model. 2312 
Residual neural network (ResNet). A very influential and innovative convolutional NN architecture which uses a 2313 
similar concept to gradient boosting. Each layer of the deep network is taken to predict the residual error from the 2314 
previous layers, with skip-connections from earlier layers allowing the training to occur without the issue of vanishing 2315 
gradients. 2316 
Sample. A single training example (e.g. a row of data). 2317 
Scale invariance. A feature of a system, problem or model which means the results and behaviour are the same at any 2318 
scale (e.g., the behaviour does not change if the inputs are multiplied by a common factor). 2319 
Scikit-learn. A popular Python library for machine learning which extends the SciPy framework. 2320 
Sharding. Refers to dividing the training of a neural network across multiple GPUs or nodes. This can be done using 2321 
data sharding, whereby each GPU or node trains on a subset of the data to allow training parallelism, or model sharding 2322 
where a single model is partitioned across multiple GPUs to allow a larger neural network than could be allocated in 2323 
memory on a single GPU. One example could be assigning a small number neural network layers to each GPU which 2324 
could then work in sequence to operate on a very large network. 2325 
(Stochastic) Gradient descent. An algorithm by which a neural network is trained using increasingly fine-scale 2326 
adjustments to optimise the accuracy of network prediction. Utilised to find the local minimum of a differentiable 2327 
function. 2328 
Supervised learning. Machine learning is considered 'supervised' when the data is labelled according to a category 2329 
or target value. Classification data have an explicit labelled category. Regression data have an explicit value which is 2330 
being predicted for. 2331 
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Support vector machine. A classification model based on finding a hyperplane to separate data utilising the kernel 2334 
trick. 2335 
Tensor. Can be considered as a dense multi-dimensional array or matrix.  2336 
Tensorflow. A widely adopted framework for neural networks in Python. 2337 
Test/train/validate split. Available data is split into three portions. The training data is evaluated and used to update 2338 
model weights. Validation data is evaluated during training and may be used for hyper-parameter search or to guide 2339 
the researcher. Test data is independent (typically well-curated) data used for gold standard evaluation. In reality, 2340 
validation data is sometimes used as test data, but this is not good practice. There are many considerations for 2341 
test/train/validate splitting, such as statistical independence, representation of all classes, and bias. It is important to 2342 
consider what the model is generalising "from" and "to", and ensuring appropriate examples are present in the training 2343 
data and appropriate examples are reserved for validation and test. 2344 
Token. Tokenisation the process of mapping a symbolic or categorical sequence to a numerical representation which 2345 
is suited to a sequence-based machine learning model. Commonly, a vector representation will be utilised for the token 2346 
form. In language processing, either characters or words may be represented as tokens depending on the approach.  2347 
Top Hat function. A filter or function which has a rectangular shape resembling the cross-section of a top hat. One 2348 
of the simplest functions used for convolutional operations, it can be defined as one constant value in a given bounded 2349 
range, and another smaller constant value outside that range. 2350 
TPU. Tensor Processing Unit. A hardware device specialised for artificial intelligence and machine learning 2351 
applications, in particular neural network operations. 2352 
Training batch (or simply batch). Multiple definitions apply and the use the term has evolved over time. Originally 2353 
used in the context of learning from offline or saved historical data as opposed to online or realtime novel data. In this 2354 
definition, the training batch is the saved data and refers to the whole training set. For example, a robot exploring a 2355 
new environment in real-time must use an online learning technique and could not utilise batch training to map the 2356 
unseen terrain. In more recent use, particularly in the areas of neural network learning, the offline saved data may be 2357 
split into one or more batches (subsets). If one batch (the batch is the entire training set) is used, the aggregate errors 2358 
for the entire training set are used to update the model weights and biases, and the learning algorithm is called batch 2359 
gradient descent. If each example is presented individually, this is called online training (even when historical saved 2360 
data is being used), the weights and biases are updated for from each individual example, and the algorithm used is 2361 
stochastic gradient descent. If the data is divided into multiple batches, this is often referred to equivalently as mini 2362 
batches. The weights and biases are aggregated over each mini batch. This is the most common contemporary 2363 
approach, as it reduces overfitting and is a good balance of training accuracy, avoiding local minima, and 2364 
computational efficiency. 2365 
Transfer learning. The process of training a model first on a related problem, and then conducting further training 2366 
on a more specific problem. Examples could be training a model first in one geographical region and then in another; 2367 
or training first at a low resolution then subsequently at a high resolution. This is frequently done to reduce training 2368 
computation cost for similar problems by re-using the trained weights from a well-performing source model, or to 2369 
overcome a problem of limited data availability by using multiple data sources. 2370 
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Transformer network. A token-sequence architecture which is capable of handling long-range dependencies. 2371 
Initially applied to language processing, it has found effective application in image processing as an alternative to 2372 
convolutional architectures. 2373 
Translation invariance. A feature of a system, problem or model which means the results and behaviour are the same 2374 
after any spatial translation (i.e., the behaviour does not change if the inputs are shifted spatially to a new location). 2375 
U-Net. A type of convolutional neural network developed for biomedical image segmentation which has found broad 2376 
application. In the contracting part of the network spatial information is reduced while feature information is increased. 2377 
In the expanding part of the network, feature information is used to inform high-resolution segmentation. The name 2378 
derives from the diagrammatic shape of the network forming a "U". 2379 
Unsupervised learning. Machine learning is considered 'unsupervised' when data is unlabelled. Examples include 2380 
clustering, association and dimensionality reduction. 2381 
Vanishing Gradient. At the extremes, nonlinear functions used to calculate gradients can result in gradient values 2382 
which are effectively zero. These small or zero values, once present in the weights and biases of a neural network, can 2383 
entirely suppress information which would in fact be useful, and result in a local minima from which training cannot 2384 
recover. This is particularly relevant to long token-series when long-distance connections are relevant. A variety of 2385 
techniques including alternative activation functions, training weight decay, skip connections and attention 2386 
mechanisms may each or all be utilised to ameliorate this issue. 2387 
Weights and biases. The parameter values for each neuron which represent the weighting factors to apply to the input 2388 
values, plus an overall bias value for the node. 2389 
XGBoost. A popular Python library for gradient boosted decision trees. 2390 
 2391 
Appendix A: Table Summary of Model Architectures cited in this paper.  2392 
This table includes all references from this review except for: seminal ML papers that are on new ML methods (e.g., foundational 2393 
ML papers), review papers, any paper cited that concerns a topic which is out of scope (e.g., nowcasting), and any other paper 2394 
which does not present a new method directly applicable to weather and climate modelling. 2395 

Author(s) Year Category Approach 
Ackmann et al 2020 Fully connected NN Preconditioner 
Alemohammad et al 2017 Fully connected NN Variable estimation 
Andersson et al 2021 Convolutional NN Prediction 
Arcomano et al 2022 Reservoir computing Alongside-model bias corrector 
Atkinson 2020 Baysean type NN PDE solver 
Bar-Sinai 2019 Convolutional NN PDE solver 
Battaglia et al 2018 Graph NN Method paper 
Beucler et al 2019 Physics Informed NN Convective paramterisation 
Beucler et al 2021 Physics Informed NN Convective paramterisation 
Bhattacharya et al 2021 Fully connected NN PDE solver 
Bi et al 2022 Mixed/Custom NN Pure ML atmospheric model 
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Bihlo & Popovych 2022 Physics Informed NN PDE solver 
Bolton and Zanna 2019 Convolutional NN Parametrization 
Brenowitz & Bretherton 2018 Fully connected NN Parametrization 
Brenowitz & Bretherton 2019 Fully connected NN Parametrization 
Brenowitz et al.  2020 Fully connected NN Parametrization 

Brenowitz et al 2020 
Decision tree-based, Fully 
connected NN ML model intercomaprison 

Brenowitz et al 2022 Recurrent NN Parametrization 
Chaney et al 2016 Decision tree-based Interpolation 
Chantry et al 2021 Fully connected NN Parametrization 
Chattopadhyay et al 2020 Fully connected NN, Recurrent NN Super parametrization 
Chevallier et al 1998 Fully connected NN Parametrization 
Chi & Kim 2017 Fully connected NN, Recurrent NN Prediction 
Clare et al 2021 ResNet Emulation (probabilistic) 
Dagon et al 2020 Fully connected NN Emulation 
de Bézenac et al 2017 GAN Prediction, model evaluation 
Deuben and Bauer 2018 Fully connected NN Replacement 

Flora et al 2022 
Decision tree-based, Logistic 
regression Asessment of explainability techniques 

Fuhg et al 2022 Physics Informed NN PDE solver 
Gagne et al 2019 Decision tree-based Parametrization 
Gagne et al 2020 GAN Parametrization (probabilistic) 
Gagne et al 2020 GAN, Fully connected NN Parametrization 
George et al 2008 Mixed/Custom non-NN Preconditioner 
Gettelman et al 2021 Fully connected NN Emulation 
Ham et al 2019 Convolutional NN Prediction 
Ham et al 2021 Convolutional NN Prediction 
Han et al 2020 ResNet Parametrization 
Harder et al 2022 Fully connected NN Emulation 
He et al 2022 Decision tree-based Parametrization 

Holloway & Chen 2007 Fully connected NN 
Preconditioner and PDE solver 
selection 

Horvat & Roach 2022 Fully connected NN Parametrization 
Hu et al 2023 Mixed/Custom NN Pure ML atmospheric model 
Huang et al 2016 SVM Preconditioner 
Kapp‐Schwoerer et al 2020 Convolutional NN Semantic segmentation 
Karunasinghe & Liong 2006 Fully connected NN Chaotic timeseries prediction 
Keisler 2022 Graph NN Replacement 
Kim et al 2022 Mixed/Custom NN Prediction 
Kochkov et al 2021 Convolutional NN PDE solver 
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Krasnopolsky et al 2002 Fully connected NN Emulation 
Krasnopolsky et al 2005 Fully connected NN Emulation 
Krasnopolsky  2013 Fully connected NN Parametrization (probabilistic) 
Kuefler & Chen 2008 Mixed/Custom non-NN Linear system solver 
Ladický et al 2015 Decision tree-based PDE solver 
Lam et al 2022 Mixed/Custom NN Pure ML atmospheric model 
Lanthaler et al 2022 Neural Operator PDE solver 
Leufen & Schadler 2019 Fully connected NN Paramterization 
Li et al 2020 Graph NN PDE solver 
Li et al 2020 Neural Operator PDE solver 
Li et al 2020 Neural Operator PDE solver 
Lopez-Gomez et al 2023 Convolutional NN Prediction 
Lu et al 2020 Neural Operator PDE solver 
Meyer et al 2022 Fully connected NN Emulation 
Moishin et al  2021 Convolutional Recurrent NN Prediction 
Mooers et al 2021 Fully connected NN Emulation 
Mudigonda et al 2017 Mixed/Custom NN Object detection 
Nelsen & Stuart 2021 Random Feature Model PDE solver 
Nguyen et al 2023 Mixed/Custom NN Pure ML atmospheric model 
O'Brien et al 2020 Baysean model Object detection 
O’Gorman & Dwyer 2018 Decision tree-based Emulation 
O'Leary et al 2022 Fully connected NN PDE solver 
Ott et al 2020 Fully connected NN Emulation 
Pan et al 2020 Decision tree-based Paramterisation 
Patel et al 2021 Neural Operator PDE solver 
Pathak et al 2022 Mixed/Custom NN Pure ML atmospheric model 
Peairs & Chen 2011 Mixed/Custom non-NN PDE solver 
Pelissier et al 2020 Mixed/Custom non-NN Hybrid model corrector 
Prabhat et al 2021 Convolutional NN Object detection 

Psaros et al 2023 
Neural Operator, Physics Informed 
NN PDE solver 

Rasp 2020 Fully connected NN Emulation 
Rasp et al 2018 Fully connected NN Emulation 

Rasp et al  2020 
Fully connected NN, Linear 
regression Pure ML atmospheric model 

Rasp & Thuerey 2021 ResNet Pure ML atmospheric model 
Rizzuti et al 2019 Convolutional NN NN based corrector step in PDE solver 
Rosier et al 2023 Mixed/Custom NN Prediction 

Ross et al. 2023 
Genetic programming, Linear 
regression, Convolutional NN 

Intercomparison of methods to learn 
paramterisations from data 
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Rupe et al 2023 Mixed/Custom non-NN Object detection 
Sawada 2020 Regression Emulation 
Scher 2018 Convolutional NN Emulation 
Scher and Messori 2019 Convolutional NN Emulation 
Taylor & Feng 2022 Convolutional NN Prediction 
Tompson et al 2017 Convolutional NN PDE solver 
Toms et al 2020 Fully connected NN NN interpretability 

Ukkonen & Mäkelä 2019 
Decision tree-based, Logistic 
Regression, Fully connected NN Paramterisation 

Ukkonen et al 2020 Fully connected NN Emulation 
Vlachas et al 2018 Recurrent NN Pure ML baseline model 
Wang et al 2021 Neural Operator PDE solver 
Wang et al 2022 ResNet Parametrization 
Wang et al 2022 Physics Informed NN PDE solver 
Watt-Meyer et al 2021 Decision tree-based Nudging 

Watson-Parris et al 2022 
Gaussian Process, Decision tree-
based, Mixed/Custom NN Pure ML baseline model 

Weyn et al 2019 Convolutional NN Pure ML atmospheric model 
Weyn et al 2020 Convolutional NN Pure ML atmospheric model 
Weyn et al 2021 Convolutional NN Pure ML atmospheric model 
Wikner et al 2020 Reservoir computing Alongside-model bias corrector 
Wu & Xiu 2020 ResNet Learning PDE operators 
Yamada et al 2018 Convolutional NN Preconditioner 
Yang et al 2016 Fully connected NN PDE solver 
Yeo et al 2021 Recurrent NN Dynamical system simulation  
Yuval & O’Gorman 2020 Decision tree-based Emulation 
Yuval et al 2021 Fully connected NN Emulation 

Zanna and Bolton 2020 
Convolutional NN, Relevance 
vector machine Parametrization and equation discovery  

Zhao et al 2019 Fully connected NN Paramterisation 
Zhao et al 2019 Physics Informed NN Paramterisation 
Zhong et al 2023 Fully connected NN, Recurrent NN Emulation 
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