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Abstract. As a long-standing problem in climate models, large positive shortwave radiation biases exist at the surface over the

Southern Ocean, impacting the accurate simulation of sea surface temperature, atmospheric circulation, and precipitation. Un-

derestimations of low-level cloud fraction and liquid water content are suggested to predominantly contribute to these radiation

biases. Most model evaluations for radiation focus on summer and rely on satellite products, which have their own limitations.

In this work, we use surface-based observations at Macquarie Island to provide the first long-term, seasonal evaluation of both5

downwelling surface shortwave and longwave radiation in the Australian Community Climate and Earth System Simulator

Atmosphere-only Model Version 2 (ACCESS-AM2) over the Southern Ocean. The capacity of the Clouds and the Earth’s

Radiant Energy System (CERES) product to simulate radiation is also investigated. We utilise the novel lidar simulator, the

Automatic Lidar and Ceilometer Framework (ALCF) and all-sky cloud camera observations of cloud fraction to investigate

how radiation biases are influenced by cloud properties.10

Overall, we find an overestimation of +9.5 ± 33.5Wm−2 for downwelling surface shortwave radiation fluxes and an under-

estimation of -2.3 ± 13.5 Wm−2 for downwelling surface longwave radiation in ACCESS-AM2 in all-sky conditions, with

more pronounced shortwave biases of +25.0 ± 48.0Wm−2 occurring in summer. CERES presents an overestimation of +8.0

± 18.0Wm−2 for the shortwave and an underestimation of -12.1 ± 12.2Wm−2 for the longwave in all-sky conditions. For

the cloud radiative effect (CRE) biases, there is an overestimation of +4.8 ± 28.0Wm−2 in ACCESS-AM2 and an underes-15

timation of -7.9 ± 20.9Wm−2 in CERES. An overestimation of downwelling surface shortwave radiation is associated with

an underestimation of cloud fraction. The associated biases in cloud occurrence are less clear and we suggest that modelled

cloud phase is also having an impact on the radiation biases. Our results show that the ACCESS-AM2 model and CERES

product require further development to reduce these radiation biases, not just in shortwave and in all-sky conditions, but also

in longwave and in clear-sky conditions.20
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1 Introduction

The Southern Ocean (SO) makes up a significant component of the Earth’s climate system. As one of the cloudiest regions on

Earth, the SO strongly influences the global energy balance and climate (Trenberth et al., 2009; Gettelman et al., 2020). A con-

siderable deficit of reflected shortwave radiation at the top of the atmosphere (TOA) and an excess of absorbed shortwave radia-

tion at the surface over the SO has been identified in both climate models and reanalysis (Trenberth and Fasullo, 2010; Bodas-Salcedo et al., 2014; Kay et al., 2016; Zhang et al., 2016; Fiddes et al., 2022; Cesana et al., 2022)25

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Trenberth and Fasullo, 2010; Bodas-Salcedo et al., 2014; Kay et al., 2016; Zhang et al., 2016; Fiddes et al., 2022; Cesana et al., 2022; Mallet et al., 2023)

. Cloud biases tend to limit the capacity of coupled models to accurately derive sea surface temperatures (SSTs) (Hyder et al.,

2018), atmospheric circulation (Ceppi et al., 2012) and precipitation (Hwang and Frierson, 2013), and to correctly predict

future climate changes (Trenberth and Fasullo, 2010; McCoy et al., 2015). As a key driver of global climate, it is important

that we unravel what causes these radiative biases over the SO. Previous studies have suggested that the poor representation30

of clouds in climate models is the main contributor to the radiative biases (Bodas-Salcedo et al., 2012; Franklin et al., 2013;

Mason et al., 2015), as clouds primarily control the TOA and surface energy budgets in the climate system (Bennartz et al.,

2013; Luo et al., 2016).

Novel techniques including simulators for both satellite retrievals and in-situ observations, which are vital for model evalua-

tion, have been developed in recent years. The Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator35

Package (COSP) was created to allow quantitative examination of cloud properties, humidity, and precipitation processes in var-

ious numerical models (Bodas-Salcedo et al., 2011). Kuma et al. (2021) more recently have developed the Automatic Lidar and

Ceilometer Framework (ALCF) to make automatic lidar and ceilometer (ALC) data comparable with climate models, including

both global climate models (GCM) and numerical weather prediction (NWP) models.
:::::
Large

::::::::
networks

::
of

:::::
lidars

:::
and

::::::::::
ceilometers

::::
have

::::
been

:::::::
installed

::::::::
globally,

::
for

::::::::
instance,

::::::::
Cloudnet

::::::::::::::::::::
(Illingworth et al., 2007),

:::::::::::
E-PROFILE

::::::::::::::::::::
(Illingworth et al., 2019),

::::
and

:::::
ARM40

::::::::::::::::::
(Campbell et al., 2002)

:
.
::::::::
However,

:::::::::::
surface-based

:::::::::
ceilometer

:::::::::::
observations

::
of

::::
cloud

:::::::::
frequency

::
of

:::::::::
occurrence

:::
and

:::::
cloud

:::::::::
boundaries

:::
over

:::
the

:::
SO

::::::
remain

::::::
sparse

::::::::::::::::
(Kuma et al., 2020).

:
The ALCF can utilize the enormous database of surface-based ceilometer obser-

vations to evaluate the cloud occurrence and cloud characteristics in models and reanalysis.
::::
This

:
is

::::::::::::
accomplished

::
by

:::::::::
extracting

:::::::::::::
two-dimensional

:::::::
profiles

:::::
(time

::
x

::::::
height)

:::::
from

:::
the

:::::
model

:::::
data,

:::::
using

::
a

:::::::
modified

::::::
COSP

::::
lidar

:::::::::
simulator

::
to

:::::::
perform

::::::::
radiative

::::::
transfer

:::::::::::
calculations,

:::::::::
calibrating

::::
and

::::::::::
resampling

:::
the

::::::::
observed

:::::::::
attenuated

:::::::
volume

::::::::::::
backscattering

::::::::::
coefficient

::
to

::
a

::::::::
common45

::::::::
resolution,

::::
and

::::::::::
conducting

::::::
similar

::::::
cloud

::::::::
detection

:::
on

::::
both

:::
the

:::::::::
simulated

::::
and

::::::::
observed

:::::::::
attenuated

::::::
volume

:::::::::::::
backscattering

::::::::
coefficient

::::::::::::::::
(Kuma et al., 2021)

:
.

Aside from these new evaluation techniques, a number of statistical methods have been applied to understand the contribution

of clouds to the model radiation biases. Williams and Webb (2009) used a cloud clustering approach to establish cloud regimes

in models and compared them with satellite observations, showing a positive bias of shortwave cloud radiative effect in models.50

Field et al. (2011) utilized the cyclone compositing method to illustrate the underestimation of the TOA reflected shortwave

radiation on the cold-air side of cyclones in models. These two techniques were combined by Bodas-Salcedo et al. (2014) to

relate cloud regimes and radiative biases to different climatic conditions. It was observed that the cold-air side of the cyclone
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composite is where the majority of model biases appear, and they mostly occur in the midlevel cloud regime (Bodas-Salcedo

et al., 2014).55

By incorporating the observational simulators and statistical analysis, climate models' outputs can be assessed against those

observations. From previous research on the evaluation of cloud property simulations in models, it can be summarised that,

over the SO region, the simulated low-level cloud fractions tend to be lower than both satellite observations (Trenberth and

Fasullo, 2010; Bodas-Salcedo et al., 2012; Franklin et al., 2013) and surface-based observations (Protat et al., 2017; Klekociuk

et al., 2020; Wang et al., 2020).Furthermore,in
::::::::
However,

:::::::::::
discrepancies

:::
do

::::
exist

:::::::
between

:::::::
surface

:::
and

:::::::
satellite

:::::::::::
observations60

:::
due

::
to

:::::::::
limitations

::
of

::::::::::
near-surface

:::::
cloud

::::::::
retrievals

::
of

::::::::
satellite.

::
In the context of widespread supercooled liquid clouds (SLCs), the underestimation of liquid water content in the clouds

causes less re�ective clouds and consequently less re�ected shortwave radiation in the model at TOA (Hu et al., 2010; Bodas-

Salcedo et al., 2016). Additionally, the poor representations of cloud feedbacks
:::::::
attributed

::
to

:::
the

::::::::
reduction

::
in

:::
low

:::::
cloud

::::::::
coverage

:::
and

:::::
water

::::::
content

:
lead to higher climate sensitivity in the Coupled Model Intercomparison Project phase 6 (CMIP6) compared65

to the previous version(Zelinka et al., 2020; Schuddeboom and McDonald, 2021;?)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zelinka et al., 2020; Schuddeboom and McDonald, 2021; Kuma et al., 2023)

. Failure to accurately simulate physical properties of clouds in climate models emphasizes the necessity to use a variety of

observational datasets to fully evaluate the models and correct biases through modifying the simulation of cloud fraction, cloud

types, and cloud thermodynamic phases.

Surface-based observations and satellite products are two main types of datasets used to assess the model's performance. Nu-70

merous satellite-based evaluations have been previously conducted (Bodas-Salcedo et al., 2012, 2014, 2016; Luo et al., 2016),

including for the Australian Community Climate and Earth System Simulator (ACCESS) model (Fiddes et al., 2018, 2022).

Nonetheless,surface-based
::::::::::::::::
Tansey et al. (2022)

::::::::
examined

::::::
surface

:::::::::::
precipitation

::::::::::::
measurements

::::::
during

:::::::
MICRE

:::
and

:::::::::
compared

::::
them

::::
with

::::
data

::::
from

::::::::
CloudSat,

::::::::
revealing

::::::
several

::::::
notable

:::::::::
differences

::::::::::
attributable

::
to

::::::
satellite

:::::::::
instrument

::::::::::
sensitivities

:::
and

:::::::::
algorithm

:::::::
structure.

:::::
This

::::::::
indicates

:::
the

:::::::::
limitations

:::
of

::::::::
satellites

::
in

:::::::::
observing

::::::::
low-level

::::::
clouds

::::
over

:::
the

::::
SO,

::::::
which

::::::
serves

::
as

::
a

::::::
strong75

:::::::::
motivation

:::
for

:::::::
utilizing

:::::::::::
ground-based

:::::::::::
observations

::
to

::::::::
calibrate

::::::
satellite

::::::::
products.

:::::::::::
Nonetheless,

::::::::::::
ground-based observations in

the SO and Antarctica remain limited due to the harshandremoteatmosphericenvironment
::::::::::
atmospheric

:::::::::::
environment

:::
and

::::
lack

::
of

::::::
remote

::::
sites

:::
for

::::::::::::
measurements (Lawson and Gettelman, 2014), leading to less advanced model evaluation techniques than

for the Northern Hemisphere. The parameterisations of models have not been comprehensively developed or tuned for the SO

region, on account of the paucity of comparable �eld observations and suitable tools that can allow one-to-one comparison80

between models and observations (McFarquhar et al., 2021; Kuma et al., 2021). In recent years, several campaigns have been

conducted to collect cloud properties over the SO (Protat et al., 2017; McFarquhar et al., 2021; Kremser et al., 2021). Using

these observational data to test climate models with the latest simulators and statistical analysis
:
,
::
as

::::
well

::
as

::::::::
calibrate

:::::::
satellite

::::
data, remains a critical task.

In this work, we evaluated the capability of ACCESS Atmosphere-only Model Version 2 (AM2) to simulate the downwelling85

surface radiation, cloud radiative effect and limited cloud properties. Performance of the Cloud and the Earth's Radiant Energy

System (CERES) product in reproducing surface radiation and cloud radiative effect was also assessed. The campaign described

by McFarquhar et al. (2021) and Tansey et al. (2022) at Macquarie Island was used as the observational dataset for comparison.
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Furthermore, the ALCF product was used to explore the connection of cloud occurrence and radiative biases in the ACCESS-

AM2 model compared with ceilometers for the �rst time.90

The structure of this paper is organized as follows: Section 2 describes the data and methods used in the study; Section 3

evaluates the surface radiative bias in the ACCESS-AM2 model and CERES product; Section 4 presents the distribution of

cloud fraction and explores the relationship between cloud fraction and radiative bias in the ACCESS-AM2 model; Section 5

examines the histograms of cloud occurrence using ALCF and investigates the link between cloud occurrence and radiative

bias in the ACCESS-AM2 model; and Section 6 summarizes the results.95

2 Data and methods

2.1 Overview ofin-situ
::::::::::::
ground-based

:
observations

The observational data used in this manuscript originated from the Macquarie Island Cloud and Radiation Experiment (MI-

CRE), conducted by the United States Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program,

the Bureau of Meteorology (BoM) and the Australian Antarctic Division (AAD), between March 2016 and March 2018. Lo-100

cated at 54.5°S, 158.9°E and with an altitude of 6 m (Figure 1a), the year-round AAD research station at Macquarie Island

supports a range of scienti�c activities and has a long history of surface meteorology observations (Wang et al., 2015). The

primary goal of MICRE was to gather surface-based measurements of radiation, precipitation, boundary layer (BL) clouds,

and aerosol characteristics in order to evaluate satellite products and improve understanding of diurnal and seasonal �uctua-

tions, particularly in terms of BL cloud vertical structure over the SO (McFarquhar et al., 2021). The data collected during the105

campaign includes downwelling surface radiation �uxes, precipitation rates, and ceilometer backscatter measurements along

with standard meteorological observations.

2.2 Instrumentation

Instruments involved in the analysis of cloud radiative bias include a set of AAD broadbrand radiometers, which measure

downwelling surface shortwave (SW) & longwave (LW) radiation �uxes; a ceilometer from University of Canterbury to deter-110

mine cloud base height (CBH); and an AAD all-sky cloud camera to record cloud fraction. Measurements of all instruments

cover the period from 5-April-2016 to 6-March-2018.

2.2.1 Radiometers

Both a Kipp & Zonen CMP21 pyranometer (SW) and a Kipp & Zonen CGR4 pyrgeometer (LW) which are sensitive over

285-2800 nm and 4.5-42� m respectively, were used to collect radiation data (Figure 1b). The sensorssampledat 0.1-second115

intervals,andthe
::::
have

::
a

::::
time

::::::::
resolution

::
of

::
1

:::::::
minute,

:::
and

:
results were recorded as means and standard deviations for each of

the 600 individual readings of output voltage at 1 minute interval, and logged on a Campbell Scienti�c CR3000 data logger.
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Figure 1. (a) Location of Macquarie Island (54.5°S, 158.9°E).
::
The

::::
blue

::::
color

::::
scale

::::::::
represents

:::
the

::::::::
bathymetry

::
of

::::::
oceans.

:
(b) Photo of cloud

camera (on top of the mast), pyranometer (on the arm to the right), and pyrgeometer (on the arm to the left) installed in the Clean Air Lab

enclosure (credit: Andrew Klekociuk, Australian Antarctic Division). (c) Photo of the Vaisala CL51 ceilometer installed in the Bureau of

Meteorology lab, about 200m away from cloud camera and radiometers (credit: Jeff Aquilina, Bureau of Meteorology).

The LW radiation �uxes (Wm � 2) were calculated using:

L d =
Uemf

SL
+ 5 :67� 10� 8 � T4

b (1)

whereUemf is the pyrgeometer output voltage (�V ), SL is the pyrgeometer sensitivity (�V /( Wm � 2)), andTb is the ther-120

mistor temperature (K ) of the pyrgeometer. The temperature (K ) was calculated using:

Tb = ( � + [ � � ln (R) + 
 � (ln (R))3]) � 1 (2)

where R is the resistance (
 ) and� : 1.0295 ×10� 3, � : 2.391 ×10� 4, 
 : 1.568 ×10� 7 are calibration coef�cients
::::
from

:::
the

::::
Kipp

:::
&

::::::
Zonen

:::::::::
calibration

::::::::
certi�cate.

The SW radiation �uxes (Wm � 2) was
::::
were calculated using:125

Sd =
Uemf

SS
(3)

whereUemf is the pyranometer output voltage (� V) ,
:::
and

:
SS is the pyranometer sensitivity (�V /( Wm � 2)).
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The uncertainty in pyranometer measurements is derived from the sensitivity (� 0.11�V /( Wm � 2)), and the uncertainty of

the pyrgeometer is derived from the combination of sensitivity (� 0.30�V /( Wm � 2)) and temperature measurements (� 0.11

K ).
:::
The

::::::::::
radiometers

::::
were

::::::::
validated

::::::
against

:
a
:::::::
separate

:::
set

::
of

::::::::::
radiometers

::::
that

::::
were

::::
part

::
of

:::
the

:::::
ARM

::::::::::
deployment

::
at

:::::::::
Macquarie130

:::::
Island

::::
(see

::::::::
Appendix

:::
A).

::::
The

::::
two

::::::::::
independent

::::
data

:::
sets

:::::
were

:::::
found

::
to

:::
be

::::::::::
comparable

:::::
within

::::
2%

::
for

::::
the

:::
SW

::::
and

:::
5%

:::
for

:::
the

:::
LW,

::::::
which

:::
are

:::::
within

:::
the

::::::::::
uncertainty

::
of

:::
the

:::::::::::::
instrumentation.

:

Both the pyranometer and pyrgeometer sensors were changed on 19-Mar-2017. Prior to this date the sensitivities (SS and

SL ) were 8.89 and 13.01�V /(Wm � 2) and after this date were 9.23 and 9.07�V /(Wm � 2). From Equation 1, the pyrgeometer

requires a temperature measurement to calculate the radiation �ux. This is nominally obtained from a thermistor onboard the135

sensor, however a cable fault between 5-Jul-2016 14:37UT and 23-Nov-2016 02:22UT affected the thermistor resistance and

consequently the measured temperature. Over this interval temperatures were substituted with those obtained from a simi-

lar thermistor onboard the pyranometer. Temperaturesweretypically within 0.5 °C
:::::::::
differences

::::
were

::::::
within

:::
1%

:
between the

two thermistors
::
on

:::::::
average. Prior to 23-May-2017, the dataset was recorded with the Campbell logger default datatype FP2

which has a range limit of -7999 to 7999� V. This inadvertently clipped the SW (pyranometer) data that exceeded 7999/8.89140

= � 900Wm� 2 before 19-Mar-2017, and 7999/9.23 =� 867Wm� 2 between 19-Mar-2017 and 23-May-2017. The LW (pyr-

geometer) data was unaffected by this effect. Thelimit
::::::
limited clipped points accounted for approximately 3% of the whole

dataset were removed. This was corrected to an IEEE 4-byte datatype on 23-May-2017, which has a� 2:15e9 range limit and

1 bit resolution which covered all levels voltage output by the sensor. Additionally, nine days of data, which accounted for

approximately 1% of the whole dataset, were removed because of too few data points on those days.
::
to

::::::::
statically

:::::::
calculate

::
a145

::::
daily

::::::::
average.

:

Theradiometerswerevalidatedagainsta seperatesetof radiometersthatwerepartof theARM deploymentat Macquarie

Island(seeAppendixA). Thetwo independentdatasetswerefoundto becomparablewithin 2% for theSW and5% for the

LW, whicharewithin theuncertaintyof theinstrumentation.

2.2.2 Ceilometer150

A Vaisala CL51 ceilometer, which is a vertically pointed near-infrared lidar with a regular vertical resolution of 10 m that

operates at a wavelength of 910 nm (� 10 nm) up to a range of 15.4 km, was employed to detect attenuated backscatter (Fig-

ure 1c). A two-dimensional (time × range) range-corrected attenuated backscatter pro�le was sampled every 6 seconds as

the primary output (Klekociuk et al., 2020).
:::
The

:::::::::
ceilometer

:::::::::::
observations

:::::
were

::::::::::
sub-sampled

:::
to

:::::::
5-minute

:::::
time

::::::::
resolution

::::
and

:::::::
50-meter

:::::::
vertical

:::::::::
resolution

::
by

:::::::::
averaging

:::::::
multiple

:::::::
columns

::::
and

::::
bins

:::::::
through

::::::
ALCF

::::::::::::::::
(Kuma et al., 2020).

::::::::
Columns

::::
and

::::
bins155

:::
here

:::
are

::::::::::
respectively

::::
time

::::
and

::::::
vertical

::::::::
intervals

::
of

:::
the

:::::::::
backscatter

::::::
pro�le.

:
Information on CBH, precipitation, andinfrequently

:
at

:::::
times

:
boundary layer height can be obtained from the backscatter pro�le using detection algorithms.

:::
Fog

:::
can

:::
be

::::::::
observed

::
in

:::
the

:::::::::
backscatter

:::::::
pro�les

::
as

:::::
well. However, there are limitations to the capabilities of a ceilometer. Cloud tops,

:::
and upper

cloud layers, andsupercooledcloud layersare typically not visible in the backscatter pro�le due to the absorption of laser

energy by thick clouds. As a result, the instrument is best suited for monitoring low-level clouds, although it may also be used160

to observe mid- to high-level clouds in the absence of low-level clouds (Klekociuk et al., 2020). Moreover, the signal and

6



noise properties of the Vaisala CL51 ceilometer were investigated by Kotthaus et al. (2016) and a systematic bias was noted

in the attenuated backscatter recorded by the instrument, which is determined by the internal calibration. Calibration of the

instrument is achieved by scaling the backscatter signal to match the observed lidar ratio with the theoretical value (O'Connor

et al., 2004).165

::::::
During

::
the

:::::::
selected

::::::
period

:::
for

:::::::::
conducting

:::
the

::::::::::::
radiation-cloud

:::::::::
occurrence

:::::::
analysis

::
in

::::::
Section

::
5,

::::::
which

:::::::
spanned

::::
from

:::::::::
September

::::
2017

::
to

::::::::
February

:::::
2018,

::::::::::::
approximately

::::
6.7%

:::
of

:::
the

:::::::::
ceilometer

:::
data

:::::
were

:::::::
excluded

::::
due

::
to

::::
poor

::::::
quality.

:

2.2.3 All-sky cloud camera

For the cloud fraction (CF) analysis, colour images were taken at 1-minute intervals with an all-sky camera (Figure 1b).

Both `All-Sky' and `Zenith' regions-of-interest (ROI) were included in the data processing, which comprised most of the170

unobstructed sky and an 8° radius �eld at the zenith, respectively. Based on a colour charge-coupled device (CCD) sensor, the

camera contains a three-element 1.24 mm F2.8 lens that gives a 190° hemispherical "�sheye" �eld of view (FoV) to determine

cloud distribution (Klekociuk et al., 2020; Wang et al., 2020). In terms of FoV of the cloud camera, it covered an area of 52 km

in diameter at 4.5 km altitude. For each image captured during the day (solar elevation > 5°), a modi�ed version of blue-red

pixel ratio and differencing algorithms were employed to distinguish clear-sky and cloudy-sky pixels. Cumulative pixel counts,175

previously applied in several studies, were used to establish a CF (Li et al., 2011; Ghonima et al., 2012; Yabuki et al., 2014).

For the pixel ratio algorithm (BdR - Blue channel divided by Red channel), a threshold of 1.3 was applied to the 8-bit (0–255)

blue/red components to differentiate blue (clear-sky) pixels. For the pixel differencing algorithm (BmR - Blue channel minus

Red channel), a threshold of 30 was applied to 8-bit (0-255) blue-red components to differentiate blue (clear-sky) pixels.
:::
The

::::
cloud

:::::::
camera

::::::
dataset

:::
was

:::::::::
organized

::
to

::::
align

::::
with

:::
the

::::::::
available

:::::::::
radiometer

:::::::
dataset,

:::::::
ensuring

::::
that

::
the

::::::::::::
measurement

::
of

:::
CF

:::::
could180

::
be

::::::
directly

::::::
linked

::::
with

::::::::
radiation

::::
data.

2.3 Algorithms for cloud radiative effect and clear-sky radiation

2.3.1 Cloud radiative effect (CRE)

The cloud radiative effect (CRE) is de�ned as the in�uence of clouds on total radiation budget, computed from the difference

in SW radiation and LW radiation between all-sky and clear-skycircumstances
::::::::
conditions (Wang et al., 2020). According to185

Shupe and Intrieri (2004) and Dommenget and Flöter (2011), the CRE is de�ned as:

CRE (� ) = (1 � � ) � (S(� ) � S0(� )) + " � (L (� ) � L 0(� )) (4)

which can be divided into shortwave cloud radiative effect (CRESW ):

CRESW (� ) = (1 � � ) � (S(� ) � S0(� )) (5)
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and longwave cloud radiative effect (CRELW ):190

CRELW (� ) = " � (L (� ) � L 0(� )) (6)

where� is the surface SW albedo," is the LW surface emissivity,� is the solar zenith angle,S(� ) andS0(� ) are respectively

the downwelling surface SW radiation in all-sky andclearsky
:::::::
clear-sky conditions, andL(� )) andL 0(� ) are respectively the

downwelling surface LW radiation in all-sky and clear-sky conditions. In this analysis,� = 0.055 and" = 0.97 were used to

permit comparisons with earlier investigations (Fairall et al., 2008; Protat et al., 2017; Klekociuk et al., 2020).195

2.3.2 Clear-sky radiation

Along with the measured SW and LW radiation under all-sky conditions, estimating the clear-sky radiation �eld is necessary

to obtain the values ofS0(� ) andL 0(� ) before calculating the CRE using Equation 4. Macquarie Island is almost constantly

covered by clouds, where only 0.6 % of time were classi�ed as clear-sky by the all-sky camera. The limited observed clear-sky

conditions meant we were unable to satisfactorily validate clear-sky models such as the SW clear-sky model by Corripio (2003)200

and the LW clear-sky model by Idso (1981). Both these clear-sky models, upon comparison to the ACCESS-AM2 and satellite

products, showed large biases, even using the parameters tuned for the SO provided by Wang et al. (2020).

With this in mind, we have used the downwelling surface clear-sky radiation �elds from the European Center for Medium-

range Weather Forecasting (ECMWF) Reanalysis 5 (ERA5) (Hersbach et al., 2020) for calculating cloud radiative effects.

Assimilated measurements from different microwave sounders provide information on brightness temperatures and humidity205

to derive the clear-sky radiation in ERA5 (Hersbach et al., 2020). The ERA5clear sky
:::::::
clear-sky

:
�elds have been used to

validate other clear-sky models, such as in Shakespeare and Roderick (2021). The ACCESS-AM2 and CERES products both

take into account ERA5 atmospheric properties and hence each of these three products showed minimal differences. In this

way we are able to limit introduced biases due to inaccurate clear-sky �elds. We suggest that further efforts are needed to

validate clear-sky models for the SO.210

2.4 ACCESS-AM2

ACCESS-AM2 uses the same con�guration as the ACCESS-CM2 (coupled model) without the ocean. The atmospheric com-

ponent of ACCESS-AM2 is based on the UK Met Of�ce's (UKMO) Uni�ed Model (UM) version 10.6 Global Atmosphere

(GA) 7.1 (Walters et al., 2019), with the Community Atmosphere Biosphere Land Exchange (CABLE) version 2.5 land sur-

face model (Bi et al., 2020). The model has been operated globally at N96 resolution (approximately 1.25° latitude by 1.875°215

longitude) with 85 vertical levels (Bi et al., 2020; Bodman et al., 2020). Model output has been saved as daily means from

April 2016 to March 2018, and limited hourly instantaneous output from September 2017 to February2018.
::::
2018

::
to

::::::::
coincide

::::
with

::::
three

:::::
other

:::::::::
campaigns

::::::::
described

::
in

:::::::::::::::::::::
McFarquhar et al. (2021)

::::::
besides

:::::::
MICRE.

:

The ACCESS-AM2 model is con�gured for the Atmospheric Model Intercomparison Project (AMIP) simulations, contribut-

ing to the Coupled Model Intercomparison Project phase 6 experiments (CMIP6) (Eyring et al., 2016). The model used in this220

study is nudged to ERA5 (Hersbach et al., 2020). The horizontal wind and temperature in the free troposphere and stratosphere
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were nudged at every dynamical time step using reanalysis �elds and updated every three hours (Fiddes et al., 2022). Sea

surface temperatures (SSTs) and sea ice concentrations (SICs) are derivedfrom
:
in

::::::::::
accordance

::::
with the input4MIPS database

()
:::
and

:::::::
updated

::
to

:::::
cover

:::
the

::::
time

::::::
period

::
of

::::
this

:::::::::
simulation

:::::::::::::::::
(Hurrell et al., 2008). Solar forcing, greenhouse gases (GHGs), vol-

canic aerosol optical depth, and ozone are prescribed in the ACCESS-AM2 following the CMIP6 AMIP model con�guration225

(Eyring et al., 2016).

Of interest to this study, the ACCESS-AM2 model uses the the Suite of Community RAdiative Transfer codes based on

Edwards and Slingo (SOCRATES) (Edwards and Slingo, 1996) and Wilson et al. (2008)'s prognostic CF and condensate cloud

scheme, which includes large-scale as well as convective clouds.
::
For

::::::::::
comparison

::::
with

::::
the

:::::::::::
observational

::::
data,

::::::::
radiation

::::
and

::::::::
prognostic

::::
CF

::
in

:::
the

:::::
model

::::
was

:::::::
linearly

::::::::::
interpolated

::
to

:::
the

:::::
point

::::::
nearest

::
to

::::::::::
Macquarie

:::::
Island

:::::::
(54.5°S,

:::::::::
158.9°E). Additional230

details associated
::::
more

::::::::
generally with the ACCESS-AM2 model can be found in Bodman et al. (2020) and for these speci�c

simulations are detailed in Fiddes et al. (2022).

2.5 CERES SYN1° Dataset

The CERES project provides satellite-based observations of global clouds and radiation budgets. CERES instruments measure

SW broadband radiances in 0.3-5� m and LW broadband radiances in 5-200� m (https://ceres.larc.nasa.gov/instruments).We235

haven'tensuredthatthecalibrationmethodsof CERESandthegroundinstrumentsarethesame.The CERES Synoptic TOA

and downwelling surface �uxes and clouds (SYN) 1° product calculates hourly, 3-hourly, daily, and monthly surface SW and

LW �uxes using cloud and aerosol properties derived from a variety of sources (Rutan et al., 2015). In this study we examine the

daily CERES SYN 1° Edition 4A product
::
by

:::::::
linearly

::::::::::
interpolating

:::
to

:::
the

::::
point

::::::
nearest

::
to

::::::::::
Macquarie

:::::
Island

:::::::
(54.5°S,

::::::::
158.9°E)

from April 2016 to March 2018, for consistency with the observational data.240

2.6 ALCF

The ALCF is an open-source command line tool thatusesalidar simulatorbasedontheCOSPinstrumentsimulatorframework

to processautomaticlidar andceilometer
::::::::
processes

::::
ALC

:
data and compare it togeneralcirculationmodels(GCMs),numerical

weatherprediction(NWP)
::::::
GCMs,

::::
NWP

:
models and reanalysis(Kuma et al., 2021). Thesurface-basedlidar simulator,whichis

includedin theALCF, performsthecalculationof laserradiationtransfer,makingit possibleto conductone-to-onecomparison245

with climate models.
:
.

::
It

::::::::
conducts

:::
the

:::::::
required

:::::
steps

:::
to

:::::
model

::::
the

:::::
ALC

:::::::::
attenuated

::::::
volume

:::::::::::::
backscattering

:::::::::
coef�cient

:::
by

::::::::
extracting

:::::
cloud

:::::
liquid

:::
and

:::
ice

::::::
mixing

::::::
ratios,

:::::
cloud

:::::::
fraction,

:::
and

:::::::::::::
thermodynamic

::::
data

::::
from

:::
the

::::::
model.

:::::::::::
Additionally,

:::
the

::::::
ALCF

:::::::::
transforms

:::
the

::::::::
observed

:::
raw

:::::
ALC

:::::::::
attenuated

::::::
volume

:::::::::::::
backscattering

:::::::::
coef�cient

::::::
pro�les

:::
to

:::::
make

::::
them

::::::::::
comparable

:::::
with

:::
the

::::::::
simulated

::::::
pro�les

::::::::::::::::
(Kuma et al., 2021)

:
.

For the model data, ALCFbuilds
:::
�rst

:::::::
extracts

:
two-dimensional cloud liquid and ice content pro�les at the survey area,250

thentheattenuatedvolumebackscatterpro�le is simulated
:::
uses

:::::::
Subgrid

:::::
Cloud

:::::::
Overlap

::::::
Pro�le

:::::::
Sampler

::::::::
(SCOPS)

::
to

::::::::
generate

::
10

:::::::
random

::::::::::
subcolumns

:::
for

::::
each

:::::
pro�le

:::
to

:::::
detect

::::::
clouds

::
in

:::
the

:::::
model

::::::::::::::::::
(Chepfer et al., 2008).

::::
The

::::::
default

::::::
setting

:::
for

:::::::::
generating

::::
cloud

:::::::
overlap

:
is

::::::::::::::::
maximum-random

::::::
overlap

::::::::::
assumption,

:::::
which

:::::::
assumes

::::::::::
neighboring

::::::
layers

::::
with

:::::::
non-zero

:::
CF

:::
are

::::
fully

::::::::::
overlapped,

::::
while

::::::
layers

::::::::
separated

::
by

::::
zero

:::
CF

:::
are

::::::::
randomly

::::::::::
overlapped.

:::
The

:::::
same

:::::::
sampling

::::
rate

::
(5

::::
min)

:::
and

:::::::
vertical

::::
bins

:::
(50

::
m)

:::::
were

::::
used
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::
in

::::
lidar

::::::::
simulator

::
to

:::::
make

:::
the

::::::
model

:::
and

:::::::::::
observations

::::::::::
comparable.

::::
The

:::::::::
attenuated

::::::
volume

::::::::::::
backscattering

:::::::::
coef�cient

:::::::
pro�les255

::
are

::::
then

:::::::::
simulated

:::
for

::
10

::::::::::
subcolumns

::::::
based

::
on

:::
the

::::::
COSP

::::
lidar

::::::::
simulator. Subsequently, ALCF

::::::::
re-samples

:::
the

::::::::::::
observational

::::::
pro�les

::
to

:::::::
increase

:::
the

:::::::::::::
signal-to-noise

::::
ratio,

:
subtracts the noise, calculates the lidar ratio, applies an absolute calibration, and

uses a cloud detection algorithm to calculateCBH. Thenthe
:::::
cloud

::::
mask

::::
and

::::
CBH

:::
for

::::
both

:::::::::
simulated

:::
and

:::::::::::
observational

:::::
data.

:
A

:::::::::
threshold

::
of

::::::::::::::::
2 ×10� 6 m� 1 sr� 1

:::
for

::::::::::::
backscattering

:::::::::
coef�cient

::
is

::::::
applied

::
to

:::::::
identify

:::::
cloud

:::::
mask

::::
after

:::::::::
removing

:
5

::::::::
standard

::::::::
deviations

:::
of

::::::::::
range-scaled

::::::
noise,

::
as

::::
this

:::::
value

::::
was

:::::
found

::
to

:::
be

::
a

::::
good

:::::::::::
compromise

:::::::
between

:::::
false

::::::::
detection

:::
and

::::::
misses

:::
in260

:::::::
Southern

:::::::::::
Hemisphere,

:::::
where

:::
the

::::
data

::
is

:::
less

::::::::
impacted

:::
by

::::::::::::
anthropogenic

:::::::
aerosol.

::::
This

:::
step

::
is

:::::::::
important

::
to

::::
make

:::
the

:::::::::
simulated

:::
and

::::::::
observed

::::::::::::
backscattering

:::::::::
coef�cient

::::::
pro�les

:::::::::::
comparable.

:::::
Next,

:::
the

:
statistical summary including CF, cloud frequency of

occurrence (CFO) and attenuated volume backscattering coef�cientis derived.For theceilomterdata,ALCF appliesthesame

operationsasthemodelbut startsfrom thedenoisedstep.
::::::::
histograms

:::
are

:::::::
derived.

:
The CFO is calculated for each height level

by counting the number of bins which have a positive cloud mask divided by the total number of columns in the time range.265

The total CF is calculated by counting the number of columns which have at least one cloudy bin, divided by the total number

of columns in the time range.
:::
For

:::
the

:::::::::
ceilometer

:::::
data,

:::::
ALCF

:::::::
applies

:::
the

:::::
same

:::::::::
operations

::
as

:::
the

::::::
model

:::
but

:::::
starts

:::::
from

:::
the

:::::::
denoised

::::
step.

:
Plots of cloud occurrence representing the CBH and attenuated volume backscattering histogram are generated

from the ALCF code. More information about this framework can be found in Kuma et al. (2021).

::::::
Several

:::::::::
limitations

::::
exist

::::::
within

:::
the

:::::
ALCF

::::
that

:::
can

:::::
cause

:::::::::::
uncertainties

::::::::::::::::
(Kuma et al., 2021).

::::::
Firstly,

:::
the

::::::::
accuracy

::
of

:::
the

:::::
CL31270

:::
and

:::::
CL51

::::::::::
ceilometers'

:::::::::
calibration

::::
may

::
be

::::::::
impacted

:::
by

:::
the

::::::::
absorption

:::
of

::::
water

::::::
vapour

::
at

::::
910

:::
nm,

::::::
which

:::
can

::::
limit

:::
the

::::::::
precision

::
of

::::
their

:::::::::::
comparison.

::::::::
However,

::
it

::
is

::::::::::
improbable

::::
that

:::
the

:::::::::
calculated

:::::
cloud

:::::
masks

::::
will

:::
be

:::::::::::
signi�cantly

:::::::::
in�uenced

:::
due

:::
to

:::
the

::::
high

::::::::::::
backscattering

::::::
caused

:::
by

::::::
clouds.

:::::::::
Secondly,

:::::::::::
precipitation

:::
and

:::::::
aerosol

:::
are

:::
not

::::::::
currently

::::::::::::
implemented

::
in

:::
the

:::::::::
simulator.

:::
The

:::::
cloud

::::::::
detection

:::::::::
algorithm

:::::::
typically

::::::::
identi�es

::::::::
observed

:::::::::::
precipitation

::
as

::::::::
"cloud",

:::::::
whereas

:::
the

::::::::
simulated

::::::
pro�le

:::::
does

:::
not

::::
show

::::
any

::::::::::::
backscattering

::
in

:::
the

::::
area

:::::
where

:::::::::::
precipitation

::
is

:::::::::
occurring.

:::::
Upon

::::::::
reviewing

::::
the

:::::::::
backscatter

:::::::
pro�les,

::::::
certain

::::::
layers275

::::::
beneath

::::::::::::
stratocumulus

::::::
clouds

:::
are

::::::::
identi�ed

:::
as

::::::
clouds,

:::::::::
potentially

:::::::::
consisting

::
of

:::::::
drizzle,

:::::
snow,

::::
fog,

::
or

:::::::
aerosol.

::::::::::::
Nevertheless,

::
the

:::::::::
frequency

::
of

:::::
such

::::::::::
occurrences

::
is

::::::::::
insuf�cient

::
to

::::::::::
signi�cantly

:::::::
impact

:::
the

:::::::
statistics

::
in

::
a

:::::::
manner

::::::::::
comparable

::
to

:::
the

::::::
model

::::
bias.

::::::::::::::::::
Stanford et al. (2023)

:::::
found

:::::::::
ceilometer

::
on

:::::::::
Macquarie

::::::
Island

:::
was

::::::::
obscured

:::
2.5

::
%

::
of

:::
the

::::
time

:::::::
because

::
of

::::
fog.

:::::::
Finally,

:::
the

:::::
ALCs

:::
also

:::::::::
encounter

::::::
several

:::::::::::
measurement

::::::::::
limitations.

::::::::::
Speci�cally,

:::::::::
inadequate

:::::::
overlap,

::::
dead

:::::
time,

:::
and

:::::::::
after-pulse

::::::::::
corrections

::::
often

:::::
yield

::::::::::
sub-optimal

::::::::
outcomes

::
at

:::::
close

::::::
range.

:::::::::::::
Semi-automated

::::::::
methods

::::::
include

::::::::::
calculating

:::
the

::::::::::
distribution

::
of

:::::::::
integrated280

::::::::
attenuated

:::::::
volume

::::::::::::
backscattering

:::::::::
coef�cient

::
by

::::::::
analyzing

:::
the

::::::
height

:::::
where

:::::::::
maximum

::::::::::::
backscattering

::::::
occurs.

:

The ALCF was operated from September 2017 to February 2018 to correspond with the hourly ACCESS-AM2 output in this

study. The cloud occurrence in the ALCF output was primarily used to investigate the relationship between the cloud radiative

bias and the representation of cloud occurrence in the model.
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3 Surface radiative biases285

3.1 All-sky and clear-sky surface radiation biases

Figure 2 shows the timeseries of daily-averaged surface SW and LW radiation �uxes at Macquarie Island from April 2016

to March 2018 based on the surface radiometer (black dotted line), ACCESS-AM2 model (red line), and CERES satellite

product (blue line). During this two-year period, the SW radiation �uxes in the upper panel present a clear annual cycle,

reaching the peak in austral summer (DJF) of around 250Wm � 2. This annual cycle is also found in the magnitude of the SW290

�uctuations, with the smallest amplitude variability in winter and the largest amplitudes in summer. The surface SW radiation

�uxes simulated by ACCESS-AM2 model and CERESaregenerallyconsistentwith theobservations
::::
align

::::
with

:::::::::::
observations

::::::::
regarding

:::
the

::
R2

::::::
values

::
of

::::
0.79

:::
and

::::
0.93

::::::::::
respectively

:::::::
(Figure

:::
2a). For LW radiation �uxes in the lower panel, some variation is

visible with lower downwelling LW �ux in winter than in summer, which would be expected since the clouds and atmosphere

are colder in winter and thus radiating less LW radiation to the surface. The magnitude of LW �uxes varies mainly between295

250 to 350Wm � 2, with a lower variability than SW �uxes. For the LW radiation �uxes, with the exception of winter (JJA)

when the CERES exhibits a clear underestimation, the model and satellite conform to the observations well.

The model and satellite product respectively show Pearson correlations of SW radiation �uxes of 0.92 (ACCESS-AM2)

and 0.98 (CERES) compared to the observations, with the periodicity of SW radiation enhancing these results. After monthly

detrending, the correlations decrease to 0.72 and 0.94, suggesting a good performance by the model and excellent performance300

by the satellite product. The LW correlation between observation and ACCESS-AM2 model remains unchanged at 0.80 before

and after eliminating monthly effects. However, this correlation rises from 0.82 to 0.86 between observation and satellite,

possibly by arti�cially removing the winter-time low bias. The differing capability of model and satellite to simulate observed

surface SW and LW demonstrates the necessity for validation of satellite products in reproducing surface radiation �uxes,

including the radiative retrieval algorithms, before utilizing them to evaluate climate models.305

Table 1 displays the total and seasonal averages of surface SW and LW radiation �uxes calculated using daily means under

all-sky and modelled clear-sky conditions as well as their biases in observational, model, and satellite datasets. Figure 3 shows

the seasonal distribution of SW and LW radiation �uxes in all-sky and clear-sky conditions. For the ACCESS-AM2 model,

annually there is an overestimation of +9.5� 33.5Wm � 2 in SW �uxes and a small underestimation of -2.3� 13.5Wm � 2 in

LW �uxes in cloudy conditions (Table 1). The number following theplus/minus
::
� sign indicates the dailyvariation

:::::::
standard310

:::::::
deviation

:
but not the con�dence interval as illustrated in the bolded brackets of the table. The overestimation of SW radiation

in the model is pronounced in spring and becomes more so in summer, during which season the mean SW radiation simulated

by the model is +25.0� 48.0Wm � 2 higher than the observations. As illustrated in Figure 3a, the model's distribution (blue)

exhibits a large shift to higher radiation �uxes relative to the observation (red) in the summer. The differences for LW radiation

�uxes in the model are minor throughout all seasons,rangingwithin
:::::::
reaching -4Wm � 2

::
in

:::::::
autumn,

::::
with

::::::
smaller

::::::::::
differences315

::
in

::
all

:::::
other

:::::::
seasons. The CERES product has an overestimation of +8.0� 18.0Wm � 2 in SW radiation �uxes and a large

underestimation of -12.1� 12.2Wm � 2 in LW radiation �uxes in all-sky conditions. Similar to ACCESS-AM2, the SW

radiation biases of the satellite product are greater in the spring and summer than in the autumn and winter. From Figure 3a, the
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Figure 2.Timeseries of daily means of downwelling surface SW (a) and LW (b) radiation �uxes during MICRE. Black dotted line represents

surface observations, red line represents ACCESS-AM2 outputs and blue line represents CERES observations. Coef�cient of determination

is indicated in the legend.

satellite's distribution (green) shows a large shift to higher value in comparison to the observation (red) in the summer, which

is comparable to the model. The LW radiation biases of the satellite are much larger than those of the model, with the highest320

biases occurring in autumn and winter. This is especially evident in Figure 3b, where there is a very signi�cant shift to smaller

radiation �uxes in the distribution of the satellite data compared to the observation and model.

When it comes to simulated clear-sky conditions, the ACCESS-AM2 surface shortwave (SWcs) and longwave (LWcs)

radiation �uxes were found to have biases of -2.3� 3.7Wm � 2 and +4.5� 5.3Wm � 2 in total (Table 1), when compared

to the ERA5 clear-sky product. Non-signi�cant negative SWcs biases in the model are consistent across all seasons and the325

distribution of SWcs of ACCESS-AM2 and ERA5 �t well (Figure 3c). The biases for LWcs �uxes in the ACCESS-AM2

model are statistically signi�cant and more notable in spring and summer (Figure 3d). The satellite's LW biases and seasonal

distributions in clear-sky conditions are similar to ACCESS-AM2 when comparing with ERA5, while the SW biases are more

negligible ( Figure 3c, d). Thelarge spreadsin the LWcs distributionsfrom
:::::::::
signi�cant

:::::::::
differences

:::
of

:::::
LWcs

::
in

:
model and
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Table 1.Annual and Seasonal Means of Downwelling SW and LW Fluxes in all-sky and clear-sky conditions.

Wm � 2 Observation ACCESS-AM2 Bias (ACCESS-AM2) CERES Bias (CERES)

Annual

SW mean 95.9 [76.3] 105.4 [83.4] 9.5 [4.3]� 103.9 [81.4] 8.0 [4.2]�

SWcs mean 189.5 [127.9] (ERA5) 187.2 [127.3] -2.3 [6.8] 189.2 [127.6] -0.3 [6.8]

LW mean 314.0 [21.8] 311.7 [19.8] -2.3 [1.1]� 301.9 [16.6] -12.1 [1.0]���

LWcs mean 251.0 [14.8] (ERA5) 255.5 [15.6] 4.5 [0.8]��� 255.3 [13.0] 4.3 [0.7]���

Summer (DJF)

SW mean 171.5 [64.3] 196.5 [60.5] 25.0 [6.6]��� 191.3 [60.9] 19.8 [6.6]��

SWcs mean 341.5 [43.5] (ERA5) 339.2 [42.6] -2.3 [4.6] 340.9 [43.5] -0.6 [4.6]

LW mean 320.7 [21.0] 318.0 [19.7] -2.7 [2.2] 312.7 [14.6] -8.0 [1.9]���

LWcs mean 259.7 [12.2] (ERA5) 264.8 [13.1] 5.1 [1.3]��� 262.5 [10.7] 2.8 [1.2]�

Autumn (MAM)

SW mean 51.9 [37.3] 52.3 [33.0] 0.4 [4.1] 52.9 [35.9] 1.0 [4.2]

SWcs mean 105.7 [59.6] (ERA5) 103.8 [59.6] -1.9 [6.9] 105.3 [60.0] -0.4 [6.9]

LW mean 317.6 [20.5] 314.0 [19.4] -3.6 [2.3] 302.9 [14.9] -14.7 [2.1]���

LWcs mean 254.3 [14.2] (ERA5) 257.6 [14.4] 3.3 [1.7]� 258.8 [12.4] 4.5 [1.5]��

Winter (JJA)

SW mean 26.8 [17.6] 24.6 [16.3] -2.2 [1.8] 27.1 [16.9] 0.3 [1.8]

SWcs mean 52.5 [25.5] (ERA5) 50.7 [25.1] -1.8 [2.6] 52.1 [25.5] -0.4 [2.7]

LW mean 307.3 [21.5] 307.2 [17.8] -0.1 [2.1] 290.5 [12.7] -16.8 [1.8]���

LWcs mean 242.7 [13.4] (ERA5) 246.9 [14.3] 4.2 [1.4]�� 248.6 [12.1] 5.9 [1.3]���

Spring (SON)

SW mean 127.8 [60.8] 141.1 [59.3] 13.3 [6.3]� 137.5 [60.0] 9.7 [6.3]

SWcs mean 249.6 [77.2] (ERA5) 246.2 [76.7] -3.4 [8.1] 249.3 [76.8] -0.3 [8.1]

LW mean 311.2 [21.6] 308.4 [20.4] -2.8 [2.2] 302.1 [15.8] -9.1 [2.0]���

LWcs mean 248.0 [13.2] (ERA5) 253.1 [14.9] 5.1 [1.5]��� 252.0 [11.7] 4.0 [1.3]��

Note. All values have units ofWm � 2 . The bolded biases were calculated based on mean surface �uxes (e.g. ACCESS-AM2 - Observation,

CERES - Observation). When present, brackets "[]" show day-to-day standard deviation, while bolded brackets show standard error of mean

difference
:
,

:::::
which

:::::
re�ects

::
if

::
the

:::::
biases

:::
can

::
be

:::::::::
considered

::
as

::::::::
signi�cant

:
at

::
a

:::::
certain

::::::::
con�dence

::::::
interval. The biases with '*' mean the p-value

< 0.1, with '**' mean the p-value < 0.01, and with '***' mean the p-value < 0.001.

satelliteindicatethe necessityof paying more attentionto
::::::::
compared

::
to

::::::
ERA5

::::::::
highlight

:::
the

::::
need

::::
for

::::
more

:::::::::
validation

::::
and330

::::::::::
development

::
of

:::::::::
especially

:
the LWcs modelsthantheSWcsmodels

:
.

:::
The

:::::
SWcs

:::::::
models

::::
show

:::::::
smaller

:::
and

:::::::::::
insigni�cant

::::::
biases,

::::::::
indicating

:::
less

::::::::::
uncertainty.
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