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Abstract 12 

The important roles of the atmospheric boundary layer (ABL) in the central Arctic climate system have 13 

been recognized, but the atmospheric boundary-layer height (ABLH), defined as the layer of continuous 14 

turbulence adjacent to the surface, has rarely been investigated. Using a year-round radiosonde dataset during 15 

the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), we improve a 16 

Richardson-number-based algorithm that takes cloud effects into consideration, and analyze the 17 

characteristics and variability of ABLH over the Arctic Ocean. The results reveal that the annual cycle is 18 

clearly characterized by a distinct peak in May and two minima in January and July. This annual variation 19 

in ABLH is primarily controlled by the evolution of ABL thermal structure. Temperature inversions in the 20 

winter and summer are intensified by seasonal radiative cooling and warm air advection with surface 21 

temperature constrained by melting, respectively, leading to the low ABLH at these times. Meteorological 22 

and turbulence variables also play a significant role in ABLH variation, including near-surface potential 23 

temperature gradient, friction velocity, and TKE dissipation rate. In addition, the MOSAiC ABLH is more 24 

suppressed than the ABLH during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment in the 25 

summer, which indicates that there is large variability in the Arctic ABL structure during summer melting 26 

season. 27 

 28 

1 Introduction 29 

In recent years, the rapidly changing climate and declining sea ice in the Arctic have been reported by 30 

numerous studies (e.g., Matveeva and Semenov, 2022; Meier and Stroeve, 2022; Esau et al., 2023). The 31 

Arctic near-surface temperature is increasing at a rate 2ï3 times larger than the global average, which is 32 

referred to as Arctic amplification (Overland et al., 2019; Blunden and Arndt, 2019), and the Arctic has 33 

entered the ónew Arcticô period (Landrum and Holland, 2020). As a key component of the Arctic climate 34 

system, the atmospheric boundary layer (ABL) over the Arctic Ocean is closely associated with Arctic 35 

warming and has a big impact on sea ice loss (Francis and Hunter, 2006; Graversen et al., 2008; Wetzel and 36 

Bruemmer, 2011). Thus, it is critical to improve our understanding of Arctic ABL processes under ónew 37 

Arcticô conditions. 38 
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The ABL structure over the Arctic Ocean has unique characteristics due to the presence of semipermanent 39 

sea ice, and is shaped by various mechanisms including interactions with the surface, free atmosphere, and 40 

wave activity. Most studies of the Arctic ABL structure have been based on coastal observatories and limited 41 

drifting ice stations (Knudsen et al., 2018; Vullers et al., 2021). It has been found that a predominant 42 

temperature inversion in the lower troposphere exists in all seasons and is referred to as the ñArctic inversionò 43 

(Andreas et al., 2000; Tjernstrºm et al., 2009). The Arctic inversion is sometimes elevated, with regions of 44 

near-neutral stability below the inversion (Persson et al., 2002; Tjernstrºm et al., 2012). The Arctic vertical 45 

structure is influenced by many factors, such as warm-air advection, surface melt, cloud-top cooling, and 46 

turbulent mixing (Busch et al., 1982; Vihma et al., 2011; Vihma, 2014). Investigations of the ABL structure 47 

evolution and its controlling factors are the keys to knowing the ABL's role in the Arctic atmosphere (Sterk 48 

et al., 2014). 49 

The atmospheric boundary-layer height (ABLH), here defined as the height of continuous turbulent 50 

mixing extending up from the surface, is the key indicator of the ABL structure (Seibert et al., 2000; Seidel 51 

et al., 2012). It determines the vertical extent of many atmospheric processes, such as convective transport 52 

and aerosol distributions, and is an important parameter for weather and climate models (Holtslag et al., 53 

2013; Mahrt, 2014; Davy and Esau, 2016). In some previous studies, the ABLH over the Arctic Ocean is 54 

defined as the height of the surfaced-based inversion top or the capping inversion base (e.g., Tjernstrºm et 55 

al., 2009; Sotiropoulou et al., 2014). However, as the most fundamental characteristic of the ABL, turbulence 56 

is not fully considered in this definition. There are two primary layers of turbulent mixing in the Arctic 57 

atmosphere. First, the surface layer, formed by turbulent mixing processes near the surface, is frequently 58 

shallower than the Arctic inversion layer (Mahrt, 1981; Andreas et al., 2000). Second, the turbulence 59 

associated with low-level clouds, which is driven by radiative cooling near the cloud top, forms a cloud-60 

induced mixed layer (Solomon et al., 2011; Shupe et al., 2013). This cloud-driven mixed layer is sometimes 61 

decoupled from the surface mixed layer while at other times it extends down to form a coupled, well-mixed 62 

layer all the way to the surface (Shupe et al., 2013; Brooks et al., 2017). Wind-shear induced turbulence can 63 

also play a role in both of these layers and their interactions. Based on different turbulence characteristics, 64 

the ABLH is commonly determined using profiles of potential temperature, wind speed, and humidity, and 65 

various methods have been proposed for calculating ABLH (Seibert et al., 2000; Seidel et al., 2010). 66 

However, the applicability of these methods in the Arctic needs to be further assessed. 67 

Due to the lack of observations, there are few analyses of ABLH over the Arctic Ocean based on 68 

observational data. Distributions of Arctic ABLH have been investigated by Tjernstrºm and Graversen 69 

(2009), Liu and Liang (2010), and Dai et al. (2011), but their studies are all based on the Surface Heat Budget 70 

of the Arctic Ocean (SHEBA) campaign conducted 25 years ago (Uttal et al., 2002). To improve our 71 

understanding of the ABL structure and ABLH characteristics under ñnew Arcticò conditions, we need new, 72 

comprehensive observations in this environment. The Multidisciplinary drifting Observatory for the Study 73 

of Arctic Climate (MOSAiC) expedition was, in part, designed to achieve this goal (Shupe et al., 2022). 74 

Based on and around a drifting research vessel in the central Arctic for a whole year, the MOSAiC expedition 75 

provided a wealth of data and related data products with unprecedented high temporal resolution and year-76 
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round temporal coverage. These data make possible a more detailed analysis of the ABL structure evolution 77 

and ABLH variability. 78 

In this study, based on observational data from the MOSAiC expedition, we propose an improved ABLH 79 

algorithm and then examine the characteristics of the ABL evolution over the ónew Arcticô sea-ice surface. 80 

This paper is organized as follows: Section 2 briefly describes the MOSAiC expedition and the observations; 81 

section 3 provides an ABLH determination method to evaluate several automated algorithms, and develops 82 

an improved ABLH algorithm; section 4 presents the results of ABLH variation over the annual cycle, the 83 

controlling factors of ABLH variation, and mechanisms of ABL development and suppression; section 5 84 

compares the difference in ABLHs between SHEBA and MOSAiC; and conclusions are given in section 6. 85 

 86 

2 Measurements 87 

In this study, the SHEBA-based sounding data (Moritz, 2017) and multiple MOSAiC data are used. Here 88 

we mainly introduce the MOSAiC expedition. The MOSAiC track is shown in Fig. 1, which is based on the 89 

research vessel Polarstern (Knust, 2017), with the main period of atmospheric state observations starting in 90 

October 2019 and ending in September 2020. Polarstern drifted across the central Arctic Ocean and 91 

navigated through the sea ice north of 78Á N during most of the MOSAiC year. The whole drifting period is 92 

divided into five parts, and the vessel sailed in the gap period between some of those parts. More details are 93 

provided in Shupe et al. (2022). The following are the descriptions of the instruments and data products used 94 

in this paper. 95 

 96 

2.1 Radiosonde observations and relevant data products 97 

The radiosonde data were obtained through a partnership between the leading Alfred Wegener Institute 98 

(AWI) , the atmospheric radiation measurement (ARM) user facility, a US Department of Energy facility 99 

managed by the Biological and Environmental Research Program, and the German Weather Service (DWD) 100 

(Maturilli et al., 2022). Vaisala RS41-SGP Radiosondes were regularly launched on board throughout the 101 

whole MOSAiC year (from October 2019 to September 2020), including periods when the vessel was in 102 

transit. The sounding frequency is normally four times per day (launched at about 5:00, 11:00, 17:00, and 103 

23:00 UTC) and is increased to 7 times per day during periods of exceptional weather or coordination with 104 

other observing activities. The radiosoundings provide data on the atmospheric state, including vertical 105 

profiles of pressure, temperature, relative humidity (RH), and winds, from 12 m up to 30 km with a vertical 106 

resolution of 5 m. However, the sounding data below ~100 m altitude may be contaminated by the vessel 107 

itself. To avoid contamination affecting our analysis, we use a merged data product that combines the 108 

soundings with measurements from a meteorological tower on the sea ice away from the vessel, and was 109 

specifically designed to minimize ship effects and provide more reliable profiles in the lowest 100 m, which 110 

has been recently submitted (Dahlke et al., 2023). In this paper, data quality control and a six-point moving 111 

average in height are applied to the merged profile data to eliminate invalid data and measurement noise, 112 

and all data are interpolated onto a regular vertical grid with 10 m intervals. In total, there are 1484 sounding 113 

profiles available. In addition, DOE-ARM provides a Planetary Boundary Layer Height Value-Added 114 
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Product (PBLHT VAP, Riihimaki et al., 2019), which uses several different automated algorithms to compute 115 

ABLH estimates based on radiosonde profiles. This VAP provides 964 ABLH estimates, and we select 914 116 

samples from these to ensure that the estimates obtained by all algorithms are available. 117 

 118 

Figure 1 The MOSAiC expedition track from (star) 11 October 2019 through to (triangle) 2 October 2020 is 119 

plotted by the red line. Gray solid and dashed lines denote the approximate sea ice edge at the minimum (15 120 

September 2020) and the maximum (5 March 2020), respectively. 121 

 122 

2.2 Meteorological and turbulence measurements near the surface 123 

Meteorological and turbulence measurements were made from a tower on the sea ice at ñMet Cityò, 124 

which was located 300ï600 m away from the vessel (Cox et al., 2023). The u-Sonic-3 Cage MP anemometers 125 

by METEK GmbH and HMT300 air temperature sensors by Vaisala were fixed at nominal heights of 2 m, 6 126 

m, and 10 m on the meteorological tower. The tower was set up during the periods when the vessel passively 127 

drifted with an ice floe (i.e., from mid-October 2019 to mid-May 2020, from mid-June through July 2020, 128 

and from late August to mid-September 2020). The sampling frequency of fast response instruments (i.e., u-129 

Sonic-3 Cage MP anemometer) was at 20 Hz, resampled to 10 Hz. To derive turbulence parameters, the 130 

following processes were carried out: despiking, block averaging over a 10-min interval, coordinate rotating 131 

via double rotation, frequency correcting, and virtual temperature correcting. In this study, sensible heat flux 132 

(SH, defined as positive upwards), near-surface air temperature at 2 m, friction velocity, and turbulent kinetic 133 

energy (TKE) dissipation rate are used. Based on a footprint analysis using the Kljun et al. (2015) model, 134 

90% of the sensible heat flux measurements have a source area fetch of no more than 275 m, a region that 135 

was typically dominated by consistent sea ice throughout the year. Although the sounding site may typically 136 

be outside the source region of these flux measurements, we assume the conditions at the two sites are 137 

equivalent, which is also assumed in the merged sounding-tower product. 138 

 139 
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2.3 Cloud properties derived from combined sensors 140 

Cloud-related measurements come from ShupeTurner cloud microphysics product (Shupe, 2022). This 141 

product uses multiple measurement sources (e.g., cloud radar, ceilometer, depolarization lidar, and 142 

microwave radiometer) to derive time-height data, including cloud phase type and condensed water content 143 

for both liquid and ice. Details of the retrieval algorithm, its application, and uncertainties are provided in 144 

Shupe et al. (2015). In our study, the condensed water content data are linearly interpolated onto the vertical 145 

grid with resolution of 10 m for consistency. The cloud phase type data are used to determine clear and 146 

cloudy environments. A grid point is labeled as ñcloudyò if clouds are identified in the upper and lower cloud 147 

phase type data points adjacent to the grid, otherwise it is labeled as ñclearò. 148 

 149 

3 ABLH determination method and algorithm evaluation 150 

The most objective method of ABLH determination is based on profiles of turbulence measurements 151 

deployed on aircraft or other platforms, but such measurements were not routinely carried out during the 152 

MOSAiC expedition. Thus, the ABLH determination in our study is based on the thermal and dynamic 153 

structure of radiosoundings. In previous literature, the ABLH is determined through multiple profiles of 154 

atmospheric variables and manual visual inspection, which can be considered as the ñobservedò ABLH (Liu 155 

and Liang, 2010; Zhang et al., 2014; Jozef et al., 2022). In this section, we will describe the manually-labeled 156 

ABLH determination method and derive an ABLH for each sounding. Next, we will use these ABLHs as a 157 

reference to evaluate the automated ABLH algorithms provided by the PBLHT VAP. Finally, we will develop 158 

and evaluate an improved ABLH automated algorithm that is suitable for the Arctic atmosphere, and further 159 

discuss an important parameter for the algorithms and its stability dependence. 160 

 161 

3.1 ABL regime classification and ABLH determination 162 

The ABLH determination method starts with the classification of ABL regimes. Based on previous 163 

studies (e.g., Vogelezang and Holtslag, 1996; Liu and Liang, 2010), we divide the ABLs into three types: 164 

stable boundary layer (SBL), near-neutral boundary layer (NBL), and convective boundary layer (CBL), 165 

corresponding with three different stability states near the surface. We first use SH to diagnose the ABL 166 

regime types. The specific classification formula is presented below: 167 

SH > +ŭ          for CBL

SH < -ŭ           for SBL

else                 for NBL

, (1) 168 

where ŭ is the critical value that is specified as 2 W m-2, following Steeneveld et al. (2007b). If corresponding 169 

SH data are unavailable, the difference of equivalent potential temperature (ɗE) between the 100 and 50 m 170 

heights (ɗE difference) derived from the sounding profile is used to determine the ABL type. Specifically, if 171 

ɗE difference is larger than 0.2 K, the ABL is identified as SBL; if ɗE difference is less than -0.2 K, the ABL 172 

is identified as CBL; and other profiles are labeled as NBLs, roughly following Liu and Liang (2010).  173 

The manually-labeled ABLH determination in our study is based on characteristics of sounding profiles 174 

and regime types. For each atmospheric sounding profile, equivalent potential temperature (ɗE), equivalent 175 

potential temperature gradient (ɗEgrad), wind speed (WS), specific humidity (q
v
), and RH are used to obtain 176 
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multiple estimates of the ABLH, which are used to determine the final estimate. Three cases to describe the 177 

method are presented in Fig. 2. Figures 2 (aïc) are the case of a SBL, which features surface-based 178 

temperature and humidity inversions. Figures 2 (dïf) are the case of a NBL, with approximately constant ɗE 179 

from the surface up to the inversion base and strong horizontal wind. Figures 2 (gïi) are the case of a CBL, 180 

with a deeper well-mixed layer and low-level cloud coupled to the surface (e.g., Shupe et al., 2013). In terms 181 

of ɗE profiles, the estimated ABLH is the level at which the ɗEgrad reaches its maximum for SBL and NBL 182 

cases, and the base of the ɗE inversion for CBL cases (Martucci et al., 2007). In terms of WS profiles, the 183 

ABLH is estimated to be the height of the WS maximum for all three regime types (Mahrt et al., 1979). In 184 

terms of humidity profiles, the estimated ABLH is the level at which the RH rapidly decreases for SBL and 185 

NBL cases, and the base of the q
v
 inversion for CBL cases (Lenschow et al., 2000).  The manually-observed 186 

ABLHs (solid black lines in Fig. 2) are then determined through consideration of these three distinct 187 

estimates using the following rules: (1) If the estimates differ slightly from each other, take the average of 188 

these estimates as ABLH; (2) If a strong characteristic (sharp gradients or peaks) of the profile is evident, 189 

select the estimate obtained based on this characteristic; (3) If the ABL structure is similar to that at the 190 

previous time, select the estimate with the smallest change to ensure that ABLHs are consistent in time. It is 191 

evident that the lowest layers of profiles have a great impact on the ABLH determination, particularly for 192 

shallow SBLs and NBLs. Thus, the merged radiosonde-tower profiles help make the ABLH determination 193 

more reliable than when using radiosondes alone. 194 

 195 
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 196 
Figure 2 Vertical profiles of (left) equivalent potential temperature (ɗE), ɗE gradients (ɗEgrad), (middle) 197 

wind speed (WS), and (right) relative humidity (RH) and specific humidity (q
v
) at (aïc) 25 November 2019, 198 

22:51 UTC, (dïf) 2 December 2019, 16:58 UTC, and (gïi) 17 December 2019 16:58 UTC. Boundary layers 199 

at the three times represent stable boundary layer (SBL), near-neutral boundary layer (NBL), and convective 200 

boundary layer (CBL), respectively. The gray dashed horizontal lines denote the atmospheric boundary-layer 201 

height (ABLH) estimates based only on the profile shown in that panel, and the black solid horizontal lines 202 

denote the manually observed ABLHs. The dots in the lowest 100 m denote the section of the profiles 203 

impacted by the radiosonde-tower merging. 204 

 205 

3.2 Automated algorithm evaluation 206 

The automated ABLH algorithms consist of various empirical formulas. Based on these empirical 207 

formulas, estimated ABLHs are determined automatically and without manual intervention. Therefore, these 208 

algorithms can perform real-time and fast calculations on large amounts of data and are widely used in model 209 

simulations (Seibert et al., 2000; Konor et al., 2009). However, automated algorithms might lead to large 210 
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errors in estimating ABLHs, and the parameter selection in these algorithms will have a great impact on the 211 

results. In our study, estimated ABLHs obtained using three automated algorithms are compared with 212 

manually-labeled ABLHs to evaluate their performance over the Arctic Ocean. These algorithms, including 213 

the Liu-Liang algorithm, the Heffter algorithm, and the bulk Richardson number algorithm, are all available 214 

in the PBLH VAP as described in Sivaraman et al. (2013). Here we give a brief description of the three 215 

algorithms.  216 

The Liu-Liang algorithm determines ABLH based on potential temperature and wind speed according to  217 

Liu and Liang (2010). For CBL regimes, the definition of ABLH is the height at ñwhich an air parcel rising 218 

adiabatically from the surface becomes neutrally buoyantò, and the temperature excess value is 0.1 K. For 219 

SBL regimes, two different estimates of the ABLH are obtained, if possible, based on stability criteria and 220 

wind shear criteria, respectively. For stability, the ABLH is defined as the lowest level, k, at which the ɗEgrad 221 

reaches a minimum and meets either of the following two conditions: 222 

ɗEgrad k - ɗEgrad k-1 < -40 K km
-1

ɗEgrad k+1 < 0.5 K km
-1ȟɗEgrad k+2 < 0.5 K km

-1
, (2) 223 

where the subscripts (k, k-1, k+1, and k+2) represent the ɗEgrad at corresponding levels. For wind shear, the 224 

ABLH is defined as the height where the wind speed reaches a maximum that is at least 2 m s-1 stronger than 225 

the layers immediately above and below while decreasing monotonically toward the surface (i.e., a low-level 226 

jet).  The final ABLH is defined as the lower of the two heights. 227 

The Heffter algorithm, which was suggested by Heffter (1980), is a widely used algorithm (e.g., Marsik 228 

et al., 1995; Snyder and Strawbridge, 2004). The algorithm determines ABLH through the strength of the 229 

inversion and potential temperature difference across the inversion. The ABLH is defined as the lowest layer 230 

in which the potential temperature difference between the top and bottom of the inversion is greater than 2 231 

K. If no layer meets the criteria, the ABLH is defined as the layer at which the potential temperature gradient 232 

reaches the largest maximum. 233 

The bulk Richardson number algorithm is based on the profile of the bulk Richardson number (Rib), and 234 

has been shown to be a reliable algorithm for determining ABLHs (Seidel et al., 2012). Rib is a dimensionless 235 

number that represents the ratio of thermally produced turbulence to that induced by mechanical shear. The 236 

Rib formula used in the PBLH VAP (Sørensen et al., 1998; Sivaraman et al., 2013) is expressed as: 237 

Rib=
gh

ɗv0

ɗvh - ɗv0
uh
2 + vh2

, (3) 238 

where g is the acceleration of gravity; ɗvh and ɗv0 are the virtual potential temperature at height h and the 239 

surface, respectively; uh and vh are the horizontal wind speed component at height h. The ABLH is defined 240 

as the height of Rib exceeding a critical threshold (the critical bulk Richardson number, Ribc; Seibert et al., 241 

2000). The PBLH VAP includes ABLH estimates based on two widely used Ribc values: 0.25 and 0.5. 242 

To quantitatively evaluate the performance of each automatic algorithm, we introduce the correlation 243 

coefficient Ὑ  and two other statistical measures: the dimensionless Bias and the median absolute error 244 

(MEAE; Steeneveld et al., 2007a). The formulas are as follows: 245 

 Bias= 
2

n

Hauto-Hobs

Hauto+Hobs

n

i=1

, (4) 246 
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 MEAE = median(ȿHauto-Hobsȿ), (5) 247 
where Hauto is the ABLH obtained by the automated algorithm; Hobs is the ABLH manually determined; n is 248 

the number of valid sounding profile samples. According to the definitions of these statistical measures, 249 

larger R and smaller Bias and MEAE mean a better performance of the automated algorithm. 250 

We also analyze the algorithm performances for cloudy and clear conditions, considering that low-level 251 

clouds containing liquid water play an important role in the Arctic ABL (Shupe and Intrieri, 2004; Brooks et 252 

al., 2017). In our study, the RH threshold of 96% (Silber and Shupe, 2022) and the cloud source flag data are 253 

used for cloud detection. If a cloud is detected in the cloud source flag data and the RH is larger than 96%, 254 

then the profile is labeled as cloudy. The sounding profiles that contain at least one identified cloud layer 255 

below 1500 m are classified as ñcloudyò, and as ñclearò otherwise. 256 

Figure 3 presents the comparisons of estimated ABLHs with the manually-labeled ABLHs, and the 257 

associated statistical measures are given in Table 1. The results show that the Rib algorithm with Ribc of 0.25 258 

performs best overall, and particularly for SBL cases. The performance of the ὙὭ algorithm with Ribc of 0.5 259 

is poorer than that of the Rib algorithm with Ribc of 0.25, with overestimations of ABLHs in general, and 260 

larger errors with lower correlation coefficients for all types of ABLs. The Heffter algorithm performs well 261 

in cases of high ABLH and particularly for cloudy and CBL cases, but does significantly overestimate ABLH 262 

in a large number of cases as shown in the Fig. 3c subgraph. This is attributed to the determination criterion 263 

of the Heffter algorithm, i.e., ABLHs are determined by inversion layers, which means that large errors occur 264 

when the inversion layer is higher than the mixed layer. Additionally, while the Heffter performance in many 265 

of the ABL conditions is only marginally worse statistically than the Rib  algorithm with Ribc  of 0.25, its 266 

correlations are notably worse for SBL and NBL cases. The performance of the Liu-Liang algorithm is 267 

generally poorer than the other algorithms, particularly for correlation coefficient, which is probably due to 268 

the impact of noise in the lower ABLH profiles and unsuitable parameters in the algorithm. In summary, the 269 

Rib algorithm is reliable over the Arctic Ocean and performs better than other algorithms, and this result 270 

agrees with Jozef et al. (2022). Furthermore, we will explore ways to improve the Rib algorithm to make it 271 

more suitable for cloudy and convective conditions. 272 

 273 



10 

 

 274 
Figure 3 Comparisons of the ABLHs determined from radiosonde profiles using the bulk Richardson number 275 

(Rib) algorithm with the critical values (Ribc) of (a) 0.25 and (b) 0.5, (c) the Heffter algorithm, and (d) the 276 

Liu-Liang algorithm with the manually-identified ñobservedò ABLHs. The blue, yellow, and red colors 277 

indicate regime types of SBL, NBL, and CBL, respectively. The ñxò signs indicate the Cloudy ABLs. The 278 

case numbers (N) and correlation coefficients (R) are given in each panel. The subgraph in (c) denotes all 279 

data points ranging from 0 to 3.5 km. 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 
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Table 1 The statistical measures (R, Bias, MEAE) for the four algorithms applied to the radiosonde dataset. 290 

All correlation coefficients are statistically significant (p < 0.05), except for SBL types in the Liu-Liang 291 

algorithm. 292 

Algorithm Regime type R Bias  MEAE (m) 

The ╡░╫ algorithm with 
╡░╫╬ Ȣ  

ALL 

SBL 

0.72 

0.81 

0.10 

0.16 

50 

34 

NBL 

CBL 

Cloudy 

0.68 

0.65 

0.69 

-0.04 

0.15 

0.08 

62 

71 

51 

The ╡░╫ algorithm with 
╡░╫╬ Ȣ 

ALL 

SBL 

0.67 

0.73 

0.40 

0.50 

97 

88 

NBL 

CBL 

Cloudy 

0.61 

0.60 

0.66 

0.23 

0.39 

0.36 

91 

120 

94 

The Heffter algorithm 

ALL 

SBL 

0.57 

0.46 

0.23 

0.17 

53 

33 

NBL 

CBL 

Cloudy 

0.45 

0.66 

0.68 

0.30 

0.28 

0.25 

59 

74 

59 

The Liu-Liang algorithm 

ALL 

SBL 

0.47 

0.05 

0.04 

0.15 

82 

90 

NBL 

CBL 

Cloudy 

0.44 

0.56 

0.52 

-0.07 

-0.05 

-0.01 

81 

69 

82 

The improved Ri 

algorithm with  

╡░╫╬ Ȣ  

ALL 

SBL 

0.85 

0.79 

-0.06 

-0.08 

29 

21 

NBL 

CBL 

Cloudy 

0.79 

0.87 

0.86 

-0.18 

0.05 

-0.03 

35 

36 

30 

 293 

 294 

3.3 An improved Ri algorithm considering the cloud effect 295 

As a traditional Rib formula, Eq. (3) may break down in cases of ABLs with relatively high wind speed 296 

and upper-level stratification due to the overestimation of shear production (Kim and Mahrt, 1992). 297 

Vogelezang and Holtslag (1996) proposed a finite-difference Ri formula, which is expressed as: 298 

RiF=
(g/ɗvs)(ɗvh-ɗvs)(h-zs)

(u
h
-us)

2
+(vh-vs)

2
+bu*

2
, (6) 299 

where zs is the lower boundary for the ABL, ɗvs, us, and vs are the ɗv and wind components at the height zs, 300 

respectively, b is an empirical coefficient, and u* is the surface friction velocity. RiF is considered for a parcel 301 

located somewhat above the surface to avoid the above problem, and u* is also taken into account to avoid 302 

underestimation in the situation of a uniform wind profile in the upper layer. Here, we use RiF for clear-sky 303 

profiles and take zs and b values as 40 m and 100, respectively, according to Zhang et al. (2020). 304 

As shown in Fig. 3, the estimations of cloudy ABLHs are sometimes quite poor, which motivates us to further 305 

improve the algorithm. Under cloudy conditions, the moist Richardson number (Rim) can be used to include 306 

cloud effects on the buoyancy term. Brooks et al. (2017) adopted the Rim formula expressed as: 307 

Rim=

g
T
dT
dz
+ũm 1+

Lq
s

RT
-
g
1+q

w

dq
w

dz

du
dz
2+
dv
dz
2

, (7) 308 

where T is air temperature, ũm is the moist adiabatic lapse rate, L is the latent heat of vaporization, q
s
 is the 309 
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saturation mixing ratio, and q
w
 is the total water mixing ratio, i.e., q

w
=q
s
+q
L
, where q

L
 is the liquid water 310 

mixing ratio and is obtained based on the condensed water content. However, Eq. (6) is a gradient Ri and is 311 

calculated based on local gradients of wind speed, temperature, and humidity. To be consistent with the Ri 312 

formula proposed by Vogelezang and Holtslag (1996), we rewrite the formula in a finite-difference form 313 

expressed as: 314 
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, (8) 315 

where subscripts (h and s) of the variables denote the calculated height, similar to Eq. (6), but note that the 316 

s and zs are adjusted to 130 m, given the cloud radar blind zone. Considering that Rim is only appropriate for 317 

the liquid-bearing cloud cases, we use the RiF for ñclearò grid points and use Rim for ñcloudyò grid cells. 318 

Using this improved approach, we evaluated the best value of Ric to minimize the errors compared to the 319 

reference data set, arriving at an optimal value of Ric=0.35. The comparison of ABLH estimates obtained 320 

through the improved Ri algorithm with the manually-labeled ABLHs demonstrates significant improvement 321 

relative to other algorithms, particularly for cloudy conditions (Fig. 4, Table 1).  322 

Since some other studies have proposed different Ric values for MOSAiC (e.g., Jozef et al., 2022; Barten 323 

et al., 2023; Akansu et al., 2023), we will discuss the difference in Ric values here. The first thing to make 324 

clear is that these studies use different formulas to obtain Ri profiles. Barten et al. (2023) and Akansu et al. 325 

(2023) both use the traditional Rib algorithm based on Eq. (3), while they used Ric values of 0.4 and 0.12, 326 

respectively. This difference was likely caused by the different methods to manually derive their reference 327 

ABLH data sets. Jozef et al. (2022) calculates the Ri over a rolling 30 m altitude range, labeled as Rir, and 328 

the criterion is modified to require four consecutive data points to be above the Ric of 0.75. In our study, we 329 

use RiF proposed by Vogelezang and Holtslag (1996) for clear-sky conditions, and Rim for cloudy conditions. 330 

Based on the results presented here, it is apparent that this more complex approach improves the error 331 

statistics relative to approaches based on Eq. (3). In addition, some of the differences may also related to 332 

authors using different data sets or time periods. For instance, Akansu et al. (2023) primarily used sounding 333 

data based on tether balloon for a specific sub-period of MOSAiC, and Jozef et al. (2022) used radiosondes 334 

from when they had concurrent UAV observations. The data used in our study are based on merged sounding-335 

tower product, as mentioned above. 336 

To further explore the differences among the four different approaches, we examine one SBL and CBL 337 

case. For a clear-sky SBL case (Fig. 5 a, b), the approaches from Akansu et al., Jozef et al. (2022), and this 338 

study all agree closely with the manual ABLH, while the Barten et al. approach results in a significant 339 

overestimation. For a cloudy-sky CBL case (Fig. 5 c, d), the approach from this study agrees with the manual 340 

ABLH, while the approach from Barten et al. overestimates the ABLH by about 30 m, and the approaches 341 

from Akansu et al. and Jozef et al. (2022) underestimate the ABLH by 130 m and 230 m, respectively. These 342 

results further demonstrate how ὙὭ depends on the choice of Ri formula. Moreover,  ὙὭ is not analytically 343 

derived from basic physical principles (Zilitinkevich et al. 2007), and the concept of Ric is challenged by 344 

non-steady regimes (Zilitinkevich and Baklanov, 2002) and the hysteresis phenomenon (Banta et al., 2003; 345 
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Tjernstrºm et al., 2009). Therefore, an objective Ric  does not exist. Rather, it is empirically used as an 346 

algorithmic parameter to simply derive the ABLH. 347 

 348 

 349 

Figure 4 Similar to Fig. 3, but for the comparison of the ABLHs determined by the improved Ri algorithm 350 

with the observed ABLHs. The case number (N) and correlation coefficient (R) are given. 351 

 352 
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 353 

Figure 5 Vertical profiles of (left) ɗE and wind speed, and (right) Ri based on different formulas at (aïb) 25 354 

November 2019, 22:58 UTC and (cïd) 17 December 2019, 16:58 UTC. Boundary layers at the two times 355 

represent a clear-sky SBL and a cloudy-sky CBL respectively. The black dashed horizontal lines denote the 356 

manually-identified ABLH, and the gray solid vertical lines denote the different Ric values, including 0.12, 357 

0.35, 0.4, and 0.75. The gray shading in (c) denotes the cloud layer. 358 

 359 

3.4 The stability dependence of critical Richardson number 360 

Richardson et al. (2013) and Basu et al. (2014) suggested that there is a stability dependence of  Ric in 361 

stable conditions, which is different from the constant Ric = 0.35 used in our improved algorithm. In this 362 

section, we will discuss the impact of this dependence on ABLH estimation. We use the improved Ri 363 

algorithm to calculate the Ri at the manually-labeled ABLH (h). This new parameter is named Rih  to 364 

distinguish it from the constant Ric. To be consistent with Basu et al. (2014), the bulk stability parameter h/L 365 

is used for our analysis, where L is the Obukhov length at the surface. Based on these two variables, the 366 

stability dependence can be expressed as: 367 

Rih=Ŭ
h

L
, (9) 368 

where Ŭ is a proportionality constant. As suggested in Basu et al. (2014), the data for convective, near-neutral, 369 

and very stable conditions are excluded to obtain a credible ‌ . Specifically, data points that meet the 370 

thresholds (L > 500 m and L < Lmin) are excluded in our analysis, where the Lmin corresponds to the heat flux 371 

minimum (Basu et al. 2008) and is assumed as 20 m here. Finally, we select 168 samples. The Rih plotted as 372 
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a function of h/L for these selected data is presented in Fig. 6, and the value of L is colored to probe if the 373 

dependence is simply due to self-correlation. The results show Rih values that mostly range from 0 to 0.75, 374 

and the best-fit line indicates an overall positive correlation trend, with Ŭ = 0.11. The Ŭ value is somewhat 375 

larger than the results in Richardson et al. (2013) and Basu et al. (2014), which is attributed to the different 376 

Ri algorithm used in our study. In addition, if a few of the extreme points are removed, the bulk of the data 377 

does not show a strong h/L dependence and is instead fairly well represented by a constant Rih = 0.35, which 378 

is also suitable for convective conditions (e.g., Fig. 5c, d). 379 

In summary, we assess the stability dependence of Ric based on our improved Ri algorithm, and the 380 

results present an overall positive correlation trend. However, this type of stability dependence of Ric  is 381 

challenged to be used in practical applications because the sensitivity of Ŭ to surface characteristics and 382 

atmospheric conditions can additionally degrade the accuracy of ABLH estimates. In addition, Eq. (9) 383 

requires a priori determination of the ABLH, which also causes difficulties for practical applications of such 384 

an approach. Therefore, we still use the Ri algorithm with fixed Ric = 0.35 for simplicity. 385 

 386 

 387 

Figure 6 Rih versus hLϳ for selected cases. The data points are colored based on the value of L. The black 388 

solid line is the best fit for the selected data points, and the best-fit Ŭ value is also given. The gray dashed 389 

line is the constant RiÃ = 0.35 used in the improved Ri algorithm. 390 

 391 

 392 

4 MOSAiC ABLH variation and controlling factors 393 

4.1 Overall distribution of ABLH 394 

In this section, we analyze the ABLH variation during the MOSAiC and relevant controlling factors, 395 

based on the manually-labeled ABLH dataset and the ABL types that are determined through Eq. (1), or only 396 

the ɗE  difference if SH is unavailable. The full-time series of ABLH during the MOSAiC expedition is 397 

presented in Fig. 7 and forms the basis for the remaining analyses. According to near surface conditions and 398 
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the sea ice state, the whole MOSAiC observation period is divided into ñfreeze upò, ñwinterò, ñtransitionò, 399 

and ñsummer meltò periods (Shupe et al., 2022), roughly corresponding to the seasons of autumn, winter, 400 

spring, and summer, respectively. In Figure 7, the black solid lines indicate persistent low-level clouds that 401 

exist for more than 12 h; these occur most frequently in the late summer and autumn (the ñfreeze upò period), 402 

which agrees with Shupe et al. (2011). Note that the grey dots indicate that the ABL data were observed 403 

while the vessel was in transit, and the representativity of the ABLH data should be considered in this context. 404 

For the first such period, the vessel left the MOSAiC ice floe in mid-May and slowly progressed south 405 

through tightly consolidated sea ice, such that the data are generally representative of the sea ice pack in the 406 

region. Measurements from early June when the vessel was near or in open water close to Svalbard have 407 

been excluded entirely from the analysis.  In the middle of June, as the vessel returned to the original 408 

MOSAiC ice floe, the sea ice was not as tightly consolidated and the vessel preferentially went through leads; 409 

the preferentially lower ice fraction along this transit could have impacted the thermal structure of the ABL. 410 

For the three weeks in early August, the vessel moved around in the Fram Strait area and then made its way 411 

north to another passive sea ice drifting position near the North Pole, again transiting through regions with 412 

lower sea ice fraction. Finally, at the very end of the expedition, the vessel took some time to exit the sea ice, 413 

stopping a few times to allow for work on the ice. 414 

Overall, as shown in Fig. 7, the mean ABLH during the whole observation period is 231 m. This is  415 

lower than the typical ABLH over the Arctic land surface (Liu and Liang, 2010), which is primarily attributed 416 

to the stronger suppression of the temperature inversion over the sea-ice surface. The Arctic ABL is 417 

suppressed for most of the MOSAiC year, while for a few periods it intensively develops for several days at 418 

a time, most commonly when clouds and a CBL are present. For instance, frequent, intensive ABL 419 

development occurs in the ñtransitionò period from 13 April through to 24 May 2020. In this period, the 420 

convective thermal structure and cloud effects contribute to ABLH reaching over the 95th percentile of the 421 

ABLH data (horizontal dotted line) for about 7 days, with the maximum ABLH of 1100 m. In contrast, the 422 

ABL is strongly suppressed in the period from 15 July through to 30 August 2020, with a mean ABLH of 423 

only 136 m. The specific mechanisms of ABL development and suppression in these two cases will be 424 

analyzed in Sections 4.3 and 4.4, respectively. 425 

Figure 8 presents the frequency distribution of ABLH under SBL, NBL, and CBL regime types. Overall, 426 

the sample number of SBL cases is more than that of NBL and CBL cases during the MOSAiC period (43 % 427 

for SBL, 31% for NBL, and 26 % for CBL). These occurrence frequencies roughly agree with Jozef et al. 428 

(2023), while their results show more NBL and CBL and less SBL. It is likely to be attributed to differences 429 

in classification criteria. The distributions of SBL and NBL ABLH are skewed towards small values, with 430 

94 % and 79% of the ABLH values lower than 400 m, and mean values of 165 m and 256 m, respectively. 431 

For CBL, the distribution is shifted somewhat towards larger values, with 23 % of the ABLH values higher 432 

than 600 m and a mean value of 309 m. 433 

 434 
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 435 

Figure 7 Time series of ABLHs throughout the MOSAiC year is divided into (a) and (b). The blue, yellow, 436 

and red dots indicate the heights of SBL, NBL, and CBL, respectively. The gray dots indicate ABL data 437 

observed while the vessel was in transit. The black solid lines indicate the heights of cloudy ABLs and persist 438 

for at least 12 hours. The gray dashed horizontal line denotes the 95th percentile of ABLH (650 m). The gray 439 

and white background shadings indicate the periods under different surface-melting states, i.e., ñfreeze upò, 440 

ñwinterò, ñtransitionò, and ñsummer meltò periods. 441 

 442 

 443 

Figure 8 Frequency distribution of SBL height (blue), NBL height (yellow), and CBL height (red). The case 444 

numbers and the mean values of ABLH for SBL, NBL, and CBL conditions are also given. 445 

 446 

4.2 Annual cycle of ABLH and related factors 447 

Figure 9 presents the annual cycle of monthly ABLH statistics during the MOSAiC expedition in terms 448 

of 5th, 25th, 50th, 75th, and 95th percentiles of ABLH (boxplots) and the mean value (ñxò signs and solid 449 


