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Abstract. Nitrogen oxides (NOx = NO + NO2) emissions are estimated in three regions in the Northern hemisphere, generally

located in North America, Europe, and East Asia, by calculating the directional derivatives of NO2 column amounts observed

by the TROPOMI instrument with respect to the horizontal wind vectors. We present monthly averaged emissions from 1 May

2018 to 31 January 2023 to capture variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54

cities, 18 in each region. A spatial resolution of 0.04◦ resolves intracity emission variations and reveals NOx emission hot spots5

at city cores, industrial areas, and sea ports. For each selected city, post-COVID-19 changes in NOx emissions are estimated by

comparing monthly and annually averaged values to the pre-COVID-19 year of 2019. While emission reductions are initially

found during the first outbreak of COVID-19 in early 2020 in most cities, the cities’ paths diverge afterwards. We group

the selected cities into 4 clusters according to their normalized annual NOx emissions in 2019–2022 using an unsupervised

learning algorithm. All but one selected North American cities fall into cluster 1 characterized by weak emission reduction in10

2020 (−7% relative to 2019) and increase in 2022 by +5%. Cluster 2 contains mostly European cities and is characterized

by the largest reduction in 2020 (−31%), whereas the selected East Asian cities generally fall into clusters 3 and 4 with the

largest impacts in 2022 (−25% and −37%). This directional derivative approach has been implemented in object-oriented,

open-source Python and is available publicly for high-resolution and low-latency emission estimation for different regions,

atmospheric species, and satellite instruments.15

Copyright statement. TEXT

1 Introduction

The COVID-19 pandemic, which was caused by the SARS-CoV-2 virus emerged in 2019 and its still evolving variants as of

writing in 2023, has resulted in unprecedented shifts in human activities and anthropogenic emissions to the Earth’s atmosphere.

One of the most effective and important indicators of the post-COVID-19 emission perturbations is the emission of nitrogen20

oxides (NOx = NO + NO2) (Levelt et al., 2022, and references therein). The dominant NOx emission source is anthropogenic
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fossil fuel combustion. Because of its relatively short chemical lifetime, hot spots of NOx abundance can be readily identified

near the emission sources. Due to its adverse health effects, NOx is a regulated primary pollutant with significant implications

for secondary ozone and PM2.5 formation and reactive nitrogen deposition (Seinfeld and Pandis, 2016; Zhang et al., 2012).

Accurate and timely quantification of NOx emission is thus essential for environmental regulation, air quality forecasting, and25

improved understanding of atmospheric chemistry processes.

Bottom-up NOx emission inventories have been extensively used in atmospheric composition, climate change, and human

health studies from regional to global scales (Streets et al., 2003; Crippa et al., 2018; McDuffie et al., 2020; Zheng et al., 2021).

However, the bottom-up emission estimates are subject to significant and often under-characterized uncertainties that originate

from the lack of knowledge of emission factors, chemical processes, and spatiotemporal proxies as well as the inconsistencies30

among different geographical datasets. Moreover, bottom-up emission inventories require significant effort and time to compile,

leading to often years of lag time before producing results. It is especially challenging for the bottom-up approaches to represent

post-COVID-19 emission changes, as both the spread of variants and the policy responses of governments worldwide have been

rapidly changing.

Alternatively, satellite observations can assess NOx emissions from a top-down perspective and in a more timely manner.35

Substantial efforts among the research community have been devoted to characterizing the NOx emission responses in the early

phase of the pandemic (Gkatzelis et al., 2021, and references therein). Satellite-observed NO2 tropospheric column amounts

have been used to infer post-COVID-19 NOx emission perturbations through chemical transport models (CTMs) (Miyazaki

et al., 2020; Ding et al., 2020; Riess et al., 2022; Kang et al., 2022), fitting of plume dispersion or box models (Sun et al.,

2021; Lange et al., 2022; Dammers et al., 2022; Xue et al., 2022; Godłowska et al., 2023; Zhang et al., 2023), and calculation40

of the divergence of horizontal NO2 flux (the flux divergence approach hereafter, de Foy and Schauer, 2022; Dix et al., 2022;

Rey-Pommier et al., 2022; Chen et al., 2023). Each approach comes with its own strengths and limitations. The CTM-based

approach usually resolves emissions spatiotemporally and incorporates meteorological and chemical processes, but requires

significant computation and auxiliary datasets, which hinders its agility. Analytical plume or box models are generally applied

to a single source region and do not resolve the spatial distribution of emissions. The flux divergence approach has the potential45

to rapidly map emissions over extensive areas, whereas only annual averaged emissions have been reported in specific regions.

Inspired by the flux divergence approach, Sun (2022) proposed a unified framework capable of rapidly imaging NOx emis-

sions using only TROPOMI level 2 products and the ERA5 global reanalysis, both of which are available within a few days

of lag time. Here we coin this framework as the directional derivative approach, as the flux divergence is not explicitly calcu-

lated. Instead, the emission signal originates from the directional derivative of satellite observed column amount with respect50

to the horizontal wind vector. The impact of topography on emission estimation, which was neglected in the flux divergence

literature, is accounted for through a similar directional derivative of surface altitude. In this work, we apply the directional

derivative approach to map NOx emissions at 0.04◦ grid size over extensive regions in North America, Europe, and East Asia.

We focus on 18 selected cities in each region (54 cities in total) and quantify monthly NOx emissions from 1 May 2018 to

31 January 2023. We systematically compare the emissions in 2019 as the pre-COVID-19 year with those in 2020–2022 as55

post-COVID-19 years. The large spatiotemporal variations of NOx emissions after 2020 in comparison with 2019 highlight the
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complexity of post-COVID-19 emission changes and the importance of timely and persistent observation-based constraints.

The normalized annual NOx emissions from all selected cities are grouped into 4 clusters using an unsupervised learning

algorithm. While the initial emission reductions during the onset of the pandemic in 2020 are ubiquitous in all clusters, the

2021 and 2022 emissions diverge significantly. The directional derivative approach has been implemented in object-oriented,60

open-source Python (Sun, 2023) and is available publicly for future applications in different regions, time periods, and other

satellite instruments beyond TROPOMI.

2 Data

2.1 Data for emission calculation

Following Sun (2022), we use the TROPOMI Products Algorithm Laboratory (PAL) level 2 NO2 product from 1 May 2018 to65

14 November 2021. The operational offline product is then merged, resulting in a seamless and consistent product generated

by a single retrieval processor (version 2.3.1) (van Geffen et al., 2022a). The nadir TROPOMI level 2 pixel size was 3.5× 7

km2 before 6 August 2019 and updated to 3.5×5.5 km2 thereafter. The equator crossing of TROPOMI is at around 13:30 local

time, but due to its ground swath width of 2600 km, the measurement’s local time at the swath edges may differ by ± 1 hour

from the nadir. We use only the level 2 pixels with quality assurance values above 0.75 according to the recommendation from70

the product Algorithm Theoretical Basis Document (ATBD) (van Geffen et al., 2022b).

Besides the NO2 tropospheric vertical column density, the TROPOMI product also provides surface altitude at each level

2 pixel sampled from the GMTED2010 digital elevation model and horizontal wind at 10 m above the surface sampled from

ECMWF meteorology (Eskes et al., 2022). In addition, we sample horizontal winds at 100 m and 10 m above the surface from

the ERA5 reanalysis (Hersbach et al., 2020) spatiotemporally at TROPOMI level 2 observations.75

2.2 Data for urban area coverage

Although the NOx emissions derived from TROPOMI-observed NO2 column amounts cover all the regions, it is the urban areas

that dominate the NOx emission budget and respond most to the post-COVID-19 perturbations. Cities in different countries

and continents underwent drastically different scenarios after the onset of the pandemic. The definition of each city boundary

is often ambiguous and inconsistent among geographical regions and urban datasets. To consistently identify cities globally,80

we use the Global Human Built-up And Settlement Extent (HBASE) Dataset from Landsat as the indicator of urban area

coverage (Wang et al., 2017). The HBASE dataset has a native resolution of 30 m for the target year 2010, whereas we use the

aggregated version at 1 km resolution.

Cities in this study are selected from a world city list with population and city center coordinate information (Hernández,

2022). In each region of North America, Europe, and East Asia, we focus on two subregions in the north and south, based on85

latitude, climate, and proximity of city clusters. Within each subregion, we select 9 cities with the consideration of population

and location. The bounds of each region, subregion, and the names of all selected cities are shown in Figures 2, 7, and 12.
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For each city, we consider the urban area coverage given by the HBASE dataset within ± 50 km in the zonal and meridional

directions from the city center coordinate as the extent of the city. This 100× 100 km window covers most select cities

sufficiently with frequent inclusion of surrounding satellite cities (see Figures 5, 6, 10, 11, 15, and 16 for the extents of90

individual cities). Large cities that are close together may be enveloped by the same window. For example, the Washington,

DC window includes most of the area covered by Baltimore (Figure 6e), and the Wuxi window includes two similar sized cities,

Changzhou and Suzhou (Figure 15g). Without attempting to separate them, we treat these cities in the same window as a single

metropolitan area. However, we separate the adjacent cities at the USA-Mexico border, namely San Diego and Tijuana as well

as El Paso and Juarez, because of significantly different NOx emission patterns across the country border. Additionally, the95

windows for Los Angeles and Dallas are extended to cover the entire Los Angeles basin and the Dallas–Fort Worth–Arlington

metropolitan area, and the windows for Wuxi, Tianjin, and Busan are slightly nudged to avoid cutting off significant emission

sources near the defined city edge.

3 Methods

3.1 NOx:NO2 ratio100

As TROPOMI only observes NO2 column amounts, a molar ratio between NOx and NO2 is needed to derive NOx column

amounts and NOx emissions. Here we use a constant NOx:NO2 ratio of 1.32 as suggested in many NOx emission estimation

studies (Beirle et al., 2011; Goldberg et al., 2019; Beirle et al., 2019; Dix et al., 2022; Goldberg et al., 2022; Sun, 2022;

Dammers et al., 2022) for all cities. More sophisticated considerations exist, which are based on the photostationary steady

state assumption and model simulated ozone concentration (Beirle et al., 2021; Lange et al., 2022) or directly from model105

simulated NO and NO2 (Lorente et al., 2019; Zhang et al., 2023). As the main focus of this work is the relative emission

changes in the pre- and post-COVID-19 years, the impact of variable NOx:NO2 ratio will largely cancel out. Additionally,

the tropospheric mean NOx:NO2 ratio estimated by Beirle et al. (2021) also does not show excessive variations over the three

regions included in this study. Moreover, the NOx:NO2 ratio can be readily updated by dividing the emissions from this study

by 1.32 and then multiplying any city- and/or season-specific value.110

3.2 NOx emission estimation

The derivation of emissions (E) from satellite-observed column amounts (Ω) is based on the principle of mass conservation as

in the following:

⟨E⟩= ⟨u · (∇Ω)⟩+X ⟨Ωu0 · (∇z0)⟩+
⟨Ω⟩
τ

. (1)

Here ⟨⟩ is the spatiotemporal averaging operator already implemented in the physical oversampling framework (Sun et al.,115

2018; Sun, 2023), z0 is the surface altitude from level 2 files, and u and u0 are horizontal wind vectors in the planetary

boundary layer (PBL) and near the surface, respectively, represented by 100-m and 10-m winds sampled from ERA5. X and τ

represent the inverse scale height and vertically integrated chemical lifetime and can be inferred as linear regression coefficients
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using monthly or further aggregated images. The full derivation of Eq. 1 can be found in Sun (2022). Despite the similarity

between Eq. 1 and its counterpart in the flux divergence literature (Beirle et al., 2019, 2021; Liu et al., 2021; Dix et al.,120

2022; de Foy and Schauer, 2022; Rey-Pommier et al., 2022; Veefkind et al., 2023), Eq. 1 accounts for the impacts from the

horizontal divergence of wind and topography to the estimated emission, both of which are not included in the flux divergence

equation and scale linearly with column amounts, Ω. The first and second terms on the right-hand side of Eq. 1 are based on

the directional derivatives of the column amount (Ω) and surface altitude (z0) with respect to the horizontal wind vectors (u

and u0). Therefore, we refer to emission estimation using this equation as the directional derivative approach. We125
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The inverse scale height (X) and chemical lifetime (τ ) remain as key unknowns and can be estimated from observational

data. At locations where emission ⟨E⟩ is small, Eq. 1 can be rewritten as a multi-linear regression model by neglecting the

emission term:

⟨u · (∇Ω)⟩= β0 +β1 ⟨Ωu0 · (∇z0)⟩+β2 ⟨Ω⟩+ ε. (2)

Here β0 and ε represent the offset and random error in the predicted variable (i.e., ⟨u · (∇Ω)⟩) that cannot be explained by the145

linear combination of predictors (i.e., ⟨Ωu0 · (∇z0)⟩ and ⟨Ω⟩). β1 is an estimate of the negative inverse of scale height, and β2

is an estimate of the negative of the first order rate constant or equivalently the inverse of chemical lifetime.

For each region, terms ⟨u · (∇Ω)⟩, ⟨Ωu0 · (∇z0)⟩, and ⟨Ω⟩ are calculated and saved at 0.04◦ grid size and monthly res-

olution. Then regressions as in Eq. 2 are conducted at a subset of grid cells for each subregion. We first focus on fitting

β1 over relatively rough terrains where NOx emissions are generally much smaller than the observational error and hence150

negligible. This fit can be done at a relatively high time resolution (monthly) given the high signal-to-noise ratio. β2 is

also included in this fitting, although the results are usually very noisy. This first round of fitting is limited to grid cells
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with 0.001 m s−1 < ⟨u0 · (∇z0)⟩< 0.1 m s−1, which represent moderately rough terrains that are abundant in all regions and

subregions. In the second round, the monthly fitted β1 in the previous round is fixed, and only β2 is fitted in flat terrains

(⟨u0 · (∇z0)⟩< 0.001 m s−1) that are free of strong NOx emission sources (⟨u · (∇Ω)⟩< 1 nmol m−2 s−1) and meanwhile155

characterized by moderate NO2 column amount (⟨Ω⟩> 2.5×10−5 mol m−2). To address the issue of low signal-to-noise ratio,

this second round fitting is conducted over climatological months. Namely, the same months for all years are aggregated before

fitting. This two-round fitting procedure is generally consistent with the study over the contiguous USA by Sun (2022). The

main improvements here are that the fittings are conducted in smaller subregions and that the seasonal variations of lifetime

are resolved.160

Figure 1 shows the fitted NOx scale heights (top) and chemical lifetimes (bottom) for each month, although the monthly

lifetime is from climatology and hence the same for different years. We caution here that the resultant scale heights and lifetimes

are fundamentally fitting parameters in a multi-linear regression model (Eq. 2) that minimize the impacts of topography and

chemical loss on the estimated emission. Qualitatively, the seasonality of NOx scale heights is consistent with higher PBL

height in the summer than winter, and the fact that the southern subregion in North America shows significantly higher scale165

height than other subregions is consistent with the high PBL height over southwest USA and northern Mexico (Ding et al.,

2021; Ayazpour et al., 2023). The low scale heights in East Asia may be explained by higher levels of pollution and thus

more NOx distributed near the surface. The chemical lifetimes in all subregions span a broad range and are generally longer

in winter than summer. The seasonal variation of lifetime in the southern subregion in East Asia is comparable to previous

lifetime estimates (Mijling and Van Der A, 2012; Shah et al., 2020), whereas the lifetimes in other subregions are significantly170

higher. The most plausible explanation is that the lifetime as in Eqs 1 and 2 is integrated through the vertical column, so the

free tropospheric NOx contributes more in relatively clean regions. The lifetime results in the northern subregion in Europe

become unreliable in winter due to low data coverage as shown by occasional negative values. We keep using these results

without modification as they do not have significant impacts on the estimated emissions.

Once the monthly NOx emissions E are obtained using the monthly fitted X and τ , NOx emissions from each selected175

city are calculated by averaging NOx emission grid cells under the geographical coverage of the city (see Sect. 2.2 for the

determination of city coverage). The NOx emission grid cells are weighted by the fraction of urban area coverage during the

averaging.

3.3 Algorithms for city clustering based on annual emissions

The monthly NOx emissions from each city (9 cities per subregion and 54 cities in total) are aggregated annually for cluster180

analysis in Sect. 4.4. The normalized emissions in 2019–2022 by the 4-year mean are considered the feature for each city

and clustered using the k-means clustering algorithm (Likas et al., 2003). K-means algorithm partitions a set of data points

in n-dimensional space (n= 4 here, corresponding to annual emissions in 2019–2022) into k clusters, where each data point

belongs to the cluster with the nearest mean. The mean or centroid of each cluster is representative of the general pattern of

data points in the cluster. A total number of 4 clusters are used by locating the elbow point of the sum of squared errors as a185
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Figure 1. (Top) Monthly scale heights fitted using Eq. 2. NA, EU, and AS represent the regions of North America, Europe, and East Asia.

S and N after the underscore denote the southern and northern subregions in each region. (Bottom) Chemical lifetimes fitted for these six

subregions. Each monthly data point is from the climatology so all years have the same seasonality.

function of the number of clusters. Additionally, we reduce the feature dimension of 4 to 2 using principal component analysis,

such that each city can be projected to a 2-dimensional scatter plot as shown by Figure 17.

4 Results

This section dives into the regions in North America, Europe, and East Asia each with two subregions in the north and south

and 9 selected cities in each subregion. Section 4.4 synthesizes the annual NOx emissions from all selected cities through the190

cluster analysis.

4.1 North America

Figure 2 overviews the region in North America, its two subregions delineated by red rectangles, and selected cities with loca-

tions indicated by black arrows. The spatial distribution of NOx emissions shown by the central map are estimated following

Sect. 3.2 in 2019–2022, except that the scale height and chemical lifetime are fitted using the entire region instead of a specific195

subregion. The southern subregion covers the southwest USA and northern Mexico, and the northern subregion covers the mid-

west and northeast USA and part of Canada. The annual NOx emissions in 2019–2022 averaged spatially over each selected

city are illustrated as pie charts around the edges of the plot. The sizes of the pies scale with the average city emissions over

the 4 years. One may compare the size of slices for 2020–2022 to 2019 as an indication of post-COVID-19 emission changes.

Note that the emissions in 2021 and 2022 are generally higher than 2019 for the selected cities in the southern subregion. The200
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slices of 2019 are not larger than a quarter of the pie in all the cities in the southern subregion. Namely, despite the impacts

of COVID-19, the post-COVID annual emissions in these cities are not lower than the pre-COVID year of 2019. The cities in

Mexico (Tijuana, Juarez, and Chihuahua) show faster growth of NOx emissions year-to-year and stronger emissions compared

with neighboring cities in the USA. The northern subregion is quite different, in that the NOx emissions in 2019 are all higher

than the 4-year average, i.e., the 2019 slices are larger than a quarter of the pies. This indicates decreased emissions after205

COVID-19 that may be attributed to the direct and indirect impacts of pandemic-control measures.

Figure 2. Geographical locations of the 18 cities, 9 in each of the two subregions, in the region of North America. The subregions are outlined

by dashed red rectangles. The annual NOx emissions in 2019–2022 for each city are displayed as pie charts. The emission values for each

year are labeled on or near the corresponding slice of the pie in nmol m−2 s−1. The 4-year average emissions are labeled beside the city

names. The central map shows 4-year average NOx emissions throughout the region. The grid is coarsened from the native size of 0.04◦ to

0.12◦ for visualization purposes.

Figures 3 and 4 show the monthly NOx emissions that are averaged to obtain the annual emissions for cities in the southern

and northern subregions in North America (see Figure 2). In these plots, each city corresponds to one panel, and the panels

are ordered by population as provided by the city list (same for all the following 9-panel, 1-panel-per-city figures). For each

panel, the top subpanel shows the absolute monthly NOx emissions, and the bottom subpanel shows the relative emissions to210

the same months in 2019. For both subpanels, the values in 2019 are also repeated in the same months for the other years (2018
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and 2020–2022) as a baseline for comparison. Higher monthly emissions relative to the same months in 2019 are indicated

by red shade, and blue shade is used otherwise. We remove the monthly data with city-wide average level 2 data coverage

lower than 2, i.e., the entire city area has to be on average covered at least twice in the month by TROPOMI observations. This

threshold is determined using all selected cities in this study, and monthly emissions with coverage lower than this value tend215

to be unreliable. To make consistent interannual comparison, if one month is removed for a particular year, the same months

for all other years are also removed for a given city. This results in loss of some winter months in high latitude cities due to

high solar zenith angle and snow coverage and wet-season months in some cities due to frequent cloud coverage. Although

the monthly emissions are subject to significant variability, NOx emissions for most cities dropped in early 2020 relative the

same months in 2019, coincident with the initial wave of COVID-19. The relative decrease is more significant in the northern220

subregion than in the southern subregion. The emissions, relative to 2019, diverge more in 2021 and 2022 among these cities.

Some cities in the northeast USA show comparable or even more emission reduction in 2022 than in 2020 (e.g., Chicago and

Philadelphia), whereas strong growth can be identified in south and southwest USA (e.g., Dallas, Houston, San Diego, and

Phoenix) and in Mexico.

9



0

10

20
nm

ol
 m

2  s
1

(a) Los Angeles

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(b) Dallas

Monthly emissions
Repeated 2019 emissions

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(c) Houston

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2

Re
la

tiv
e 

va
lu

es
 to

 2
01

9

0

10

20

nm
ol

 m
2  s

1

(d) Phoenix

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(e) San Diego

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(f) Tijuana

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2

Re
la

tiv
e 

va
lu

es
 to

 2
01

9

0

10

20

nm
ol

 m
2  s

1

(g) Juarez

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(h) Chihuahua

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2
0

10

20
(i) El Paso

2018-Jul
2019-Jan

2019-Jul
2020-Jan

2020-Jul
2021-Jan

2021-Jul
2022-Jan

2022-Jul
2023-Jan

0

1

2

Re
la

tiv
e 

va
lu

es
 to

 2
01

9

Figure 3. The red dots and lines show monthly NOx emissions from cities in the southern subregion in the region of North America. For each

panel, the top subpanel shows the absolute emissions, and the bottom subpanel shows the relative emissions to the corresponding months

in 2019. The blue dashed lines show the 2019 values repeated in the same months for the other years (2018 and 2020–2022). Red and blue

shades indicate higher and lower monthly emissions relative to the months in 2019.

Strong seasonal variations with higher emissions in winter months are observed in some cites (e.g., all cities in the northern225

subregion, Dallas, Houston, San Diego, and Juarez), which are inconsistent with flatter seasonalities often given by bottom-up

emission inventories (Sun et al., 2021). These observed seasonal variations might be caused by seasonally varying artifacts,

such as retrieval biases, vertical sensitivity of the retrieval at the surface, and the uncertainties in the wind vectors. In addition,

because we use a global constant NOx:NO2 ratio, its seasonality that is unaccounted for will propagate to the NOx emission

10



seasonality. One would expect higher PBL NOx:NO2 ratio in winter than summer, but in the summer relatively more NOx is in230

the free troposphere, where NOx:NO2 ratio is higher than the PBL (Seinfeld and Pandis, 2016). As a result, the exact impact of

NOx:NO2 ratio on each city is inconclusive. However, we note that no clear seasonality can be identified in Tijuana, whereas

the adjacent San Diego shows a much more prominent seasonal pattern. This is inconsistent with the potential impacts by

the aforementioned factors, because they should have impacted the estimated city emissions similarly at such a close distance.

Moreover, similar seasonalities are not so common in the regions of Europe and East Asia to be shown in the following sections.235

Further validation of the emission values and seasonality will be the subject of future studies.
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Figure 4. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in the

region of North America. This figure is similar to Figure 3.
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The geographical urban area coverage and spatial distribution of NOx emissions for each city are shown by Figure 5 (south-

ern subregion) and 6 (northern subregion). The averaged NOx emissions in 2019–2022 are displayed in native grid size of 0.04◦

as a colored map. The city extent is illustrated as a mask where non-urban area is in black with 95% transparency, resulting

in a gray hue. The city-covered area is fully transparent. The urban sprawl is significant in the USA (Barrington-Leigh and240

Millard-Ball, 2015), as the city areas in the USA are generally larger than similar sized cities in other countries. Emission hot

spots are often collocated with the downtown areas, but industrial areas and sea ports show higher emissions, e.g., the Port of

Long Beach in Los Angeles (Figure 5a) and the Houston ship channel (Figure 5c). The emissions within the city window of

Washington, DC are actually dominated by Baltimore to the northeast (Figure 6e). Emissions in Tijuana and Juarez are clearly

higher than the adjacent American cities San Diego and El Paso, presumably due to different emission regulations.245

Figure 5. Maps of NOx emissions and urban area coverage for the 9 selected cities in the southern subregion in North America.
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Figure 6. Maps of NOx emissions and urban area coverage for the 9 selected cities in the northern subregion in North America.

4.2 Europe

Figure 7 is a similar overview for the region of Europe, where the southern and northern subregions are delineated by red

dashed rectangles. The NOx emissions from shipping lanes over the Atlantic ocean and the Mediterranean sea are prominent.

The annual NOx emissions in 2019–2022 are shown similarly as pie charts for each city. Note that the southern subregion

includes an African city, Algiers in Algeria, due to the rectangular shape of the subregion. Algiers also stands out among250

other cities in this region in that its 2019 emission is lower than the 4-year average; the 2019 slice is smaller than a quarter of

the pie, and its 2020 emission is higher than 2019. All other cities show emission reductions in 2020 relative to 2019, which

often extend to the following years. Two large cities in developing countries, Algiers and Istanbul, are characterized by larger

emissions overall and stronger rebound of emissions after 2020.
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Figure 7. Geographical locations of the 18 cities in the region of Europe. The subregions are outlined by dashed red rectangles. The annual

NOx emissions in 2019–2022 in each city are displayed as pie charts. The emission values each year are labeled on or near the corresponding

slice of the pie in nmol m−2 s−1. The 4-year average emissions are labeled beside the city names. The central map shows 4-year average

NOx emissions throughout the region. The grid is coarsened from the native size of 0.04◦ to 0.12◦ for visualization purposes.

Figures 8 and 9 show the monthly NOx emissions that are averaged to obtain the annual emissions for cities in the southern255

and northern subregions in the region of Europe (see Figure 7). Compared with cities in North America, cities in the European

region generally had much larger emission decreases during the initial COVID-19 wave as indicated by larger blue shaded

areas. In some cases, most noticeably Madrid, Lisbon, and London, the emission reductions extend almost throughout 2020–

2022. Some of the post-COVID-19 reductions relative to 2019 may extend from a pre-existing decreasing trend, as indicated

by consistently higher 2018 emissions than 2019 in some cities in the northern subregion (Fig. 9). In contrast, the emissions260

quickly rebounded after the initial impact in some central and eastern Europe cities, such as Bucharest, Warsaw, and Prague,

as well as in Istanbul and Algiers as mentioned earlier. Some cities in the northern subregion are also subject to significant loss

of winter month coverage due to high solar zenith angle and cloud coverage.
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Figure 8. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the southern subregion in the

region of Europe. This figure is similar to Figure 3.
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Figure 9. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in the

region of Europe. This figure is similar to Figure 3.
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The geographical urban area coverage and spatial distribution of NOx emissions for each city are shown by Figure 10

(southern subregion) and 11 (northern subregion), similar to city maps in the North American region (Figures 5 and 6). Unlike265

the American cities that tend to sprawl into a large continuum, the selected European cities tend to be more concentrated with

smaller satellite cities and towns scattered in the surrounding area. The most prominent emission features are generally located

at the city centers, with Rotterdam as an exception where most observed emissions concentrate along the port of Rotterdam,

the world’s largest seaport outside of East Asia (Figure 11i).

Figure 10. Maps of NOx emissions and urban area coverage for the 9 selected cities in the southern subregion in Europe.
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Figure 11. Maps of NOx emissions and urban area coverage for the 9 selected cities in the northern subregion in Europe.

4.3 East Asia270

Figure 12 is a similar overview for the region of East Asia, where the southern and northern subregions are delineated by red

dashed rectangles. Note that the overall emission background and emissions from individual cities are significantly higher than

the regions of North America and Europe, as indicated by the enhanced scale of the color map and pie chart sizes. Selected

cities in this region ubiquitously show lower mean annual emissions after COVID-19, i.e., the 2019 pie slices are all larger than

a quarter. Unlike the regions of North America and Europe, the selected cities here all show lower emissions in 2022 than the275

4-year average, and in many cases, the 2022 emissions are lower than 2021 and 2020. Out of 18 selected in this region, 16 are

in China, which underwent widespread and stringent measures in 2022 to control the spread of the Omicron variant.
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Figure 12. Geographical locations of the 18 cities, 9 in each of the two subregions, in the region of East Asia. The subregions are outlined

by dashed red rectangles. The annual NOx emissions in 2019–2022 in each city are displayed as pie charts. The emission values each year

are labeled on or near the corresponding pie slice in nmol m−2 s−1. The 4-year average emissions are labeled beside the city names. The

central map shows 4-year average NOx emissions throughout the region. The grid is coarsened from the native size of 0.04◦ to 0.08◦ for

visualization purposes.
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Figure 13. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the southern subregion in the

region of East Asia. This figure is similar to Figure 3.
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Figure 14. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in the

region of East Asia. This figure is similar to Figure 3.
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The temporal evolution of NOx emissions and their relative changes to 2019 are shown in more detail in the monthly plotted

Figures 13 and 14, with one of the strongest examples of this shown in the megacity of Shanghai in Figure 13a. Shanghai is

one of the largest cities studied here with higher NOx emissions than all other selected cities except Seoul. The data coverage280

for Shanghai is also complete without any missing months. The well-documented NOx emission reductions during the spring

festival in January and/or February are evident in 2019–2021, although the 2020 spring festival coincided with the initial control

measures at the beginning of the COVID-19 outbreak (Liu et al., 2020; Huang and Sun, 2020). Emissions were back to 2019

levels during the second half of 2021. March 2022 marked the start of an unprecedented lockdown in Shanghai in response to

the spread of the Omicron variant, and the resultant NOx emission reductions overshadow those of early 2020. Emission levels285

largely recovered in August–October 2022 before plunging again due to a nation-wide spread of the Omicron variant, which

ultimately led to a termination of most control measures in China in December 2022. The full effect of this policy change on

NOx emissions is not yet clear from the current data.

Figure 13b shows the monthly NOx emissions in Wuhan, where COVID-19 first drew public attention in January 2020.

Data in January and February of all years are not included due to insufficient TROPOMI coverage, resulting in missing peak290

lockdown months. Therefore, the relative reduction in 2020 is likely underestimated. Another noteworthy feature in Wuhan is

that the October emissions in 2018 and 2020–2022 are all higher than October 2019. One likely cause is the emission reduction

measures conducted to ensure good air quality during the 7th Military World Games held in Wuhan in October 2019 (Zhang

et al., 2022). As a result, October 2019 emission in Wuhan was likely lower than the business-as-usual condition, leading to

spurious enhancements in October of all other years. The other selected cities similarly show emission reductions in early 2020295

during the onset of the pandemic and more extensive reductions in 2022 due to direct and indirect impacts of the Omicron

variant spread. Some cities show consecutive months of recovery or increase of emissions in between, e.g., Hangzhou, Ningbo,

and Jinan, for the summer and fall of 2020.

Similar to the regions of North America and Europe, the geographical urban area coverage and spatial distribution of NOx

emissions for each city in the region of East Asia are shown by Figure 15 (southern subregion) and 16 (northern subregion).300

Unlike most cities in North America and Europe, the strongest emissions in the selected Asian cities are often not located at

the city centers, but in industrial areas or sea ports. Here we try to identify the most prominent emission hot spots on the city

maps. The strongest emissions in Shanghai occur in the highly industrialized Baoshan and Pudong districts along the Yangtze

River shore (Figure 15a). For Wuhan, the strongest emissions occur at Qingshan district where Wuhan Iron & Steel is located

(Figure 15b). The emission hot spot in the southwest of Nanjing (Figure 15d) is the city of Maanshan, home of Maanshan Iron305

& Steel. The emission hot spot in the northeast of Wuxi (Figure 15g) is part of Zhanjiagang, a county-level city (in contrast

to prefecture-level cities) under the administration of Suzhou. The emission hot spot to the east of Ningbo city (Figure 15i)

appears to be part of the port of Ningbo-Zhoushan, the world’s largest cargo handling port.

The city window around Seoul (Figure 16a) includes most of the Seoul metropolitan area, which was mapped for high-

resolution NO2 column amounts during the Korea–United States Air Quality (KORUS-AQ) campaign (Choo et al., 2023). The310

west-east extended hot spot in the west of the city window is associated with the Incheon industrial complex, while the more

south-north extended hot spot at the center of the city window is located over the city of Seoul. The emission hot spot in the
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south is located near Suwon, which is also industrialized. The emission hot spot to the southwest of the Tianjin city (Figure

16c) collocates with the port of Tianjin, the largest port in Northern China and the main maritime gateway to Beijing, and the

adjacent industrial area in the Binhai New Area. The emission hot spot to the northeast of Tangshan city (Figure 16g) appears315

to be Qian’an, a county-level city under the administration of Tangshan, and is the location of the Yanshan Iron & Steel. The

emission hot spot to the southwest of Qingdao city (Figure 16h) appears to be the Port of Qindao. The emission hot spot to the

northeast of the Busan city (Figure 16i) appears to be the port of Ulsan, the largest industrial port in South Korea.

Figure 15. Maps of NOx emissions and urban area coverage for the 9 selected cities in the southern subregion in East Asia.
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Figure 16. Maps of NOx emissions and urban area coverage for the 9 selected cities in the northern subregion in East Asia.

4.4 Clustering of city emissions

The monthly NOx emissions calculated for each of the 54 selected cities contain a large amount of information that is chal-320

lenging to digest. These monthly values are often subject to low signal-to-noise ratio, especially for the cold season months in

high-latitude cities. As such, we aggregate to annual emissions for the years of 2019–2022 to obtain more insights into how

different cities’ emissions responded after the onset of COVID-19. For each city, the same months are included for all these

years to enhance interannual consistency. The resultant annual emissions are already shown in Figures 2, 7, and 12. These an-

nual emissions (4 values for each city) are normalized by the 4-year mean and then grouped into 4 clusters using the k-means325

algorithm. The normalized annual emission for each city corresponds to a point in the 4-dimensional space. To visualize the
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clustering results, we reduce the dimension of the normalized annual emissions by calculating 2 principal components, which

effectively projects the data to a 2-dimensional subspace.
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Figure 17. (a) Clustering results using 54 cities selected in this study. The normalized annual emissions in 2019–2022 for each city are

projected to 2-dimensional space using principal component analysis. The locations of Tianjin and Milan, defined as the two principal

components, are nudged downward and right, respectively, to enhance visualization quality. (b–e) The bars indicate the cluster center, and

error bars indicate the interquartile range within the cluster. The values are all relative to 2019.

Figure 17a shows the distributions of cities in the projected 2-dimensional subspace, where each city is a point marked

differently according to the cluster it belongs to. The annual emissions for cities in the same cluster are shown as relative values330

to the 2019 emission in Figure 17b–e, where the bars indicate the cluster average, and error bars indicate the interquartile range

within the cluster. All cities in the North American region, with Chicago as the only exception, are included in cluster 1 (Figure

17b), which is characterized by the least emission reduction in 2020 (−7% relative to 2019), with emissions recovering to the

2019 level in 2021, and increased emissions in 2022 (+5% relative to 2019). Bucharest, Warsaw, Prague, Algiers, and Istanbul
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in the European region are also included in this cluster. The overall characteristic of cluster 1 is a minor reduction in 2020335

relative to 2019 and steady increase afterwards.

Cluster 2 (Figure 17c) features the most significant emission reduction in 2020 (−31% relative to 2019), with a moderate

rebound in 2021 (−15%), and drop again in 2022 (−21%). Cities in this cluster are all in the European region, except Shanghai.

Cluster 3 (Figure 17d) differs from cluster 2 in that the emission reduction in 2020 is not as large (−8%), while the reduction

in 2022 is very significant (−25%), especially in comparison with its value in 2021 (−8.5%). Cluster 3 mainly includes Cities340

in China with a few exceptions in Europe (Lisbon, Hamburg, and Berlin) and North America (Chicago). This is consistent with

the general evolution pattern of COVID-19 in China: quick recovery of emissions in later 2020 due to effective COVID-19

control measures, sporadic lockdowns in 2021, and much larger scale lockdowns in 2022.

Cluster 4 (Figure 17e) is characterized by the largest and sustained decrease of emissions from 2019 to 2022. The average

emission reduction in 2022 in this cluster is −37% relative to 2019, the lowest for all years in all clusters. The reduction in345

2021 is −35%, also substantially more than all other clusters. Cities in this cluster are located in northern China and South

Korea with London as the only exception. Additionally, Tangshan, Seoul, and Busan in cluster 4 have large contributions

from industrial NOx sources (see Figure 16), suggesting influences from economic factors besides direct COVID-19-control

impacts.

5 Conclusions and discussion350

We apply the directional derivative approach developed by Sun (2022) to estimate NOx emissions in three northern hemisphere

regions; North America, Europe, and East Asia. For each region, the NOx scale heights and chemical lifetimes, which are

necessary in the emission calculation, are estimated separately in two subregions. We focus on emissions from 9 selected cities

per subregion and present monthly averages and 4-year averaged emission maps at 0.04◦ grid size for a total number of 54

cities. The NOx emissions maps reveal unprecedented levels of detail for a large and diverse collection of cities. NOx emission355

hot spots are consistently found at large city cores, while some cities feature significantly higher emissions than others, most

notably at the USA-Mexico border (San Diego vs. Tijuana and El Paso vs. Juarez). The spatial windows of some cities envelops

much more prominent emission hot spots than the city cores, which generally correspond to large seaports and industrial areas.

The average emissions in 2019–2022 are generally larger in East Asian cities, as 13 out of 18 cities in this region are higher

than 10 nmol m−2 s−1. In contrast, only one city in the North American region (Tijuana) and two cities in the European region360

(Algiers and Istanbul) are higher than this value.

With respect to the temporal variation of NOx emissions, we choose the year of 2019 as the pre-COVID-19 baseline year,

so the relative emission changes in 2020–2022 to 2019 indicate the post-COVID-19 perturbations to each city. We caution

that the relative differences between post-COVID-19 months in 2020–2023 and the corresponding months in 2019 may exist

even without COVID-19. These non-COVID-19 factors include the Military World Games impact in Wuhan and pre-existing365

long-term decreasing trend in many cities in the northern Europe subregion, as indicated by higher emission in 2018 than 2019

(Fig. 9). The initial impact during the first outbreak of COVID-19 in early 2020 can be found in most cities, but their paths
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diverge afterwards. We average the monthly emissions for each city to annual mean emissions in 2019–2022 and group the

normalized annual mean emissions into 4 clusters. All but one city in the North American region are grouped in cluster 1,

which is characterized by the smallest emission reduction in 2020 (−7%) and steady increase afterwards, resulting in a +5%370

increase in 2022. Limited representations of Latin America (Tijuana, Juarez, and Chihuahua), Africa (Algiers), and Middle

East (Istanbul) are all located in cluster 1. Future studies might be meaningful to test if the emission changing pattern of cluster

1 is common in these regions. The other clusters (2–4) feature much larger emission reductions than cluster 1 and differ by how

these reductions are distributed in 2020–2022. The European cities are generally in cluster 2 with the largest impact in 2020

(−31%), whereas the East Asian cities are generally in cluster 3 and 4 with the largest impacts in 2022 (−25% and −37%).375

In this study we fit scale heights at monthly resolution and fit chemical lifetimes for each climatological month to strike a

balance between the quality of the fitting results and temporal resolution. However, we assume spatially homogeneous scale

heights and chemical lifetimes within each subregion. Considering that the fitting is conducted over cleaner locations where

free tropospheric NO2 subcolumn is expected to take a larger fraction of the tropospheric column, the fitted scale heights

and chemical lifetimes are likely overestimated for urban areas. Additionally, the NOx chemical lifetime is highly nonlinear380

with respect to NOx concentration (Valin et al., 2013; Laughner and Cohen, 2019). Therefore, although some aspects of the

fitted results are consistent with the expected spatial and temporal variation of PBL height and NOx chemical lifetime, we

caution that the inverses of scale heights and chemical lifetimes are fundamentally linear fitting parameters and suggest against

over-interpreting the results. Future investigations might be helpful to achieve higher spatial granularity and/or considering

the dependencies of scale height and chemical lifetime on the column amount. We choose a constant NOx:NO2 ratio, given385

the emphasis of this study on relative emission changes and timeliness of emission estimation. An improved understanding of

global NOx:NO2 ratio over the atmospheric columns through which satellite sensors integrate will likely enhance the quality

of estimated NOx emissions.

This work presents observation-based NOx emission estimations over large areas (covering three major continents), with

fine spatial resolution (0.04◦, resolving intracity emission variations), high temporal resolution (monthly), and timely results390

(until 31 January 2023). The main focus of this work is the relative emission changes for each city in the pre- and post-COVID-

19 years. The absolute emission values of one city compared to another and absolute estimates of emissions month-by-month

would be subject to larger uncertainties than the relative values, given the assumptions and simplifications discussed above. We

expect future evaluations of spatiotemporal variations of derived emissions against known emission rates of point sources and

bottom-up emission inventories. The current work flow requires only TROPOMI level 2 data and the ERA5 reanalysis, both395

publicly available with global coverage, and the open-source Python algorithm (Sun, 2023). It is our hope that this tool will

benefit future studies over more regions in the world and using additional remote sensing instruments.

Code availability. Code relevant to this paper can be found in Sun (2023).
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Data availability. TROPOMI NO2 PAL data are available at https://data-portal.s5p-pal.com/products/no2.html. TROPOMI NO2 offline data

are available at https://doi.org/10.5270/S5P-s4ljg54. The ERA5 data are available at https://doi.org/10.24381/cds.adbb2d47.400

Appendix A: Key assumptions in flux divergence vs. directional derivative approach

The flux divergence approach (e.g., Beirle et al., 2019, 2021; de Foy and Schauer, 2022; Dix et al., 2022) is based on the

following equation, expressed in terms defined in this work.

⟨E⟩= ⟨∇ · (Ωu)⟩+ ⟨Ω⟩
τ

= ⟨u · (∇Ω)⟩+ ⟨Ω(∇ ·u)⟩+ ⟨Ω⟩
τ

. (A1)405

Here the second step makes it clearer to compare with the counterpart of the directional derivative approach (i.e., Eq. 1). The

key implicit assumptions of the flux divergence approach are discussed below.

1. The emission includes the divergence of horizontal flux and chemical loss. Without the chemical loss, the emission equals

the horizontal flux divergence, as shown by studies applying flux divergence to methane (Liu et al., 2021; Veefkind et al.,

2023). The problem is that the divergence of horizontal flux is also driven by the divergence of wind (∇ ·u), which410

can have positive or negative values climatologically for different locations. This leads to spurious emission values seen

in the flux divergence literature that often need empirical correction (Liu et al., 2021; Dix et al., 2022; Veefkind et al.,

2023).

2. The topography does not contribute to the flux divergence. In reality, the wind vector usually partially aligns with the

gradient of surface altitude even over a long-term average, resulting in terrain-dependent artifacts.415

The directional derivative approach (Sun, 2022, this work) addresses these assumptions by explicitly considering the wind

divergence and topography effects. The assumptions that lead to the directional derivative approach are detailed in Sun (2022)

and discussed below.

1. There exists an altitude z1 where emissions, as observed by satellites, are confined within. We equate z1 as the PBL

height for ease of conceptualization, but it does not have to be explicitly defined to derive Eq. 1.420

2. The horizontal gradient of subcolumn amounts above z1 is negligible compared to that below z1 at the spatial scale of

adjacent satellite observations.

3. The vertical flux of observed species at z1 is only due to divergence/convergence of wind below z1 and is thus not sensi-

tive to emissions. This assumption is a consequence of assumption 1 and the assumption that air flow is incompressible.

Conceptually, the upward flux of the observed species at z1 would not be due to emissions, as z1 is chosen not to “feel”425

the emission impact; the only cause of this flux is the convergence of air in the column below that squeezes air upwards

or the divergence of air below that draws air downwards.
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4. The scale height of the observed species is a constant through the domain. This is necessary to relate the surface concen-

tration to the column amount in the topography term.

5. The column-integrated chemical lifetime of the observed species is a constant through the domain. This is necessary to430

simplify the chemical loss term, and it is the same for the flux divergence approach.

Assumptions 1–3 are from reasoning. We encourage future testing of these assumptions, presumably through high-quality

model simulations. Assumptions 4–5 are apparently significant simplifications. The following two paragraphs discuss their

implications.

The scale height is expected to be lower over polluted regions than clean regions. We fit the scale height over rough terrains435

in each subregion, which are inherently cleaner than the urban areas. Therefore, the scale height applied to urban areas is likely

overestimated, and the topography term is hence underestimated as it scales with the inverse of scale height. Fortuitously,

the urban areas are generally situated over flat terrains. The median value of monthly term | ⟨Ωu0 · (∇z0)⟩ | for all 54 cities

averaged in each city is 1.3× 10−7 mol m−1 s−1. That means neglecting the topography effect resulting from a 1000 m scale

height would only give rise to an emission error of 1.3× 10−10 mol m−2 s−1, which is below the noise floor. However, there440

are two caveats. First, this does not mean that the topography term is unimportant. It might be small over the flat city, but it is

large over rough terrains that are close to many cities. Second, some emission sources do appear over rough terrains.

The column-integrated chemical lifetime is a complicated and challenging parameter to obtain. A wide range of values and

strategies exist in the literature. Two main factors determines its value, the chemical lifetime within the PBL and the partition

of column amounts in the PBL vs. in the free troposphere. The PBL chemical lifetime is highly nonlinear. In the “NOx-limited”445

regime, it decreases with increasing NOx, whereas in the “NOx-suppressed” regime, the relationship is reversed. The range of

variation is within a factor of two (Valin et al., 2013; Laughner and Cohen, 2019). The PBL vs. free troposphere partition may

have a larger impact given the high urban-rural column amount contrast and significant free tropospheric contribution in the

clean regions (Silvern et al., 2019). Overall, we expect the column-integrated lifetime determined over relatively clean regions

to be higher than the true value over urban areas. This is also consistent with the longer lifetimes shown by Fig. 1 than literature450

values of urban PBL NOx lifetime. Consequently, the chemical loss term is likely underestimated in polluted regions.

As such, both topography and chemical loss terms are expected to be underestimated for NOx over urban areas. This under-

correction is preferred to over-correction. Directions of future improvements include using model simulations to inform the

spatiotemporal variations of scale height and lifetime and fitting more complex functions (e.g., as polynomial functions of

column amount) of the scale height and lifetime. The current constant scale height and lifetime are just the special case of455

zeroth order polynomial. This will require even higher signal-to-noise ratio, more observations, and/or finer spatial resolution

than TROPOMI.
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Table B1. Considerations of physical and chemical processes by this work and previous studies. The flux divergence and directional derivative

approaches are distinct by whether wind divergence is included or excluded.

Study Wind divergence Topography Lifetime NOx:NO2

Beirle et al. (2019) Included None 4 h 1.32

Beirle et al. (2021) Included None None Photo-stationary state

Dix et al. (2022) Included Empirical background

correctiona

Calculated based on OH 1.32

de Foy and Schauer (2022) Included None 9 h 1.32

Goldberg et al. (2022) Included None Fitted using EMGb 1.32

Chen et al. (2023) Included None Calculated using surface

measurements

1.32

Sun (2022) Excluded Fitted monthly over the

CONUS

Fitted over the CONUS af-

ter aggregating 2018–2022

1.32

This work Excluded Fitted monthly over sub-

regions with similar cli-

mate

Fitted over subregions with

similar climate for each cli-

matological month

1.32

a This may compensate both topography and chemical loss effects. b EMG = exponentially modified Gaussian function.
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