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Abstract. The paper presents a simplification to the Kalman smoother that can be run as a post processing step using only
minimal stored information from a Kalman filter analysis, which is intended for use with large model products such as reanal-
yses of Earth system variability. A simple decay assumption is applied to cross time error covariances, and we show how the
resulting equations relate formally to the fixed-lag Kalman smoother, and how they can be solved to give a smoother analysis
along with an uncertainty estimate. The method is demonstrated in the Lorenz 1963 idealised system, being applied with both
an extended Kalman smoother and an ensemble Kalman smoother. In each case the root mean square errors (RMSE) against
truth, for both assimilated and unassimilated (independent) data, of the new smoother analyses are substantially smaller than
for the original filter analyses, while being larger than for the full smoother solution. Typically 60% of the full smoother error
reduction with respect to the filter, is achieved. The uncertainties derived for the new smoother also agree remarkably well
with the actual RMSE values throughout the assimilation period. The ability to run this smoother very efficiently as a post
processor should allow it to be useful for real large model reanalysis products, especially ensemble products ;-that are already

being developed by various operational centres.

1 Introduction

Data assimilation is widely used for making atmosphere and ocean predictions, providing a best estimate of the current state
of the system, by combining the information from model forecasts with new observations available up to the current time. The
These state estimates are used for two purposes. First, they are used to initialise new model forecasts (from minutes to seasons
ahead). Second, the state estimates can provide reanalysis productsrepresenting-our—, representing a best estimate of past
environmental conditions. This involves assimilating historical observational data using the newest models and assimilation
methods available to us today, eg. Uppala et al. (2005); Balmaseda et al. (2013). However, assimilation systems suitable to
initialise forecasts may be less than optimal when used for reanalysis production.

The main distinction we will draw is between sequential assimilation methods, which use only past data, as appropriate for
forecasting, and temporal smoothing methods which can use past and future data to obtain a better state estimation, which may
be more useful for reanalysis. Although 4DVar is used in operational meteorology and provides some temporal smoothing, it

is only used to smooth within a short past data window when applied to initialise forecasts.
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The archetypal sequential data assimilation approach, originally for linear systems, is the Kalman filter (KF), see e.g. Chapter
6 of Evensen et al. (2022)). While the basic KF is inefficient to use in applications with large state spaces (due to the-size-of-the
difficulty of propagating very large error covariance matrices and-the-problem-of propagating-them-from one time to the next),
the ensemble Kalman filter (EnKEF, invented-by-Evensen (1994)) is a popular and tractable approximation, which also allows for
non-linear systems to be treated. The EnKF exists in many flavours (e.g. in ‘stochastic’ (Burgers et al., 1998; Houtekamer and
Mitchell, 1998) and ‘square-root’ forms (Bishop et al., 2001; Whitaker and Hamill, 2002)), which, like the basie-standard KF,
are all based on Bayes’ theorem, and assume that errors in observed, prior, and posterior quantities are Gaussian distributed.
Under the EnKF, the prior distribution is described by an ensemble of model forecast states, and the posterior distribution by
an ensemble of posterior states found by assimilating current observational information. This makes the EnKF suitable for
model-based forecasting systems.

Ensemble Kalman filters, applied either on their own, or hybridised with variational approaches, have shown success in
numerous geophysical applications—Fer—: for example in meteorological applications with the Canadian forecasting system
(Houtekamer et al., 2005), with the NCEP global (Hamill et al., 2011; Wang et al., 2013) and regional (Pan et al., 2014)
models, and the WRF model (Zhang and Zhang, 2012); in ocean analysis (van Velzen et al., 2016); in ocean and sea ice
analysis (Sakov et al., 2012); in atmospheric chemical analysis (Skachko et al., 2016); and in surface trace gas analysis (Feng
et al., 2009).

The-However all filtering problemproblems, as noted above, inelades—include only past and present observational data,
but this can be extended to a smoothing problem, which ean-also-use-also uses observations within a future time window,
usually referred to as the lag te-g—TFodtingand-Cohn-t1996))—(e.g., Todling and Cohn, 1996). Kalman smoothers ((5sKS) are
made possible by the construction of cross-time error covariance matrices that link the observations at future times with the
current analysis, often up to some maximum lag time. A smoother analysis will therefore use more observational data than a
filter analysis and should therefore provide a more accurate state estimate. This would seem particularly relevant for reanalysis
applications when full time series of past and future observations are available for constructing system states. Various smoothers
have been proposed for use in the geosciences (e.g. Evensen and van Leeuwen (2000); Ravela and McLaughlin (2007); Bocquet
and Sakov (2014)). These smoothers-have been proposed for both reanalyses, e.g. Zhu et al. (2003), and parameter estimation,
e.g. Evensen (2009). Just like the EnKF, the ensemble Kalman smoother (EnKS) uses an ensemble of model realisations to
estimate the error distribution of the model forecasts, which can be very efficient.

The KS has been shown to be effective in various applications. For example, Zhu et al. (2003) designed a meteorological
reanalysis system using a fixed-lag KS, and Khare et al. (2008) with longer lags; Cosme et al. (2010) developed an EnKS for
ocean data assimilation; and Pinnington et al. (2020) used KS techniques for land surface analysis. These applications theugh
rely-on-all rely on calculating the cross-time covariance matrix (either explicitly or implicitly) for the smoothingpreblem:.

For large operational forecasting and reanalysis systems, especially for high resolution global ocean, climate or Earth system
models, which contain substantially long timescale processes of up to weeks or months, running a smoother with a reasonably
long lag could be very expensive in computation and thus impractical. Even for the relatively cost effective EnKS, the ensemble

anomaly matrix for each time-step could consist of billions of elements, which takes large chunks of computer memory space.
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In addition, it would not be easy to retrofit smoothing code into an operational data assimilation system that has been developed
over thousands-of-persen—years-decades primarily for initialising forecasts. For reanalysis products developed in this way a
simpler post-processing approach to smoothing could be very valuable.

Dong et al. (2021) recently proposed a new smoother designed to be used offline through post processing of a filter analysis.
It was based on the simplifying physical assumption of decaying error covariances across time, resulting a formulation similar
to an autoregressive model. This smoother uses only the filtering increments, without needing to seek other information. The
method was shown capable of improving the Met Office GloSea5 ocean reanalysis (MacLachlan et al., 2015), reducing RMSE
against both assimilated and independent data, and producing more realistically smooth temporal variability for important
quantities such as ocean heat content.

In this study we further explore the characteristics of the Dong et al. (2021) smoother as an approximation to the Kalman
smoother framework. We demonstrate that with proper assumptions, this method can be reproduced by-within an extended
Kalman smoother and an Ensemble Kalman smoother, in the latter case retaining the benefit of the ensemble’s flow dependent
covariances. We also extend the theory to show how the uncertainty estimates of the smoothed analyses can be obtained from
post processed filter information. The full and approximate smoother approaches are implemented in the Lorenz 1963 model
and the results compared. We show that the Dong et al. (2021) post processing method produces intermediate error results
between the filter and the full Kalman smoother, without costing significant computer time or adapting the filter codes.

Section 2 presents-the-m

ere

mmgk%mmm theory is extended to the-smoothed-uneertaintiesinclude
the simplified smoothing of uncertainty estimates. Section 3 presents the implementation of the extended filter/smoother, in
both the full and approximated forms, in the Lorenz 1963 system. Section 4 adapts the methods presented earlier for appli-
cation for the EnKF/S and presents both full and approximated results for these assi

smethods, also in the
Lorenz 1963 system. Section 5 is a discussion of the applicability of these approximations in larger models, were the simplifi-
cations should allow for post preeess-processor smoothing of operational reanalysis products;-and-seetion-. Section 6 presents
conclusions and recommendations for stored variables that would allow post processed smoothing in larger systems. The ap-
pendix reviews the conventional KF and fixed-lag KS equations, and shows fermally-the-approximations-thatare-applieds-more
formally where approximations are applied which lead to our simplified smoothing atgerithmalgorithms.

2  Methods
2.1 The simple smoother method

In Dong et al. (2021), a simple smoother method (hereafter referred to as DHM) was presented for application in operational
ocean reanalysis products, where the original analysis had been performed with a purely time sequential approach, as ased-in
forecasting situations when future data are never available. This simple approach was designed to use the archive of increments
to create a post hoc smoothing of the original reanalysis. Dong et al. (2021) showed the positive impact of this smoothing on

both a full ocean reanalysis and also on the low-dimensional Lorenz 1963 system. The algorithm appliee-is as follows. Let A,
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be the forward sequential (filtering) analysis at time ¢, and I, be the analysis increment field used to produce A;. The smoother

solution at time ¢ is denoted .S;. The smoother algorithm is then written as follows, firstly for Sy:
So=Ao+valr + oL+ Vol + Vil + ..., (1

where 0 < 7y, < 1 is the increment decay rate per analysis time window, so that analysis increments from future analysis times

decay in their influence on Sy. Similarly for Si:
S1=A+vala + 0 s+ oL+ s+ )

By rearrangement we get

So=A0+7.(S1—A1+1) = Ao+ SI, 3)
with
SIy=74(SI + 1), “4)

where SI; = S; — A; defines the ‘smoother increment’. These recursive relationships allow the smoother to be applied as a
post processing algorithm, swhieh-+is-run backwards in time starting with the final sequentially analysed time window, using the
stored archive of analysis-filter increments. It will be convenient later to define the increment decay per model timestep which
we will write as just v where vV = ~, and N is the number of model timesteps between filter analyses. Later we will assume
each analysis window consists of one timestep ;-therefore-with /N = 1 and v = 7,. The decay timescale 7 associated with the

smoothing is then-given, in medel-timesteps dt, by
T=—=6t/(Inv), ®)

which is effectively a measure of the smoother lagwhich-is-not-given-an-exphieit-maximum-entotf—, This equation can also be
re-arranged to be v = e~ implying an exponential increase of the forecast error. These smoother Egs. 1 and 2 do not have a
fixed lag cutoff, unlike the fixed-lag smoothers discussed below.

Below-we-We now discuss how this simple smoother is related to the conventional KS approach (a more formal proof of the

equivalence is given in the appendix).
2.2 Extended Kalman filter and extended Kalman smoother

We start from the classical extended Kalman filter (ExtKF) and fixed-lag extended Kalman smoother (ExtKS) fermulation
formulations, in which a tangent linear model is used for error covariance propagation when the model is nonlinear. We-wilt

use-superseripts-Superscripts f,a, s to-describe filter forecasts, filter analyses, and smoother analyses respectively. The analysis

of the Kalman filter at time % is given by

xi = x] + K& (yr — Hi(x])), 6)
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where the subscript represents the time step, x € R™ is the n-dimensional state vector, y € R™ is the observations, Hy, is
the observation operator. In the ExtKF, the observation operator and the model can both be nonlinear, where the state vector

evolves with a model x; = M (xj_1).

K¢ € R™*™ is the Kalman gain for the analysis, which is given by;

¢ = P/H] (H,P{H] +R;)™", %)

with P£ € R™*" being the forecast error covariance matrix, Ry € R™*™ being the observation error covariance, alt-at-the

eurrent-and T being the transpose operator, all at timestep k. The-Here, instead of the non-linear observation operator, the
tangent linear approximation, H; € R™*" is used, and the tangent linear model, M ;. € R™*"_ of the nonlinear model is used
for the propagation of the forecast error covariance matrix, P/ = M, P!/ MY Finally the analysis error covariance can be

derived from the forecast error covariance as follows:
P =P -K{HP|. ®)
For the fixed-lag ExtKS, Todling and Cohn (1996) (hereafter TC96) derive backward looking equations for the smoother,
which run interleaved with every filter timestep, however here we will present forward looking equations aimed at expressing
the fully smoothed state, including contributions from multiple future filter steps, as presented for the simple smoother in Egs.
(1)-(5). The full equivalence between TC96’s and our notation is demonstrated in the appendix.

The contributions from observations at time-step-timestep k + £ to the smoother solution at timestep k can be written in the

same Kalman gain notation as;_
K; e (Ve — Hise(xL, ). )

We note that if filter states are only stored at some assimilation frequency, eg. once per day, the index ¢ could-be-defined-as
: L i H nly-introdueed-at-regalar-analysis-intervals—can be defined

at the same frequency as these filter increments, as smoother states are only required at the same frequency as the stored filter
states.

The full smoother solution for timestep k leekingforward;-is then obtained by the summation of smoother increments for
from all future timesteps (here assumed truncated to maximum lag L) as;_

L

i =X+ Y Ko (Yhre — Hipe(xLy ) (10
=1

(see the-appendixfor-the-derivationappendix). The cross time smoother gain matrix is simply a modified version of the standard

ExtKF gain, and can be writtenas-;

K} e = ProppH (H P HE  + Rp) ™ (11)
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There is a subtlety here because in the full-FE96-smoother-appendix we will see that the cross time error covariance Py, ;¢
is not independent of Py, ;1. However, this will not be relevant-the case in the simple smoother approximation as applied
below.

At-this-peint-we-To introduce the key simple smoother approximation when-we re-write the cross time error covariance as
a simple-decayratedecay rate, and consequently also neglect any inter-dependence of smoother contributions from different

times:

P~ 7P, (12)
which is equivalent to assuming

K e 7 Kl (13)

This Eq. (13), when substituted into Eq. (10), clearly expresses the approximation being made to recover the simple smoother
solution from the ExtKS equations:

L

xi R Xt D Y Ko (Ve — Hire(x] 1), (14)
(=1

whieh-when-When using Eq. (6) then-this gives

L

xp x4 7 o, (15)
=1

where 1o =x3,, — x£ _¢» Teproducing the simple smoother under the additional assumption that L >> 7 in Eq. (5). The
smoother is now defined entirely in terms of the sequential analysis increments which allow post processing from an archive
of increments from the sequential filter run. Another way to interpret this approximation is to say that the spatial and temporal
error covariances in the KS are assumed separable, with the spatial (and cross-variable) error covariances being determined by
the KF equations, but the temporal covariances (from times k + ¢ to k) being approximated by a simple decay. We will return
to this description later when we seek to extend the approximations to the ensemble-KS-EnKS case.

It is also possible to make the equivalent approximations to the smoothed uncertainties. For each smoother increment intro-

duced, Eq. (9), there will be a corresponding reduction in the smoother error covariance given by;

K7 o HirtProyoks (16)

so that the fully smoothed error covariance can be written as

L
r=Pi— ZKZ)k+ng+£Pk+Z,k;a (an
=1

(see the-appendix). Then, making the simple smoother approximation, Egs. (12) and (13) shere-gives-give

L

PR PL=Y KL H P, (18)
=1



Now returning to use Eq. (8) we finally obtain

L
180 P;~Pj—> 7Py, (19)
£=1
where IP = P£ ¢ — Py, are the filter error covariance increments, mirroring Eq. (15), the simple smoother equations for
the increments. The smoothing equations (15) and (19) could clearly both be written in recursive format like Eq. (3), for ease
of post processing. In the following sections we investigate how well these approximations work through comparisons in the

Lorenz 1963 system.
185 3 Extended Kalman Smoother experiments in the Lorenz 1963 system

3.1 Assimilation setup

A twin experiment using the Lorenz 1963 model (Lorenz, 1963), hereafter L63, was carried out to evaluate the smoother. The
L63 uses the classical setup with model equationsef:

dx

bl _ 2
o oy —x) (20)
dy
1 = = —y— 21
90 gt pr—1y—TZz 2n
dz
7t zy — Pz, (22)

where the standard model parameters are chosen as 0 = 10;p = 28; 8 = %. All experiments are run for 20 time units, with each

time unit consisting 100 timesteps of 0.01. We performed a ‘truth’ run first with z,  and 2 values of 5 as the initial condition.

Observations are assigned for x, y with frequency of every-5 and 20 timesteps respectivelyand-error-standard-deviation-, and
195 Gaussian errors added with standard deviations of 2. No observations are taken for z.

Dong et al. (2021) used 3DVar for assimilation into L63 and they used a fixed background error covariance from-a-climatological
based on variability from another 163 run. Here we ran the extended Kalman filter (ExtKF) and extended Kalman smoother
(ExtKS) with 100 different initial conditions, but-where the background error covariance is modelled. However with this
assimilation frequency we found that to avoid filter divergence we use-needed a hybrid forecast error covariance, retaining a

200 5% weighting of the L63 climatological covariances in the background error. The fixedtagsmoeother-tses-smoother uses fixed
lag L = 40 timesteps, as we found that errers-of-thistag-are-smaller-than-otherlags-in-our1-63-this lag gives smallest errors in
our experiments.

The simple smoother (DHM), Egs. (1)-(5), was executed with v = 0.9 when the smoothing results have smallest error
as-compared to other <~values (experiments not shown). The-reasons—for-this-appeartater—We also ran a modified Kalman

205 smoother (MKS) using the approximated cross time Kalman gain as in Eq. (13). This is implemented by directly substituting
the approximation into the full KS equations described in the appendix, in-erder-and is used to demonstrate DHM equivalent

results. The uncertainty estimation-estimates for the MKS smoother is also obtained in the same way.
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Figure 1. The RMSE timeseries for the ExtKF and ExtKS along with the modified MKS and the simplified DHM smoother in the L63
system for (a) z, (b) y and (c) z. The RMSE are averaged across 100 independent assimilation runs starting from different initial conditions,
assimilating observations from the same 20 time unit truth run. Only 2 time units of the run are shown to allow the behaviour around analysis

times to be clearly seen. Dotted green lines and blue lines are the posterior uncertainty STD estimates for the MKS and ExtKS respectively.

3.2 ExtKS Assimilation Results

Across the 100 member-ensembleassimilation runs, we calculated the root mean square error (RMSE) timeseries against the
truth for each smoothing method. Figure 1(a,b,c) show a portion of the (x,y, ) RMSE timeseries respectively, for the filter and
the different smoothing methods in the thicker-tines—Without-any-smoothing;for-solid lines. For most timesteps the KF errors
are larger than the smoother errors. The full ExtKS has smallest errors, however the DHM and MKS are almost identical and
lie in between those for the KF and KS. Also on Figure 1 are dashed blue-and-green-lines representing the ensemble-mean
average of the smoothed standard deviation (STD) uncertainty estimates for the ExtKS {runs (blue, Eq. (17)) and MKS {runs
(green, Eq. (19))respeetively—, respectively. It should be emphasised that these uncertainty estimates are calculated entirely
independently of the actual truth values themselves, which would not be known in a real assimilation problem. The level of

agreement between these uncertainty estimates and the tree RMSE-RMSE against truth is remarkable.
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Figure 2. As in Fig. 1 but the filter and smoother increments are shown, where the smoother increments where applied are additive to the

filter increments.

Time mean RMSE for z,y, z are summarised in Table 1, along with the uncertainty STD, where calculated, over the entire
20 time units of the runs. Both DHM and MKS provide an improvement on the ExtKF results by 60-70% relative to the
ExtKS improvements for x and y, although the RMSE for z is not reduced in DHM and MKS. This is perhaps because the
instantaneous error covariances between z and the assimilated x,y variables, as used in DHM, are insufficient to improve
z, whereas the full ExtKS allows some history of x,y evolution to be used in deriving z smoothing increments. The RMSE
numbers in parentheses are evaluated only at filter update timesteps where observation data are assimilated. These errors are
smaller than the al-time-all-timesteps RMSE by ~ 5%, as a result of the data assimilation at these timesteps. This is consistent
with the RMSE time series in Fig. 1where-thered-line-, where the Kalman filter (red line) usually declines sharply where data
are available. Fer-the-The smoother solutions, however, the-RMSEs-are-not-only reduced-at-these-times-but-as-smoothers; by

destgn;alse-yield-also yield much improved analyses in between observation timesteps.

Figure 2(a,b,c) show the actual x,y, 2 increments respectively, being introduced by the ExtKF and the different smoothers,

through the analysis times. In each case the smoother increments are additional to the filter increments, which appear clearly

as red spikes every 5 timesteps where data are available. Smoother increments in between analysis times can be seen, with
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Figure 3. Cross time error covariance decay rates for the ExtKS and the simple smoother. For the ExtKS the y axis is the smoother cross
time error covariance divided by the filter forecast error covariance, averaged for all times over the 20 time unit L63 run. This is compared

to the decay of 4* used in the simple smoother.

DHM and MKS increments being virtually identical, and-decaying backwards in time from each filter increment. The ExtKS
increments are more complex, sometimes being similar to the-DHM, but sometimes they can be considerably larger.

If we look at the mean ratio of cross time error covariances relative to the filter forecast error covariances, in comparison to
the simplified v decay representation across time in Fig. 3, we can understand something of the performance of the smoothers.
We do not expect these to be identical because the full cross time smoother covariances for larger lags, ¢, take account of
increments from intermediate times. For small tags-lag values the average cross time error decay rates are fairly similar,
however for larger lag values the model derived cross time error covariance ean-take-on average takes the opposite sign. This
happens on a similar timescale to the short oscillation period of x,y in L63, and is associated with the growing amplitude of
these oscillations, reaching larger and smaller x,y values before phase lobe transitions. This is a very model specific behaviour
and the simple smoothers-smoother’s v decay error covariances cannot represent this. This also explains why larger v values
make the simple smoother worse in L63, because larger-positive cross time error covariances would-then-be-used-are used for
larger lags when negative cross time error covariances should-be-used-for-largertagsare more appropriate.

The key point is that the simplified smoother DHM provides substantial improvement over the ExtKF while incurring very
little computational cost (no tangent linear model (TLM) runs and no storage of cross time error covariances) compared to
the ExtKS. The DHM smoother can therefore be applied entirely through post processing of the filter results. While this

was demonstrated in Dong et al. (2021), here we show more clearly how the equivalent MKS approximation is derived from

10
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the ExtKS equations and we also show how the smoothed uncertainties can be cheaply post processed and still give useful
information.

In the next section we extend the decay assumption for cross time error covariances to apply to the ensemble Kalman
filter/smoother equations which are much more relevant to large nonlinear models where direct modelling of error covariances

across time is in any case infeasible.

Method RMSE(z) STD(z) RMSE(y) STD(y) RMSE(z) STD(z)

KF 1.13 (1.09) 0.93 1.79 (1.73) 1.50 1.64 (1.62) 1.41

KS 0.75 (0.75) 0.50 1.10 (1.09) 0.74 1.36 (1.35) 0.98

MKS 0.87 (0.87) 0.76 1.29 (1.29) 1.25 1.64 (1.64) 1.28

DHM 0.87 (0.87) 0.76 1.29 (1.29) 1.25 1.64 (1.64) 1.28
Table 1.

Time mean RMSE against truth for the ExtKF and ExtKS, along with the modified MKS and the simplified DHM smoother for each variable
in the L63 system (see also legend for Fig. 1). Numbers in parentheses are mean RMSE at observation timesteps only (not independent data).
The time mean of the standard deviations calculated for the uncertainties are also shown as STD. Time averaging is now over the entire 20

time units of each assimilation run.

4 Ensemble Kalman Smoother experiments in the Lorenz 1963 system
4.1 Approximating ensemble error covariances

In the ExtKF/S, a TLM propagates the flow-dependent error statistics which are then used to calculate increments. However,
the TLM is-not-alwaysreliablereliability declines sharply with propagation time, for a system as non-linear as the L63 model.
The ensemble Kalman filter (EnKF) gives—can then give better results by estimating the error statistics with a finite ensemble
of state realisations propagated by the full nonlinear model, rather than by a TLM. This improves-can then improve the quality
of the forecast error covariance matrix. However, the update gains for the EnKF and ensemble Kalman smoother (EnKS) are
defined identically to Egs. (7) and (9) respectively, although the error covariances, PfC (the error covariance at timestep k)
and Py, ;.. (the error covariance between timesteps £ and k 4 ¢) are calculated differently, being emulated from the limited
ensemble of state vectors whose variability represents the uncertainty of the system. While ensemble filter methods are-starting
to-be-have been adopted for larger environmental models, these have not generally added smoother steps because the cost to
store, update and apply posterior ensemble covariances still makes ensemble smoother methods generally infeasible.
However, these constraints can again be overcome by retaining the EnKF flow dependent ensemble spreads to represent
current errors, while making a simple decay approximation for the time shift error covariances, similar to our modified ExtKS
in Sect. 2.2. For comparison purposes, we demonstrate this method by starting with the forecast error covariance estimate in

general form-of- EriKS-EnKS form in state space, keeping the same notation as in the- MKS, although the actual computation is

11
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performed in the-ensemble space as in the ensemble-transform Kalman filter (ETKF; e.g., Bishop et al., 2001; Zeng and Janji¢,
2016).

T
Pl = XixX! (23)
where
f =f
Xf ;= (Xk:)Z _xk: 24
X} = Dk 24

is the normalised anomaly areund-the-meanof the ith ensemble member from the mean, in an N, member ensemble of forecasts.

The first step in the ensemble filter is to update the ensemble mean:
X =X}, + Ki(yx ~ H()), (25)

and the second step is to update the uncertainty, using Eq. (8). Then in order to regenerate the ensemble of analysis perturbations

the ETKF uses the transformation;
h=XLT, (26)

where T is chosen to ensure Eq. (8) is satisfied.

updates—Stmilarto-Then following the EnKF, the cross time covariances in the EnKS can be expressed in state space as
T
Prrre=Xp X5, (27)

As explained in the appendix, in-the-full-smoother-these-the full cross time error covariances are calculated between the filter
forecast (Xf€ ¢ in the EnKS) and previous partially smoothed states (X}, again in the EnKS), which require both past ensemble
means and error covariances to be repeatedly smoothed. However, this is not necessary for the modified (simple) ensemble

smoother, which we will-here call MEnKS. The ensemble mean smoothing using Egs. (13) and (10) can be written:

L

xj, A X}, + Z'VZKzM (Vi — Hite (x§c+£))’ (28)
(=1

and then Eq. (18) can be used to obtain the smoothed uncertainties.

This is a great simplification because to perform full ensemble smoothing would require the whole past ensemble to be
stored at all times and re-processed. Equation (19) suggests that the error covariance increments must also be stored during the
EnKeF filter phase which weuld-could still be a large storage requirement for a big modelbut-, however in fact only the diagonal
elements of P* are likely to be of interest, i.e. the uncertainty variance of the state fields, or even just a subset of these, so only
a smaller set of uncertainty increments may need-to-be-stored-be of interest to store for post processing through Eq. (19). In the

next subsection we show results from applying these approximations in L63.
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4.2 EnKS Assimilation Results

Using the same L63 twin experiment as in Section 3 we solve both a full smoother (EnKS), and using the modified (MEnKS)
algorithm Eq. (28). To be consistent with the extended KS configuration, we use an ensemble size of 100 and a fixed lag of
40 timesteps for smoothing. Figures 4(a,b,c) show the x,y, 2 RMSE and STD uncertainties, respectively, from these Ensemble
Filter and Smoother runs in the same format as Figures 1 for the Extended Kalman filter.

These ensemble results are seen to produce lower RMSE than the equivalent ExtKF/KS results, c.f. Fig. 1, demonstrating
the superiority of the ensemble assimilation method in dealing with the nonlinearity of the L63 model. Again the EnKS
substantially reduces the RMSE compared to the filter, and again the approximated simple ensemble filter MEnKS gives
intermediate RMSE results with much less computational effort than the full EnKS. Although not as optimal as the EnKS,
the simplified MEnKS shows much smoother temporal evolution of the RMSE ;-whieh-wilt-than the filter, which would be
a significant improvement if eg. applied to an ocean reanalysis. The post processed uncertainty estimates also reproduce a
reasonable estimate of the true RMSEs of the smoothed ensemble mean analyses.

Figures 5(a,b,c) show the mean x,y, z increment timeseries, respectively, for the ensemble filter and the 2 smoothers. The
increments are smaller than those from the ExtKF/KS —in Fig. 2, reflecting the improved assimilation approaches. Table 2

summarises the average RMSE and STD uncertainty results over the full 20 time units of the Ensemble-ensemble runs.

Method RMSE(®x) STD(x) RMSE(y) STD(y) RMSE(z) STD(z)

EnKF 0.82 (0.79) 0.66 1.26 (1.22) 1.03 1.23 (1.21) 0.99

EnKS 0.50 (0.48) 0.39 0.69 (0.69) 0.56 0.90 (0.89) 0.74

MEnKS 0.66 (0.66) 0.57 1.02 (0.96) 0.87 1.15 (1.15) 0.90
Table 2.

Time mean RMSE and STD uncertainties for each variable in EnKF, EnKS and MEnKS in the L63 model, averaged over time unit 1-20;

numbers in parentheses are RMSE calculated at timesteps with observations only (no independent data comparison). Lag=40, v=0.9

5 Discussion

The aim of this paper is clearly not to present an improved data assimilation approach for simple models but to explore traceable
simplifications to current assimilation approaches which could be applied to high-dimensional models. In particular ocean and
earth system models are starting to be used for reanalysis of past climate states using essentially the same codes that have been
developed for operational forecasting, especially of the atmosphere i.e. sequential "filter" codes. Even when 4D Variational

approaches are being used, eg. at ECMWE, the effective temporal smoothing window timescales are generally short reflecting

atmespherie-timesealesthe validity of adjoint modelling for the atmosphere. In these cases Kalman smoothing approaches
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Figure 4. As in Fig. 1, but for EnKF, EnKS and MEnKS.

could still yield tangible benefits especially for long timescale process variables associated with the earth system, and when
reanalysing using sparse historical observing systems.

However there are still further challenges to applying smeething-smoother algorithms in real large systems. In Dong et al.
(2021), the simple smoother was applied to an ocean reanalysis and it was found that the smoothed analysis gave reduced errors
compared to the filter, against independent, unassimilated, data. However it was also noted that problems can occur when
observations or model are biased. Biased increments can be detected when the same increment gets repeatedly assimilated
produced by the filter, which is a signal that the model is unable to retain the information. While this may not invalidate the
filter analysis it could have a very detrimental impact on smoothing when multiple versions of the same increment may be
added without the model being re-run. While bias can be allowed for if it is identified prior to smoothing, any real application
of smoothing needs to consider this carefully. This is perhaps another reason to prefer smoothing as a post processing step
when bias assessments can be made beforehand, rather than as an integrated part of a sequential forward analysis as it is
usually presented in the literature (Todling and Cohn, 1996; Evensen and van Leeuwen, 2000; Bocquet and Sakov, 2014).

Another option not explored herebecause-, —because L63 is too simple, is the ability to tune the v decay timescale for different

state variables. In Dong et al. (2021), this was suggested as allowing subsurface ocean increments to decay more slowly than
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surface increments, for example. In the notation used here v would then become a diagonal decay matrix multiplying the
forecast error covariance to convert to a cross time error covariance.

A key benefit to smoothing in real systems would be to bring influence from observations made in the near future where none
have been available in the near past, eg-for instance, after deployment of new observing platforms. A key difference between
our approach and using a full smoother is that in a full smoother the cross time error covariances depend upon observations
previously assimilated within the smoothing lag time window (see Appendix). Thus a full smoother will reduce analysed
error covariances due to the influence of short lag future data first, and in-deingse-therefore will reduce the cross time error
covariances to be applied for longer lag future data, ensuring that the most important near future data has the biggest smoothing
influence. This shielding reduction of longer lag influences if shorter lag data are available is missing in the simple smoother
as presented, and could cause the application of the smoother to give peer-poorer results when very frequent observations are
available. Further simple modifications to take this into account might-could be envisioned, for example, allowing +y to reflect
upgrades in the observing network during the period of the reanalysis. Alternatively, uncertainty reduction information for
each future increment, as estimated through Eq. 19, could be used to truncate, or reduce -, for the smoothing of longer lag

increments through Eq. 15.
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Although we have proposed how these ideas could be used in ensemble systems we have not explored other challenges of
using ensembles in large model products. In particular localisation is often required to remove unrealistic error covariances
arising from limited ensemble sizes (eg. Petrie and Dance (2010);-and-when-). When extended to ensemble smoothing that
localisation may need to vary with lag for the cross time error covariances (eg. Desroziers et al. (2016)). Faced with such
challenges the simple smoothing method is at least explicit in its assumption that the spatial structure of the error covariances
are static while guaranteeing that cross time error covariances will always decay away with time.

We have included the smoothing of uncertainty estimates in the analysis here despite the fact that these have rarely been
attempted for previous large model reanalysis products even when only forward filter steps are involved. However, with the
recent trend towards ensemble analysis products, for both operational werk-andfer-and reanalysis systems, it seems-sensible
makes sense to ask how well uncertainty estimates do correspond to the errors in an idealised system where this can be evaluated
eg. against independent data. At the same timewe have-therefore-, we have demonstrated the ability to alse-evaluate smoother

uncertainty estimates, and we have found these firstresults very encouraging.

6 Conclusions

We have demonstrated that both the extended Kalman smoother and the ensemble Kalman smoother can be simplified to
use only a relatively small amount of information stored during a forward filter analysis. This permits the simple smoothing
approach to be applied through post processing. The essential novelty is to treat cross time error covariance information as
decaying exponentially on some tuneable timescale, rather than seeking to medelit-directhycalculate these covariances with
the system model. This allows stored state increments to be down-weighted and added to previous filter analyses. We also show
how the smoother uncertainty information can be post processed, provided the increments (changes) in the error covariances
between the forecast and analysis for each filter assimilation window are alse-stored. And we note that the error variance of
state fields alone could be smoothed, meaning that only 1 additional state field needs to be stored from each filter analysis.
The method has been demonstrated using assimilation runs of the Lerentz-Lorenz 1963 model, using the same idealised
assimilated data over a 20 time unit truth run, when starting the model from different initial conditions. Observational, but no
model errors, are being simulated. In both the extended and ensemble smoethereases-Kalman smoother cases, using the full
smoother appreaches-equations give the best RMSE results against the truth. However in each case the simple smoother method

still gives substantially imprevedRMSE-—results-over-thefilterreduced RMSE values compared with the respective Kalman

filters, typically giving around 56-6060-70% of the imprevements-obtained-from-the-full-smoothingerror reductions obtained
using the full smoother equations. We also include the RMSE evaluated only at filter analysis times, when the truth comparison

data isnotindependents-are not independent (observations from these times, albeit with added errors, have been assimilated
and still find that the smoother results still provide substantial improvements over the filter. We include these comparisons

because operational systems do not usually hold back independent data for assessment. The ensemble filter/smoother results
are substantially better than the extended filter/smoother results, as would be expected for such a nonlinear system as L.63. The
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simple smoother retains this benefit as the flow dependent ensemble filter error covariances are used-in-filter-analyses-and-itis
these-thatareretained, although down-weightedagain-, for the smoother’s cross-time errors covariances.

We also demonstrate the smoothing of the uncertainty estimates in both the ExtKS and EnKS systems. Remarkably the
uncertainty estimates, presented as the STD of the smoother state variances, are in very good agreement with the RMSE errors
actaally-being calculated against the truth. The uncertainties rise and fall over time similarly to the RMSEs as the model moves
through more stable and unstable regions of phase space. Uncertainty estimates are usually a little lower than the calculated
RMSE values. The simple smoothing approach gives higher uncertainties than the full smoother estimates but is in excellent
agreement with the simple smoother RMSE values.

We believe this approach offers a feasible offline post processing approach for improving reanalyses in real large Earth
system models. An initial paper with first results on smoothing the Met Office ocean reanalysis using stored increments was
presented in Dong et al. (2021). This paper demonstrates the traceable origin of the approach from Kalman filtering roots and
puts the methods in a wider context, including showing how it can be used in ensemble systems that are just starting to be used
operationally in order to get better representations of uncertainty.

To summarise the post processing requirements that would allow smoothing of large model datasets;

1. If increments from the sequential filter analysis are stored this should be sufficient to allow post processing of a smoother

solution.

2. If an ensemble product is being generated only the ensemble mean fields and ensemble mean increments would be

needed to obtain a smoothed ensemble mean solution.

3. If an uncertainty estimate is also needed for the smoother solution the minimum additional requirement would be to store

the increments (change-from-filterforecast-to-analysis)-of those components of the error covariance matrix of interest.

This may consist of the error variances of alt-state-fields-each state field, or only a subset of state fields, eg. only surface

fields from an ocean model.

4. If uncertainty information from an ensemble product is required the minimum additional storage requirement would still
only be the filter increments in the error covariance components of interest. The whole past ensemble analyses would

not be needed.

Appendix A: Formal derivation of the simple smoother system from the Kalman filter and Kalman smoother

equations

In order to show formally how our simple smoother system in Sect. 2.1 is related to the classical Kalman smoother, we start
with a brief summary of the Kalman filter (KF) and fixed-lag Kalman smoother (KS) formulations. We base our system of
equations on Todling and Cohn (1996) (hereafter TC96), which we use as our reference for the classical smoother and we

therefore adopt a notation similar to theirs. This is a more complex notation frem-than that of the main part of this paper, but is

neeessary-to-complete-ourproofuseful for complete traceability.
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Al Background to the Kalman filter and smoother

The analysis of the KF at time &, and its error covariance are given by

Xt = Xpjr + K (e = Halxp)). (A1)
Me = Pl — KipHiPhy o, (A2)
—1
where K = Pl HI (HiPL, HI +Ry) . (A3)

Here the subscript k|k — 1 indicates that the object is valid at timestep k, and has been formed from information-observations
up to and including timestep k — 1. States le x_q and XZ\ ., are the forecast state and filter analysis respectively at validity time
k, where Xllc@l 1 has been evolved by the model M, eg. Xi\kq = M(Xzfu «_1)- The forecast state error covariance Pi\kq
may be evolved by the model (as in the extended KF) or obtained from an ensemble of model state forecasts (ensemble KF),
but either way the analysis error covariance Eq. (A2) for PZ\k is obtained. The vector y} represents the observations at k,
whose model counterparts are found using the observation operator H;, via Hp, (le «_1)» and Hy, is the tangent linear operator
of Hy. Ry is the observation error covariance matrix, and Ky, is the Kalman gain. Equations (A1), (A2), and (A3) are the
same equations as (6), (8), and (7) respectively in the main paper, but using the TC96 notation.

For the classical fixed-lag KS of maximum lag L, an interval of L 4 1 timesteps are updated together after every filter
timestep. These L+ 1 states are valid for timesteps k, k—1, ..., k— L, and are to be updated by observations at timestep k. This
is the backward-looking scheme of TC96 which runs interleaved with the filter (below we use j to represent backward-looking
intervals). Prior to this update — and using a similar notation to TC96 — these states are xfﬂ b1 XZ—1| 1o e Xo_ Lik—1" These
are shown as the black states in Fig. Al(a). At this point, observations only up to k£ — 1 have been assimilated, which is reflected
in the notation, and so when 2 < j < L, superscripts ‘a’ refer to partially smoothed analyses generated only using observations
up to time k — 1. The state Xifu x_1 18 the pure k£ — 1 filter analysis and xfc‘ w1 18 the filter forecast for k derived from it. The
covariances of—and-between—, and between, these states are the black block matrices in Fig. Al(b), which are used to form
the gain matrices in the current update (below).

The fixed-lag KS states-determines how observations at & update the states at the above-previous time levels to give X}, ,
Xzfu oo s X Lik (the red states in Fig. Al(a)), and their covariances (the red matrices in (b)). The first state, xz‘ > and
its covariance, le «» are updated using the KF equations, but the remaining states, xz_j‘k, and their covariances, Pz_ﬂk,
(1 < j < L) are updated by the KS equations:

Xp_je = Xp_ji—1+ Kr—j (Yk - Hk(Xi\k71)> ; (A4)
a a fa
ke = Proje—1 — Kok HkPr k1 (AS)
—1
where Ky = Pt HT (HPL, HT +Re) . (A6)

The new objects are: x}_ ., is-, the updated smoothed state at k — j due to observations at k, and P%,_ ., is-, the corresponding
JjlkTo= L3 k—jlk™=
updated covariance. Both objects are obtained using Ky, _ 1, which is the gain for the smoother state at k—j due to observations

at k.
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(b) Update and evolution of the smoother error covariances.

Figure A1. Schema of the fixed lag KS of TC96. Panel (a) shows the update and evolution of the set of states within the fixed lag interval of
L+ 1 timesteps. The smoother update starts with the set of states in black, which are updated (or smoothed) by observations at & to the set of
states in red using Eq. (A1) for the most recent state (at the top), and Eq. (A4) for the remainder. The subscripts have the form k|p, where k is
the state’s validity time, and p is the timestep of the latest observations that have contributed to estimating that state. The Kalman gains (Eqgs.
(A3) and (A6)) rely on knowledge of the covariances in panel (b) (first column of the black matrix). The lag interval then progresses by one
timestep (blue box of panel (a)), where the forecast (blue state) is evolved from the latest analysis using the model. Panel (b) shows the update
and evolution of the error covariances within the fixed lag interval. The black matrix blocks are the error covariances of the set of black states
in (a). The diagonal blocks have a subscript of the same form as the states, but the off-diagonal blocks have subscripts of the form &, k’|p,
which correspond to cross covariances between timesteps k and k’. The smoother updates the black covariances to the red covariances using
equations not fully shown in this paper (see Eqgs. (37), (39), and (41) of TC96, which use information from the black matrices). The lag
interval then progresses, as it does for the states, by one timestep (blue box), where the extra covariances (blue) are propagated from the red

covariances using Egs. (46) and (47) of TC96 and the tangent linear model.
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To make these updates requires a new kind of covariance for errors between different times. These have a subscript of the
form k, k'|k — 1, which indicates that the covariance is between timesteps & and &', and has been formed from information up
to and including timestep k£ — 1. In the above sz_j, Klk—1 = (Pfjk_ﬂk_l)T are the covariances between errors in xz_ﬂk_l
and x?l w1+ Each sz_ k=1 is obtained from P¢* Jk—1]k—1 in Fig. Al(b) as separate covariance propagations (or from an
ensemble of forecasts in the EnKS) for each k — j. If the EnKS is being used, these error covariances are not derived directly,
but require all the partially smoothed ensemble members within the lag L to be retained. These are the same covariances as
those expressed in Eq. (27) in the trueated-main-text-main text truncated notation.

Equation (A4) is a version of TC96 Eq (26)given-in-TE96, (AS) is their (39), and (A6) is their (35). Notice that the same
error covariance matrix, Pfc‘ «_1» appears in the brackets in Egs. (A3) and (A6). The incremental part of Eq. (AS) is the same
as (16) in the main paper, Eq. (A6) is the same as (11), but here using the TC96 notation. There is no equivalent of (A4) given
in the main paper.

The KS system is advanced one timestep by propagating le & using the model, to xf{ 1k (the blue state in Fig. Al(a)),
giving a shifted interval of states (blue box in (a)). The covariances are propagated by the tangent linear model (the blue block
matrices in Fig. A1(b)), or by propagating the ensemble of new analyses, giving a shifted interval of covariances (blue box in

(b))

A2 Explicitequations_Equations for maximally smoothed states and covariances, and equivalence to the simple

smoother
Given the maximum lag, L, the sequence of states XS‘L,X?|L+1 , X;IL+2, ... (and their error covariances PSIL, P?|L+1 , P3|L+2, e
exploit the maximum amount of observational information as they have been updated with all L + 1 sets of futare-and-present

resent and future observations. These are the states that are analogous to Sy,.S1,5%... in Sect. 2.1. Other—states—in—this

appendix;—suech-as T\L’ Hy-—pa y—smoothed;—-but-are—s ded-as—part-o

m—For a general k,
the fully smoothed states here are le k1> Which can be found from cyclic application of the KS equations. By recursively
applying Eq. (A4) over the lag window, it is straightforward to find the following explicit full smoothing solution (rew-with
where superscript s as-is used in main textalthough-TC€96-and-Table-Ad-retain-«) in a forward-looking perspective (with ¢ to
represent forward-looking intervals):

L

Xk n =X+ Kijrrs (YkH - Hk+€(x§c+f\k+éfl)) (A7)
=1

(c.f. Eq. (10) in the main paper). Similarly, recursively applying (AS5) over the lag window leads to the following explicit
covariance of this smeething-estimate:fully smoothed estimate:

L

sa _ pa fa
Pijptr" =Py — E Kot e Hi e Py g pppre—1 (A8)
=1

(cf. Eq. (17)). We will now use Egs. (A7) and (A8) to show the necessary approximations needed to give the simplified

smoothing equations shown in Sects. 2.1 and 2.2.
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The fundamental approximation #s

ve-1s applied to the
cross time error covariances (as they appear in Eq. (A6))with-, using a temporal covariance decay by-writingand writing;

sz,j,k\kq ~ ’7jP1;c|k71 (A9)
(c.f. Eq. (12)). This is equivalent to writing Kj,_ 1, using Eq. (A6) and (A3), as
. -1 .
Ki—jx = Vprc\qug (HkaM,ng—&—Rk) =7 Kk,
which, by re-indexing, is Kyjpv =~ 7 Kpiorre (A10)

(c.f. Eq. (13)). Equation (A10) is in a forward-looking form, allowing it to be used in Eq. (A7):

L
sa . a 4 f
Xiker' X >V Kipapre <y1c+z - Hk+€(xk+é\k+é—1)) :
(=1

L
L f
K+ 27" (Reepire — Koo ) (Al1)
=1

where the last line follows from the first using the filter, Eq. (A1), allowing us to relate the simplified smoother updates to the
later filter increments. Equation (A11) is analogous to the simplified scheme of Eq. (1), where %mls the post hoc
smoothing analysis (5 in Eq. (1)), le & is the previous filtering analysis (Ap), and the terms in brackets form the filter analysis
increments at future times (I;). Compare also to Eq. (15).

It is also possible to make the equivalent approximations to the smoothed covariances, Eq. (A8). Using Egs. (A9) and (A10)
gives

L

sa ~ pa 2/ f
Priir* AP =YV Koo Hist Py gy 1
=1

From (A2), Ky kHHkHPfk eke—1 in the above is equal to the difference between the forecast and filter analysis error

covariance matrices, making the above

L
sa ~ pa )4 f a
P = Py — Z“YZ (Pk+€|k+£—1 - Pk+é\k+é> : (A12)
=1

This is the same as Eq. (19) in the main body of the paper, but ir-using the TC96 notation.

Code and data availability. Implementations of the L63 system for the Ext KF/KS codes and the Ensemble KF/KS codes are available
on Zenodo doi:10.5281/zenodo.7675286. The implementation here is based on the Python-based data assimilation templates DAPPER:
https://github.com/nansencenter/DAPPER
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