Opinion: Atmospheric Multiphase Chemistry: Past, Present, and Future

Jonathan P.D. Abbatt¹, Akkihebbal R. Ravishankara²

¹Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6; jonathan.abbatt@utoronto.ca
²Departments of Chemistry and Atmospheric Science, Colorado State University, Fort Collins, CO, USA 80523; a.r.ravishankara@colostate.edu

Abstract

Multiphase chemistry occurs between chemicals in different atmospheric phases, typically involving gas-solid and gas-liquid interactions. The importance of atmospheric multiphase chemistry has long been recognized. Its central role extends from acid precipitation and stratospheric ozone depletion, to its impact on the oxidizing capacity of the troposphere, and to the roles that aerosol particles play in driving chemistry-climate interactions and affecting human health. This opinion article briefly introduces the subject of multiphase chemistry and tracks its development before and after the start of Atmospheric Chemistry and Physics. Most of the article focuses on research opportunities and challenges in the field. Central themes are that a fundamental understanding of the chemistry at the molecular level underpins the ability of atmospheric chemistry to accurately predict environmental change, and that the discipline of multiphase chemistry is strongest when tightly connected to atmospheric modeling and field observations.
1 Introduction

When Atmospheric Chemistry and Physics was launched over two decades ago, Abbatt was invited to submit an article to the inaugural issue, which addressed the kinetics of the multiphase reaction between SO$_2$ and H$_2$O$_2$ on ice surfaces (Clegg and Abbatt, 2001):

\[\text{SO}_2 + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{SO}_4 \quad \text{R1} \]

This contribution built upon concepts described in a review article published a few years earlier by Ravishankara, which presented a conceptual view of tropospheric heterogeneous and multiphase chemistry (Ravishankara, 1997). Both authors value the opportunity to contribute their opinions on the evolution of our understanding of atmospheric multiphase chemistry. This paper will briefly describe multiphase chemistry, its origins, and the progress made in the past twenty years since the inauguration of Atmospheric Chemistry and Physics. It then focuses in depth on future research opportunities and associated challenges. In the 1997 paper, Ravishankara distinguished between heterogeneous and multiphase chemistry based on the extent of diffusion into the bulk. Over the years, it has become clear that diffusion depths vary continuously from solid-like substrates to dilute water solutions. Therefore, in this article, we use the term “multiphase chemistry” to include what was termed heterogeneous chemistry in the late 20th century. For the sake of brevity, the citations in this paper are illustrative and not comprehensive. And so, the reader is directed to in-depth reviews on specific aspects of multiphase chemistry (Ravishankara, 1997; Jacob, 2000; Rudich, 2003; Usher et al., 2003; Finlayson-Pitts, 2003; Kolb et al., 2010; George and Abbatt, 2010; Abbatt et al., 2012; Poschl and Shiraiwa, 2015; Burkholder et al., 2017).

One underlying theme is that understanding multiphase processes at the molecular level improves our ability to accurately predict atmospheric change, which in turn aids in developing sustainable environmental policy and practices. Positive impacts arise across multiple fields, from climate and air quality to human health and ecology. Another theme is that multiphase chemistry studies are most impactful when closely connected to the entire atmospheric science field, noting the interrelated nature of fundamental chemistry, field measurements, and atmospheric modeling that together constitutes the "three-legged stool" model of our field (see Figure 1) (Abbatt et al., 2014). Multiphase chemistry studies should be conducted to guide, interpret, and encourage field observations, and to quantitatively inform atmospheric models.
Figure 1: The atmospheric chemistry three-legged stool, where the legs are: i) atmospheric modeling, ii) field observations, and iii) development of a molecular-level understanding via experimental and theoretical studies of gas- and multiphase chemistry. The support ring represents the value arising from collaboration, training, and feedback that occurs across the field, along with the need to focus on fundamental science throughout. Figure credit: Zilin Zhou.

2. What is atmospheric multiphase chemistry?

Multiphase chemistry involves interactions of chemical species present in two or more atmospheric phases, including gas-solid, gas-liquid, and liquid-solid processes. These interactions typically require both chemical reactions and mass transfer, i.e., the movement of a molecule within a phase or from one phase to another. Also important are processes in the interfacial regions, which are the thin transition zones from one phase to another. Despite being very dynamic where the action occurs, with large fluxes of substrate molecules being exchanged between the phases, one can think of the interface as being a few-molecule-thick "boundary" between the phases at a given time.

To illustrate a multiphase process, consider R1, a key reaction leading to acid precipitation. Gas-phase reactants must first partition to the condensed phase, such as an aerosol particle, cloud water droplet, or ice crystal. Once molecules collide with the interface, intermolecular forces promote adsorption for a short period, during which they can diffuse and react via an interfacial process (see Figure 2). If diffusion into the bulk is sufficiently fast, they can also react in the bulk. In the case of R1 in liquid water, dissolved SO$_2$ forms HSO$_3^-$, which can be oxidized by dissolved H$_2$O$_2$ to form sulfate (Hoffmann and Edwards, 1975; Penkett et al., 1979). When the substrate is ice instead of liquid water, the reaction proceeds either at the gas-solid ice interface or within a thin, liquid-like layer prevalent on the ice's surface a few degrees below its melting point (Girardet and Toubin, 2001; Abbatt, 2003). The depth to which a molecule diffuses into the bulk before reacting is called the reacto-diffusive length, which can be...
very short - comparable to the size of a molecule for processes that only occur at the interface - and larger for reactions also occurring in the bulk (see Figure 2) (Hanson et al., 1994).

Figure 2: Multiphase reactions occur at the interface and within the bulk of condensed phase materials. Solids and high-viscosity liquids have short reacto-diffusive lengths, which largely restricts multiphase reactions to the interface. As the viscosity lessens and the reacto-diffusive length deepens, multiphase chemistry can occur deeper into the bulk phase. For reactions that proceed in the bulk, some component of the reaction may also simultaneously occur at the interface (as indicated by the dashed reaction arrow). Figure credit: Zilin Zhou.

3 How does multiphase chemistry differ from gas-phase chemistry?

Reactions between closed-shell molecules, though thermodynamically allowed, are slow in the gas phase because of large reaction barriers. However, the rates of multiphase reactions involving the same reactants (or suitably altered versions in the condensed phase) can be larger than in the gas phase, either because the free energy barrier to reaction is lowered or because the concentrations of reactants are enhanced in the condensed phase. To illustrate, SO$_2$ and H$_2$O$_2$ do not react efficiently in the gas phase, but oxidation with dissolved H$_2$O$_2$ can proceed once SO$_2$ dissolves in water and forms HSO$_3^-$. Moreover, the gas phase H$_2$O$_2$ is efficiently scavenged in clouds, enhancing its concentration for reaction. Thus, aerosol and particles are catalyzing such reactions.

Another example is the set of reactions that drive polar stratospheric ozone depletion (Solomon, 1999). Chlorine reservoir compounds such as ClONO$_2$ and HCl do not react rapidly in the gas phase. However, HCl partitions strongly to polar stratospheric clouds by either adsorbing to their surfaces or dissolving within them. For example, sorbed HCl dissociates in ice to form chloride ions, which are reactive with ClONO$_2$. As well, ClONO$_2$ can be
protonated in strongly acidic cloud droplets, or it may dissociate to form Cl+ and NO3-. Via mechanisms of this nature, the following net reaction proceeds:

\[
\text{ClONO}_2 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HNO}_3 \quad \text{R2}
\]

leading to the formation of Cl2, which is then released to the gas phase and is readily photolyzed, forming radicals that catalytically participate in gas phase ozone destruction in the Antarctic ozone hole.

Another distinguishing feature of multiphase chemistry is that it can lead to the formation of products that do not arise in the gas phase. Consider the acid-catalyzed nucleophilic reactions between sulfate and isoprene-derived epoxydiols that form organo-sulfate molecules and secondary organic aerosol (SOA) (Riva et al., 2019). Water molecules lower the transition state energies of such reactions. The solvent shell, which confines reactant partners via the so-called cage effect, can also promote novel products. For example, the formation of biologically-active secondary ozonides is facile in the condensed-phase ozonolysis of unsaturated fatty esters and triglycerides, arising from reactions of Criegee and carbonyl intermediates that form in the same solvent shell after dissociation of a primary ozonide (Zhou et al., 2019b, 2022). In the gas phase, the solvent shell is (generally) absent, so the carbonyl and Criegee intermediates fly apart, and secondary ozonides do not form so readily.

4 Early studies of atmospheric multiphase chemistry

Studies of aerosol and cloud chemistry have proceeded in concert with the development of the wider atmospheric chemistry field with many of the concepts of coupled reactivity and mass transfer initially developed by the process-oriented chemical engineering community (Dankwerts, 1970). Interest in multiphase reactions arose via the profound ways these sparse aerosol particles and cloud droplets can alter gas phase composition. As well, as described in more detail below, it is now evident that the reverse is also important, i.e., the gas phase alters the condensed media with important environmental consequences. Many aerosol and multiphase reaction studies were initially performed to develop parameterizations for atmospheric modeling. Even though this is still a major goal, much more effort is now given to understand the physico-chemical processes, which is essential for predictive capabilities.

Early studies of atmospheric multiphase chemistry arose from measurements of aerosol composition conducted over a half-century ago. Specifically, continental aerosol particles always contain a measurable quantity of ammonium, indicating the uptake of gas-phase ammonia to acidic particles (Lee and Patterson, 1969; Kadowaki, 1976). Furthermore, particulate chloride levels in the marine aerosol are depleted relative to their seawater abundance, replaced by sulfate or nitrate (Junge, 1956; Martens et al., 1973). This process was long thought to be the major source of gas-phase chlorine, whereby gaseous HCl is displaced from NaCl particles via the uptake of gas-phase strong acids:

\[
\text{H}_2\text{SO}_4 + 2 \text{NaCl} \rightarrow 2 \text{HCl} + \text{Na}_2\text{SO}_4 \quad \text{R3}
\]

Another early example of halogen chemistry demonstrated that volatile iodine species are released when dissolved oceanic iodide is exposed to either ultraviolet light or ozone (Miyake and Tsunogai, 1963; Garland et al., 1980).
This multiphase chemistry is now recognized as important for the dry deposition of ozone and the release of iodine into the atmosphere (Carpenter et al., 2013):

\[
O_3 + H^+ + I \rightarrow HOI + O_2 \quad \text{(R4)}
\]

\[
HOI + I + H^+ \rightarrow I_2 + H_2O \quad \text{(R5)}
\]

After such studies, as well as significant research into acid rain formation (e.g., Penkett et al., 1979) and stratospheric ozone depletion (e.g., Solomon, 1999), many additional important tropospheric multiphase chemical processes were identified prior to the launch of *Atmospheric Chemistry and Physics:* i) the formation of reactive halogen species in the boundary layer (Finlayson-Pitts, 2003; Simpson et al., 2015), ii) the uptake of tropospheric gases by mineral dust, especially nitric acid (Hansisch and Crowley, 2001; Usher et al., 2003), iii) the scavenging of trace gases, such as nitric acid and small oxygenated VOCs, by snow and ice crystals in the free and upper troposphere (Abbatt, 2003), iv) cloud water chemistry, leading to loss of HOx radicals (Chameides and Davis, 1982; Calvert et al., 1985; Jacob, 1986; Lelieveld and Crutzen, 1991), v) conversion of NOy to HNO3 on tropospheric aerosol, with impacts on the NOx budget (Dentener and Crutzen, 1993), vi) uptake of HO2 to aerosol (Mozurkewich et al., 1987; Martin et al., 2003), and vii) multiphase conversion of NO2 to HONO (Finlayson-Pitts et al., 2003). A critical point is that each of these multiphase processes affects the oxidizing capacity of the troposphere, frequently through modification of radical budgets. For example, these processes initiate oxidation in urban atmospheres through HONO photolysis, drive Arctic boundary layer ozone and mercury depletion via gas-phase halogen chemistry, and modulate the global oxidizing capacity via N2O5 or HO2 loss on aerosol particles.

5 Progress in the past twenty years

Two major developments profoundly influenced multiphase chemistry. First was the recognition of the importance of aerosol particles in changing the radiative balance of the Earth system, with impacts on climate. The second was the continued recognition of the deleterious effects of particulate matter on human, animal, and ecosystem health. These two fields, climate change and air quality, have provided the impetus (and resources) for the development of the field. As a result, multiphase chemistry studies did an about-face at the turn of the 21st century as the research focus shifted away from influences on the gas phase to the impacts that arise on the composition of the particles.

Once inhaled, particles harm human health (Murray et al., 2020), with recent studies implicating the secondary component of the particles in negative health outcomes (Pye et al., 2021). Research in the past two decades has focused strongly on the formation of SOA (Kroll and Seinfeld, 2008; Hallquist et al., 2009; Ziemann and Atkinson, 2012; Shrivastava et al., 2017), SOA formation has required better knowledge of the kinetics and mechanisms of gas phase oxidation of SOA precursors (Crounse et al., 2013; Ehn et al., 2014). It has also needed a more complete understanding of gas-particle nucleation processes (Kulmala et al., 2014; Trostl et al., 2016; Xiao et al., 2021), volatility (Donahue et al., 2011), and condensed-phase reactions that occur within aerosol particles. Specifically, volatility and multiphase reactivity can be coupled, as illustrated by the formation of high molecular weight, low volatility species within particles (Kalberer et al., 2004). While such oligomers and highly oxygenated species may also form in the gas phase (Bianchi et al., 2019), they arise via a variety of reactions involving pairs of organic
reactants, frequently forming esters and acetics/hemiacetals in the condensed phase (Tobias and Ziemann, 2000; Surratt et al., 2006; DeVault and Ziemann, 2021). These reactions may be acid-catalyzed (Jang et al., 2002). As well, multiphase oxidation by gas-phase O\(_3\), OH, and NO\(_3\) can increase the average oxidation state of organic aerosol particles (Kroll et al., 2011) via a series of reactions that initially functionalize and eventually fragment the component molecules (George et al., 2007; Kroll et al., 2009). Oxidation leads to a more soluble particle that increases its rate of wet deposition.

Tightly connected to SOA formation and modification processes are the condensed phase viscosity and phase state, which set mixing times within particles and are dependent on relative humidity and temperature (Koop et al., 2011; Renbaum-Wolff et al., 2013). Organic particles are likely glasses in the cold free troposphere (Shiraiwa et al., 2017), which slows SOA formation and restricts the degree to which heterogeneous oxidation can affect the aerosol composition. The particles are liquids in warm, wet boundary layers, with the full particle volume involved in partitioning with gas phase molecules. The large variation in molecular diffusion coefficients and associated mobility determines where chemical reactions are important in the particles, from two-dimensional processes that occur solely at the gas-particle interface to three-dimensional chemistry with reactivity both at the interface and deeper in the bulk (see Figure 2). Overall, diffusion is a key parameter for determining whether a reaction is surface-area-limited or volume-limited (Hanson et al., 1994).

Multiphase chemistry also leads to the formation of secondary inorganic aerosol. For example, the hydrolysis of N\(_2\)O\(_5\) converts NO\(_2\) to HNO\(_3\); the gas-particle partitioning of HNO\(_3\) is then controlled by temperature, relative humidity, and ammonia levels. As well, particulate sulfate is rapidly formed in polluted environments through multiphase aqueous chemistry, acting as the major formation mechanism in cloud-free settings (Cheng et al., 2016; Wang et al., 2016). Potential routes for fast sulfate formation in deliquesced particles include: the role of ionic strength in accelerating the rates of specific processes (Liu et al., 2020), fast interfacial chemistry (Liu and Abbatt, 2021), formation of condensed-phase oxidants through the photolysis of particulate nitrate (Zheng et al., 2020), and the role of specific particle-phase reactants, such as organic hydroperoxides (Wang et al., 2019), hydroxymethanesulfonate (Song et al., 2019), and dissolved transition metal ions (Li et al., 2020b). An accurate quantitative assessment of these reaction pathways is still developing (Liu et al., 2021b).

As noted earlier, the need to better understand aerosol-climate interactions has also motivated multiphase chemistry research in the past twenty years. Atmospheric processing leads to the formation of water-soluble condensed-phase products, such as sulfate or highly oxygenated organic molecules (Jimenez et al., 2009), enhancing the abilities of tropospheric aerosol particles to act as cloud condensation nuclei (CCN) and affecting their ability to scatter light (Cappa et al., 2011; Moise et al., 2015). As well, the optical properties of the fraction of organic aerosol that absorbs near ultraviolet and visible light (i.e., atmospheric ‘brown carbon’ particles) is subject to change via multiphase oxidation and condensed phase photochemistry (Laskin et al., 2015; Li et al., 2020a; Hems et al., 2021; Schnitzler et al., 2022). Although the rates of optical property changes remain uncertain, primary brown carbon particles, as formed in wildfires, tend to become less absorbing in the near UV and visible parts of the spectrum on
the timescale of days via a variety of multiphase aging mechanisms (Hems et al., 2021), i.e., they are ‘bleached’.

The diminution of light absorption is in accord with field observations (Forrister et al., 2015).

Multiphase chemistry can also affect the properties of ice nucleating particles (INPs), by both gas-solid and liquid-solid interactions. For example, mineral dust can have its IN activity decreased by condensation of involatile materials, such as sulfate or by cloud processing (Sullivan et al., 2010b; Kilchhofer et al., 2021), and strong acids can react with carbonate-containing minerals, leading to particles that are less IN-active in the deposition mode but more active in the immersion mode (Sullivan et al., 2010a). Such effects can also arise with the exposure of different gas and liquid species to volcanic ashes (Maters et al., 2020; Fahy et al., 2022). Oxidation reactions can also occur, so that efficient biological INPs, such as pollen fragments, lose activity upon oxidation by OH radicals, probably by morphological changes of surface proteins and carbohydrates (Gute and Abbatt, 2018). The mechanisms involving all these interactions are very complex. In the case of mineral dusts, immersion INP activity can be changed by surface modification, ion exchange, adsorption of solutes such as ammonium, and acid dissolution (Sihvonen et al., 2014; Kumar et al., 2019; Yun et al., 2021).

The future of atmospheric multiphase chemistry studies

6.1 Multiphase chemistry at the interfaces of the atmosphere

There are exciting opportunities for applying the conceptual, instrumental, and modeling tools developed for multiphase chemistry to understand chemistry occurring at the interfaces of the atmosphere with other environmental domains.

Consider the interface of the atmosphere and the ocean, where the sea-surface microlayer (SML) is a thin layer of ocean water that has enhanced concentrations of biological detritus, surface-active compounds, and gel-like substances (Cunliffe et al., 2013). Recognizing that individual molecule surrogates of the SML only capture specific aspects of the chemistry, experimental designs now involve either genuine seawater or water samples with significant biological components (Prather et al., 2013; Schneider et al., 2019). While we know that the SML can affect the composition of primary marine aerosol, an open question is the degree of chemical processing by photosensitization in the SML or by gas-surface heterogeneous oxidation, yielding volatile species that contribute to marine SOA formation (Donaldson and George, 2012; Rossignol et al., 2016; Mungall et al., 2017; Croft et al., 2019).

Another key role of multiphase reactions is in dry deposition processes on the ocean (e.g., see R4 and R5), vegetation, the built environment, and land surfaces (Garland et al., 1980; Fowler et al., 2009; Kavassalis and Murphy, 2017; Tuite et al., 2021). Deposition is a critical step that controls removing chemicals from the atmosphere. Yet, this process is essentially a parameterization in models. Deposition in many environments needs to be predictive, which demands molecular-level understanding and quantification. This process is essentially a
multiphase process that should be broken down into physico-chemical steps, which can be independently measured and understood.

Indoor environments, with their vast surface area-to-volume ratios, are another example of poorly explored multiphase processes (Morrison, 2008; Abbatt and Wang, 2020; Ault et al., 2020). Contrary to the outdoor environment, where aerosol particles may remain suspended for days to weeks, the indoor air-exchange timescale is on the order of an hour or two. While this lessens the potential for gas-particle chemistry, multiphase chemistry occurs over much longer timescales on fixed indoor surfaces. For example, O₃ is efficiently lost via dry deposition so that its mixing ratios are considerably lower indoors than outdoors (Weschler, 2000). This produces VOCs (Wisthaler and Weschler, 2009) and modifies the composition of sorbed molecules, in some cases forming species more toxic than their precursors (Pitts et al., 1978, 1980; Zhou et al., 2017). It can also lead to formation of gas-phase OH radicals (Zannoni et al., 2022). Indoor surfaces are a chemically complex, poorly understood environment, with input from building materials, commercial products, humans, and cooking and cleaning activities. This chemistry is important because humans remain most of their chemical exposure indoors, not only via inhalation but also through direct dermal uptake and by ingesting dust and contaminated foodstuffs (Li et al., 2019b). Lastly, the light environment indoors is substantially different than outside, bringing a new twist to multiphase photochemistry (Young et al., 2019).

6.2 Multiphase chemistry and human health

Although the results of epidemiological studies implicate aerosol particle inhalation as harmful to human health (Pope et al., 2009), the mechanistic relationship between atmospheric particle composition and negative health impacts remains elusive. The current epidemiology does not readily distinguish the specific molecules and formation pathways that lead to negative health outcomes, nor the toxicity mechanism. Although there is debate over whether oxidants are largely endogenous or exogenous (Fang et al., 2022), one hypothesis is that the biochemical balance between oxidants and antioxidants is upset by inhaling harmful species (Miller, 2020). To contribute to this debate, the multiphase chemistry community needs to better describe the chemistry that occurs at the lung-air interface and the composition of respirable aerosol particles, especially the biologically active components that contain reactive functional groups (e.g., epoxides, hydroperoxides), redox-active materials (e.g., quinones), and reactive oxygen species (e.g., peroxides, HO₂/O₂⁻). Many of these species are formed by multiphase oxidation processes.

An associated issue is how ultrafine particles influence health. These particles have been shown to be taken directly to the bloodstream and even move to the brain. Though the chemistry involved is not the multiphase chemistry discussed here, the interactions of the particle in the liquid phase (i.e., impacting biological systems) are likely important. Many of the lessons learned from studies of multiphase processes are likely applicable to understanding such issues.

Largely unexplored until the recent pandemic is the impact of the atmosphere on airborne and surface-deposited biological pathogens, including bacteria and viruses. Early work in this area included the multiphase chemistry between NO₂ and proteinaceous material, motivated by its potential to drive an allergenic response (Franze et al.,...
2005; Shiraiwa et al., 2012). As well, gas phase O₃ has been examined for its ability to affect the viability of bacteriophages, i.e., microorganisms with a lipid envelope and RNA core similar to the structure of SARS-CoV-2, deposited on surfaces (Tseng and Li, 2008). With the pandemic, research has accelerated into the impact of hygroscopic growth and water content on viral viability within respiratory particle surrogates that consist of viruses embedded in saline droplets containing surfactants, proteins, and carbohydrates. It is important to understand the changes in the acidity of these particles, the mass transfer within them, and the precipitation of salts as the particle water content changes (Lin et al., 2020; Oswin et al., 2022; Huynh et al., 2022).

The pandemic led to an emphasis on the cleaning of surfaces to reduce the potential for infection by fomites, i.e., via contact with contaminated surfaces. While cleaning agents such as chlorine bleach have well-established antimicrobial activity, their multiphase chemistry can release gases and particles that are deleterious to human health (Wong et al., 2017; Mattila et al., 2020). Understanding the multiphase chemistry associated with these cleaning activities and the outcomes of using air cleaners (Collins and Farmer, 2021), is essential for establishing healthy indoor environments.

Lastly, the pandemic prompted a re-examination of an overlooked aspect of our atmosphere that it has an as-yet-unidentified germicidal component referred to as the Open Air Factor (Cox et al., 2021). In particular, it was shown many decades ago that fresh air led to better outcomes for tuberculosis patients and injured World War I soldiers than indoor air. Historically, sending sick people to pristine environments (e.g., the seaside) was a common medical recommendation. It is not clear whether this effect is related to multiphase chemistry at biological surfaces.

Each of the above topics provides exciting opportunities for atmospheric chemists to collaborate with the environmental health, medical, and toxicological communities.

6.3 Chemistry of the free troposphere and lower stratosphere

Although the upper troposphere – lower stratosphere region was the focus of much attention in the 1980s and 1990s to understand the changes in ozone levels in these regions, most multiphase chemistry studies are currently conducted at room temperature. There is considerable motivation to re-explore chemistry at colder temperatures, given past work that illustrated the atmospheric impacts of a strongly non-linear dependence of multiphase reactions rates on temperature (Murphy and Ravishankara, 1994) and extensive new observations from the Atom campaigns (Thompson, 2022) that sampled from the boundary layer to the upper troposphere over many latitudes and seasons.

As well, there is emerging evidence for organic aerosol in the lower stratosphere, likely arising from wildfire injection, with potential influence on stratospheric ozone (Solomon et al., 2022; Strahan et al., 2022). Organic aerosol viscosity and phase state depend on the environmental conditions (Koop et al., 2011), with semi-solid and glassy organic particles predicted throughout much of the free troposphere (Shiraiwa et al., 2017). Aside from those at the gas-particle interface, molecules in highly viscous organic particles are protected from heterogeneous oxidation (Shiraiwa et al., 2011; Zhou et al., 2012). Such protection increases the lifetimes of pollutants, e.g., brown carbon chromophores (Schnitzler et al., 2022), and lengthens particles’ oxidation timescale and wet deposition lifetime. In addition, we need to better understand cloud chemistry at cold temperatures,
especially under supercooled water conditions. As well, we lack a well-validated model for the retention of molecules in supercooled water droplets as they freeze to form ice; the retention efficiency of dissolved solutes affects the composition of convective outflow from deep cloud systems.

A key factor affected by temperature is the solubility of various atmospheric constituents. Simple Henry's law constants and further equilibration steps that determine the overall solubilities are poorly known, especially below room temperature. Most of the data on the solubilities in organics goes back to chemical engineering literature that is more than half a century old. Also, since solubilities vary according to Henry's law equilibria that vary exponentially with temperature, the accurate temperature dependence of solubilities is essential. Acid dissociation constants in organic acids and organic substrates are poorly known, and they determine the overall solubility of a chemical.

6.4 Reactive transformations of organic chemical contaminants

Over forty years ago, it was recognized that multiphase oxidation of chemical contaminants leads to the rapid loss of surface-bound PAHs and the formation of more toxic and potentially carcinogenic products such as nitro-PAHs and oxygenated PAHs (Pitts et al., 1978, 1980). These reactions occur on a variety of surfaces with light, ozone, and NO₂ reactants, some via Langmuir-Hinshelwood mechanisms (Poschl et al., 2001; Mmereki and Donaldson, 2003; Kwamena et al., 2004). Buried PAHs are protected from heterogeneous loss by a crust of unreactive products that accumulates upon them and, when present, within viscous organic aerosol (Zhou et al., 2013, 2019a), enabling the potential for long-range atmospheric transport (Mu et al., 2018). The chemistry of other organic contaminants, including smoking products such as nicotine (Destaillets et al., 2006) and tetrahydrocannabinol (Yeh et al., 2022), a few pesticides (Segal-Rosenheimer and Dubowski, 2007; Finlayson-Pitts et al., 2022), and organophosphate esters (Liu et al., 2021a), has also been recently explored.

However, these are largely exceptions, and the multiphase fate of most chemical contaminants, especially thousands of commercial products, has not been examined. Indeed, the atmospheric chemistry and chemical contaminant communities have traditionally not strongly interacted. Although assessment of the gas phase OH reactivity is customarily performed in environmental fate analyses (Li et al., 2019b), many commercial products have sufficiently low volatility that they reside primarily on surfaces or within particles. It is important to establish whether organic contaminants traditionally viewed as persistent are indeed unreactive with respect to multiphase transformation.

6.5 Understanding the role of light

Many condensed-phase photochemical reactions proceed via indirect mechanisms where a photosensitizing molecule absorbs light, forming reactive species such as HO₂⁻/O₂⁻ or ·O₂ (George et al., 2015). Such chemistry has been implicated in the daytime formation of HONO (George et al., 2005), the photoreactions of brown carbon aerosol (Laskin et al., 2015; Hems et al., 2021), the formation of active halogens (Reeser et al., 2009), and reactivity of black carbon (Monge et al., 2010; Li et al., 2019c). This chemistry has been illustrated using efficient photosensitizing agents, but quantitative assessments of atmospheric importance remain uncertain largely because
the character and quantity of atmospheric photosensitizers are not well established. Developing a tighter quantitative connection to the atmosphere will require using more representative photosensitizers, as now being done using marine aerosol components (Ciuraru et al., 2015; Garcia et al., 2021). For the troposphere, the wavelengths of interest are in the near UV and visible part of the solar flux.

In addition to sensitizing, light can also lead to direct photochemistry in some environments. Photolysis on ice and snow surfaces has been implicated in the formation of NOx in midlatitudes and polar regions (Honrath et al., 1999; Wolff et al., 2002), and the photolytic lifetimes of condensed phase organic hydroperoxides may determine their atmospheric lifetimes. It is important to recognize the absorption spectra of dissolved molecules can be different than those in the gas phase. Similarly, the quantum yield for the loss of the molecule and the products can be very different than in the gas phase.

6.6 Developments in Observational Capabilities

Our ability to characterize atmospheric composition continues to push the field of atmospheric chemistry forward. For multiphase chemistry, advances in analytical mass spectrometry have been transformative. Within the last twenty years, online characterization of aerosol composition has become commonplace (Canagaratna et al., 2007), studies of single particle composition allow us to observe the variability in mixing state and chemical diversity (Murphy et al., 2006; Prather et al., 2008), and offline filter sampling has progressed from the characterization of a few targeted species to non-targeted analyses using a range of mass spectral ionization methods (Papazian et al., 2022; Ditto et al., 2022). Identifying specific molecular "markers" for organics and functional groups is still somewhat uncertain; developing such identification would be very helpful.

The continued development of analytical techniques will enable increasingly sophisticated characterization of aerosol particles and environmental surfaces, with the opportunity to deploy the same tools in both lab and field settings. However, challenges are arising as well. Despite the rapid development of low-cost sensors, affordable instrumentation for the long-term characterization of aerosol composition in many locations is still lacking. The increasing sophistication of analytical instrumentation also continues to unveil the high degree of chemical complexity present. Whereas high-resolution mass spectrometry yields chemical formulae in real-time, there is often the need to identify chemical structures. This suggests that we should increasingly deploy separation techniques (e.g., chromatography, ion mobility) as front ends to our increasingly sophisticated mass spectrometric techniques (Krechmer et al., 2016; Claflin et al., 2021). There is also value to the expanded use of other classical chemical speciation methods, such as infrared (Russell, 2003) and NMR (Decesari et al., 2007) characterization of aerosol composition collected by filters. While these techniques have low time resolution, they provide complementary quantitative and functional group information and can be inexpensively deployed for long-term analyses in a wide range of environments. Such analyses will also help with the source apportionment of the aerosols.

Aerosol characteristics related to multiphase chemistry can be studied with increasingly sophisticated remote sensing techniques. These approaches have been applied for many years to polar stratospheric clouds, whose
composition and phase (via the degree of depolarization of a lidar probe) have been studied (Tritscher et al., 2021).

Another example comes from satellite measurements of solid ammonium nitrate particles in the upper troposphere, driven by the Asian monsoon that uplifts ammonia-rich continental air (Hopfner et al., 2019). It is important to determine the role of these particles in ice nucleation and multiphase chemistry.

6.7 Grappling with chemical complexity

Atmospheric aerosol particles and surfaces are morphologically and compositionally complex. This complexity can be enticing from a fundamental chemistry perspective as we disentangle mass transfer, phase separation, and reactivity. However, it can impede the development of an accurate, quantitative description required to inform an atmospheric model. It can also be constraining if we study the detailed chemistry and lose sight of its overall impact on climate, air quality, or ecosystem health.

With enough care, the rate constant for a gas phase, radical-molecule reaction can be measured with 10-20% accuracy (Cox, 2012). Atmospheric modelers rely upon this confidence level as they assess their predictions. It is humbling to consider the accuracy of the available multiphase kinetics data for the modeling community. Take for example the reaction of N_2O_5 with tropospheric aerosol, which has been known to impact NO$_x$/NO$_y$ and active chlorine levels, with a secondary influence on OH, O$_3$, and CH$_4$ (Dentener and Crutzen, 1993). Although studies started in the 1980s, new mechanistic insights on N_2O_5 heterogeneous reactivity are still arising (Sobry et al., 2019; Karimova et al., 2020). Laboratory reactive uptake coefficients for the hydrolysis of N_2O_5 range over one-to-two orders of magnitude, with larger values reported for aqueous particles composed of sulfate or soluble organics, and lower values for particles with less soluble organics and nitrate (Burkholder et al., 2020). Likewise, uptake coefficients inferred from field measurements or with genuine ambient particles vary by roughly an order of magnitude compared to those measured with laboratory surrogates (Brown et al., 2006; Bertram et al., 2009; Abbott et al., 2012; Phillips et al., 2016; Tham et al., 2018). The discrepancies between field and lab studies are undoubtedly due to complex and variable particle composition and phase state. Simply put, unlike the case with gas phase reactions, one of the “reactants” in this gas-particle reaction is highly variable. This complexity is exasperated by the changes in the composition, mixing state, and water content of the particle as it resides in the atmosphere.

Likewise, HO$_x$ loss on tropospheric aerosol may significantly impact ozone in high-NO$_x$ atmospheric regimes, as in East Asia. As particulate levels drop in such regions, HO$_x$ abundance and ozone mixing ratios will both rise (Martín et al., 2003; Li et al., 2019a; Ivatt et al., 2022). However, reported HO$_x$ uptake coefficients vary widely, from research group to research group and from the lab to the field (Burkholder et al., 2020), making modeling predictions highly uncertain.

Both bottom-up and top-down approaches can address chemical complexity. In the traditional bottom-up approach, the effects on the reaction system of step-by-step additions of chemical complexity are evaluated. This leads to a better understanding of the fundamental chemistry needed to develop our predictive abilities. Top-down approaches involve studying chemistry on ambient aerosol particles. This has been done for N_2O_5 and HO$_x$ aerosol uptake (Bertram et al., 2009; Zhou et al., 2021), for heterogeneous OH oxidation (George et al., 2008), and by using mobile...
reaction chambers to characterize SOA formation (Jorga et al., 2021). Another top-down method constrains the rates of multiphase chemistry using detailed, simultaneous measurements of gas-phase composition under a range of environmental conditions (Brown et al., 2006). Combining top-down and bottom-up approaches enhances our understanding of the fundamental science while ensuring that parameterizations for atmospheric modeling are accurate.

Increasingly sophisticated chemical models are addressing chemical complexity. Molecular dynamics simulations, coupled with ab initio calculations, are sufficiently advanced to usefully guide and interpret some laboratory studies (Fang et al., 2019; Yang et al., 2019). Whereas past computational methods only included a few solvent molecules, current dynamics models using state-of-the-art force fields can realistically simulate partitioning, surface adsorption constants, diffusion constants, and vapor pressures, representing an important point of contact to the physical chemistry and chemical physics communities (Tobias et al., 2013). For establishing some fundamental parameters that are hard to measure, such as the likelihood that a collision of a molecule with a particle leads to uptake by the condensed phase (i.e., a mass accommodation coefficient), the theory may be a preferable approach to experiment.

Multiphase kinetics models incorporate emerging insights from both the lab and theory. A successful approach has arisen in the indoor chemistry community where modeling groups using a wide range of tools, from molecular dynamics to large-scale computational fluid dynamics, interact closely with each other and with experimental scientists (Shiraiwa et al., 2019).

7 Concluding thoughts

- Multiphase chemistry has evolved alongside the wider field of atmospheric chemistry. While initial studies focused on its impacts on the gas phase, the field now addresses how chemistry affects particles. Although modification of aerosol composition has direct relevance to climate and human health, we should not lose sight of the connection of multiphase chemistry to the gas phase composition of the atmosphere.
- We need to understand chemical processes at the molecular level to improve our ability to interpret field observations and predict the nature of a changing atmosphere. Such fundamental understanding is unlikely to arise using artificial intelligence – machine learning approaches, which can only extrapolate to future environments using known chemistry and behavior. Reinforcing an approach based on physico-chemical understanding is necessary for detailed predictions of environmental change.
- There are significant research opportunities for the characterization of the chemistry that occurs at the interface of the atmosphere with the rest of the environment, such as studies of ocean-atmosphere interactions, indoor air, aerosol health effects, and pathogen-air interactions.
- With increasingly sophisticated experimental and theoretical tools, atmospheric chemical complexity becomes more apparent. While exciting, this presents challenges and constraints. We should emphasize not only highly detailed, molecular-level measurements but also more widespread and more prolonged timescale aerosol characterization that has less chemical specificity but nevertheless provides valuable insights; there is also a role for both remote sensing measurements and classical analytical techniques in this regard. This is akin to a need
to understand and quantify thermal gas phase reactions while also understanding and quantifying microcanonical reactivity.

- Measurements of many fundamental physico-chemical parameters such as solubility, diffusion coefficients, and liquid/solid phase reactivities are sorely needed.
- Multiphase chemistry studies conducted under conditions that match those in the atmosphere, including those of the free troposphere and lower stratosphere, are needed.
- Using the atmosphere as a laboratory to quantify rates of multiphase processes holds promise, with simultaneous measurements of many chemicals and other external parameters becoming more feasible through coordinated field measurements. Designing field studies with an eye toward quantification of the multiphase reactions is beneficial.
- The field of atmospheric chemistry is healthiest when there is extensive communication and feedback between the fundamental chemistry, modeling, and field observation communities. To keep the three-legged stool balanced and strong, multiphase chemists should interact widely with other atmospheric chemists, exploring training and collaborative opportunities that bridge the different legs of the stool (see Figure 1).

Author Contributions

Both authors contributed to writing the manuscript.

Competing Interests

The authors declare they have no conflict of interest.

Acknowledgements

Thank you to Will Fahy for comments on the manuscript.

References

Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D. R., Kulmala, M., McFiggans, G., Poschl, U., Riipinen, I., Rossi, M. J., Rudich, Y., ...

Tritscher, I., Pitts, M., Poole, L., Alexander, S., Cairo, F., Chipperfield, M., Grooss, J., Hopfner, M., Lambert, A.,
Luo, B., Molleker, S., Orr, A., Salawitch, R., Snels, M., Spang, R., Woiwode, W., and Peter, T.: Polar Stratospheric

K., Breitenlechner, M., Brike, S., Dias, A., Ehrhart, S., Fagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M.,
Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kurten, A.,
Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Mohler, O., Nieminen, T., Onnela, A., Petaja, T., Piel, F. M.,
Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipilaa, M., Smith, J. N.,
Steiner, G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P. L.,
Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and
Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature,

Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G., McNeill, V. F., Abbatt, J. P. D., and Chan,

Weschler, C.: Ozone in indoor environments: Concentration and chemistry, Indoor Air, 10, 269–288,

https://doi.org/10.5194/egusphere-2023-334
Preprint. Discussion started: 6 March 2023
© Author(s) 2023. CC BY 4.0 License.

