Enrichment of calcium in sea spray aerosol through bulk measurements and individual particle analysis during the R/V Xuelong cruise over the Ross Sea, Antarctica

Bojiang Su a, b, Xinhui Bi a, c, Zhou Zhang b, d, Yue Liang e, Congbo Song f, Tao Wang a, b, Yaohao Hu a, b, Lei Li b, *, Zhen Zhou e, Jinpei Yan b, Xinning Wang a, c, Guohua Zhang a, c, *

a State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

b University of Chinese Academy of Sciences, Beijing 100049, China
c Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
d State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
e Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
f National Centre for Atmospheric Science (NCAS), University of Manchester, Manchester M13 9PL, UK
g Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
h Key Laboratory of Global Change and Marine–Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

*Corresponding author: zhanggh@gig.ac.cn; lileishdx@163.com

https://doi.org/10.5194/egusphere-2023-322
Preprint. Discussion started: 24 March 2023
© Author(s) 2023. CC BY 4.0 License.
Abstract: Calcium is known to be enriched in sea spray aerosols (SSA), but its controlling factors and individual mixing states remain ambiguous. Here, we investigate the impact of various environmental factors on the water-soluble calcium (Ca$^{2+}$) distribution in SSA through R/V Xuelong cruise observations over the Ross Sea, Antarctica, from December 2017 to February 2018. We observed enhanced Ca$^{2+}$ enrichment in aerosol samples at lower temperatures (< -3.5 °C), lower wind speeds (< 7 m s$^{-1}$) and in the presence of sea ice. Further individual particle mass spectral analysis indicated that considerable fractions of calcium in SSA likely bind with organic matter (a single-particle type, OC-Ca), which may be neglected in current water-soluble estimation of Ca$^{2+}$ enrichment. Also, this is the first time that a calcium-dominated single-particle type has been observed in the Antarctic atmosphere. We suggest that a broader focus on individual OC-Ca and its subsequent environmental behavior should be included in future Antarctic atmospheric modeling. Given the context of global warming and sea ice retreat, an understanding of the mechanisms of calcium enrichment and mixing state of individual particles involved is valuable for further recognizing the aerosol-cloud-climate interactions in the Antarctica summer.
Key points:

- Enhanced Ca\(^{2+}\) enrichment in sea spray aerosol (SSA) was observed at lower ambient temperatures, lower wind speeds and in the presence of sea ice.

- Individual particle analysis revealed a large proportion of internally mixed organics with calcium particles in the Antarctic summer atmosphere.

- Organically complexed calcium may be neglected in current water-soluble estimation of Ca\(^{2+}\) enrichment in SSA.

Key words: Sea spray aerosol; Calcium enrichment; Individual particle analysis; Environmental factors; Internally mixed organics with calcium particles; Antarctic summer atmosphere.
1 Introduction

Sea spray aerosol (SSA) govern radiative forcing by directly scattering and absorbing solar radiation over the remote ocean (Murphy et al., 1998), and they affect the microphysical properties of marine clouds by serving as cloud condensation nuclei (CCN) and ice nuclei (IN) (Wilson et al., 2015; Brooks and Thornton, 2018; Willis et al., 2018). Calcium is one of the components of SSA, which can present as inorganic calcium (e.g., CaCl₂ and CaSO₄) (Chi et al., 2015) as well as organic calcium (i.e., the most efficient gelling agent) (Quinn et al., 2015; Bertram et al., 2018; Carter-Fenk et al., 2021). The extent of enrichment and chemical signature of calcium may affect some physicochemical properties of SSA such as alkalinity and hygroscopicity (Salter et al., 2016; Mukherjee et al., 2020), which is critical for understanding aerosol-cloud interactions over the remote marine boundary layer (Keene et al., 2007; Leck and Svensson, 2015; Bertram et al., 2018).

A growing number of studies have shown that calcium (Ca²⁺) is significantly enriched in SSA relative to bulk seawater (Table S1) (Keene et al., 2007; Hara et al., 2012; Cochran et al., 2016; Salter et al., 2016; Cravigan et al., 2020; Mukherjee et al., 2020). For example, Hara et al. (2012) found that the Ca²⁺ enrichment of aerosol samples was sensitive to sea salt fractionation during the cold winter-spring season over the Antarctic coast. Leck and Svensson (2015) suggested that Ca²⁺ enrichment in SSA is attributed to bubble bursts on sea ice leads within the sea ice over the Arctic area. Similarly, low wind-driven bubble bursts were regarded as a major reason for the Ca²⁺ enrichment in SSA during an Arctic cruise (Mukherjee et al., 2020). These results have greatly improved the understanding of the processes contributing to Ca²⁺ enrichment; however, our
understanding of how environmental factors synergistically affect such enrichment processes remains unclear.

The enrichment extent of calcium and its chemical form in SSA have been deduced with water-soluble Ca\(^{2+}\). Two hypotheses have been proposed: (i) calcium enrichment is dominated by inorganic calcium, such as CaCl\(_2\) and CaCO\(_3\cdot6\text{H}_2\text{O}\) (ikaite), derived from wind-blown bubble bursts, calcareous shell debris and/or sea salt fractionation (Keene et al., 2007; Dieckmann et al., 2008; Hara et al., 2012). (ii) Ca\(^{2+}\) may bind with organic matter, which is relevant with marine microgels and/or coccolithophore phytoplankton scales, and can be emitted by bubble bursting (Oppo et al., 1999; Sievering, 2004; Leck and Svensson, 2015; Cochran et al., 2016; Kirpes et al., 2019; Mukherjee et al., 2020). The chemical form of calcium can significantly determine its atmospheric role, and inorganic calcium may exhibit stronger aerosol alkalinity and hygroscopicity than organic calcium (Salter et al., 2016; Mukherjee et al., 2020). However, because organic calcium has low water solubility (e.g., aged Ca\(^{2+}\)-assembled gel-like particles) (Orellana and Verdugo, 2003; Leck and Bigg, 2010; Russell et al., 2010; Orellana et al., 2011; Leck and Svensson, 2015), the commonly measured water-soluble Ca\(^{2+}\) may not precisely explain the calcium distribution in SSA. Thus, an understanding of the mixing state of individual calcareous aerosols may provide unique insight into the mechanisms of calcium enrichment in SSA.

As a part of the 34th Chinese Antarctic Research Expedition (CHINARE ANT34th), the aim of this study was to investigate the influencing factors and possible mechanisms of calcium enrichment in SSA through R/V Xuelong cruise observations over the Ross Sea, Antarctica. An in situ gas and aerosol composition monitoring system (IGAC) was employed to determine the
extent of Ca\(^{2+}\) enrichment in SSA. Single-particle aerosol mass spectrometry (SPAMS) was utilized to measure the size and chemical signature (i.e., mixing state) of individual calcareous particles. We first investigated the impact of environmental factors such as ambient temperature, wind speed, sea ice fraction, and chlorophyll-a concentration on Ca\(^{2+}\) enrichment in SSA. Then, the mechanisms of calcium enrichment in SSA were inferred according to the mixing state of individual calcareous particles.

2 Methodology

2.1 The R/V Xuelong cruise and observation regions

Two observations were carried out aboard the R/V Xuelong cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20 December, 2017, when the ocean was covered by sea ice. The second leg of the cruise (leg II) was carried out in the same region from January 13 to February 14, 2018, when basically no sea ice presents. Therefore, legs I and II were also regarded as the “sea ice period” and “the period without sea ice”, respectively, hereafter.

2.2 Metrological parameters and satellite data of air masses, sea ice and chlorophyll-a

Meteorological parameters, including ambient temperature, relative humidity (RH), wind speed, and true wind direction were measured by an automated meteorological station on the top deck of the R/V Xuelong (Fig. S2 and Table S2).
The type of air masses was calculated by 72-hour back trajectory analysis using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT, version 4.9) model (Fig. S1). The monthly sea ice fraction was obtained from the Sea Ice Concentration Climate Data Record with a spatial resolution of 25 km (https://www.ncei.noaa.gov/products/climate-data-records/sea-ice-concentration). The 8-day chlorophyll-a concentration was collected from MODIS-aqua with a spatial resolution of 4 km (https://modis.gsfc.nasa.gov) (Fig. S3).

During the R/V Xuelong cruise observations, leg I was dominantly affected by the 72-h air masses from the sea ice-covered open-water (78%), and leg II was mainly affected by the 72-h air masses from continental Antarctica (40%) (Fig. S1 and Table S1). The average ambient temperature (-4.0 ± 1.4 °C vs. -3.1 ± 2.2 °C), wind speed (7.2 ± 5.5 m s⁻¹ vs. 7.1 ± 4.2 m s⁻¹), and chlorophyll-a concentration (0.51 ± 0.29 μg L⁻¹ vs. 0.44 ± 0.18 μg L⁻¹) varied slightly between legs I and II (Table S2).

2.3 Instrumentation

2.3.1 Aerosol water-soluble ion constituents

An IGAC (Model S-611, Machine Shop, Fortelice International Co. Ltd., Taiwan, China) was applied to determine the water-soluble ion mass concentrations of aerosol (Fig. S4). Notably, only the water-soluble fraction (organic and inorganic) of the aerosols sampled was considered (details in Supporting Information, SI text S1) (Oppo et al., 1999). Sampling was performed only while the ship was sailing. A PM₁₀ cyclone was fixed to a bow mast at 20 m above the sea surface for IGAC sampling to minimize the impact of stern emissions. The details of the analytical method and ion mass concentrations have been described in previous studies (SI Text S2 and (Yan et al.,...
Briefly, the gases and aerosols are separated and converted into liquid effluent by a Wet Annular Denuder and a Scrub and Impact Aerosol Collector. Each sample was collected for 55 minutes and injected for 5 minutes. Subsequently, an ion chromatography (IC) system (Dionex ICS-3000) within IGAC was used to analyze the water-soluble species of aerosol samples in one-hour resolution, with the systematic error below 5%. The target ion concentrations were calibrated with a coefficient of determination ($r^2$) above 0.99 by using standard solutions. The detection limits for Na$^+$, Cl$^-$, Ca$^{2+}$, K$^+$, and Mg$^{2+}$ were 0.03, 0.03, 0.019, 0.011, and 0.042 μg L$^{-1}$ (aqueous solution), respectively. During the whole observations, the mean Na$^+$ and Ca$^{2+}$ mass concentrations were 364.64 ng m$^{-3}$ (ranging from 6.66 to 4580.10 ng m$^{-3}$) and 21.20 ng m$^{-3}$ (ranging from 0.27 to 334.40 ng m$^{-3}$), respectively, which were far above (> 10 times) the detection limits. In comparison with the whole measurement (21.2 ng m$^{-3}$), the mean Ca$^{2+}$ mass concentrations were lower at low wind speeds (17.3 ng m$^{-3}$ at < 7 m s$^{-1}$ and 15.0 ng m$^{-3}$ at < 3 m s$^{-1}$). Therefore, the impact of ship emissions on the Ca$^{2+}$ mass concentration could be negligible under the low wind conditions. Analytical uncertainty of Ca$^{2+}$ enrichment based on water-soluble analysis estimated less than 11% (SI text S3).

### 2.3.2 Single-particle analysis

The size and chemical signature of individual particles were obtained in real-time by a SPAMS (Hexin Analytical Instrument Co., Ltd., China) (Fig. S4). A brief description of the SPAMS is provided elsewhere (SI Text S2 and (Li et al., 2011)). Briefly, the aerosols were drawn into SPAMS by a PM$_{2.5}$ inlet after a silica gel dryer. A collimated particle beam focused by an aerodynamic lens is then accelerated in an accelerating electric field and passed through two
continuous laser beams (Nd: YAG laser, 532 nm). The obtained time of flight (TOF) and velocity of individual particles were used to calculate the vacuum aerodynamic diameter ($D_{va}$) based on a calibration curve. Subsequently, particles with a specific velocity were desorbed and ionized by triggering a pulse laser (an Nd: YAG laser, 266 nm, 0.6 ± 0.06 mJ was used in this study). The ion fragments were recorded using a TOF mass spectrometer. Prior to the use of SPAMS, standard polystyrene latex spheres (0.2-2 μm, Duke Scientific Corp., Palo Alto, CA) and PbCl₂ and NaNO₃ (0.35 μm, Sigma-Aldrich) solutions were used for the size and mass spectral calibration, respectively. The hit rate, defined as the ratio of ionized particles to all sampled particles, of the SPAMS is ~ 11% during the cruise observation.

During the R/V Xuelong cruise observations, approximately 930,000 particles with mass spectral fingerprints and $D_{va}$ ranging from 0.2 to 2 μm were measured. An adaptive resonance theory neural network (ART-2a) grouped the particles into several clusters based on their mass spectral fingerprints, using parameters of a vigilance factor of 0.85, a learning rate of 0.05, and a maximum of 20 iterations (Song and Hopke, 1999). The manually obtained clusters were sea salt (SS, 16.5%), aged sea salt (SS-aged, 8.1%), sea salt with biogenic organic matter (SS-Bio, 3.1%), internally mixed organics with calcium (OC-Ca, 48.7%), internally mixed organics with potassium (OC-K, 13.7%), organic-carbon-dominated (OC, 7.0%), and element carbon (EC, 2.9%) (Fig. S5 and Table S3) (Prather et al., 2013; Collins et al., 2014; Su et al., 2021). All single-particle types had marine origins with typical mass spectral characteristics of Na ($m/z$ 23), Mg ($m/z$ 24), K ($m/z$ 39), Ca ($m/z$ 40), and Cl ($m/z$ -35 and -37), except for EC (SI text S4).
3 Results

3.1 Ca\(^{2+}\) enrichment dominated by environmental factors

The enrichment factor (EF\(_X\)), defined as the mass concentration ratio of a specific species \(X\) to Na\(^+\) in aerosols to that in bulk seawater, is generally used to describe the enrichment extent of species \(X\) in aerosols.

\[
EF_X = \frac{([X]/[Na^+])_{aerosol}}{([X]/[Na^+])_{seawater}}
\]

An EF\(_X\) > 1 indicates a positive enrichment; otherwise, it indicates depletion. The measurements were almost entirely influenced by polar air masses (Fig. S1). Therefore, the long-range transport of anthropogenic aerosols may be limited. All Na\(^+\) was assumed to originate from SSA. Generally, the ratio of Ca\(^{2+}\) to Na\(^+\) in seawater is 0.038 (w/w) (Boreddy and Kawamura, 2015; Su et al., 2022). During the whole cruise, the hourly average EF\(_{Ca}\) was 2.76 ± 6.27 (mean ± standard deviation (M ± SD), n = 1051, ranged from 0.01 to 85, median = 1.18, interquartile range (IQR) = 1.85). Similar to previous studies (Salter et al., 2016), positive magnesium (Mg\(^{2+}\)) and potassium (K\(^{+}\)) enrichment in SSA was also observed (SI text S5).

Figure 1 shows the enrichment factor of Ca\(^{2+}\) (EF\(_{Ca}\)) at different ambient temperatures (separated by a mean value of -3.5 °C), wind speeds (separated by a mean value of 7 m s\(^{-1}\)), and with/without sea ice during the whole cruise. The results clearly indicated that the highest EF\(_{Ca}\) zone (M ± SD = 3.83 ± 3.43, median = 2.66, IQR = 3.37, n = 144) appeared at a relatively low ambient temperature (< -3.5 °C), low wind speed (< 7 m s\(^{-1}\)) and in the presence of sea ice (Fig. S6). The EF\(_{Ca}\) increased with decreasing ambient temperature and wind speed, as also shown in Fig. 2. In addition, the positive Ca\(^{2+}\) enrichment events (71%) were most associated with leg I, that...
is, air masses blowing from the large fraction of sea-ice-covered ocean (i.e., Ross Sea, 78%) (Table S1). And there was a positive correlation ($r = 0.73$, $p < 0.01$) between the sea ice fraction and EF$_{Ca}$ during leg I (sea ice period) (Fig. 2), indicating a possible effect of the presence of sea ice on Ca$^{2+}$ enrichment in SSA. Under the conditions of ambient temperatures $< -3.5 \, ^\circ C$ and wind speeds $< 7 \, m \, s^{-1}$, a higher EF$_{Ca}$ was observed during the sea ice period than during the period without sea ice ($3.83 \pm 3.43$ vs. $2.45 \pm 3.09$ by M ± SD and $2.66$ vs. $1.18$, by median) (Fig. S6). In contrast, under the conditions of ambient temperatures $\geq -3.5 \, ^\circ C$, wind speeds $\geq 7 \, m \, s^{-1}$, and no sea ice, there was almost calcium depletion (EF$_{Ca}$, M ± SD = $1.01 \pm 0.80$, median = $0.70$, IQR = 0.73, n = 182) in the SSA (Fig. S6).

We noted that a series of high EF$_{Ca}$ cases (Area 1) were correlated with a high concentration of chlorophyll-a ($0.99 \pm 1.65 \, \mu g \, L^{-1}$) during leg II (Fig. S7 and Table S4). However, the enhanced EF$_{Ca}$ was unlikely to be attributed to phytoplankton and/or bacteria due to the poor correlation ($r = 0.12$, $p < 0.01$) between the chlorophyll-a concentration and EF$_{Ca}$ values (Fig. S8). Moreover, the ship track of leg II covered large areas with higher chlorophyll-a concentrations, but the high EF$_{Ca}$ values only present at the narrow temporal and spatial scales. Therefore, the chlorophyll-a concentration may have a limited impact on Ca$^{2+}$ enrichment.

### 3.2 Single-particle characteristics of Ca-containing particles

To elucidate the mixing state of individual calcareous particles, all the single-particle types that were obtained from ART-2a were further refined with an ion signal of $m/z$ 40 [Ca]$^{+}$. A total of $\sim 580,000$ Ca-containing particles were distributed among all particle types, accounting for $\sim 62\%$ of the total obtained particles. In particular, OC-Ca was the dominant ($\sim 72\%$) particle type among
all Ca-containing particles, followed by SS-Ca (calcium-containing sea salt, ~ 12%) (Fig. 3). Each of the remaining particle types accounted for negligible fractions (< 7%) in the total of Ca-containing particles, and were classified as “Other”, thus, they are not included in the following discussion.

OC-Ca is characterized by a prominent ion signature for $m/z$ at 40 [Ca]$^+$ in the positive mass spectrum and organic marker ions of biological origin (e.g., organic nitrogen, phosphate, carbohydrate, siliceous materials and organic carbon) in the negative spectrum (Fig. 3). Specifically, organic nitrogen ($m/z$ -26 [CN]$^-$ and -42 [CNO]$^-$) shows the largest number fraction (NF) at ~88% (Fig. S5), which is likely derived from organic nitrogen species, such as amines amino groups, and/or cellulose (Czerwieniec et al., 2005; Srivastava et al., 2005; Köllner et al., 2017; Dall’osto et al., 2019). Higher NFs of phosphate (16%; $m/z$ -63 [PO$_4^-$] and -79 [PO$_3^-$]), carbohydrates (24%; $m/z$ -45 [CHO$_2^-$], -59 [C$_2$H$_3$O$_2^-$], and -73 [C$_3$H$_5$O$_2^-$]), siliceous materials (40%; $m/z$ -60 [SiO$_2^-$]), and organic carbon (37%; $m/z$ 27 [C$_2$H$_5^+$] and 43 [C$_3$H$_6$O$_3^-$]) were also observed in OC-Ca relative to other particle types (Fig. S5). These organic ion signatures likely correspond to phospholipids, mono- and polysaccharides, and biosilica structures (e.g., exoskeletons or frustules), which may be derived from the intact heterotrophic cells, fragments of cells, and exudates of phytoplankton and/or bacterial (Prather et al., 2013; Guasco et al., 2014; Zhang et al., 2018). Besides, the strong organic ion intensities may truly reflect the amount of organic material in OC-Ca, because the particles were sufficiently dry during the ionization process (i.e., complete positive and negative mass spectra) (Gross et al., 2000). Notably, the possible ion signals of bromide ($m/z$ -79 and -81) were observed in OC-Ca, indicating a potential source of blowing snow (Yang et al., 2008; Song et al., 2022).
The OC-Ca particles were most likely classified as a distinct SSA population, probably of marine biogenic origin. Sea salt particles typically exhibit a stronger $m/z$ 23 [Na]$^+$ than $m/z$ 40 [Ca]$^+$ due to the higher concentration of Na$^+$ vs. Ca$^{2+}$ in seawater and also due to the lower ionization potential of Na vs. Ca (5.14 eV vs. 6.11 eV) (Gross et al., 2000). However, the ratio of $m/z$ 23 [Na]$^+$ to $m/z$ 40 [Ca]$^+$ present in the OC-Ca particles is reversed, verifying a distinct single particle type (Gross et al., 2000; Gaston et al., 2011). Similarly, the ion signal of $m/z$ 39 [K]$^+$ does not surpass that of $m/z$ 40 [Ca]$^+$ in OC-Ca, although K ionized more easily than Ca (4.34 eV vs. 6.11 eV) (Gross et al., 2000). The presence of calcium together with organic species (e.g., organic nitrogen, phosphate, etc.) in SSA verifies a marine-biogenic origin of OC-Ca (Köllner et al., 2021).

Although RH at the sampling outlet was < 40%, the short residence time of the particles within the drying tube (< 5 s) and vacuum system (< 1 ms) could have been insufficient for the complete efflorescence of SSA (Gaston et al., 2011; Sierau et al., 2014). Hence, the OC-Ca could not be attributed to the chemical fractionation of the efflorescence SSA in SPAMS analysis. Additionally, based on the single-particle mass spectrometry technique, some particle types with similar chemical characteristics to OC-Ca have been observed in both field and laboratory studies (e.g., atomization of sea ice meltwater collected in the Southern Ocean) (Gaston et al., 2011; Prather et al., 2013; Collins et al., 2014; Guasco et al., 2014; Dall’osto et al., 2019; Su et al., 2021). The OC-Ca may be from local emissions because the measurements were almost entirely influenced by polar air masses (Fig. S1). Other possible sources, such as glacial dust (Tobo et al., 2019), could be excluded because of the lack of crustal mass spectral characteristics (e.g., -76 [SiO$_3$]$^-$, 27 [Al]$^+$, and 48 [Ti]$^+$/64 [TiO]$^+$) (Pratt et al., 2009; Zawadowicz et al., 2017). The mean mass concentration ratio of Ca/Na in aerosol sample was only 0.10, much lower than that in crust (1.78, w/w).
In contrast, SS-Ca was classified as a pure inorganic cluster with predominant contributions of Na-related compounds (m/z 23 [Na]+, 46 [Na2]+, 81/83 [Na2\textsuperscript{35/37}Cl]+, and -93/-95 [Na\textsuperscript{35/37}Cl2]-), Mg (m/z 24), K (m/z 39), and Ca (m/z 40) in the mass spectra (Fig. 3). Organic ion signals such as organic nitrogen (m/z -26 [CN]- and -42 [CNO]-) and phosphate (m/z -63 [PO\textsubscript{3}]- and -79 [PO\textsubscript{4}]-) were rarely detected (~1%, by NF). These compounds related to oceanic biogeochemical processes. In addition, secondary species (e.g., nitrate of m/z -62 [NO\textsubscript{3}]- and sulfate of m/z -97 [HSO\textsubscript{4}]-) were also not observed, indicating a fresh origin and/or less atmospheric aging. As a subpopulation of SS, SS-Ca may originate from bubble bursting within open-water and/or blowing snow.

**4 Discussion**

SS-Ca (calcium-containing sea salt) represents a mixture of NaCl and CaCl\textsubscript{2}. However, the SS-Ca showed a weak correlation (r = 0.21, \(p < 0.05\), by count and r = 0.03, \(p < 0.05\), by peak area of m/z 40 [Ca]+) with the mass concentration of Ca\textsuperscript{2+} (Table S5). In addition, the proportion of SS-Ca is also small (11.6%). These results indicated that CaCl\textsubscript{2} is not the major cause of the Ca\textsuperscript{2+} enrichment in SSA, although CaCl\textsubscript{2} has been proposed as a cause, based on laboratory atomizing of pure inorganic artificial seawater (Salter et al., 2016). The contribution of ikaite (CaCO\textsubscript{3}ꞏ6H\textsubscript{2}O) could also be excluded due to its low water solubility (Bischoff et al., 1993; Dieckmann et al., 2008; Dieckmann et al., 2010), although ikaite from sea salt fractionation has also been proposed to account for the Ca\textsuperscript{2+} enrichment in the SSA over the Antarctic coast (Hara et al., 2012).

Moreover, the mass spectral signatures of CaCO\textsubscript{3} (e.g., m/z 56 [CaO]+ and -60 [CO\textsubscript{3}\textsuperscript{2-}]) were rare in the SS-Ca particles (Fig. 3).
As a major component (~72%) of the Ca-containing particles, OC-Ca was expected to be partly responsible for the calcium enrichment in SSA. First, the OC-Ca and mass concentration of Ca\(^{2+}\) exhibited moderately weak positive correlations (\(r = 0.42, p < 0.05\), by count and \(r = 0.49, p < 0.05\), by peak area of \(m/z\) 40 [Ca\(^{+}\)]) (Table S5) and moderately strong correlations under higher EFCa values (EFCa > 10, \(r = 0.63, p < 0.05\), by count and \(r = 0.68, p < 0.05\), by peak area of \(m/z\) 40 [Ca\(^{+}\)]) (Table S5 and SI text S6). Second, the OC-Ca showed a size distribution with a peak at 1 \(\mu m\) (Fig. 3), which is consistent with the significant Ca\(^{2+}\) enrichment that is generally found in submicron SSA (Cochran et al., 2016; Salter et al., 2016; Mukherjee et al., 2020).

We further show that calcium may strongly mix with organic matter, probably as organically complexed calcium, in the OC-Ca particles. The calcium was well correlated with different kinds of organic matter (e.g., phosphate, \(r = 0.81, p < 0.05\), by peak area), but poorly correlated with chloride (\(r = 0.21, p < 0.05\), by peak area and \(r = 0.48, p < 0.05\), by mass concentration) (Fig. S9). In addition, different kinds of organic matter (e.g., organic nitrogen, organic carbon, etc.) in the OC-Ca particles also showed enrichment trends below the submicron level, analogously to Ca\(^{2+}\) enrichment (Fig. S10). Particularly, EFCa and organic nitrogen (with the largest NF in OC-Ca) were both affected by the environmental factors of ambient temperature, wind speed, and sea ice fraction, indicating possible organic binding with calcium (Fig. S11).

To exclude the potential inorganic water-soluble compounds (i.e., chloride (\(m/z\) -35 and -37), nitrate (\(m/z\) -62), and sulfate (\(m/z\) -97)), we further classified OC-Ca into two subpopulations, OC-Ca-Organic (23.6%, by proportion) and OC-Ca-Inorganic (48.7%, by proportion) (Fig. S12), depending on the presence of inorganic ion signals (i.e., chloride of \(m/z\) -35/-37 [Cl\(^-\)], nitrate of \(m/z\) -62 [NO\(_3\)]\(^-\), and sulfate of \(m/z\) -97 [HSO\(_4\)]\(^-\)). Both the OC-Ca types and mass concentrations of
Ca\(^{2+}\) showed enhanced correlations under high EF\(_{Ca}\) values (Table S5). In particular, OC-Ca-Organic exhibited stronger correlations than did OC-Ca-Inorganic (\(r = 0.51\) vs. \(r = 0.28, p < 0.05\), by count and \(r = 0.51\) vs. \(0.31, p < 0.05\), by peak area of \(m/z\) 40 [Ca]\(^{+}\), respectively), which indicated the importance of OC-Ca-Organic for the enrichment of Ca\(^{2+}\). That is, the organically complexed calcium may have a certain water solubility and partly responsible for calcium enrichment, while current studies may neglect it.

The possible processes contributing to the calcium enrichment induced by OC-Ca are illustrated in Fig. 4. Ca\(^{2+}\) tends to bind with organic matter of biogenic origin, such as exopolymer substances (EPSs), and subsequently assemble as marine microgels (Verdugo et al., 2004; Gaston et al., 2011; Krembs et al., 2011; Orellana et al., 2011; Verdugo, 2012; Orellana et al., 2021). Due to its porous nature, the sea ice sticks to the abundant microgels that are driven by sea ice algae, microorganisms, and/or exchanges of organic matter with the seawater below, which are likely present in the snow, frost flowers, and brine channels (Krembs et al., 2002; Gao et al., 2012; Vancoppenolle et al., 2013; Arrigo, 2014; Boetius et al., 2015; Kirpes et al., 2019). A low wind speed may not only be conducive to the formation of frost flowers and snow but also produce less sea salt (i.e., small yields of Na\(^{+}\) relative to Ca\(^{2+}\)) (Rankin et al., 2002). Correspondingly, a high wind speed (\(\geq 7\) m s\(^{-1}\)) yields more sea salt by blowing-snow events and/or wave breaking (Yang et al., 2008; Song et al., 2022), presenting a dilution effect of Na\(^{+}\) on Ca\(^{2+}\). In this case, the calcium enrichment in SSA could reasonably be attributed to the gel-like calcium particles (higher proportion of OC-Ca at low wind speeds (\(< 7\) m s\(^{-1}\), 61.5%) relative to high wind speeds (\(\geq 7\) m s\(^{-1}\), 38.5%)). Coincidently, Song et al. (2022) also reported that low wind-blown sea ice process can drive the biogenic aerosol response in the high Arctic area. In addition, the enhanced presence of
film drops was observed at lower wind speeds (< 6 m s\(^{-1}\)) (Norris et al., 2011), which suggest that
the bubble bursts within the sea ice leads and open-water may also be responsible for the release
of OC-Ca and its calcium enrichment involved (Leck and Bigg, 2005b, a; Bigg and Leck, 2008;
Leck and Bigg, 2010; Leck et al., 2013; Kirpes et al., 2019).
Noticeable, it is still quite a challenge to obtain quantitative measurements using SPAMS due
to the potential inhomogeneities in the transmission efficiencies of the aerodynamic lenses and
desorption/ionization, and the matrix effects of individual particles (Gross et al., 2000; Qin et al.,
2006; Pratt and Prather, 2012). SPAMS cannot measure the Aitken-mode particles (Sierau et al.,
2014), it can measure only the tail of accumulation-mode particles with relatively low hit rate (~11%
in this study). Additionally, there is a difference in the size of collected particles between SPAMS
(0.2–2 μm) and IGAC (~ 10 μm). Meanwhile, IGAC may partly reflect the Ca\(^{2+}\) distribution based
the water-soluble Ca\(^{2+}\) as OC-Ca may have a low water solubility. Therefore, it may not be
straightforward to use the particle count and peak area in comparison with the absolute mass
concentration. Nevertheless, our results successfully identified a unique calcareous particle type
(i.e., OC-Ca) and its specific mixing state, which provides some insights into the mechanisms
behind calcium enrichment.

5 Conclusions
We investigated the distribution of calcium in SSA through the R/V Xuelong cruise
observations over the Ross Sea, Antarctica. The most significant Ca\(^{2+}\) enrichment in SSA occurred
under relatively lower ambient temperatures (< -3.5 °C) and wind speeds (< 7 m s\(^{-1}\)) and with the
presence of sea ice. With the help of individual particle mass spectral analysis, we first proposed
that a single-particle type of OC-Ca (internally mixed organics with calcium), probably resulting from the preferential binding of Ca$^{2+}$ with organic matter, could partly account for the calcium enrichment in SSA. We inferred that OC-Ca is likely produced from the effects of low wind-blown sea ice on microgels induced by Ca$^{2+}$ and/or the bubble bursts in the open-water and/or sea ice leads. However, the impact of environmental factors and OC-Ca on calcium enrichment in SSA still cannot be well predicted by multiple linear regression and random forest analysis (SI text S7), which may be ascribed to other unknown mechanisms and/or organically complexed calcium with a low water solubility. In addition, our conclusions based on limited spatial and temporal conditions may not be accessible to other seasons and oceanic basins.

We suggest that the environmental behaviors of the possible gel-like calcium particles (i.e., OC-Ca) should be paid more attention behind the mechanisms of calcium enrichment. To our knowledge, this is the first report of a calcium-dominated single-particle type OC-Ca in the Antarctic. Such particles may be preferred candidates for CCN and/or IN (Willis et al., 2018; Lawler et al., 2021). In the context of global warming and sea ice retreat, this work provides insight into the chemical composition and distribution of submicron SSA in the Antarctic summer atmosphere, which would be helpful for a better understanding of aerosol-cloud-climate interactions.

**Data Availability Statement**

The data are available at Zenodo (https://doi.org/10.5281/zenodo.7276073).

**Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Author Contributions

The idea for the study was conceived by BJS. BJS analyzed the data, prepared the figures, and wrote the manuscript under the guidance of GHZ and XYB. LL and JPY contributed to the observation data. All co-authors contributed to the discussions of the results and refinement of the manuscript.

Acknowledgment

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2019B151502022), the National Natural Science Foundation of China (42077322 and 42130611), the Youth Innovation Promotion Association CAS (2021354), and the Guangdong Foundation for Program of Science and Technology Research (2020B1212060053).
Bubble chart of the hourly Ca\(^{2+}\) enrichment factor (EF\(_{\text{Ca}}\)) with respect to Na\(^+\) with different environmental factors (ambient temperature, wind speed, and sea ice fraction). The green and orange dots represent the EF\(_{\text{Ca}}\) values for the periods with and without sea ice, respectively. The orange marked dots represent a series of high EF\(_{\text{Ca}}\) cases that were correlated with a high concentration of chlorophyll-a during leg II of the cruise.
Figure 2

Enrichment factors of Ca\(^{2+}\) with respect to Na\(^+\) varied as a function of the ambient temperature (a-b), wind speed (c-d), and sea ice fraction (e-f) during cruise observations. (g) A box and whisker plot of the single-particle peak area ratio of Ca/Na in OC-Ca for the periods with and without sea ice. In the box and whisker plots, the lower, median, and upper lines of the box denote the 25th, 50th and 75th percentiles, respectively. The lower and upper edges denote the 10th and 90th percentiles, respectively. The black solid star (f) exhibited an anomalous trend due to its nature of the relatively high or low wind speed. The first point exhibited a high EF value because of its relatively low wind speed (5.86 m s\(^{-1}\)). The second and third points exhibited low EF values because of their relatively high wind speeds of 6.04 m s\(^{-1}\) and 8.06 m s\(^{-1}\), respectively. These three points have been excluded in the correlation analysis.
Figure 3

(a) – (g) Average digitized single-particle mass spectra of seven chemical classes of Ca-containing particles. New particle types are reclassified with m/z 40 [Ca²⁺] based on previous ART-2a results.

(h) Relative proportion and (i) unscaled size-resolved number distributions of these single-particle types.
Figure 4

Schematic of the production of OC-Ca and its possible atmospheric implications beyond calcium enrichment. Ca\(^{2+}\) tends to bind with organic matter whining sea ice/seawater, and subsequently assemble to marine microgels, likely present in the snow, frost flowers, and brine channels. With the low wind-blown sea ice process and/or bubble bursting within sea ice leads, these gel-like particles (i.e., OC-Ca) may be released to the Antarctic atmosphere, as a potential source of CCN/IN.
References


Dall'Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M.,
Ceburnis, D., O'Dowd, C., Rinaldi, M., Paglione, M., Nenes, A., Decesari, S., and Simo, R.:
Simultaneous Detection of Alkyl amines in the Surface Ocean and Atmosphere of the Antarctic

Communication: Ikaite (CaCO3ꞏ6H2O) discovered in Arctic sea ice, The Cryosphere, 4, 227-230,
https://doi.org/10.5194/tc-4-227-2010, 2010.


polysaccharides in the high Arctic surface microlayer, Ocean Sci, 8, 401-418,

Mitchell, B. G., and Prather, K. A.: Unique ocean-derived particles serve as a proxy for changes in

and ammonium cations in single particle aerosol time-of-flight mass spectra, Anal Chem, 72, 416-

J., Ruppel, M. J., Wilson, S. C., Pomeroy, R. S., Grassian, V. H., Azam, F., Bertram, T. H., and
Prather, K. A.: Transition Metal Associations with Primary Biological Particles in Sea Spray
Aerosol Generated in a Wave Channel, Environ Sci Technol, 48, 1324-1333,
https://doi.org/10.1021/acs.est.1c03699, 2014.

Hara, K., Osada, K., Yabuki, M., and Yamanouchi, T.: Seasonal variation of fractionated sea-salt

Keene, W. C., Maring, H., Maben, J. R., Kieber, D. J., Pszenny, A. A. P., Dahl, E. E., Izaguirre, M. A.,
characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,

Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet, R. C., Ault, A. P., and Pratt,
K. A.: Wintertime Arctic Sea Spray Aerosol Composition Controlled by Sea Ice Lead

Köllner, F., Schneider, J., Willis, M. D., Klimach, T., Helleis, F., Bozem, H., Kunkel, D., Hoor, P.,
Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and Borrmann, S.: 
Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere, Atmos

Köllner, F., Schneider, J., Willis, M. D., Schulz, H., Kunkel, D., Bozem, H., Hoor, P., Klimach, T.,
Helleis, F., Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and
Borrmann, S.: Chemical composition and source attribution of sub-micrometre aerosol particles in
the summertime Arctic lower troposphere, Atmos Chem Phys, 21, 6509-6539,
https://doi.org/10.5194/acp-21-6509-2021, 2021.


Yan, J., Jung, J., Zhang, M., Xu, S., Lin, Q., Zhao, S., and Chen, L.: Significant Underestimation of


