

- 1 Enrichment of calcium in sea spray aerosol through bulk measurements and
- 2 individual particle analysis during the R/V Xuelong cruise over the Ross Sea,
- 3 Antarctica
- 4 Bojiang Su^{a, b}, Xinhui Bi^{a, c}, Zhou Zhang^{b, d}, Yue Liang^e, Congbo Song^f, Tao Wang^{a, b}, Yaohao
- 5 Hu^{a, b}, Lei Li^{g,*}, Zhen Zhou^g, Jinpei Yan^h, Xinming Wang^{a, c}, Guohua Zhang^{a, c,*}
- 6 ^a State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of
- 7 Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
- 8 Chinese Academy of Sciences, Guangzhou 510640, China
- 9 ^b University of Chinese Academy of Sciences, Beijing 100049, China
- 10 ^c Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,
- 11 Guangzhou 510640, China
- 12 ^d State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese
- 13 Academy of Sciences, Guangzhou 510640, China
- ^e Department of Civil and Environmental Engineering, Faculty of Science and Technology,
- 15 University of Macau, Taipa, Macau, China
- 16 ^f National Centre for Atmospheric Science (NCAS), University of Manchester, Manchester M13
- 17 9PL, UK
- 18 ^g Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou
- 19 510632, China
- 20 ^h Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of
- 21 Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- 22 *Corresponding author: <u>zhanggh@gig.ac.cn</u>; <u>lileishdx@163.com</u>

23	Abstract: Calcium is known to be enriched in sea spray aerosols (SSA), but its controlling factors
24	and individual mixing states remain ambiguous. Here, we investigate the impact of various
25	environmental factors on the water-soluble calcium (Ca $^{2+})$ distribution in SSA through R/V
26	<i>Xuelong</i> cruise observations over the Ross Sea, Antarctica, from December 2017 to February 2018.
27	We observed enhanced Ca^{2+} enrichment in aerosol samples at lower temperatures (< -3.5 °C),
28	lower wind speeds (< 7 m s ⁻¹) and in the presence of sea ice. Further individual particle mass
29	spectral analysis indicated that considerable fractions of calcium in SSA likely bind with organic
30	matter (a single-particle type, OC-Ca), which may be neglected in current water-soluble
31	estimation of Ca ²⁺ enrichment. Also, this is the first time that a calcium-dominated single-particle
32	type has been observed in the Antarctic atmosphere. We suggest that a broader focus on individual
33	OC-Ca and its subsequent environmental behavior should be included in future Antarctic
34	atmospheric modeling. Given the context of global warming and sea ice retreat, an understanding
35	of the mechanisms of calcium enrichment and mixing state of individual particles involved is
36	valuable for further recognizing the aerosol-cloud-climate interactions in the Antarctica summer.

37 Key points:

- 38 Enhanced Ca²⁺ enrichment in sea spray aerosol (SSA) was observed at lower ambient
- 39 temperatures, lower wind speeds and in the presence of sea ice.
- 40 Individual particle analysis revealed a large proportion of internally mixed organics with
- 41 calcium particles in the Antarctic summer atmosphere.
- 42 Organically complexed calcium may be neglected in current water-soluble estimation of Ca²⁺
- 43 enrichment in SSA.
- 44 Key worlds: Sea spray aerosol; Calcium enrichment; Individual particle analysis; Environmental
- 45 factors; Internally mixed organics with calcium particles; Antarctic summer atmosphere.

46

47 1 Introduction

Sea spray aerosol (SSA) govern radiative forcing by directly scattering and absorbing solar 48 radiation over the remote ocean (Murphy et al., 1998), and they affect the microphysical properties 49 of marine clouds by serving as cloud condensation nuclei (CCN) and ice nuclei (IN) (Wilson et al., 50 51 2015; Brooks and Thornton, 2018; Willis et al., 2018). Calcium is one of the components of SSA, 52 which can present as inorganic calcium (e.g., CaCl2 and CaSO4) (Chi et al., 2015) as well as organic calcium (i.e., the most efficient gelling agent) (Quinn et al., 2015; Bertram et al., 2018; 53 54 Carter-Fenk et al., 2021). The extent of enrichment and chemical signature of calcium may affect 55 some physicochemical properties of SSA such as alkalinity and hygroscopicity (Salter et al., 2016; 56 Mukherjee et al., 2020), which is critical for understanding aerosol-cloud interactions over the 57 remote marine boundary layer (Keene et al., 2007; Leck and Svensson, 2015; Bertram et al., 2018). A growing number of studies have shown that calcium (Ca²⁺) is significantly enriched in SSA 58 relative to bulk seawater (Table S1) (Keene et al., 2007; Hara et al., 2012; Cochran et al., 2016; 59 60 Salter et al., 2016; Cravigan et al., 2020; Mukherjee et al., 2020). For example, Hara et al. (2012) 61 found that the Ca²⁺ enrichment of aerosol samples was sensitive to sea salt fractionation during the 62 cold winter-spring season over the Antarctic coast. Leck and Svensson (2015) suggested that Ca2+ 63 enrichment in SSA is attributed to bubble bursts on sea ice leads within the sea ice over the Arctic area. Similarly, low wind-driven bubble bursts were regarded as a major reason for the Ca2+ 64 65 enrichment in SSA during an Arctic cruise (Mukherjee et al., 2020). These results have greatly improved the understanding of the processes contributing to Ca^{2+} enrichment; however, our 66

- 67 understanding of how environmental factors synergistically affect such enrichment processes
- 68 remains unclear.

The enrichment extent of calcium and its chemical form in SSA have been deduced with 69 70 water-soluble Ca²⁺. Two hypotheses have been proposed: (i) calcium enrichment is dominated by 71 inorganic calcium, such as CaCl2 and CaCO3.6H2O (ikaite), derived from wind-blown bubble 72 bursts, calcareous shell debris and/or sea salt fractionation (Keene et al., 2007; Dieckmann et al., 73 2008; Hara et al., 2012). (ii) Ca^{2+} may bind with organic matter, which is relevant with marine 74 microgels and/or coccolithophore phytoplankton scales, and can be emitted by bubble bursting 75 (Oppo et al., 1999; Sievering, 2004; Leck and Svensson, 2015; Cochran et al., 2016; Kirpes et al., 76 2019; Mukherjee et al., 2020). The chemical form of calcium can significantly determine its 77 atmospheric role, and inorganic calcium may exhibit stronger aerosol alkalinity and 78 hygroscopicity than organic calcium (Salter et al., 2016; Mukherjee et al., 2020). However, because organic calcium has low water solubility (e.g., aged Ca2+-assembled gel-like particles) 79 80 (Orellana and Verdugo, 2003; Leck and Bigg, 2010; Russell et al., 2010; Orellana et al., 2011; Leck and Svensson, 2015), the commonly measured water-soluble Ca2+ may not precisely explain 81 82 the calcium distribution in SSA. Thus, an understanding of the mixing state of individual 83 calcareous aerosols may provide unique insight into the mechanisms of calcium enrichment in SSA. 84

As a part of the 34th Chinese Antarctic Research Expedition (CHINARE ANT34th), the aim of this study was to investigate the influencing factors and possible mechanisms of calcium enrichment in SSA through R/V *Xuelong* cruise observations over the Ross Sea, Antarctica. An in situ gas and aerosol composition monitoring system (IGAC) was employed to determine the

89	extent of Ca ²⁺ enrichment in SSA. Single-particle aerosol mass spectrometry (SPAMS) was
90	utilized to measure the size and chemical signature (i.e., mixing state) of individual calcareous
91	particles. We first investigated the impact of environmental factors such as ambient temperature,
92	wind speed, sea ice fraction, and chlorophyll-a concentration on Ca ²⁺ enrichment in SSA. Then,
93	the mechanisms of calcium enrichment in SSA were inferred according to the mixing state of
94	individual calcareous particles.
95	2 Methodology
96	2.1 The R/V <i>Xuelong</i> cruise and observation regions
97	Two observations were carried out aboard the R/V Xuelong cruise over the Ross Sea,
97 98	Two observations were carried out aboard the R/V Xuelong cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively
97 98 99	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced
97 98 99 100	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20
97 98 99 100 101	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20 December, 2017, when the ocean was covered by sea ice. The second leg of the cruise (leg II) was
97 98 99 100 101 102	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20 December, 2017, when the ocean was covered by sea ice. The second leg of the cruise (leg II) was carried out in the same region from January 13 to February 14, 2018, when basically no sea ice
97 98 99 100 101 102 103	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20 December, 2017, when the ocean was covered by sea ice. The second leg of the cruise (leg II) was carried out in the same region from January 13 to February 14, 2018, when basically no sea ice presents. Therefore, legs I and II were also regarded as the "sea ice period" and "the period
97 98 99 100 101 102 103 104	Two observations were carried out aboard the R/V <i>Xuelong</i> cruise over the Ross Sea, Antarctica (50 to 78° S, 160 to 185° E) (Fig. S1). During sampling, this region was relatively isolated from the impact of long-range transport of anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). The first leg of the cruise (leg I) was conducted from 2-20 December, 2017, when the ocean was covered by sea ice. The second leg of the cruise (leg II) was carried out in the same region from January 13 to February 14, 2018, when basically no sea ice presents. Therefore, legs I and II were also regarded as the "sea ice period" and "the period without sea ice", respectively, hereafter.

105 2.2 Metrological parameters and satellite data of air masses, sea ice and chlorophyll-a

106 Meteorological parameters, including ambient temperature, relative humidity (RH), wind 107 speed, and true wind direction were measured by an automated meteorological station on the top 108 deck of the R/V *Xuelong* (Fig. S2 and Table S2).

109	The type of air masses was calculated by 72-hour back trajectory analysis using the NOAA
110	Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT, version 4.9) model (Fig.
111	S1). The monthly sea ice fraction was obtained from the Sea Ice Concentration Climate Data
112	Record with a spatial resolution of 25 km (https://www.ncei.noaa.gov/products/climate-data-
113	records/sea-ice-concentration). The 8-day chlorophyll-a concentration was collected from
114	MODIS-aqua with a spatial resolution of 4 km (<u>https://modis.gsfc.nasa.gov</u>) (Fig. S3).
115	During the R/V Xuelong cruise observations, leg I was dominantly affected by the 72-h air
116	masses from the sea ice-covered open-water (78%), and leg II was mainly affected by the 72-h air
117	masses from continental Antarctica (40%) (Fig. S1 and Table S1). The average ambient
118	temperature (-4.0 \pm 1.4 °C vs3.1 \pm 2.2 °C), wind speed (7.2 \pm 5.5 m s^{-1} vs. 7.1 \pm 4.2 m s^{-1}), and
119	chlorophyll-a concentration (0.51 \pm 0.29 μg $L^{\text{-1}}$ vs. 0.44 \pm 0.18 μg $L^{\text{-1}})$ varied slightly between
120	legs I and II (Table S2).

121 2.3 Instrumentation

122 2.3.1 Aerosol water-soluble ion constituents

An IGAC (Model S-611, Machine Shop, Fortelice International Co. Ltd., Taiwan, China) was applied to determine the water-soluble ion mass concentrations of aerosol (Fig. S4). Notably, only the water-soluble fraction (organic and inorganic) of the aerosols sampled was considered (details in Supporting Information, SI text S1) (Oppo et al., 1999). Sampling was performed only while the ship was sailing. A PM₁₀ cyclone was fixed to a bow mast at 20 m above the sea surface for IGAC sampling to minimize the impact of stern emissions. The details of the analytical method and ion mass concentrations have been described in previous studies (SI Text S2 and (Yan et al.,

130	2019; Yan et al., 2020b)). Briefly, the gases and aerosols are separated and converted into liquid
131	effluent by a Wet Annular Denuder and a Scrub and Impact Aerosol Collector. Each sample was
132	collected for 55 minutes and injected for 5 minutes. Subsequently, an ion chromatography (IC)
133	system (Dionex ICS-3000) within IGAC was used to analyze the water-soluble species of aerosol
134	samples in one-hour resolution, with the systematic error below 5%. The target ion concentrations
135	were calibrated with a coefficient of determination (r^2) above 0.99 by using standard solutions.
136	The detection limits for Na ⁺ , Cl ⁻ , Ca ²⁺ , K ⁺ , and Mg ²⁺ were 0.03, 0.03, 0.019, 0.011, and 0.042 μ g
137	$L^{\text{-}1}$ (aqueous solution), respectively. During the whole observations, the mean $\mathrm{Na^{+}}$ and $\mathrm{Ca^{2+}}$ mass
138	concentrations were 364.64 ng $m^{\text{-}3}$ (ranging from 6.66 to 4580.10 ng $m^{\text{-}3}$) and 21.20 ng $m^{\text{-}3}$
139	(ranging from 0.27 to 334.40 ng m ⁻³), respectively, which were far above (> 10 times) the
140	detection limits. In comparison with the whole measurement (21.2 ng m ⁻³), the mean Ca^{2+} mass
141	concentrations were lower at low wind speeds (17.3 ng m ⁻³ at < 7 m s ⁻¹ and 15.0 ng m ⁻³ at < 3m s ⁻¹
142	¹). Therefore, the impact of ship emissions on the Ca ²⁺ mass concentration could be negligible
143	under the low wind conditions. Analytical uncertainty of Ca ²⁺ enrichment based on water-soluble
144	analysis estimated less than 11% (SI text S3).

2.3.2 Single-particle analysis 145

146 The size and chemical signature of individual particles were obtained in real-time by a SPAMS (Hexin Analytical Instrument Co., Ltd., China) (Fig. S4). A brief description of the 147 148 SPAMS is provided elsewhere (SI Text S2 and (Li et al., 2011)). Briefly, the aerosols were drawn into SPAMS by a PM2.5 inlet after a silica gel dryer. A collimated particle beam focused by an 149 aerodynamic lens is then accelerated in an accelerating electric field and passed through two 150

151	continuous laser beams (Nd: YAG laser, 532 nm). The obtained time of flight (TOF) and velocity
152	of individual particles were used to calculate the vacuum aerodynamic diameter $(D_{\nu a})$ based on a
153	calibration curve. Subsequently, particles with a specific velocity were desorbed and ionized by
154	triggering a pulse laser (an Nd: YAG laser, 266 nm, 0.6 \pm 0.06 mJ was used in this study). The ion
155	fragments were recorded using a TOF mass spectrometer. Prior to the use of SPAMS, standard
156	polystyrene latex spheres (0.2-2 $\mu m,$ Duke Scientific Corp., Palo Alto, CA) and PbCl_2 and NaNO_3
157	(0.35 $\mu\text{m},$ Sigma-Aldrich) solutions were used for the size and mass spectral calibration,
158	respectively. The hit rate, defined as the ratio of ionized particles to all sampled particles, of the
159	SPAMS is $\sim 11\%$ during the cruise observation.
160	During the R/V Xuelong cruise observations, approximately 930,000 particles with mass
161	spectral fingerprints and D_{va} ranging from 0.2 to 2 μm were measured. An adaptive resonance
162	theory neural network (ART-2a) grouped the particles into several clusters based on their mass
163	spectral fingerprints, using parameters of a vigilance factor of 0.85, a learning rate of 0.05, and a
164	maximum of 20 iterations (Song and Hopke, 1999). The manually obtained clusters were sea salt
165	(SS, 16.5%), aged sea salt (SS-aged, 8.1%), sea salt with biogenic organic matter (SS-Bio, 3.1%),
166	internally mixed organics with calcium (OC-Ca, 48.7%), internally mixed organics with potassium
167	(OC-K, 13.7%), organic-carbon-dominated (OC, 7.0%), and element carbon (EC, 2.9%) (Fig. S5
168	and Table S3) (Prather et al., 2013; Collins et al., 2014; Su et al., 2021). All single-particle types
169	had marine origins with typical mass spectral characteristics of Na (m/z 23), Mg (m/z 24), K (m/z

170 39), Ca (m/z 40), and Cl (m/z -35 and -37), except for EC (SI text S4).

171 3 Results

172 **3.1 Ca²⁺ enrichment dominated by environmental factors**

- 173 The enrichment factor (EFx), defined as the mass concentration ratio of a specific species X
- 174 to Na⁺ in aerosols to that in bulk seawater, is generally used to describe the enrichment extent of
- 175 species X in aerosols.

176
$$EFx = \frac{([X]/[Na^+])_{aerosol}}{([X]/[Na^+])_{seqwater}}$$

177 An EFx > 1 indicates a positive enrichment; otherwise, it indicates depletion. The measurements were almost entirely influenced by polar air masses (Fig. S1). Therefore, the long-178 179 range transport of anthropogenic aerosols may be limited. All Na⁺ was assumed to originate from SSA. Generally, the ratio of Ca^{2+} to Na^+ in seawater is 0.038 (w/w) (Boreddy and Kawamura, 180 181 2015; Su et al., 2022). During the whole cruise, the hourly average EF_{Ca} was 2.76 ± 6.27 (mean \pm standard deviation (M \pm SD), n = 1051, ranged from 0.01 to 85, median =1.18, interquartile range 182 (IQR) = 1.85). Similar to previous studies (Salter et al., 2016), positive magnesium (Mg²⁺) and 183 potassium (K⁺) enrichment in SSA was also observed (SI text S5). 184 Figure 1 shows the enrichment factor of Ca²⁺ (EF_{Ca}) at different ambient temperatures 185 (separated by a mean value of -3.5 °C), wind speeds (separated by a mean value of 7 m s⁻¹), and 186 187 with/without sea ice during the whole cruise. The results clearly indicated that the highest EF_{Ca}

- 188 zone (M \pm SD = 3.83 \pm 3.43, median = 2.66, IQR = 3.37, n = 144) appeared at a relatively low
- 189 ambient temperature (< -3.5 °C), low wind speed (< 7 m s⁻¹) and in the presence of sea ice (Fig.
- 190 S6). The EF_{Ca} increased with decreasing ambient temperature and wind speed, as also shown in
- 191 Fig. 2. In addition, the positive Ca^{2+} enrichment events (71%) were most associated with leg I, that

192	is, air masses blowing from the large fraction of sea-ice-covered ocean (i.e., Ross Sea, 78%)
193	(Table S1). And there was a positive correlation (r = 0.73, $p < 0.01$) between the sea ice fraction
194	and EF_{Ca} during leg I (sea ice period) (Fig. 2), indicating a possible effect of the presence of sea
195	ice on Ca ²⁺ enrichment in SSA. Under the conditions of ambient temperatures $<$ -3.5 °C and wind
196	speeds $< 7 \text{ m s}^{-1}$, a higher EF _{Ca} was observed during the sea ice period than during the period
197	without sea ice (3.83 \pm 3.43 vs. 2.45 \pm 3.09 by M \pm SD and 2.66 vs. 1.18, by median) (Fig. S6). In
198	contrast, under the conditions of ambient temperatures \geq -3.5 °C, wind speeds \geq 7 m s^{-1}, and no
199	sea ice, there was almost calcium depletion (EF _{Ca} , M \pm SD = 1.01 \pm 0.80, median = 0.70, IQR =
200	0.73, n = 182) in the SSA (Fig. S6).
201	We noted that a series of high EF_{Ca} cases (Area 1) were correlated with a high concentration
202	of chlorophyll-a (0.99 \pm 1.65 μg $L^{\text{-1}})$ during leg II (Fig. S7 and Table S4). However, the enhanced
203	$\mathrm{EF}_{\mathrm{Ca}}$ was unlikely to be attributed to phytoplankton and/or bacteria due to the poor correlation (r =
204	0.12, $p < 0.01$) between the chlorophyll-a concentration and EF _{Ca} values (Fig. S8). Moreover, the
204 205	0.12, $p < 0.01$) between the chlorophyll-a concentration and EF_{Ca} values (Fig. S8). Moreover, the ship track of leg II covered large areas with higher chlorophyll-a concentrations, but the high EF_{Ca}
204 205 206	0.12, $p < 0.01$) between the chlorophyll-a concentration and EF_{Ca} values (Fig. S8). Moreover, the ship track of leg II covered large areas with higher chlorophyll-a concentrations, but the high EF_{Ca} values only present at the narrow temporal and spatial scales. Therefore, the chlorophyll-a

208 3.2 Single-particle characteristics of Ca-containing particles

209 To elucidate the mixing state of individual calcareous particles, all the single-particle types that were obtained from ART-2a were further refined with an ion signal of m/z 40 [Ca]⁺. A total of 210 211 $\sim 580,\,000$ Ca-containing particles were distributed among all particle types, accounting for $\sim 62\%$ 212 of the total obtained particles. In particular, OC-Ca was the dominant (~ 72%) particle type among

213	all Ca-containing particles, followed by SS-Ca (calcium-containing sea salt, \sim 12%) (Fig. 3). Each
214	of the remaining particle types accounted for negligible fractions (< 7%) in the total of Ca-
215	containing particles, and were classified as "Other", thus, they are not included in the following
216	discussion

217 OC-Ca is characterized by a prominent ion signature for m/z at 40 [Ca]⁺ in the positive mass 218 spectrum and organic marker ions of biological origin (e.g., organic nitrogen, phosphate, 219 carbohydrate, siliceous materials and organic carbon) in the negative spectrum (Fig. 3). 220 Specifically, organic nitrogen (m/z -26 [CN]⁻ and -42 [CNO]⁻) shows the largest number fraction 221 (NF) at ~88% (Fig. S5), which is likely derived from organic nitrogen species, such as amines 222 amino groups, and/or cellulose (Czerwieniec et al., 2005; Srivastava et al., 2005; Köllner et al., 223 2017; Dall'osto et al., 2019). Higher NFs of phosphate (16%; m/z -63 [PO₂]⁻ and -79 [PO₃]⁻), 224 carbohydrates (24%; m/z -45 [CHO2], -59 [C2H3O2], and -73 [C3H5O2]), siliceous materials $(40\%; m/z - 60 [SiO_2])$, and organic carbon $(37\%; m/z - 27 [C_2H_3])$ and $43 [C_2H_3O_3]$) were also 225 226 observed in OC-Ca relative to other particle types (Fig. S5). These organic ion signatures likely 227 correspond to phospholipids, mono- and polysaccharides, and biosilica structures (e.g., 228 exoskeletons or frustules), which may be derived from the intact heterotrophic cells, fragments of 229 cells, and exudates of phytoplankton and/or bacterial (Prather et al., 2013; Guasco et al., 2014; 230 Zhang et al., 2018). Besides, the strong organic ion intensities may truly reflect the amount of 231 organic material in OC-Ca, because the particles were sufficiently dry during the ionization 232 process (i.e., complete positive and negative mass spectra) (Gross et al., 2000). Notably, the 233 possible ion signals of bromide (m/z -79 and -81) were observed in OC-Ca, indicating a potential 234 source of blowing snow (Yang et al., 2008; Song et al., 2022).

235	The OC-Ca particles were most likely classified as a distinct SSA population, probably of
236	marine biogenic origin. Sea salt particles typically exhibit a stronger m/z 23 [Na] ⁺ than m/z 40
237	$\left[\text{Ca}\right]^{\scriptscriptstyle +}$ due to the higher concentration of $\text{Na}^{\scriptscriptstyle +}$ vs. $\text{Ca}^{2\scriptscriptstyle +}$ in seawater and also due to the lower
238	ionization potential of Na vs. Ca (5.14 eV vs. 6.11 eV) (Gross et al., 2000). However, the ratio of
239	m/z 23 [Na] ⁺ to m/z 40 [Ca] ⁺ present in the OC-Ca particles is reversed, verifying a distinct single
240	particle type (Gross et al., 2000; Gaston et al., 2011). Similarly, the ion signal of m/z 39 [K] ⁺ does
241	not surpass that of m/z 40 [Ca] ⁺ in OC-Ca, although K ionized more easily that Ca (4.34 eV vs.
242	6.11eV) (Gross et al., 2000). The presence of calcium together with organic species (e.g., organic
243	nitrogen, phosphate, etc.) in SSA verifies a marine-biogenic origin of OC-Ca (Köllner et al., 2021).
244	Although RH at the sampling outlet was $< 40\%$, the short residence time of the particles within the
245	drying tube (< 5 s) and vacuum system (< 1 ms) could have been insufficient for the complete
246	efflorescence of SSA (Gaston et al., 2011; Sierau et al., 2014). Hence, the OC-Ca could not be
247	attributed to the chemical fractionation of the efflorescence SSA in SPAMS analysis. Additionally,
248	based on the single-particle mass spectrometry technique, some particle types with similar
249	chemical characteristics to OC-Ca have been observed in both field and laboratory studies (e.g.,
250	atomization of sea ice meltwater collected in the Southern Ocean) (Gaston et al., 2011; Prather et
251	al., 2013; Collins et al., 2014; Guasco et al., 2014; Dall'osto et al., 2019; Su et al., 2021). The OC-
252	Ca may be from local emissions because the measurements were almost entirely influenced by
253	polar air masses (Fig. S1). Other possible sources, such as glacial dust (Tobo et al., 2019), could
254	be excluded because of the lack of crustal mass spectral characteristics (e.g., -76 $[SiO_3]^-$, 27 $[Al]^+$,
255	and 48 [Ti] ⁺ /64 [TiO] ⁺) (Pratt et al., 2009; Zawadowicz et al., 2017). The mean mass concentration
256	ratio of Ca/Na in aerosol sample was only 0.10, much lower than that in crust (1.78, w/w).

257	In contrast, SS-Ca was classified as a pure inorganic cluster with predominant contributions
258	of Na-related compounds (m/z 23 [Na] ⁺ , 46 [Na ₂] ⁺ , 81/83 [Na ₂ ^{35/37} Cl] ⁺ , and -93/-95 [Na ^{35/37} Cl ₂] ⁻),
259	Mg (m/z 24), K (m/z 39), and Ca (m/z 40) in the mass spectra (Fig. 3). Organic ion signals such as
260	organic nitrogen (m/z -26 [CN] ⁻ and -42 [CNO] ⁻) and phosphate (m/z -63 [PO ₂] ⁻ and -79 [PO ₃] ⁻)
261	were rarely detected (~1%, by NF). These compounds related to oceanic biogeochemical
262	processes. In addition, secondary species (e.g., nitrate of m/z -62 [NO ₃] ⁻ and sulfate of m/z -97
263	[HSO ₄] ⁻) were also not observed, indicating a fresh origin and/or less atmospheric aging. As a
264	subpopulation of SS, SS-Ca may originate from bubble bursting within open-water and/or blowing
265	snow.

266 4 Discussion

267	SS-Ca (calcium-containing sea salt) represents a mixture of NaCl and CaCl ₂ . However, the
268	SS-Ca showed a weak correlation (r = 0.21, $p < 0.05$, by count and r = 0.03, $p < 0.05$, by peak area
269	of m/z 40 [Ca] ⁺) with the mass concentration of Ca ²⁺ (Table S5). In addition, the proportion of SS-
270	Ca is also small (11.6%). These results indicated that $CaCl_2$ is not the major cause of the Ca^{2+}
271	enrichment in SSA, although CaCl ₂ has been proposed as a cause, based on laboratory atomizing
272	of pure inorganic artificial seawater (Salter et al., 2016). The contribution of ikaite (CaCO ₃ ·6H ₂ O)
273	could also be excluded due to its low water solubility (Bischoff et al., 1993; Dieckmann et al.,
274	2008; Dieckmann et al., 2010), although ikaite from sea salt fractionation has also been proposed
275	to account for the Ca^{2+} enrichment in the SSA over the Antarctic coast (Hara et al., 2012).
276	Moreover, the mass spectral signatures of CaCO ₃ (e.g., m/z 56 [CaO] ⁺ and -60 [CO ₃] ²⁻ (see
277	Sullivan et al. (2009)) were also rare in the SS-Ca particles (Fig. 3).

278	As a major component (~ 72%) of the Ca-containing particles, OC-Ca was expected to be
279	partly responsible for the calcium enrichment in SSA. First, the OC-Ca and mass concentration of
280	Ca^{2+} exhibited moderately weak positive correlations (r = 0.42, p < 0.05, by count and r = 0.49, p
281	< 0.05, by peak area of m/z 40 [Ca] ⁺) (Table S5) and moderately strong correlations under higher
282	EF_{Ca} values ($EF_{Ca} > 10$, r = 0.63, $p < 0.05$, by count and r = 0.68, $p < 0.05$, by peak area of m/z 40
283	$[Ca]^+$) (Table S5 and SI text S6). Second, the OC-Ca showed a size distribution with a peak at 1
284	μm (Fig. 3), which is consistent with the significant Ca^{2+} enrichment that is generally found in
285	submicron SSA (Cochran et al., 2016; Salter et al., 2016; Mukherjee et al., 2020).
286	We further show that calcium may strongly mix with organic matter, probably as organically
287	complexed calcium, in the OC-Ca particles. The calcium was well correlated with different kinds
288	of organic matter (e.g., phosphate, $r = 0.81$, $p < 0.05$, by peak area), but poorly correlated with
289	chloride (r = 0.21, $p < 0.05$, by peak area and r = 0.48, $p < 0.05$, by mass concentration) (Fig. S9).
290	In addition, different kinds of organic matter (e.g., organic nitrogen, organic carbon, etc.) in the
291	OC-Ca particles also showed enrichment trends below the submicron level, analogously to Ca^{2+}
292	enrichment (Fig. S10). Particularly, EF_{Ca} and organic nitrogen (with the largest NF in OC-Ca)
293	were both affected by the environmental factors of ambient temperature, wind speed, and sea ice
294	fraction, indicating possible organic binding with calcium (Fig. S11).
295	To exclude the potential inorganic water-soluble compounds (i.e., chloride (m/z -35 and -37),
296	nitrate (m/z -62), and sulfate (m/z -97)), we further classified OC-Ca into two subpopulations, OC-
297	Ca-Organic (23.6%, by proportion) and OC-Ca-Inorganic (48.7%, by proportion) (Fig. S12),
298	depending on the presence of inorganic ion signals (i.e., chloride of m/z -35/-37 [Cl] ⁻ , nitrate of
299	m/z -62 [NO ₃] ⁻ , and sulfate of m/z -97 [HSO ₄] ⁻). Both the OC-Ca types and mass concentrations of

300	$\mathrm{Ca}^{2\scriptscriptstyle+}$ showed enhanced correlations under high $\mathrm{EF}_{\mathrm{Ca}}$ values (Table S5). In particular, OC-Ca-
301	Organic exhibited stronger correlations than did OC-Ca-Inorganic (r = 0.51 vs. r = 0.28, $p < 0.05$,
302	by count and $r = 0.51$ vs. 0.31, $p < 0.05$, by peak area of m/z 40 [Ca] ⁺ , respectively), which
303	indicated the importance of OC-Ca-Organic for the enrichment of Ca^{2+} . That is, the organically
304	complexed calcium may have a certain water solubility and partly responsible for calcium
305	enrichment, while current studies may neglect it.
306	The possible processes contributing to the calcium enrichment induced by OC-Ca are
307	illustrated in Fig. 4. Ca ²⁺ tends to bind with organic matter of biogenic origin, such as exopolymer
308	substances (EPSs), and subsequently assemble as marine microgels (Verdugo et al., 2004; Gaston
309	et al., 2011; Krembs et al., 2011; Orellana et al., 2011; Verdugo, 2012; Orellana et al., 2021). Due
310	to its porous nature, the sea ice sticks to the abundant microgels that are driven by sea ice algae,
311	microorganisms, and/or exchanges of organic matter with the seawater below, which are likely
312	present in the snow, frost flowers, and brine channels (Krembs et al., 2002; Gao et al., 2012;
313	Vancoppenolle et al., 2013; Arrigo, 2014; Boetius et al., 2015; Kirpes et al., 2019). A low wind
314	speed may not only be conducive to the formation of frost flowers and snow but also produce less
315	sea salt (i.e., small yields of Na ⁺ relative to Ca ²⁺) (Rankin et al., 2002). Correspondingly, a high
316	wind speed (\geq 7 m s ⁻¹) yields more sea salt by blowing-snow events and/or wave breaking (Yang
317	et al., 2008; Song et al., 2022), presenting a dilution effect of Na^+ on Ca^{2+} . In this case, the
318	calcium enrichment in SSA could reasonably be attributed to the gel-like calcium particles (higher
319	proportion of OC-Ca at low wind speeds (< 7 m s ⁻¹ , 61.5%) relative to high wind speeds (\geq 7 m s ⁻¹ ,
320	38.5%)). Coincidently, Song et al. (2022) also reported that low wind-blown sea ice process can
321	drive the biogenic aerosol response in the high Arctic area. In addition, the enhanced presence of

322	film drops was observed at lower wind speeds (< 6 m s^{-1}) (Norris et al., 2011), which suggest that
323	the bubble bursts within the sea ice leads and open-water may also be responsible for the release
324	of OC-Ca and its calcium enrichment involved (Leck and Bigg, 2005b, a; Bigg and Leck, 2008;
325	Leck and Bigg, 2010; Leck et al., 2013; Kirpes et al., 2019).
326	Noticeable, it is still quite a challenge to obtain quantitative measurements using SPAMS due
327	to the potential inhomogeneities in the transmission efficiencies of the aerodynamic lenses and
328	desorption/ionization, and the matrix effects of individual particles (Gross et al., 2000; Qin et al.,
329	2006; Pratt and Prather, 2012). SPAMS cannot measure the Aitken-mode particles (Sierau et al.,
330	2014), it can measure only the tail of accumulation-mode particles with relatively low hit rate (~11%
331	in this study). Additionally, there is a difference in the size of collected particles between SPAMS
332	(0.2–2 $\mu m)$ and IGAC (~ 10 $\mu m).$ Meanwhile, IGAC may partly reflect the Ca^{2+} distribution based
333	the water-soluble Ca^{2+} as OC-Ca may have a low water solubility. Therefore, it may not be
334	straightforward to use the particle count and peak area in comparison with the absolute mass
335	concentration. Nevertheless, our results successfully identified a unique calcareous particle type
336	(i.e., OC-Ca) and its specific mixing state, which provides some insights into the mechanisms
337	behind calcium enrichment.

338 5 Conclusions

We investigated the distribution of calcium in SSA through the R/V *Xuelong* cruise observations over the Ross Sea, Antarctica. The most significant Ca^{2+} enrichment in SSA occurred under relatively lower ambient temperatures (< -3.5 °C) and wind speeds (< 7 m s⁻¹) and with the presence of sea ice. With the help of individual particle mass spectral analysis, we first proposed

343	that a single-particle type of OC-Ca (internally mixed organics with calcium), probably resulting
344	from the preferential binding of Ca^{2+} with organic matter, could partly account for the calcium
345	enrichment in SSA. We inferred that OC-Ca is likely produced from the effects of low wind-blown
346	sea ice on microgels induced by Ca^{2+} and/or the bubble bursts in the open-water and/or sea ice
347	leads. However, the impact of environmental factors and OC-Ca on calcium enrichment in SSA
348	still cannot be well predicted by multiple linear regression and random forest analysis (SI text S7),
349	which may be ascribed to other unknown mechanisms and/or organically complexed calcium with
350	a low water solubility. In addition, our conclusions based on limited spatial and temporal
351	conditions may not be accessible to other seasons and oceanic basins.
352	We suggest that the environmental behaviors of the possible gel-like calcium particles (i.e.,
353	OC-Ca) should be paid more attention behind the mechanisms of calcium enrichment. To our
354	knowledge, this is the first report of a calcium-dominated single-particle type OC-Ca in the
355	Antarctic. Such particles may be preferred candidates for CCN and/or IN (Willis et al., 2018;
356	Lawler et al., 2021). In the context of global warming and sea ice retreat, this work provides
357	insight into the chemical composition and distribution of submicron SSA in the Antarctic summer
358	atmosphere, which would be helpful for a better understanding of aerosol-cloud-climate
359	interactions.

360 Data Availability Statement

361 The data are available at Zenodo (https://doi.org/10.5281/zenodo.7276073).

362 Declaration of Competing Interest

363 The authors declare that they have no known competing financial interests or personal

364 relationships that could have appeared to influence the work reported in this paper.

365 Author Contributions

- 366 The idea for the study was conceived by BJS. BJS analyzed the data, prepared the figures, and
- 367 wrote the manuscript under the guidance of GHZ and XYB. LL and JPY contributed to the
- 368 observation data. All co-authors contributed to the discussions of the results and refinement of the
- 369 manuscript.

370 Acknowledgment

- 371 This work was supported by the Guangdong Basic and Applied Basic Research Foundation
- 372 (2019B151502022), the National Natural Science Foundation of China (42077322 and 42130611),
- 373 the Youth Innovation Promotion Association CAS (2021354), and the Guangdong Foundation for
- 374 Program of Science and Technology Research (2020B1212060053).

375 Figure captions

377 Figure 1

Bubble chart of the hourly Ca^{2+} enrichment factor (EF_{Ca}) with respect to Na^+ with different environmental factors (ambient temperature, wind speed, and sea ice fraction). The green and orange dots represent the EF_{Ca} values for the periods with and without sea ice, respectively. The orange marked dots represent a series of high EF_{Ca} cases that were correlated with a high concentration of chlorophyll-a during leg II of the cruise.

Enrichment factors of Ca²⁺ with respect to Na⁺ varied as a function of the ambient temperature (a-385 386 b), wind speed (c-d), and sea ice fraction (e-f) during cruise observations. (g) A box and whisker 387 plot of the single-particle peak area ratio of Ca/Na in OC-Ca for the periods with and without sea ice. In the box and whisker plots, the lower, median, and upper lines of the box denote the 25th, 388 389 50th and 75th percentiles, respectively. The lower and upper edges denote the 10th and 90th 390 percentiles, respectively. The black solid star (f) exhibited an anomalous trend due to its nature of 391 the relatively high or low wind speed. The first point exhibited a high EF value because of its 392 relatively low wind speed (5.86 m s⁻¹). The second and third points exhibited low EF values because of their relatively high wind speeds of 6.04 m s⁻¹ and 8.06 m s⁻¹, respectively. These three 393 points have been excluded in the correlation analysis. 394

395

398 (a) – (g) Average digitized single-particle mass spectra of seven chemical classes of Ca-containing 399 particles. New particle types are reclassified with m/z 40 [Ca²⁺] based on previous ART-2a results. 400 (h) Relative proportion and (i) unscaled size-resolved number distributions of these single-particle 401 types.

402

403 Figure 4

```
404 Schematic of the production of OC-Ca and its possible atmospheric implications beyond calcium
405 enrichment. Ca<sup>2+</sup> tends to bind with organic matter whining sea ice/seawater, and subsequently
406 assemble to marine microgels, likely present in the snow, frost flowers, and brine channels. With
407 the low wind-blown sea ice process and/or bubble bursting within sea ice leads, these gel-like
408 particles (i.e., OC-Ca) may be released to the Antarctic atmosphere, as a potential source of
409 CCN/IN.
```


410 References

411	Arrigo, K. R.: Sea ice ecosystems, Ann Rev Mar Sci, 6, 439-467, https://doi.org/10.1146/annurev-
412	marine-010213-135103, 2014.
413	Bertram, T. H., Cochran, R. E., Grassian, V. H., and Stone, E. A.: Sea spray aerosol chemical
414	composition: elemental and molecular mimics for laboratory studies of heterogeneous and
415	multiphase reactions, Chemical Society Reviews, 47, 2374-2400,
416	https://doi.org/10.1039/c7cs00008a, 2018.
417	Bigg, E. K. and Leck, C.: The composition of fragments of bubbles bursting at the ocean surface,
418	Journal of Geophysical Research: Atmospheres, 113 <u>https://doi.org/10.1029/2007jd009078</u> , 2008.
419	Bischoff, J. L., Fitzpatrick, J. A., and Rosenbauer, R. J.: The Solubility and Stabilization of Ikaite
420	(Caco3.6h2o) from 0-Degrees-C To 25-Degrees-C - Environmental and Paleoclimatic Implications
421	for Thinolite Tufa, J Geol, 101, 21-33, https://doi.org/10.1086/648194, 1993.
422	Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A., and Rapp, J. Z.: Microbial ecology of the
423	cryosphere: sea ice and glacial habitats, Nat Rev Microbiol, 13, 677-690,
424	https://doi.org/10.1038/nrmicro3522, 2015.
425	Boreddy, S. K. R. and Kawamura, K.: A 12-year observation of water-soluble ions in TSP aerosols
426	collected at a remote marine location in the western North Pacific: an outflow region of Asian dust,
427	Atmos Chem Phys, 15, 6437-6453, https://doi.org/10.5194/acp-15-6437-2015, 2015.
428	Brooks, S. D. and Thornton, D. C. O.: Marine Aerosols and Clouds, Annu Rev Mar Sci, 10, 289-313,
429	https://doi.org/10.1146/annurev-marine-121916-063148, 2018.
430	Carter-Fenk, K. A., Dommer, A. C., Fiamingo, M. E., Kim, J., Amaro, R. E., and Allen, H. C.: Calcium
431	bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer, Phys Chem Chem
432	Phys, 23, 16401-16416, https://doi.org/10.1039/d1cp01407b, 2021.
433	Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X.
434	Y., Zhang, Y. M., and Wang, W. X .: Sea salt aerosols as a reactive surface for inorganic and organic
435	acidic gases in the Arctic troposphere, Atmos Chem Phys, 15, 11341-11353,
436	https://doi.org/10.5194/acp-15-11341-2015, 2015.
437	Cochran, R. E., Jayarathne, T., Stone, E. A., and Grassian, V. H.: Selectivity Across the Interface: A
438	Test of Surface Activity in the Composition of Organic-Enriched Aerosols from Bubble Bursting, J
439	Phys Chem Lett, 7, 1692-1696, https://doi.org/10.1021/acs.jpclett.6b00489, 2016.
440	Collins, D. B., Zhao, D. F., Ruppel, M. J., Laskina, O., Grandquist, J. R., Modini, R. L., Stokes, M. D.,
441	Russell, L. M., Bertram, T. H., Grassian, V. H., Deane, G. B., and Prather, K. A.: Direct aerosol
442	chemical composition measurements to evaluate the physicochemical differences between
443	controlled sea spray aerosol generation schemes, Atmos Meas Tech, 7, 3667-3683,
444	https://doi.org/10.5194/amt-7-3667-2014, 2014.
445	Cravigan, L. T., Mallet, M. D., Vaattovaara, P., Harvey, M. J., Law, C. S., Modini, R. L., Russell, L. M.,
446	Stelcer, E., Cohen, D. D., Olsen, G., Safi, K., Burrell, T. J., and Ristovski, Z.: Sea spray aerosol
447	organic enrichment, water uptake and surface tension effects, Atmos Chem Phys, 20, 7955-7977,
448	https://doi.org/10.5194/acp-20-7955-2020, 2020.
449	Czerwieniec, G. A., Russell, S. C., Tobias, H. J., Pitesky, M. E., Fergenson, D. P., Steele, P., Srivastava,
450	A., Horn, J. M., Frank, M., Gard, E. E., and Lebrilla, C. B.: Stable isotope labeling of entire
451	Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry, Anal Chem,
452	77, 1081-1087, https://doi.org/10.1021/ac0488098, 2005.

453	Dall'Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M.,
454	Ceburnis, D., O'Dowd, C., Rinaldi, M., Paglione, M., Nenes, A., Decesari, S., and Simo, R.:
455	Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic
456	Sympagic Environment, Acs Earth Space Chem, 3, 854-862,
457	https://doi.org/10.1021/acsearthspacechem.9b00028, 2019.
458	Dieckmann, G., Nehrke, G., Uhlig, C., Göttlicher, J., Gerland, S., Granskog, M., and Thomas, D.: Brief
459	Communication: Ikaite (CaCO3·6H2O) discovered in Arctic sea ice, The Cryosphere, 4, 227-230,
460	https://doi.org/10.5194/tc-4-227-2010, 2010.
461	Dieckmann, G., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., Wolf-
462	Gladrow, D., and Thomas, D.: Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys
463	Res Lett, 35 <u>https://doi.org/10.1029/2008gl033540</u> , 2008.
464	Gao, Q., Leck, C., Rauschenberg, C., and Matrai, P. A.: On the chemical dynamics of extracellular
465	polysaccharides in the high Arctic surface microlayer, Ocean Sci, 8, 401-418,
466	https://doi.org/10.5194/os-8-401-2012, 2012.
467	Gaston, C. J., Furutani, H., Guazzotti, S. A., Coffee, K. R., Bates, T. S., Quinn, P. K., Aluwihare, L. I.,
468	Mitchell, B. G., and Prather, K. A.: Unique ocean-derived particles serve as a proxy for changes in
469	ocean chemistry, Journal of Geophysical Research: Atmospheres,
470	116 <u>https://doi.org/10.1029/2010jd015289</u> , 2011.
471	Gross, D. S., Galli, M. E., Silva, P. J., and Prather, K. A.: Relative sensitivity factors for alkali metal
472	and ammonium cations in single particle aerosol time-of-flight mass spectra, Anal Chem, 72, 416-
473	422, https://doi.org/10.1021/ac990434g, 2000.
474	Guasco, T. L., Cuadra-Rodriguez, L. A., Pedler, B. E., Ault, A. P., Collins, D. B., Zhao, D. F., Kim, M.
475	J., Ruppel, M. J., Wilson, S. C., Pomeroy, R. S., Grassian, V. H., Azam, F., Bertram, T. H., and
476	Prather, K. A.: Transition Metal Associations with Primary Biological Particles in Sea Spray
477	Aerosol Generated in a Wave Channel, Environ Sci Technol, 48, 1324-1333,
478	https://doi.org/10.1021/es403203d, 2014.
479	Hara, K., Osada, K., Yabuki, M., and Yamanouchi, T.: Seasonal variation of fractionated sea-salt
480	particles on the Antarctic coast, Geophys Res Lett, 39https://doi.org/10.1029/2012gl052761, 2012.
481	Keene, W. C., Maring, H., Maben, J. R., Kieber, D. J., Pszenny, A. A. P., Dahl, E. E., Izaguirre, M. A.,
482	Davis, A. J., Long, M. S., Zhou, X. L., Smoydzin, L., and Sander, R.: Chemical and physical
483	characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,
484	Journal of Geophysical Research: Atmospheres, 112https://doi.org/10.1029/2007jd008464, 2007.
485	Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet, R. C., Ault, A. P., and Pratt,
486	K. A.: Wintertime Arctic Sea Spray Aerosol Composition Controlled by Sea Ice Lead
487	Microbiology, Acs Central Sci, 5, 1760-1767, https://doi.org/10.1021/acscentsci.9b00541, 2019.
488	Köllner, F., Schneider, J., Willis, M. D., Klimach, T., Helleis, F., Bozem, H., Kunkel, D., Hoor, P.,
489	Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and Borrmann, S.:
490	Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere, Atmos
491	Chem Phys, 17, 13747-13766, https://doi.org/10.5194/acp-17-13747-2017, 2017.
492	Köllner, F., Schneider, J., Willis, M. D., Schulz, H., Kunkel, D., Bozem, H., Hoor, P., Klimach, T.,
493	Helleis, F., Burkart, J., Leaitch, W. R., Aliabadi, A. A., Abbatt, J. P. D., Herber, A. B., and
494	Borrmann, S.: Chemical composition and source attribution of sub-micrometre aerosol particles in
495	the summertime Arctic lower troposphere, Atmos Chem Phys, 21, 6509-6539,
496	https://doi.org/10.5194/acp-21-6509-2021, 2021.

497	Krembs, C., Eicken, H., and Deming, J. W.: Exopolymer alteration of physical properties of sea ice and
498	implications for ice habitability and biogeochemistry in a warmer Arctic, P Natl Acad Sci USA,
499	108, 3653-3658, https://doi.org/10.1073/pnas.1100701108, 2011.
500	Krembs, C., Eicken, H., Junge, K., and Deming, J. W.: High concentrations of exopolymeric substances
501	in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of
502	diatoms, Deep-Sea Res Pt I, 49, 2163-2181, https://doi.org/10.1016/S0967-0637(02)00122-X,
503	2002.
504	Lawler, M. J., Saltzman, E. S., Karlsson, L., Zieger, P., Salter, M., Baccarini, A., Schmale, J., and Leck,
505	C.: New Insights Into the Composition and Origins of Ultrafine Aerosol in the Summertime High
506	Arctic, Geophys Res Lett, 48https://doi.org/10.1029/2021gl094395, 2021.
507	Leck, C. and Bigg, E. K.: Source and evolution of the marine aerosol - A new perspective, Geophys
508	Res Lett, 32 <u>https://doi.org/10.1029/2005g1023651</u> , 2005a.
509	Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and overlaying atmosphere in the
510	central Arctic Ocean during summer, Tellus B, 57, 305-316, https://doi.org/10.1111/j.1600-
511	<u>0889.2005.00148.x</u> , 2005b.
512	Leck, C. and Bigg, E. K.: New Particle Formation of Marine Biological Origin, Aerosol Sci Tech, 44,
513	570-577, https://doi.org/10.1080/02786826.2010.481222, 2010.
514	Leck, C. and Svensson, E.: Importance of aerosol composition and mixing state for cloud droplet
515	activation over the Arctic pack ice in summer, Atmos Chem Phys, 15, 2545-2568,
516	https://doi.org/10.5194/acp-15-2545-2015, 2015.
517	Leck, C., Gao, Q., Mashayekhy Rad, F., and Nilsson, U.: Size-resolved atmospheric particulate
518	polysaccharides in the high summer Arctic, Atmos Chem Phys, 13, 12573-12588,
519	https://doi.org/10.5194/acp-13-12573-2013, 2013.
520	Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G., Bi, X., Cheng, P., and Zhou,
521	Z.: Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles, Int J
522	Mass Spectrom, 303, 118-124, https://doi.org/10.1016/j.ijms.2011.01.017, 2011.
523	Mukherjee, P., Reinfelder, J. R., and Gao, Y.: Enrichment of calcium in sea spray aerosol in the Arctic
524	summer atmosphere, Mar Chem, 227 <u>https://doi.org/10.1016/j.marchem.2020.103898</u> , 2020.
525	Murphy, D. M., Anderson, J. R., Quinn, P. K., McInnes, L. M., Brechtel, F. J., Kreidenweis, S. M.,
526	Middlebrook, A. M., Posfai, M., Thomson, D. S., and Buseck, P. R.: Influence of sea-salt on
527	aerosol radiative properties in the Southern Ocean marine boundary layer, Nature, 392, 62-65,
528	https://doi.org/10.1038/32138, 1998.
529	Norris, S. J., Brooks, I. M., de Leeuw, G., Sirevaag, A., Leck, C., Brooks, B. J., Birch, C. E., and
530	Tjernstrom, M.: Measurements of bubble size spectra within leads in the Arctic summer pack ice,
531	Ocean Sci, 7, 129-139, https://doi.org/10.5194/os-7-129-2011, 2011.
532	Oppo, C., Bellandi, S., Innocenti, N. D., Stortini, A. M., Loglio, G., Schiavuta, E., and Cini, R.:
533	Surfactant components of marine organic matter as agents for biogeochemical fractionation and
534	pollutant transport via marine aerosols, Mar Chem, 63, 235-253, https://doi.org/10.1016/S0304-
535	<u>4203(98)00065-6</u> , 1999.
536	Orellana, M. V. and Verdugo, P.: Ultraviolet radiation blocks the organic carbon exchange between the
537	dissolved phase and the gel phase in the ocean, Limnol Oceanogr, 48, 1618-1623,
538	https://doi.org/10.4319/lo.2003.48.4.1618, 2003.
539	Orellana, M. V., Hansell, D. A., Matrai, P. A., and Leck, C.: Marine Polymer-Gels' Relevance in the
540	Atmosphere as Aerosols and CCN, Gels, 7https://doi.org/10.3390/gels7040185, 2021.

541	Orellana, M. V., Matrai, P. A., Leck, C., Rauschenberg, C. D., Lee, A. M., and Coz, E.: Marine
542	microgels as a source of cloud condensation nuclei in the high Arctic, P Natl Acad Sci USA, 108,
543	13612-13617, https://doi.org/10.1073/pnas.1102457108, 2011.
544	Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D., DeMott, P. J., Aluwihare, L.
545	I., Palenik, B. P., Azam, F., Seinfeld, J. H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F.
546	M., Roberts, G. C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan, C. E.,
547	Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T. L., Hersey, S. P., Kim, M. J.,
548	Lambert, W. F., Modini, R. L., Mui, W., Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G.,
549	Sullivan, R. C., and Zhao, D. F.: Bringing the ocean into the laboratory to probe the chemical
550	complexity of sea spray aerosol, P Natl Acad Sci USA, 110, 7550-7555,
551	https://doi.org/10.1073/pnas.1300262110, 2013.
552	Pratt, K. A. and Prather, K. A.: Mass spectrometry of atmospheric aerosolsuRecent developments and
553	applications. Part II: On-line mass spectrometry techniques, Mass Spectrom Rev, 31, 17-48,
554	https://doi.org/10.1002/mas.20330, 2012.
555	Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, C. H.,
556	Prenni, A. J., and Prather, K. A.: In situ detection of biological particles in cloud ice-crystals, Nat
557	Geosci, 2, 397-400, https://doi.org/10.1038/Ngeo521, 2009.
558	Qin, X. Y., Bhave, P. V., and Prather, K. A.: Comparison of two methods for obtaining quantitative
559	mass concentrations from aerosol time-of-flight mass spectrometry measurements, Anal Chem, 78,
560	6169-6178, https://doi.org/10.1021/ac060395q, 2006.
561	Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T. S.: Chemistry and Related
562	Properties of Freshly Emitted Sea Spray Aerosol, Chem Rev, 115, 4383-4399,
563	https://doi.org/10.1021/cr500713g, 2015.
564	Rankin, A. M., Wolff, E. W., and Martin, S.: Frost flowers: Implications for tropospheric chemistry and
565	ice core interpretation, Journal of Geophysical Research: Atmospheres, 107, AAC 4-1-AAC 4-15,
566	https://doi.org/10.1029/2002jd002492, 2002.
567	Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T. S.: Carbohydrate-like
568	composition of submicron atmospheric particles and their production from ocean bubble bursting,
569	P Natl Acad Sci USA, 107, 6652-6657, https://doi.org/10.1073/pnas.0908905107, 2010.
570	Salter, M. E., Hamacher-Barth, E., Leck, C., Werner, J., Johnson, C. M., Riipinen, I., Nilsson, E. D.,
571	and Zieger, P.: Calcium enrichment in sea spray aerosol particles, Geophys Res Lett, 43, 8277-
572	8285, https://doi.org/10.1002/2016gl070275, 2016.
573	Sierau, B., Chang, R. Y. W., Leck, C., Paatero, J., and Lohmann, U.: Single-particle characterization of
574	the high-Arctic summertime aerosol, Atmos Chem Phys, 14, 7409-7430,
575	https://doi.org/10.5194/acp-14-7409-2014, 2014.
576	Sievering, H.: Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and
577	normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate
578	production by ozone oxidation, Journal of Geophysical Research: Atmospheres,
579	109https://doi.org/10.1029/2003jd004315, 2004.
580	Song, C., Becagli, S., Beddows, D. C. S., Brean, J., Browse, J., Dai, Q., Dall'Osto, M., Ferracci, V.,
581	Harrison, R. M., Harris, N., Li, W., Jones, A. E., Kirchgäßner, A., Kramawijaya, A. G., Kurganskiy,
582	A., Lupi, A., Mazzola, M., Severi, M., Traversi, R., and Shi, Z.: Understanding Sources and
583	Drivers of Size-Resolved Aerosol in the High Arctic Islands of Svalbard Using a Receptor Model
584	Coupled with Machine Learning, Environ Sci Technol, 56, 11189-11198,

585	https://doi.org/10.1021/acs.est.1c07796, 2022.
586	Song, X. and Hopke, P. K.: Classification of single particles analyzed by ATOFMS using an artificial
587	neural network, ART-2A, Anal Chem, 71, 860-865, <u>https://doi.org/10.1021/ac9809682</u> , 1999.
588	Srivastava, A., Pitesky, M. E., Steele, P. T., Tobias, H. J., Fergenson, D. P., Horn, J. M., Russell, S. C.,
589	Czerwieniec, G. A., Lebrilla, C. S., Gard, E. E., and Frank, M.: Comprehensive assignment of
590	mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser
591	desorption/ionization bioaerosol mass spectrometry, Anal Chem, 77, 3315-3323,
592	https://doi.org/10.1021/ac048298p, 2005.
593	Su, B., Wang, T., Zhang, G., Liang, Y., Lv, C., Hu, Y., Li, L., Zhou, Z., Wang, X., and Bi, X.: A review
594	of atmospheric aging of sea spray aerosols: Potential factors affecting chloride depletion, Atmos
595	Environ, 290https://doi.org/10.1016/j.atmosenv.2022.119365, 2022.
596	Su, B. J., Zhuo, Z. M., Fu, Y. Z., Sun, W., Chen, Y., Du, X. B., Yang, Y. X., Wu, S., Xie, Q. H., Huang,
597	F. G., Chen, D. H., Li, L., Zhang, G. H., Bi, X. H., and Zhou, Z.: Individual particle investigation
598	on the chloride depletion of inland transported sea spray aerosols during East Asian summer
599	monsoon, Sci Total Environ, 765 <u>https://doi.org/10.1016/j.scitotenv.2020.144290</u> , 2021.
600	Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.:
601	Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction
602	with nitric acid, Phys Chem Chem Phys, 11, 7826-7837, https://doi.org/10.1039/b904217b, 2009.
603	Tobo, Y., Adachi, K., DeMott, P. J., Hill, T. C. J., Hamilton, D. S., Mahowald, N. M., Nagatsuka, N.,
604	Ohata, S., Uetake, J., Kondo, Y., and Koike, M.: Glacially sourced dust as a potentially significant
605	source of ice nucleating particles, Nat Geosci, 12, 253-258, https://doi.org/10.1038/s41561-019-
606	<u>0314-x</u> , 2019.
607	Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., Carnat, G., Delille, B., Lannuzel,
608	D., Madec, G., Moreau, S., Tison, JL., and van der Merwe, P.: Role of sea ice in global
609	biogeochemical cycles: emerging views and challenges, Quaternary Science Reviews, 79, 207-230,
610	https://doi.org/10.1016/j.quascirev.2013.04.011, 2013.
611	Verdugo, P.: Marine microgels, Annual Review of Marine Science, 4, 375-400,
612	https://doi.org/10.1146/annurev-marine-120709-142759, 2012.
613	Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., and Santschi, P. H.: The oceanic
614	gel phase: a bridge in the DOM-POM continuum, Mar Chem, 92, 67-85,
615	https://doi.org/10.1016/j.marchem.2004.06.017, 2004.
616	Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes Controlling the Composition and
617	Abundance of Arctic Aerosol, Rev Geophys, 56, 621-671, https://doi.org/10.1029/2018rg000602,
618	2018.
619	Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J., Burrows, S. M.,
620	Carslaw, K. S., Huffman, J. A., Judd, C., Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L.
621	A., Najera, J. J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale, T. F.,
622	Wong, J. P., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P., Aller, J. Y., Bertram, A. K., Knopf, D.
623	A., and Murray, B. J.: A marine biogenic source of atmospheric ice-nucleating particles, Nature,
624	525, 234-238, https://doi.org/10.1038/nature14986, 2015.
625	Yan, J., Jung, J., Lin, Q., Zhang, M., Xu, S., and Zhao, S.: Effect of sea ice retreat on marine aerosol
626	
	emissions in the Southern Ocean, Antarctica, Sci Total Environ, 745, 140773,
627	emissions in the Southern Ocean, Antarctica, Sci Total Environ, 745, 140773, <u>https://doi.org/10.1016/j.scitotenv.2020.140773</u> , 2020a.

629	Gaseous Methanesulfonic Acid (MSA) over Southern Ocean, Environ Sci Technol, 53, 13064-
630	13070, https://doi.org/10.1021/acs.est.9b05362, 2019.
631	Yan, J., Jung, J., Zhang, M., Bianchi, F., Tham, Y., Xu, S., Lin, Q., Zhao, S., Li, L., and Chen, L.:
632	Uptake selectivity of methanesulfonic acid (MSA) on fine particles over polynya regions of the
633	Ross Sea, Antarctica, Atmos Chem Phys, 20, 3259-3271, https://doi.org/10.5194/acp-20-3259-
634	<u>2020,</u> 2020b.
635	Yang, X., Pyle, J. A., and Cox, R. A.: Sea salt aerosol production and bromine release: Role of snow on
636	sea ice, Geophys Res Lett, 35 <u>https://doi.org/10.1029/2008g1034536</u> , 2008.
637	Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved identification of
638	primary biological aerosol particles using single-particle mass spectrometry, Atmos Chem Phys, 17,
639	7193-7212, https://doi.org/10.5194/acp-17-7193-2017, 2017.
640	Zhang, T., Fiamingo, M., and Allen, H. C.: Trace Metal Enrichment Driven by Phosphate Functional
641	Group Binding Selectivity, Journal of Geophysical Research: Oceans, 123, 5286-5297,
642	https://doi.org/10.1029/2018jc013926, 2018.
643	

29