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Abstract: Although calcium is known to be enriched in sea spray aerosols (SSAs), the factors that 23 

affect its enrichment remain ambiguous. In this study, we examine how environmental factors 24 

affect the distribution of water-soluble calcium (Ca2+) distribution in SSAs. We obtained our 25 

dataset from observations taken during a research cruise on the R/V Xuelong cruise in the Ross 26 

Sea, Antarctica, from December 2017 to February 2018. Our observations showed that the 27 

enrichment of Ca2+ in aerosol samples was enhanced under specific conditions, including lower 28 

temperatures (< -3.5 ℃), lower wind speeds (< 7 m s-1), and the presence of sea ice. Our analysis 29 

of individual particle mass spectra revealed that a significant portion of calcium in SSAs was 30 

likely bound with organic matter (in the form of a single-particle type, OC-Ca). Our findings 31 

suggest that current estimations of Ca2+ enrichment based solely on water-soluble Ca2+ may be 32 

inaccurate. Our study is the first to observe a single-particle type dominated by calcium in the 33 

Antarctic atmosphere. Our findings suggest that future Antarctic atmospheric modeling should 34 

take into account the environmental behavior of individual OC-Ca. With the ongoing global 35 

warming and retreat of sea ice, it is essential to understand the mechanisms of calcium enrichment 36 

and the mixing state of individual particles to better comprehend the interactions between aerosols, 37 

clouds, and climate during the Antarctic summer.  38 
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Key points: 39 

 Ca2+ enrichment in sea spray aerosols (SSAs) was observed at lower ambient temperatures, 40 

lower wind speeds, and in the presence of sea ice. 41 

 Individual particle analysis revealed a significant portion of internally mixed organics with 42 

calcium particles in the Antarctic summer atmosphere. 43 

 Current water-soluble estimation of Ca2+ enrichment in SSAs may be inaccurate without 44 

considering organically complexed calcium. 45 

Keywords:  46 

Sea spray aerosol; Calcium enrichment; Individual particle analysis; Environmental factors; 47 

Internally mixed organics with calcium particles; Antarctic summer atmosphere. 48 

  49 
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1 Introduction 50 

Sea spray aerosols (SSAs) govern radiative forcing by directly scattering and absorbing solar 51 

radiation over the remote ocean (Murphy et al., 1998), and they affect the microphysical properties 52 

of marine clouds by serving as cloud condensation nuclei (CCN) and ice nuclei (IN) (Wilson et al., 53 

2015; Brooks and Thornton, 2018; Willis et al., 2018). Calcium is one of the components of SSA, 54 

which can present as inorganic calcium (e.g., CaCl2 and CaSO4) (Chi et al., 2015) as well as 55 

organic calcium (i.e., Ca2+ can readily induce the gelation of organic matter, presenting as the most 56 

efficient gelling agent) (Carter-Fenk et al., 2021). Calcium enrichment and chemical signature can 57 

affect some physicochemical properties of SSAs such as alkalinity and hygroscopicity (Salter et 58 

al., 2016; Mukherjee et al., 2020), which is critical for understanding aerosol-cloud interactions 59 

over the remote marine boundary layer (Keene et al., 2007; Leck and Svensson, 2015; Bertram et 60 

al., 2018). 61 

Several studies have demonstrated significant enrichment of calcium (Ca2+) in SSAs 62 

compared to bulk seawater, as briefly summarized in Table S1 and documented by Keene et al. 63 

(2007), Hara et al. (2012), Cochran et al. (2016), Salter et al. (2016), Cravigan et al. (2020), and 64 

Mukherjee et al. (2020). For example, Hara et al. (2012) found that the Ca2+ enrichment of aerosol 65 

samples was sensitive to sea salt fractionation during the cold winter-spring season over the 66 

Antarctic coast. Leck and Svensson (2015) suggested that Ca2+ enrichment in SSAs is attributed to 67 

bubble bursts on sea ice leads over the Arctic area. Similarly, low wind-driven bubble bursts were 68 

regarded as a major reason for the Ca2+ enrichment in SSAs during an Arctic cruise (Mukherjee et 69 

al., 2020). These results shed light on the Ca2+ enrichment process; however, our understanding of 70 

how environmental factors synergistically affect such enrichment processes remains unclear. 71 
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To date, a unified consensus on the chemical form of calcium to explain calcium enrichment 72 

in SSAs has not been reached. Two hypotheses have been proposed: (i) Calcium enrichment is 73 

dominated by inorganic calcium, such as CaCO3 and CaCl2. Ca2+ is enriched close to the seawater 74 

surface in the form of ionic clusters (most probably with carbonate ions) (Salter et al., 2016). 75 

Another source of CaCO3 is directly from calcareous shell debris (Keene et al., 2007). Through 76 

bubble bursts, both CaCO3 and CaCl2 along with sea salt can be emitted into the atmosphere. In 77 

addition, the sea salt fractionation by precipitation of ikaite (CaCO3ꞏ6H2O) may contribute to 78 

calcium enrichment in aerosol during the freezing of sea ice (Hara et al., 2012). (ii) Calcium 79 

enrichment is attributed to organically complexed calcium. Ca2+ may bind with organic matter, 80 

which is relevant with marine microgels and/or coccolithophore phytoplankton scales, and can be 81 

emitted by bubble bursting (Oppo et al., 1999; Sievering, 2004; Leck and Svensson, 2015; 82 

Cochran et al., 2016; Kirpes et al., 2019; Mukherjee et al., 2020). The chemical form of calcium 83 

can determine its atmospheric role. Inorganic calcium may exhibit stronger aerosol alkalinity and 84 

hygroscopicity than organic calcium (Salter et al., 2016; Mukherjee et al., 2020). However, current 85 

estimations of calcium enrichment based solely on water-soluble Ca2+ may not precisely explain 86 

the calcium distribution in SSAs. This is because the amount of low water-soluble complexation 87 

of Ca2+ with organic matter (e.g., aged Ca2+-assembled gel-like particles) (Orellana and Verdugo, 88 

2003; Leck and Bigg, 2010; Russell et al., 2010; Orellana et al., 2011; Leck and Svensson, 2015) 89 

and insoluble Ca2+ in the form of calcareous shell debris or the like may not be considered. Thus, 90 

an alternative method, such as discerning the mixing state based on single-particle analysis, may 91 

provide unique insights into the chemical form of calcium, and thus the mechanisms of calcium 92 

enrichment in SSAs. 93 
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As a part of the 34th Chinese Antarctic Research Expedition (CHINARE ANT34th), this 94 

study aimed to investigate the influencing factors and possible mechanisms of calcium enrichment 95 

in SSAs through R/V Xuelong cruise observation campaigns over the Ross Sea, Antarctica. An in-96 

situ gas and aerosol composition monitoring system (IGAC) was employed to determine the 97 

extent of Ca2+ enrichment in SSAs. Single-particle aerosol mass spectrometry (SPAMS) was 98 

utilized to measure the size and chemical signature (i.e., mixing state) of individual calcareous 99 

particles. We first investigated the impact of environmental factors such as ambient temperature, 100 

wind speed, sea ice fraction, chlorophyll-a concentration, and back trajectory coverage on Ca2+ 101 

enrichment in SSAs. Then, the mechanisms of calcium enrichment in SSAs were inferred 102 

according to the mixing state of individual calcareous particles. 103 

2 Methodology 104 

2.1 The R/V Xuelong cruise and observation regions 105 

Our study focused on the Ross Sea region of Antarctica (50 to 78° S, 160 to 185° E) (Fig. 1), 106 

where we conducted two separate observation campaigns aboard the R/V Xuelong. During the 107 

observations, this region was relatively isolated from the impact of long-range transport of 108 

anthropogenic aerosols and has experienced the sea ice retreat (Yan et al., 2020a). 109 

The first observation campaign (Leg I) took place from December 2-20, 2017, during the sea 110 

ice period. The second campaign (Leg II) was conducted from January 13 to February 14, 2018, 111 

during the period without sea ice. The sampling design for Leg I and Leg II aimed to investigate 112 

how changing environmental factors affect the enrichment extent of calcium and the 113 

characteristics of individual particles. 114 
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2.2 Meteorological parameters and satellite data of air masses, sea ice, and chlorophyll-a 115 

We measured various meteorological parameters, such as ambient temperature, relative 116 

humidity (RH), wind speed, and true wind direction using an automated meteorological station 117 

located on the top deck of the R/V Xuelong (Fig. S1 and Table S2). 118 

To determine the type of air masses, we first overviewed the 72-hour back trajectory with 119 

daily resolution per each starting location by using the NOAA Hybrid Single-Particle Lagrangian 120 

Integrated Trajectories (HYSPLIT, version 4.9) model (Fig. S2). Additionally, we conducted a 96-121 

hour back trajectory analysis with an hourly resolution, which covered the enhanced calcium 122 

enrichment events associated with sea ice fraction and chlorophyll-a concentration (discussed in 123 

section 3.1), using the TrajStat in Meteoinfo (version 3.5.8) (Wang et al., 2009; Wang, 2014). 124 

Meteorological data used for back trajectory analysis obtained from the Global Data Assimilation 125 

System (GDAS, ftp://ftp.arl.noaa.gov/pub/archives). Moreover, we obtained the monthly sea ice 126 

fraction from the Sea Ice Concentration Climate Data Record with a spatial resolution of 25 km 127 

(https://www.ncei.noaa.gov/products/climate-data-records/sea-ice-concentration) and the 8-day 128 

chlorophyll-a concentration from MODIS-aqua with a spatial resolution of 4 km 129 

(https://modis.gsfc.nasa.gov) (Fig. S3).  130 

During the R/V Xuelong cruise observation campaigns, leg I was dominantly affected by the 131 

air masses from the sea ice-covered open water (92%, by trajectory coverage), and leg II was 132 

mainly affected by the air masses from continental Antarctica (58%) (Table S2). The average 133 

ambient temperature (-4.0 ± 1.4 ℃ vs. -3.1 ± 2.2 ℃), wind speed (7.2 ± 5.5 m s-1 vs. 7.1 ± 4.2 m 134 

s-1), and chlorophyll-a concentration (0.51 ± 0.29 μg L-1 vs. 0.44 ± 0.18 μg L-1) varied slightly 135 

between the legs I and II (Table S2). 136 
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2.3 Contamination control during observation campaigns 137 

During the research cruise, the major contamination source was identified as emissions from 138 

a chimney located at the stern of the vessel and about 25 m above the sea surface. To mitigate the 139 

potential impact of ship emissions on aerosol sampling, we have taken several measures. Firstly, a 140 

total suspended particulate (TSP) sampling inlet connecting to the monitoring instruments was 141 

fixed to a mast 20 m above the sea surface, located at the bow of the vessel. In addition, the 142 

sampling inlet was fixed on a ship pillar with a rain cover, which could minimize the potential 143 

influence of violent shaking of the ship and sea waves. Secondly, sampling was only conducted 144 

while the ship was sailing, to avoid the possible effect of ship emission on aerosol sampling under 145 

the low diffusion condition. Lastly, we did not observe the mass spectral characteristics associated 146 

with ship emission (e.g., particles simultaneously contain m/z 51 [V]+, 67 [VO]+, and element 147 

carbon) during the observation campaigns (Liu et al., 2017; Passig et al., 2021). These measures 148 

ensured that the collected data were representative and reliable for subsequent analysis. 149 

2.4 Instrumentation 150 

An IGAC (Model S-611, Machine Shop, Fortelice International Co. Ltd.) and a SPAMS 151 

(Hexin Analytical Instrument Co., Ltd.) were synchronously employed to determine water-soluble 152 

ion mass concentrations of bulk aerosol and the size and chemical composition of individual 153 

particles in real-time with hourly resolution (Figs. 2 and S4). In the aerosol sampling procedure, a 154 

TSP inlet with a PM10 cyclone (trap efficiency greater than 99% for particles > 0.3 μm, Da50 = 10 155 

± 0.5 μm) was used for IGAC sampling and a PM2.5 cyclone (Da50 = 2.5 ± 0.2 μm) to remove 156 

particles larger than 2.5 μm for SPAMS. All instruments were connected using conductive silicon 157 
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tubing with an inner diameter of 1.0 cm. 158 

2.4.1 Aerosol water-soluble ion constituents  159 

The details of the analytical method of IGAC have been described in previous studies (Young 160 

et al., 2016; Yan et al., 2019; Yan et al., 2020b). Briefly, the IGAC system consisted of three main 161 

units, including a Wet Annular Denuder (WAD), a Scrub and Impact Aerosol Collector (SIAC), 162 

and an ion chromatograph (IC, Dionex ICS-3000) (Fig. 2). Gases and aerosols were passed 163 

through WAD with a sampling flow of 16.7 L min-1. Two concentric Pyrex glass cylinders with a 164 

length of 50 cm and inner and outer diameters of 1.8 and 2.44 cm were assembled to WAD, in 165 

which the inner walls of the annulus were wetted with ultrapure water (18.2 MΩ cm-1). This part 166 

was responsible for the collection of acidic and basic gases by diffusion and absorption of a 167 

downward-flowing aqueous solution. The SIAC had a length of 23 cm and a diameter of 4.75 cm, 168 

which was positioned at an angle to facilitate the collection of enlarged particles. The collected 169 

particles were separated firstly, continually enlarged by vapor steam, and then accelerated through 170 

a conical-shaped impaction nozzle and collected on an impaction plate. Each aerosol sample was 171 

collected for 55 minutes and injected for 5 minutes. The injection loop size was 500 μL for both 172 

anions and cations, which were subsequently analyzed by IC. The collection efficiency of aerosol 173 

and gas samples before they entered IC was previously reported higher than 89% (for 0.056 μm 174 

particles, 89%; for 1 μm particles, 98%; for gas samples, > 90%) (Chang et al., 2007; Tian et al., 175 

2017). The target ion concentrations were calibrated with a coefficient of determination (r2) above 176 

0.99 by using standard solutions (0.1-2000 μg L-1). The detection limits for Na, Cl, Ca, K, and Mg 177 

were 0.03, 0.03, 0.019, 0.011, and 0.042 μg L-1 (aqueous solution), respectively. The systematic 178 
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error of the IC systems was generally less than 5%. The detection limits for Na+, Cl-, Ca2+, K+, and 179 

Mg2+ were 0.03, 0.03, 0.019, 0.011, and 0.042 μg L-1 (aqueous solution), respectively.  180 

Throughout the observation campaigns, the mean Na+ and Ca2+ mass concentrations were 181 

364.64 ng m-3 (ranging from 6.66 to 4580.10 ng m-3) and 21.20 ng m-3 (ranging from 0.27 to 182 

334.40 ng m-3), respectively, which were 10 times higher than the detection limits. Analytical 183 

uncertainty of Ca2+ enrichment based on water-soluble analysis was estimated at less than 11% 184 

(Supporting Information, SI text S1). 185 

It should be clarified that the water-soluble ion mass concentration included the pure 186 

inorganic part (e.g., pure sea salt, NaCl) and mixed organic-inorganic part (e.g., gel-like particles) 187 

(Quinn et al., 2015). Numerous studies have reported that primary SSAs exhibited moderate 188 

hygroscopicity and water solubility due to a certain water-soluble organic fraction (~ 25%, by 189 

mass), such as carboxylates, lipopolysaccharides (LPSs), humic substances, and galactose (Oppo 190 

et al., 1999; Quinn et al., 2015; Schill et al., 2015; Cochran et al., 2017). For example, Oppo et al. 191 

(1999) indicated that humic substances were an important pool of water-soluble natural surfactants 192 

(40-60%) in marine surfactant organic matter. In addition, LPSs are preferentially transferred to 193 

submicron SSAs during bubble bursting and exhibit a certain solubility of 5 g L-1 in pure water. 194 

(Facchini et al., 2008; Schill et al., 2015). Therefore, both organic and inorganic parts with a 195 

water-soluble nature could be retained, contributing to the water-soluble ion mass concentration 196 

(e.g., Ca2+). 197 

2.4.2 Single-particle analysis 198 

A brief description of SPAMS has been provided elsewhere (Li et al., 2011). Briefly, the 199 
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aerosols were drawn into SPAMS by a PM2.5 inlet after a silica gel dryer (Fig. 2). A collimated 200 

particle beam focused by an aerodynamic lens was then accelerated in an accelerating electric 201 

field and passed through two continuous laser beams (Nd: YAG laser, 532 nm). The obtained time 202 

of flight (TOF) and velocity of individual particles were used to calculate the vacuum 203 

aerodynamic diameter (Dva) based on a calibration curve. Subsequently, particles with a specific 204 

velocity were desorbed and ionized by triggering a pulse laser (an Nd: YAG laser, 266 nm, 0.6 ± 205 

0.06 mJ was used in this study). The ion fragments were recorded using a bi-polar TOF mass 206 

spectrometer. The detectable dynamic mass spectral ion signal is 5-20,000 mV. Before the use of 207 

SPAMS, standard polystyrene latex spheres (0.2-2 μm, Duke Scientific Corp.) and PbCl2 and 208 

NaNO3 (0.35 μm, Sigma-Aldrich) solutions were used for the size and mass spectral calibration, 209 

respectively. The hit rate, defined as the ratio of ionized particles to all sampled particles, of the 210 

SPAMS was ~ 11% during the cruise observation campaigns. 211 

During the R/V Xuelong cruise observation campaigns, approximately 930,000 particles with 212 

mass spectral fingerprints and Dva ranging from 0.2 to 2 μm were measured. An adaptive 213 

resonance theory neural network (ART-2a) was used to group the particles into several clusters 214 

based on their mass spectral fingerprints, using parameters of a vigilance factor of 0.85, a learning 215 

rate of 0.05, and a maximum of 20 iterations (Song and Hopke, 1999). The manually obtained 216 

clusters were sea salt (SS, 16.5%), aged sea salt (SS-aged, 8.1%), sea salt with biogenic organic 217 

matter (SS-Bio, 3.1%), internally mixed organics with calcium (OC-Ca, 48.7%), internally mixed 218 

organics with potassium (OC-K, 13.7%), organic-carbon-dominated (OC, 7.0%), and element 219 

carbon (EC, 2.9%) (Fig. S5 and Table S3) (Prather et al., 2013; Collins et al., 2014; Su et al., 220 

2021). All single-particle types had marine origins with typical mass spectral characteristics of Na 221 
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(m/z 23), Mg (m/z 24), K (m/z 39), Ca (m/z 40), and Cl (m/z -35 and -37), except for EC (SI text 222 

S2). There was little difference in individual particle analysis regarding chemical composition, 223 

size, and mixing state of particle clusters obtained from leg I and leg II (SI Text S3). 224 

3 Results 225 

3.1 Ca2+ enrichment dominated by environmental factors 226 

We propose that both Na+ and Ca2+ in our observations originated from marine sources. 227 

The mass concentration of Na+ exhibited a strong positive correlation with that of Cl- (r = 0.99, 228 

p < 0.001) and Mg2+ (r = 0.99, p < 0.001) (Fig. S6), indicating that they had a common origin 229 

(i.e., sea spray). However, it is not surprising that the mass concentration of Na+ showed a 230 

relatively weak correlation with that of Ca2+ (r = 0.51, p < 0.001) (Fig. S6). This can be 231 

explained by the low water-soluble complexation of Ca2+ with organic matter and/or insoluble 232 

Ca2+ in the form of calcareous shell debris, such as CaCO3. In addition, the potential impact of 233 

long-range transport of anthropogenic aerosols and dust contributing to Ca2+ may be limited due 234 

to the predominance of polar air masses during the observation campaigns (Fig. S2). 235 

The enrichment factor (EFx), defined as the mass concentration ratio of a specific species 236 

X to Na+ in aerosols to that in bulk seawater, is generally used to describe the enrichment extent 237 

of species X in aerosols. 238 

EFx= 
([X]/[Na+])aerosol

([X]/[Na+])seawater

 239 

An EFx > 1 indicates a positive enrichment; otherwise, it indicates depletion. Generally, the 240 

ratio of Ca2+ to Na+ in seawater is 0.038 (w/w) (Boreddy and Kawamura, 2015; Su et al., 2022). 241 

During the whole cruise, the hourly average EFCa was 2.76 ± 6.27 (mean ± standard deviation (M 242 
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± SD), n = 1051, ranged from 0.01 to 85, median =1.18, interquartile range (IQR) = 1.85). Similar 243 

to previous studies (Salter et al., 2016), positive magnesium (Mg2+) and potassium (K+) 244 

enrichment in SSAs was also observed (SI text S4). 245 

Figure 3 presents the enrichment factor of Ca2+ (EFCa) at different ambient temperatures 246 

(separated by a mean value of -3.5 ℃), wind speeds (separated by a mean value of 7 m s-1), and in 247 

the presence/absence of sea ice during the entire observation campaign. The results indicated that 248 

the highest EFCa zone (M ± SD = 3.83 ± 3.43, median = 2.66, IQR = 3.37, n = 144) occurred at a 249 

lower ambient temperature (< -3.5 ℃), lower wind speed (< 7 m s-1) and in the presence of sea ice 250 

(Fig. 3d). Compared to the contrary conditions (i.e., ambient temperatures ≥ -3.5 ℃, wind speeds 251 

≥ 7 m s-1, and the absence of sea ice), there was almost calcium depletion (EFCa, M ± SD = 1.01 ± 252 

0.80, median = 0.70, IQR = 0.73, n = 182) (Fig. 3c). Notably, we observed a higher EFCa during 253 

the sea ice period than during the period without sea ice (3.83 ± 3.43 vs. 2.45 ± 3.09 by M ± SD 254 

and 2.66 vs. 1.18, by median) (Fig. 3d), under the conditions of ambient temperatures < -3.5 ℃ 255 

and wind speeds < 7 m s-1. In addition, we also observed more frequent Ca2+ enrichment events 256 

during the sea ice period (71.0% in leg I) compared to the period without sea ice (47.7% in leg II) 257 

(Table S2). Moreover, the increased EFCa varied with decreasing ambient temperature and wind 258 

speed and with increasing sea ice fraction, as shown in Fig. 4. Taken together, our results indicate 259 

that the enhanced Ca2+ enrichment in SSAs is sensitive to the lower temperature, lower wind 260 

speeds, and the presence of sea ice. 261 

We further analyzed the distribution of Ca2+ enrichment concerning 96-hour back trajectories 262 

with sea ice fraction and chlorophyll-a concentration, as shown in Fig. 5. During the observation 263 

campaigns, we identified five areas with continuous enhancement of Ca2+ enrichment, namely, 264 
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Area 1 and 2 during the leg II, and Area 3,4, and 5 during the leg I. Our results indicated that air 265 

masses traveling over the sea ice and marginal ice zone (> 95%, by trajectory coverage) in Areas 3, 266 

4, and 5, as well as those over the sea ice (28%-33%) and land-based Antarctic ice (57-59%) in 267 

Area 1 and 2, were strongly associated with the increased calcium enrichment (Table S4). These 268 

pieces of evidence further support the influence of sea ice on the increased calcium enrichment, 269 

while simultaneously ruling out the influence of long-range transport of anthropogenic aerosol and 270 

dust outside the Antarctic.  271 

We observed that a series of high EFCa cases in Area 1 were associated with a high 272 

concentration of chlorophyll-a (0.99 ± 1.65 μg L-1). However, it is unlikely that phytoplankton 273 

and/or bacteria are responsible for the enhanced EFCa cases due to the weak correlation (r = 0.12, p 274 

< 0.01) between the chlorophyll-a concentration and EFCa values (Fig. S7). Moreover, although 275 

the ship track of leg II covered large areas with high chlorophyll-a concentrations, the high EFCa 276 

values were only present at the narrow temporal and spatial scales. Furthermore, results from back 277 

trajectories indicated that air masses did not significantly travel through the region with elevated 278 

chlorophyll-a concentration. Therefore, we suggest that the impact of chlorophyll-a concentration 279 

on Ca2+ enrichment may be limited.  280 

3.2 Single-particle characteristics of Ca-containing particles 281 

To elucidate the mixing state of individual calcareous particles, we set a threshold for the ion 282 

count rate of m/z 40 [Ca]+  (ion intensity > 100 mV) to reclassify all single-particle types that were 283 

obtained from the ART-2a algorithm. This means that all reclassified particles contain signals of 284 

m/z 40 [Ca]+. A total of ~ 580, 000 Ca-containing particles were distributed among all particle 285 
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types, accounting for ~ 62% of the total obtained particles. OC-Ca was the dominant (~ 72%, by 286 

occurrence frequency) particle type among all Ca-containing particles, followed by SS-Ca 287 

(calcium-containing sea salt, ~ 12%) (Fig. 6h). Each of the remaining particle types accounted for 288 

negligible fractions (< 7%) in the total of Ca-containing particles, and were classified as “Other”. 289 

Thus, they were not included in the following discussion. 290 

OC-Ca was characterized by a prominent ion signature for m/z at 40 [Ca]+ in the positive 291 

mass spectrum and organic marker ions of biological origin (e.g., organic nitrogen, phosphate, 292 

carbohydrate, siliceous materials, and organic carbon) in the negative spectrum (Fig. 6d). 293 

Specifically, organic nitrogen (m/z -26 [CN]- and -42 [CNO]-) showed the largest number fraction 294 

(NF) at ~88% (Fig. S5h), which is likely derived from organic nitrogen species, such as amines 295 

amino groups, and/or cellulose (Czerwieniec et al., 2005; Srivastava et al., 2005; Köllner et al., 296 

2017; Dall'osto et al., 2019). Higher NFs of phosphate (16%; m/z -63 [PO2]- and -79 [PO3]-), 297 

carbohydrates (24%; m/z -45 [CHO2]-, -59 [C2H3O2]-, and -73 [C3H5O2]-), siliceous materials 298 

(40%; m/z -60 [SiO2]-), and organic carbon (37%; m/z 27 [C2H3]- and 43 [C2H3O3]-) were also 299 

observed in OC-Ca relative to other particle types (Fig. S5h). These organic ion signatures likely 300 

correspond to phospholipids, mono- and polysaccharides, and biosilica structures (e.g., 301 

exoskeletons or frustules), which may be derived from the intact heterotrophic cells, fragments of 302 

cells, and exudates of phytoplankton and/or bacterial (Prather et al., 2013; Guasco et al., 2014; 303 

Zhang et al., 2018). Besides, the strong organic ion intensities may truly reflect the amount of 304 

organic material in OC-Ca, because the particles are sufficiently dry during the ionization process 305 

(i.e., complete positive and negative mass spectra) (Gross et al., 2000). Notably, the possible ion 306 

signals of bromide (m/z -79 and -81) were observed in OC-Ca, indicating a potential source of 307 
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blowing snow (Yang et al., 2008; Song et al., 2022). 308 

The OC-Ca particles are most likely classified as a distinct SSA population, probably of 309 

marine biogenic origin. Sea salt particles typically exhibit a stronger m/z 23 [Na]+ than m/z 40 310 

[Ca]+ due to the higher concentration of Na+ vs. Ca2+ in seawater and also due to the lower 311 

ionization potential of Na vs. Ca (5.14 eV vs. 6.11 eV) (Gross et al., 2000). However, the ratio of 312 

m/z 23 [Na]+ to m/z 40 [Ca]+ in the OC-Ca particles is reversed, verifying a distinct single particle 313 

type (Gross et al., 2000; Gaston et al., 2011). Similarly, the ion signal of m/z 39 [K]+ does not 314 

surpass that of m/z 40 [Ca]+ in OC-Ca, although K is ionized more easily than Ca (4.34 eV vs. 315 

6.11eV) (Gross et al., 2000). Although RH at the sampling outlet was < 40%, the short residence 316 

time of the particles within the drying tube (< 5 s) and vacuum system (< 1 ms) could have been 317 

insufficient for the complete efflorescence of SSAs (Gaston et al., 2011; Sierau et al., 2014). 318 

Hence, the OC-Ca could not be attributed to the chemical fractionation of the efflorescence SSAs 319 

in SPAMS analysis. Additionally, based on the single-particle mass spectrometry technique, some 320 

particle types with similar chemical characteristics to OC-Ca have been observed in both field and 321 

laboratory studies (e.g., atomization of sea ice meltwater collected in the Southern Ocean) (Gaston 322 

et al., 2011; Prather et al., 2013; Collins et al., 2014; Guasco et al., 2014; Dall'osto et al., 2019; Su 323 

et al., 2021). The OC-Ca may be from local emissions because the measurements were almost 324 

entirely influenced by polar air masses (Fig. S1). Other possible sources, such as glacial dust 325 

(Tobo et al., 2019), could be excluded because of the lack of crustal mass spectral characteristics 326 

(e.g., -76 [SiO3]-, 27 [Al]+, and 48 [Ti]+/64 [TiO]+) (Pratt et al., 2009; Zawadowicz et al., 2017). 327 

And the mean mass concentration ratio of Ca/Na in the aerosol sample was only 0.10, much lower 328 

than that in the crust (1.78, w/w). 329 
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In contrast, SS-Ca was classified as a pure inorganic cluster with predominant contributions 330 

of Na-related compounds (m/z 23 [Na]+, 46 [Na2]+, 81/83 [Na2
35/37Cl]+, and -93/-95 [Na35/37Cl2]-), 331 

Mg (m/z 24), K (m/z 39), and Ca (m/z 40) in the mass spectra (Fig. 6a). Organic ion signals such 332 

as organic nitrogen (m/z -26 [CN]- and -42 [CNO]-) and phosphate (m/z -63 [PO2]- and -79 [PO3]-) 333 

were rarely detected (~1%, by NF). As described above, these compounds relate to oceanic 334 

biogeochemical processes. In addition, secondary species (e.g., nitrate of m/z -62 [NO3]- and 335 

sulfate of m/z -97 [HSO4]-) were also not observed, indicating a fresh origin and/or less 336 

atmospheric aging. As a subpopulation of SS, SS-Ca may originate from bubble bursting within 337 

open water and/or blowing snow. 338 

4 Discussion 339 

SS-Ca (calcium-containing sea salt) represents a mixture of NaCl and CaCl2. However, the 340 

SS-Ca showed a weak correlation (r = 0.21, p < 0.05, by count and r = 0.03, p < 0.05, by the peak 341 

area of m/z 40 [Ca]+) with the mass concentration of Ca2+ (Table 1). In addition, the proportion of 342 

SS-Ca was also small (11.6%, Fig. 6h). These results indicate that CaCl2 is not the major reason 343 

for the Ca2+ enrichment in SSAs, although CaCl2 has been proposed as a cause, based on 344 

laboratory atomizing of pure inorganic artificial seawater (Salter et al., 2016). The contribution of 345 

ikaite (CaCO3ꞏ6H2O) could also be excluded due to its low water solubility (Bischoff et al., 1993; 346 

Dieckmann et al., 2008; Dieckmann et al., 2010), although ikaite from sea salt fractionation has 347 

also been proposed to account for the Ca2+ enrichment in SSAs over the Antarctic coast (Hara et 348 

al., 2012). Moreover, the mass spectral signatures of CaCO3 (e.g., m/z 56 [CaO]+ and -60 [CO3]2- 349 

(see Sullivan et al. (2009)) were also rare in the SS-Ca particles (Fig. 6a). 350 
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As a major component (~ 72%, by occurrence frequency) of the Ca-containing particles, OC-351 

Ca is expected to be partially responsible for the calcium enrichment in SSAs. First, the OC-Ca 352 

and mass concentration of Ca2+ exhibited moderately weak positive correlations (r = 0.42, p < 0.05, 353 

by count and r = 0.49, p < 0.05, by the peak area of m/z 40 [Ca]+) and moderately strong 354 

correlations under higher EFCa values (EFCa > 10, r = 0.63, p < 0.05, by count and r = 0.68, p < 355 

0.05, by the peak area of m/z 40 [Ca]+) (Table 1). Also, such correlations were great during leg I (r 356 

= 0.59, p < 0.05, by count and r = 0.60, p < 0.05, by the peak area of m/z 40 [Ca]+). Second, the 357 

OC-Ca showed a size distribution with a peak at 1 μm (Fig. 6i), which is consistent with the 358 

significant Ca2+ enrichment that is generally found in submicron SSAs (Cochran et al., 2016; 359 

Salter et al., 2016; Mukherjee et al., 2020).  360 

We further show that calcium may strongly mix with organic matter, probably as organically 361 

complexed calcium, in the OC-Ca particles. The calcium correlated well with different kinds of 362 

organic matter (e.g., phosphate, r = 0.81, p < 0.05, by the peak area), but poorly correlated with 363 

chloride (r = 0.21, p < 0.05, by the peak area and r = 0.48, p < 0.05, by mass concentration) (Fig. 364 

S6). In addition, different kinds of organic matter (e.g., organic nitrogen, organic carbon, etc.) in 365 

the OC-Ca particles also showed enrichment trends below the submicron level, analogously to 366 

Ca2+ enrichment (Fig. S8). Particularly, EFCa and organic nitrogen (with the largest NF in OC-Ca) 367 

were both affected by the environmental factors of ambient temperature, wind speed, and sea ice 368 

fraction, indicating possible organic binding with calcium (Fig. S9). 369 

To exclude the potential inorganic water-soluble compounds (i.e., chloride (m/z -35 and -37), 370 

nitrate (m/z -62), and sulfate (m/z -97)), we further classified OC-Ca into two subpopulations, OC-371 

Ca-Organic (23.6%, by proportion) and OC-Ca-Inorganic (48.7%, by proportion) (Fig. S10), 372 
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depending on the presence of inorganic ion signals (i.e., chloride of m/z -35/-37 [Cl]-, nitrate of 373 

m/z -62 [NO3]-, and sulfate of m/z -97 [HSO4]-). Both the OC-Ca types and mass concentrations of 374 

Ca2+ showed enhanced correlations under high EFCa values (Table 1). In particular, OC-Ca-375 

Organic exhibited stronger correlations than did OC-Ca-Inorganic (r = 0.51 vs. r = 0.28, p < 0.05, 376 

by count and r = 0.51 vs. 0.31, p < 0.05, by the peak area of m/z 40 [Ca]+, respectively), which 377 

indicates the importance of OC-Ca-Organic for the enrichment of Ca2+. Although we did not 378 

measure the hygroscopicity of the OC-Ca in this study, we infer it to be hygroscopic to some 379 

extent. As reported by Cochran et al. (2017), the mixture of sea salt with organic matter can also 380 

exhibit a certain hygroscopicity (hygroscopicity parameter, 0.50-1.27). Therefore, it is likely that 381 

the organically complexed calcium is slightly water-soluble and is partially responsible for 382 

calcium enrichment, while current studies may neglect it. 383 

The possible processes contributing to the calcium enrichment induced by OC-Ca can only 384 

be speculated on (Fig. 7). Ca2+ tends to bind with organic matter of biogenic origin, such as 385 

exopolymer substances (EPSs), and subsequently assemble as marine microgels (Verdugo et al., 386 

2004; Gaston et al., 2011; Krembs et al., 2011; Orellana et al., 2011; Verdugo, 2012; Orellana et 387 

al., 2021). Large amounts of microgels, driven by sea ice algae, microorganisms, and/or exchanges 388 

of organic matter with the seawater below, stick to the sea ice due to its porous nature. 389 

Furthermore, they are likely to be present in the snow, frost flowers, and brine channels (Krembs 390 

et al., 2002; Gao et al., 2012; Vancoppenolle et al., 2013; Arrigo, 2014; Boetius et al., 2015; 391 

Kirpes et al., 2019). A low wind speed may not only be conducive to the formation of frost flowers 392 

and snow but also produce less sea salt (i.e., small yields of Na+ relative to Ca2+) (Rankin et al., 393 

2002). Correspondingly, a high wind speed (≥ 7 m s-1) can yield more sea salt by blowing-snow 394 
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events and/or wave breaking (Yang et al., 2008; Song et al., 2022), presenting a dilution effect of 395 

Na+ on Ca2+. In this case, the calcium enrichment in SSAs could reasonably be attributed to the 396 

possible gel-like calcium-containing particles released by low-wind-blown sea ice. This inference 397 

is supported by the observation of air masses blown over a large fraction of sea ice/ land-based 398 

Antarctic ice, as well as a moderate negative correlation (r = 0.50, p < 0.001) between wind speed 399 

and sea ice fraction. In addition, we also observed a higher proportion of OC-Ca at low wind 400 

speeds (< 7 m s-1, 61.5%) than at high wind speeds (≥ 7 m s-1, 38.5%). Coincidently, Song et al. 401 

(2022) also reported that a low wind-blown sea ice process can drive the biogenic aerosol 402 

response in the high Arctic. In addition, the enhanced presence of film drops was observed at 403 

lower wind speeds (< 6 m s-1) (Norris et al., 2011), which suggests that the bubble bursts within 404 

the sea ice leads and open water may also be responsible for the release of OC-Ca and its calcium 405 

enrichment involved (Leck and Bigg, 2005b, a; Bigg and Leck, 2008; Leck and Bigg, 2010; Leck 406 

et al., 2013; Kirpes et al., 2019). 407 

As expected, the results of the Ca2+ enrichment in SSAs obtained from ion mass 408 

concentration via IGAC did not fully align with results from SPAMS datasets. We propose two 409 

possible explanations for this discrepancy: (i) It could be attributed to a difference in the size of 410 

particles collected by the two different instruments (~ 10 μm for IGAC and 0.2–2 μm for SPAMS). 411 

In addition, SPAMS cannot measure the Aitken-mode particles (Sierau et al., 2014), and can 412 

measure only the tail of accumulation-mode particles with a relatively low hit rate (~11% in this 413 

study). (ii) The types of datasets obtained via IGAC (ion mass concentration) and SPAMS (mass 414 

spectral characteristics) are different. The former method partially reflects the Ca2+ distribution 415 

based on water-soluble Ca2+, while the OC-Ca measured by SPAMS may have low water 416 
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solubility. The latter method is still challenging to use for quantitative measurements due to 417 

potential inhomogeneities in the transmission efficiencies of the aerodynamic lenses and 418 

desorption/ionization, as well as the matrix effects of individual particles (Gross et al., 2000; Qin 419 

et al., 2006; Pratt and Prather, 2012). Therefore, it may not be straightforward to compare the 420 

particle count and peak area with the absolute mass concentration.  421 

Although there is a discrepancy between the two instruments, we believe our results to be 422 

reliable and representative. On the one side, the quantitative results concluded by IGAC confirm 423 

the enrichment of Ca2+
 in SSAs and demonstrate their dependence on and relevance to the 424 

environmental factors. On the other side, the individual particle analysis ranging in size from 0.2 425 

to 2 μm is highly appropriate for revealing the calcium distribution in SSAs, as previous studies 426 

have shown increasing Ca2+ enrichment in SSAs below 1 μm (Oppo et al., 1999; Hara et al., 2012; 427 

Cochran et al., 2016; Salter et al., 2016; Mukherjee et al., 2020). Our study successfully identifies 428 

a unique calcareous particle type (i.e., OC-Ca) and its specific mixing state. A comprehensive 429 

understanding of the characteristics of OC-Ca to the mechanisms of calcium enrichment is 430 

essential for further recognizing the CCN and IN activation in remote marine areas.  431 

Another limitation is that only several environmental factors were considered for calcium 432 

enrichment in this study. Some potential factors, such as surface net solar radiation, snowfall, total 433 

cloud cover, surface pressure, total precipitation, boundary layer height, seawater salinity, etc., 434 

may also affect the calcium enrichment in SSAs through regulating the yield of sea salt (i.e., Na+ 435 

mass concentration) (Song et al., 2022). However, they were not available in this study because of 436 

the lack of measurement during the cruise. Meanwhile, the satellite data with low temporal-spatial 437 

resolution cannot match per hour in each starting condition. We hope that future research will 438 
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further investigate the enrichment of specific species in SSAs under a wider range of 439 

meteorological or oceanographic conditions. 440 

5 Conclusions and atmospheric implications 441 

We investigated the distribution of calcium in SSAs through the R/V Xuelong cruise 442 

observation campaigns over the Ross Sea, Antarctica. The most significant Ca2+ enrichment in 443 

SSAs occurred under relatively lower ambient temperatures (< -3.5 ℃) and wind speeds (< 7 m s-1) 444 

and with the presence of sea ice. With the help of individual particle mass spectral analysis, we 445 

first propose that a single-particle type of OC-Ca (internally mixed organics with calcium), 446 

probably resulting from the preferential binding of Ca2+ with organic matter, could partially 447 

account for the calcium enrichment in SSAs. We speculate that OC-Ca is likely produced from the 448 

effects of low wind-blown sea ice on microgels induced by Ca2+ and/or the bubble bursts in the 449 

open-water and/or sea ice leads. However, the impact of environmental factors and OC-Ca on 450 

calcium enrichment in SSAs still cannot be well predicted by multiple linear regression and 451 

random forest analysis (SI text S5), which may be ascribed to other unknown mechanisms and/or 452 

organically complexed calcium with low water solubility. In addition, our conclusions based on 453 

limited spatial, temporal, meteorological, and oceanographic conditions may not be accessible to 454 

other seasons and oceanic basins. 455 

We suggest that the environmental behaviors of the possible gel-like calcium-containing 456 

particles (i.e., OC-Ca) should be paid more attention behind the mechanisms of calcium 457 

enrichment. Under the stimulation of specific environmental factors (e.g., pH, temperature, 458 

chemical compounds, pollutants, and UV radiation), their physicochemical properties would be 459 
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changed (e.g., water-solubility enhanced by the cleavage of polymers) (Orellana and Verdugo, 460 

2003; Orellana et al., 2011). Such particles may be preferred candidates for CCN and/or IN (Willis 461 

et al., 2018; Lawler et al., 2021). To our knowledge, this is the first report of a calcium-dominated 462 

single-particle type OC-Ca in the Antarctic. In the context of global warming and sea ice retreat, 463 

this work provides insight into the chemical composition and distribution of submicron SSAs in 464 

the Antarctic summer atmosphere, which would be helpful for a better understanding of aerosol-465 

cloud-climate interactions. 466 
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Figure captions 486 

 487 

Figure 1  488 

Observation campaigns through R/V Xuelong in the Ross Sea, Antarctic. (a) Leg I took place from 489 

December 2-20, 2017. (b) Leg II was conducted from January 13 to February 14, 2018. 490 

  491 
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 492 

Figure 2  493 

A schematic of the aerosol sampling system of IGAC and SPAMS during the research cruise over 494 

the Ross Sea, Antarctic. 495 

  496 
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 497 

Figure 3 498 

(a) Bubble chart of the hourly Ca2+ enrichment factor (EFCa) with respect to Na+ with different 499 

environmental factors (ambient temperature, wind speed, and sea ice fraction). The green and 500 

orange dots represent the EFCa values for the periods with and without sea ice, respectively. The 501 

orange marked dots represent a series of high EFCa cases that were correlated with a high 502 

concentration of chlorophyll-a during leg II of the cruise. (b)-(e) Data support of the bubble chart 503 

represented by box and whisker plots. In the box and whisker plots, the marked values from top to 504 

bottom are the 90th and 75th percentiles, mean, median, and 25th and 10th percentiles, respectively. 505 

  506 
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 507 

Figure 4 508 

Enrichment factors of Ca2+ with respect to Na+ varied as a function of the ambient temperature (a-509 

b), wind speed (c-d), and sea ice fraction (e-f) during cruise observation campaigns. (g) A box and 510 

whisker plot of the single-particle peak area ratio of Ca/Na in OC-Ca for the periods with and 511 

without sea ice. In the box and whisker plots, the lower, median, and upper lines of the box denote 512 

the 25th, 50th, and 75th percentiles, respectively. The lower and upper edges denote the 10th and 513 

90th percentiles, respectively. The black solid star (f) exhibited an anomalous trend due to its 514 

nature of relatively high or low wind speed. The first point exhibited a high EF value because of 515 

its relatively low wind speed (5.86 m s-1). The second and third points exhibited low EF values 516 

because of their relatively high wind speeds of 6.04 m s-1 and 8.06 m s-1, respectively. These three 517 

points have been excluded from the correlation analysis. 518 
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 520 

Figure 5  521 

Distribution of EFCa during (a) leg I and (b) leg II. Five distinct areas with continuous enhanced 522 

Ca2+ enrichment events, along with 96-hour back trajectories (one trajectory per hour in each 523 

starting condition), sea ice fraction (c-g, yellow traces), and chlorophyll-a concentration (h-l, light-524 

blue traces). Lines in red and green referred to ship tracks for corresponding areas during leg I and 525 

leg II, respectively. 526 
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 528 

 529 

Figure 6 530 

(a) – (g) Average digitized single-particle mass spectra of seven chemical classes of Ca-containing 531 

particles. New single-particle types are reclassified with m/z 40 [Ca2+] based on previous ART-2a 532 

results. (h) Relative proportion and (i) unscaled size-resolved number distributions of single-533 

particle types using Gaussian Fitting. (j) Number fractions of single-particle types per size bin 534 

versus particle size.   535 
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 536 

Figure 7 537 

Schematic of the production of OC-Ca and its possible atmospheric implications beyond calcium 538 

enrichment. Ca2+ tends to bind with organic matter whining sea ice/seawater, and subsequently 539 

assemble to marine microgels, likely present in the snow, frost flowers, and brine channels. With 540 

the low wind-blown sea ice process and/or bubble bursting within sea ice leads, these gel-like 541 

particles (i.e., OC-Ca) may be released to the Antarctic atmosphere, as a potential source of 542 

CCN/IN. Notably, the dataset via SPAMS cannot directly identify marine microgels. OC-Ca was 543 

likely associated with marine microgels, as calcium and biological organic material were 544 

extensively internally mixed. This OC-Ca type has previously been observed in the laboratory 545 

simulation of Collins et al. (2014). 546 

  547 
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Table captions 548 

 549 

Table 1 550 

Correlation analysis between the OC-Ca (by count and by the peak area of m/z 40 [Ca]+) and its 551 

two subpopulations OC-Ca-Organic and OC-Ca-Inorganic, SS-Ca (by count and by the peak area 552 

of m/z 40 [Ca]+), and mass concentration of Ca2+ in the variation of EFCa, with the p-value < 0.05. 553 
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