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Abstract. Topographically forced Rossby waves shape the upper-level waveguide over the midlatitudes, affecting the propaga-

tion of transient waves therein, and have been linked to multiple surface extremes. The complex interplay between the forcing

and the background flow in shaping the Rossby wave response still needs to be elucidated in a variety of configurations. We

propose here an analytical solution of the linearized barotropic vorticity equation to obtain the stationary forced Rossby wave

resulting from arbitrary combinations of forcing and background zonal wind. While the onset of barotropic instability might5

hinder the applicability of the linear framework, we show that the nonlinear wave response can still be retrieved qualitatively

from the linearized solution. Examples using single- and double-jet configurations are discussed to illustrate the method and

study how the background flow can act as a waveguide for Rossby waves.

1 Introduction

Rossby waves are a fundamental component of the upper-tropospheric dynamics (Rossby, 1939, 1940) and are instrumental10

in modulating the location, intensity, and track of extratropical weather systems. They owe their existence and characteristics

to the rotation of the Earth and its spherical geometry. A key characteristic of Rossby waves, which has profound implications

for their modulation of weather systems, is their propagation. The Earth’s roughly spherical geometry usually leads to the

equatorward refraction of Rossby waves (Hoskins and Karoly, 1981), yet the presence of localised upper tropospheric jet

streams can favour a zonal propagation (e.g., Hoskins and Valdes, 1990; Ambrizzi et al., 1995; Branstator, 2002; Wirth et al.,15

2018). The capability of jet streams to promote Rossby wave propagation, referred to as “waveguidability”, has long been

object of research (see the reviews by Wirth et al., 2018; White et al., 2022). Waveguides typically exist for time scales longer

than the waves they “guide”, and this property can be exploited to understand persistence and predictability of midlatitude

weather (Martius et al., 2010). The amplification and propagation of Rossby waves along such waveguides has been related in

the literature to the occurrence of extreme weather events both in winter (e.g., Davies, 2015; Harnik et al., 2016) and summer20

(e.g., Kornhuber et al., 2019; Teng and Branstator, 2019; Di Capua et al., 2021; Rousi et al., 2022; Jiménez-Esteve et al.,

2022). In a number of these examples, the Rossby waves were identified as quasi-stationary and associated with concurrent
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extremes in geographically remote regions due to the zonally-extended, large-amplitude nature of the waves. The existence

of quasi-stationary waves on a mid-latitude waveguide has also been linked to the phenomenon of quasi-resonance, namely

a constructive self-interference of the wave, which in turn may be linked to surface extreme events (Petoukhov et al., 2013;25

Coumou et al., 2014); however, whether or not quasi-resonance is a relevant mechanism in realistic situations is an unsolved

question (Wirth and Polster, 2021). In a longer term perspective, anthropogenic global warming can modify the position and

strength of extratropical waveguides, thus systematically affecting the amplitude and the propagation of Rossby waves and the

persistence of the associated weather systems (as discussed by Hoskins and Woollings, 2015).

The relevance that waveguidability plays in atmospheric dynamics, as well as its connection to surface extremes in a changing30

climate, has led to a renewed interest in its study (White et al., 2022). In general, waveguidability is regarded as a property of the

background flow configuration in which Rossby waves are propagating. Which properties such a background flow should have

to enable strong waveguidability is a complex issue, in particular when using real-world observations (e.g., to study the role

played by Rossby waveguides in extreme weather events). Indeed, the very existence of a waveguide critically depends on the

characteristics of the background state (Held et al., 2002; Wirth and Polster, 2021). Temporal filtering or moving time averages35

of upper-level winds have been widely used to estimate the background flow in which transient Rossby waves propagate

(e.g., Branstator, 2002; Stadtherr et al., 2016; Petoukhov et al., 2016; Kornhuber et al., 2017), but this approach has several

drawbacks. First of all, it can filter out propagating waves and overemphasize the role played by quasi-stationary Rossby waves

(as dicussed by Fragkoulidis et al., 2018; Riboldi et al., 2022). Perhaps more critically, this approach relies on the assumption

that a clear separation exists between the propagating waves and their waveguide, such that the former are not leaving their40

signature on the latter. However, this assumption is violated when Rossby waves reach significant meridional amplitudes, as

often happens in the context of large-scale flow configurations associated with unusual or extreme weather (Wirth and Polster,

2021).

The role of specific background flow configurations in promoting waveguidability can be investigated in detail using ideal-

ized frameworks. Manola et al. (2013) and Wirth (2020) are notable examples of such work for the cases of single, localised45

jet streams in the Northern Hemisphere. These studies noticed that waveguidability increases with the strength of the jet and

that latitudinally narrow jets are more efficient waveguides than broad jets. However, there is a lack of understanding of the

implications of other background flow configurations, such as the presence of two separate jet streams, which has been linked

to summertime heatwaves (“double jets”; e.g., Coumou et al., 2014; Rousi et al., 2022).

Studying waveguidability requires, indeed, a systematical investigation of a large number of different background flows.50

Each flow case must also be investigated for different forcings to assess the flow response. This quickly becomes demanding in

terms of computational resources and expert analysis time. A possible way to overcome these limitations is the development of

an analytical framework to study Rossby waves dynamics and their waveguidability, thus avoiding numerical integration of the

underlying equations. Similar approaches have been previously employed to study other types of oscillatory phenomena, such

as Rossby wave critical layers (Campbell and Maslowe, 1998), equatorial waves (Boyd, 1978) and gravity waves (Baldauf and55

Brdar, 2013).
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In this work, we propose an analytical framework to study waveguidability by solving explicitly the linearized, 2-D barotropic

vorticity equation in terms of normal mode analysis. This enables one to inexpensively obtain analytical solutions for in

principle any forcing under a given background flow, thus allowing to study waveguidability in greater detail. We validate the

solutions by comparing them with the output of nonlinear numerical simulations based on a spectral code built on spherical60

harmonics. The joint analysis of linear and nonlinear solutions further allows a detailed investigation of the stability of different

wave modes. The paper is structured as follows: section 2 presents the theory behind the linear approach, while its discrete

implementation based on orthogonal Chebyshev polynomials is discussed in the paper appendix. A comparison between linear

and nonlinear calculations is discussed in section 3 where different zonal wind profiles are investigated in terms of both the

wave spatial structure and of integrated parameters such as the waveguidability. The time evolution of the simulation is also65

discussed up to the point where the linear simulation becomes unstable. The stability analysis for a single-jet configuration and

remarks about waveguidability in a double-jet configuration are discussed respectively in section 4.3 and 5. The paper is closed

by some concluding remarks in section 6.

2 Analytical model and numerical details

Let us consider the two-dimensional barotropic vorticity equation on a spherical planet with radius a∗ (in this section dimen-70

sional quantities are indicated by means of an asterisk superscript)

∂ζ∗

∂t∗
+ (V∗ · ∇h)(ζ∗+ f∗) =−λ∗r (ζ∗− ζ∗0 ) +F ∗ , (1)

where V∗ is the horizontal velocity field, f∗ = 2Ω∗ cosθ is the Coriolis parameter, θ = π/2−φ is the colatitude (associated

with the latitude φ) and λ is the longitude. Similarly to Wirth (2020), λ∗r indicates the damping rate, ζ∗0 the background flow

vorticity and F ∗ a generic forcing in space and time. By normalising physical quantities with respect to the planet radius a∗75

and a characteristic velocity U∗s such that

t=
t∗

a∗/U∗s
, V =

V∗

U∗s
, ζ =

ζ∗

U∗s /a∗
, f =

f∗

2Ω∗
= cosθ , F =

F ∗

(U∗s /a∗)
2 , (2)

the barotropic vorticity equation (1) is re-written in dimensionless form as

∂ζ

∂t
+ (V · ∇h)

(
ζ +

f

Ro

)
=−λr (ζ − ζ0) +F with Ro =

U∗s
2Ω∗a∗

. (3)

The choice of the characteristic velocity scale, U∗s , is arbitrary but it should be of the same order of magnitude of the velocity80

field. In the considered two-dimensional case, the flow divergence is zero everywhere so that a streamfunction, Ψ, can be

introduced, facilitating the determination of the velocity and vorticity fields as

uθ =− 1
sinθ

∂Ψ
∂λ

, uλ =
∂Ψ
∂θ

, ζ =∇2Ψ . (4)

By assuming a base zonal flow uλ = U (θ) and uθ = 0, the undisturbed vorticity, ζ0, is given by

ζ0(θ) =
1

sinθ
∂

∂θ
(U sinθ) = cotθU +

∂U

∂θ
for 0< θ < π , (5)85
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while at the poles no singularity of (5) is present if U(0) = U(π) = 0 so that

ζ0(0) = 2
∂U

∂θ

∣∣∣∣
θ=0

, ζ0(π) = 2
∂U

∂θ

∣∣∣∣
θ=π

. (6)

Let us consider a perturbed problem where the relative vorticity is given by ζ = ζ0 + ζ ′. This will be associated with a

streamfunction, Ψ0 +ψ′, and velocity field

V = (uθ, uλ) = (0, U) + (u′θ, u
′
λ) = (0, U) +

(
− 1

sinθ
∂ψ′

∂λ
,
∂ψ′

∂θ

)
. (7)90

The equation governing the small perturbation is obtained by taking (3) and subtracting the base-state equation. By neglecting

the nonlinear terms (small for infinitesimal perturbations), one obtains the linearised barotropic vorticity equation

∂ζ ′

∂t
+

U

sinθ
∂ζ ′

∂λ
+u′θ

∂

∂θ

(
ζ0 +

f

Ro

)
=−λrζ

′+F , (8)

with

ζ ′ =∇2
hψ
′ , u′θ =− 1

sinθ
∂ψ′

∂λ
. (9)95

The system can be better analysed by taking the Fourier transform in the zonal direction (with wavenumber m) leading to

∂ζ̂

∂t
+

(
imU

sinθ
+λr

)
ζ̂ + ûθ

∂

∂θ

(
ζ0 +

f

Ro

)
= F̂ , (10)

where

ζ̂ =
∂2ψ̂

∂θ2
+ cotθ

∂ψ̂

∂θ
− m2

sin2 θ
ψ̂ = Lψ̂ , ûθ =− im

sinθ
ψ̂ , (11)

where L indicates the Laplace operator that, once discretised, becomes a numerical matrix. By introducing the matrix B = iL100

and the streamfunction vector ψ̂j = ψ̂(θj ;m) evaluated at the colatitudes θj , the barotropic vorticity equation (10) is written

as

−iB ∂ψ̂j

∂t
+

[(
imU

sinθ
+λr

)
L− im

sinθ
∂

∂θ

(
ζ0 +

f

Ro

)
I

]
ψ̂j =−iB ∂ψ̂j

∂t
+Aψ̂j = F̂ , (12)

where the terms composing the matrix A are grouped within the square brackets in (12) and I is the identity matrix (see ap-

pendix A for a detailed description of how the differential operators are discretised and the matrices are constructed). Equation105

(12) is a linear system of ordinary differential equations in time with the streamfunction at the collocation points as unknowns.

By erasing the time derivative, the equilibrium state (i.e., the stationary solution) of the linearised system is obtained as

ψ̂j =A−1F̂ . (13)

A question arises now about how the equilibrium state (13) is obtained for an arbitrary infinitesimal perturbation. The

solution of (12) can be written as the sum of the homogeneous solution (starting from a given initial condition) plus a forced110

solution. By introducing the modal ansatz ψ̂j = ψje
−iωt it is possible to solve the homogeneous problem as an eigenvalue one,
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identifying the eigenvalues ω ∈ C and the associated eigenfunctions for each azimuthal wavenumber, m. If all the complex

eigenvalues have negative imaginary part the system is stable and it will converge to the equilibrium state (13), while the

perturbations will grow with time if at least one eigenvalue has positive imaginary part. The real part of the eigenvalues, on the

other hand, is associated with phase propagation in the zonal direction.115

The advantage of the proposed framework is that the behaviour of the system is determined from the eigenvalues of the

homogeneous problem, that are independent of the forcing and have indeed general validity for a given zonal background

flow. In particular, the sign of the imaginary part of the eigenvalues determines whether a perturbation will grow or decay.

The evolution of a perturbation, be it initiated by the forcing or by a generic initial condition, is obtained as an initial value

problem which becomes drastically simplified by means of the modal analysis (as detailed in the appendix). The eigenvalue120

code has been written in Python, where Chebyshev polynomials have been implemented following Peyret (2002) and Canuto

et al. (2006). The linear problem has been discretised into an equal number of latitudes and longitudes without any aliasing

consideration or numerical stability constraints.

In order to check the code quality, an independent numerical assessment of the barotropic vorticity equation has been im-

plemented by using the spherical harmonics transform (SHT) package from Schaeffer (2013). Both the linear and nonlinear125

barotropic vorticity equations were implemented and compared to the results of the proposed linearised framework. A tri-

angular truncation scheme was adopted with an aliasing-removal approach in both the linear and nonlinear simulation with

spherical harmonics (although this was necessary only for the latter). A leapfrog scheme was used for the temporal discretiza-

tion with time step of 10 minutes. A Robert-Asselin filter with filter parameter 0.01 was implemented to eliminate the spurious

computational mode associated with the leapfrog method (Kalnay, 2003).130

In all simulations, only the dissipative term−λr∇2
hψ
′ (with λr = (7 d)−1 as in Wirth, 2020) was used to make the barotropic

wave decay and no hyperviscosity term was introduced. The planetary radius was taken as 6371 km while the planetary rotation

speed was Ω = 7.292115 · 10−5 rad s−1.

3 Model validation

The proposed linearised framework based on Chebyshev polynomials (from now on referred to as the linear method) is first135

compared with the test cases proposed by Wirth (2020) for two of the investigated zonal velocity profiles. Since the topographic

forcing F is stationary, the constant forcing solution provided by Eq. (A7) is used. The expression is further simplified here as

the initial perturbation streamfunction is assumed to be zero, implying the vanishing of the first term of (A7), so that only the

forced response needs to be computed.

Our analysis framework is able to consider any generic zonal velocity profile that satisfies the boundary conditions at140

the poles. In the special case of solid body zonal velocity profile, U = U sinθ = U cosφ, and the linearised homogeneous

barotropic vorticity equation (8) reduces to

∂∇2
hψ
′

∂t
+U

∂∇2
hψ
′

∂λ
+ 2

(
U + Ωa

) ∂ψ′
∂λ

+λr∇2
hψ
′ = 0 . (14)
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Figure 1. Meridional velocity pattern at the equilibrium state for the zonal velocity profile U = 15cosφ from the linear analysis (a) and after

100 days with the nonlinear solver (b). The circle indicates the topographic forcing.

Equation (14) can be solved analytically by means of the ansatz ψ′ ∝ Y m
l (θ, λ)e−iωt where Y m

l is the spherical harmonic

with degree l and order m. The resulting dispersion relationship is145

ω =m

[
U − 2U + 2Ωa

l(1 + l)

]
− iλr , (15)

which is a well-known analytical results for Rossby-Haurwitz waves (Haurwitz, 1940). Interestingly, the attenuation parameter

λr makes the eigenvalue stable, while the first term of (15) is associated with the zonal phase propagation of the wave, similarly

to the planar case. From this analysis it is already known that all the modes of the solid-body zonal velocity case are stable

(since λr > 0), that the modes are spherical harmonics and that the dispersion relationship is given by (15). Simulations done150

with different grid resolutions showed an excellent agreement between the analytical relationship (15) and the numerical

eigenvalues, with error comparable to the precision of the machine (not shown).

Fig. 1a shows the meridional velocity field (positive northward) and the associated wave pattern at the equilibrium state (13)

created by a smooth, idealized mountain located at latitude φF = 45◦ N and longitude λF = 30◦ and described by

F =−7.73 · 10−9 (λ−λF ) exp

[
− (φ−φF )2

2σ2
φ,F

− (λ−λF )2

2σ2
λ,F

]
hF , (16)155

where σφ,F = σλ,F = 10◦ and hF = 0.3, unless otherwise stated (Wirth, 2020). The zonal background flow is given by

U = 15 cosφ m s−1 (or with U = 15 m s−1 as above). Fig. 1a should be compared to the nonlinear solution in Fig. 3a of

Wirth (2020): despite the opposite sign, the structure of the wave pattern is very similar, although here obtained without any

time integration since the solution will in time converge to the steady-state solution because the imaginary part of the eigen-

values is negative. The linear spherical harmonics solution is practically identical to the Chebyshev approach and therefore the160

results will not be shown here. The nonlinear solver has slight differences from the linear method, such as a more rapid wave

attenuation away from the forcing (as visible in Fig. 1b).
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Figure 2. (a) Waveguidability estimated from different linear and nonlinear simulations at different grid resolutions when U = 15cosφ ms−1

(namely without any latitudinally-confined jet). N for the Chebyshev simulations is given by the number of latitude/longitudes grid points,

while for the simulations with the SHT method it is given by the truncation number. (b) Waveguidability assessed for the linear and nonlinear

simulations for N = 256 (corresponding to a T170 resolution) for different jet velocities UJ (according to the zonal velocity profile given in

Eq. 18).

A grid-convergence study can be performed for different grid resolutions. In this study the waveguidability, estimated as in

Wirth (2020), has been used as the key quantity for the comparison. The waveguidability of a jet centered around φ= 45◦ N is

defined as165

W =

∫ π/3

π/6
cosφ

∫ 3π/2

π
E (φ, λ)dλdφ

∫ π/2

−π/2
cosφ

∫ 3π/2

π
E (φ, λ)dλdφ

, (17)

where E (φ, λ) = ζ ′2/2 is the enstrophy and the overline indicates the time-average operator performed over the last 90 days of

the simulation (after an initial transient time of 10 days), similar to Wirth (2020). Fig. 2a shows the convergence of the waveg-

uidability for different grid resolutions. Noteworthy, convergence of the results is obtained even for moderate resolutions with

the linear Chebyshev and linear SHT methods, while the nonlinear method oscillates around a higher value of waveguidability,170

suggesting once again a difference between linear and nonlinear analyses. The higher value of waveguidability in the nonlinear

case is closer to the value reported by Wirth (2020). Having assessed the grid convergence, the rest of the work will use grid

resolution N = 256 for the Chebyshev computations while a T170 truncation will be used for the SHT method.

4 Single-jet configurations

We will now focus on the case of a latitudinally-confined jet, using the formulation by Wirth (2020)175

U = U cosφ+UJ exp

[
− (φ−φJ)2

2σ2
J

]
+L(φ) , (18)
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where UJ is the jet velocity, U = 15 m s−1, φJ = 45◦ N is the jet latitude and σJ = 5◦ (unless otherwise stated). L indicates

a linear correction that imposes U(φ=±π/2) = 0 at the two poles. The waveguidability can be used again to get an inte-

gral parameter to compare the linear and nonlinear approaches. Fig. 2b shows how the waveguidability changes for different

jet velocities: the two evaluations have the same qualitative trend, although the linear analysis has a sharper transition and180

achieves a higher final value of waveguidability. The difference between the linear and nonlinear solution must be related to a

counterintuitive dissipative effect of the nonlinear terms, neglected in the linear analysis.

4.1 Weak-jet case

Let us consider first a weak-jet case with UJ = 20 m s−1. Fig. 3 shows a comparison between the time evolution of the

wave obtained using the linear method and the nonlinear model, as the Gaussian mountain is introduced at t= 0. The high185

resemblance of the two solutions is visible for the first 100 hours and maintained through the length of the simulations,

although the meridional wind anomalies in the nonlinear simulation appear slightly weaker and smoother (Fig. 3). Beyond 500

hours both simulations achieve a steady state: this is to be expected, since the linear analysis indicated that all the eigenvalues

had negative imaginary part and, thus, the system is stable (see Sec. 2). The result is a stationary wave originated from the

interaction of the jet with the topography, featuring both a degree of great-circle and of along-jet propagation.190

4.2 Strong-jet case

The strong-jet case with UJ = 40 m s−1 is associated with an unsteady velocity field that, regardless of the integration time,

does not achieve a steady state as in the weak-jet case: therefore, after an initial integration time of 10 days, 90 additional

days are simulated and time averaged to filter out the transient behaviour (as discussed in Wirth, 2020). The linear analysis

indicates that some eigenvalues have positive imaginary part and, therefore, the flow field is unstable according to linear theory.195

The nonlinear simulation, however, does not display such an unrealistic divergence of wave amplitudes: a great-circle wave

propagation is still present as in the solid-body velocity case, but there is also a wave pattern in the zonal direction in the

waveguide corresponding to the strong jet. At long simulation times, the behavior is broadly similar as in the weak-jet case at

long simulation times (see Fig. 4), but the zonal wavelength is larger; the latter is expected and can be understood with the help

of the Rossby wave dispersion relation for stationary conditions.200

The linear eigenvalue analysis suggests that the equilibrium state (13) is unstable, so any perturbation should grow exponen-

tially with time. Nevertheless, such an unstable equilibrium state (as obtained from from the linearised barotropic equation)

resembles quite closely the time-averaged nonlinear solution, which is bounded and characterised by the averaged field re-

ported in Fig. 4b. Beyond the linearly stable range, only the nonlinear simulations could provide some information about what

is actually happening. In order to shed some light, an empirical orthogonal function (EOF) approach has been applied to the205

nonlinear simulation and the corresponding modes are shown in Fig. 5. The figure indicates that the first mode is practically

constant in time and remains close to the time-averaged field of the nonlinear simulation, while the second-third, fourth-fifth,

and sixth-seventh modes organize themselves to create traveling wave patterns with zonal wavenumbers respectively m= 5,

m= 6 and m= 7, respectively (not shown). These first seven modes contain 60% of the meridional velocity variance. The

8
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Figure 3. Meridional velocity patterns at different times from the linear analysis (left) and the nonlinear solver (right) for a jet located at

φJ = 45◦ N and UJ = 20 m s−1. The circle indicates the topographic forcing, switched on at t = 0 h. The actual time of the simulation (in

hours) is indicated in the brackets.

modal coefficients of mode 2 and 3 resemble each other, and similarly happens for modes 4 and 5 (the coefficients have been210

normalised by their root mean square to ensure unitary oscillation amplitude). The trajectories in the plane spanned by the
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field averaged between 10 and 100 days from the simulation start with the nonlinear solver (b). The circle indicates the topographic forcing.
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bottom-left corner of the first row indicates the variance contribution of each mode. The modes in the first row have unitary norm and the

color scale is not consistent between different modes since each mode has unitary norm.

corresponding modal amplitudes, shown in Fig. 6, belong to a closed orbit, suggesting a limit cycle (in dynamical systems lan-

guage, Strogatz, 2018). Since a limit cycle is associated with a nonlinearity of the system, a linear analysis cannot identify that,
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Figure 6. Evolution of the amplitude of mode 2 (4) plotted against the amplitude of mode 3 (5) from the EOF analysis shown in Fig. 5.

and this is consistent with the apparent divergence of the linear solution. The limit cycle orbits around the unstable equilibrium

state of the system (provided by the first EOF mode), approximated in its linear version by (13).215

Additional simulations where the orographic forcing was moved to lie right on the equator did not change this overall picture,

and the traveling waves remained at the jet latitude. This implies that the wave components described by the EOF analysis are

traveling waves determined just by the background flow, rather than by the forcing as suggested by the linear analysis. One

might wonder if there is a correspondence between the unstable modes of the linear analysis and the most energetic EOF

modes. Fig. 4 shows already that the equilibrium state approximates the time average (i.e. the first EOF mode). Fig. 7 shows220

instead the four most unstable modes of the linear analysis sorted according to their growth rates. Once again the reader is

reminded that these modes are obtained from a homogeneous analysis and thus irrespective of the forcing. The linear unstable

waves are located at the jet latitude and share many features with the first EOF modes (the phase and amplitude of the linear

modes are arbitrary). Despite the similarity, however, the most-rapidly growing mode (m= 6, Fig. 7a) does not exactly match

the EOF patterns corresponding to the modes 2 and 3 (which appear to project on m= 5, cf. Fig. 5). We will further delve on225

the factors determining the shape of the unstable modes in the next section.

4.3 Stability analysis

A systematic stability analysis can be conducted for different zonal velocity profiles U to identify at which jet velocity per-

turbations will or will not amplify. Fig. 8 shows the results of such an analysis for a narrow jet (σJ = 5◦) zonal profile with

different UJ values and φJ (the colatitudes belonging to the southern hemisphere are specular). At low UJ values the imaginary230

part of the most unstable eigenvalue is determined by the dissipation parameter λr but, as UJ increases, the stability margin
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indicates the neutral curve. (b) Azimuthal wavenumber of the most unstable eigenvalue for UJ = 40 m s−1 for different jet widths. The black

lines are curves m∝ cosφJ fitting the linear stability results.

decreases and above 15-22 m s−1 at least one eigenvalue becomes unstable. The higher the jet velocity, the higher is the growth

rate and this explains why the nonlinear simulation is stable up to a certain jet velocity (around 28 m s−1 for φJ = 45◦ N) and

it becomes unstable afterwards. A weaker jet velocity is needed for the instability onset when the jet approaches the pole.

It is also interesting to monitor the wavenumber associated with the most unstable eigenvalue. After the onset of the linear235

instability, this wavenumber does not depend on UJ , and therefore the maximum growth rate in Fig. 8 is only shown for

UJ = 40 m s−1, where the jet is unstable at all latitudes. For φJ = 45◦ N a wavenumber m= 6 is the most unstable, similar to

what pointed out by the EOF analysis. However, as the jet is shifted to the pole, the most unstable wavenumber systematically

decreases following the cosine of φJ . It is possible to explain this trend by assuming that the instability is associated with a

wavelength independent of the latitude, given by240

L=
2π
m
acosφ= constant , (19)
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which is indeed proportional to cosφ. This implies that the most barotropically-unstable Rossby wave has the same wavelength

at different latitudes of the zonal jet. Inspired by the analysis of Gill (1982), it is expected that the Rossby wave will become

more unstable for narrower jet width, σJ , and conversely less unstable for a wider jet. Fig. 8b shows the zonal wavenumber

of the most unstable mode for UJ = 40 m s−1 and three different jet widths. The very narrow one shows that the wavelength245

of the most unstable Rossby wave becomes shorter moving towards larger m (but remains still constant in latitude), while the

broader one shows the opposite trend and moves towards smaller m. Interestingly, the broader jet (just σJ = 7◦) is unstable

only when the jet is far enough from the equator and it is stable for φJ < 30◦ N. By having the even higher value σJ = 10◦,

the instability disappears at all jet latitudes and the flow becomes stable again at UJ = 40 m s−1.

5 The double-jet case250

After having considered the single-jet case, we now consider a configuration with two separate jets located at different latitudes.

Only the narrow jet width σJ = 5◦ will be considered. The double-jet setup was chosen as it is representative of the interplay

between the subtropical and the eddy-driven jet streams observed in the Northern Hemisphere, and because recent research

has connected it to the occurrence of quasi-stationary Rossby waves and summer heat extremes (Rousi et al., 2022). The first

jet is located at φJ = 30◦ N and has a jet velocity of UJ = 40 m s−1 (the associated perturbation field is shown in Fig. 9 once255

again for both the linear and nonlinear simulation). The second jet is located at φJ = 60◦ N and has also a jet velocity of

UJ = 40 m s−1 (the associated perturbation field is shown in Fig. 10).

The perturbations resulting from the 30◦N jet feature a combination of great-circle and along-jet propagation, that is properly

represented by both the linear and nonlinear approaches (Fig. 9). On the other hand, for the jet at 60◦ N the along-jet propagation

is obtained only in the linear simulation, while it is much weaker in the nonlinear simulation (Fig. 10). The weakening of along-260

jet propagation can be due to an enhanced equatorward propagation of the stationary wave in the nonlinear case, given that the

forcing is located at 45◦ N, possibly combined with enhanced dissipation.

Moving to the double-jet configuration we notice, first of all, a good agreement between the linear and the nonlinear solution

(Fig. 11). Rossby wave propagation occurs separately along the waveguides delineated by the two jet streams, while great-

circle propagation to the Southern Hemisphere is smaller in the double-jet configuration than for the jets taken singularly. The265

double-jet pattern corresponds roughly to the combination of the patterns of the linear solutions for the two individual jets.

However, this is not true for the nonlinear solutions, because of the previously discussed lack of Rossby wave propagation

along the 60◦N jet in the nonlinear single-jet case. It might be that forced meridional velocity perturbations along the 30◦ N

jet stream could provide energy to the jet at 60◦ N, which would otherwise be attenuated as in the single-jet case (Fig. 11b):

however, this hypothesis would need further verification.270
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Figure 9. Meridional velocity associated with a zonal jet characterized by UJ = 40 m s−1 with φJ = 30◦ N at the equilibrium state from

the linear analysis (a) and averaged between 10 and 100 days from the simulation start with the nonlinear solver (b).
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Figure 10. Meridional velocity associated with a zonal jet characterized by UJ = 40 m s−1 with φJ = 60◦ N at the equilibrium state from

the linear analysis (a) and averaged between 10 and 100 days from the simulation start with the nonlinear solver (b).

6 Conclusions

A linearised framework is proposed to solve the barotropic vorticity equation and analytically determine the Rossby wave

response to topographic forcing in different background flow configurations. First the homogeneous solution is assessed by

introducing a modal assumption in the zonal direction and temporal coordinate. This leads to an eigenvalue problem where

the eigenfunctions are the modes in the meridional direction. From the eigenvalues it is possible to assess the mode stability275

by looking at the sign of the imaginary part (a positive value indicates linear instability and exponential growth of the mode

when triggered). The forced case is treated as an initial value problem but the solution is now much facilitated by the modal

analysis of the homogeneous equation and no numerical integration nor additional modal analysis is required. If all the modes

are stable, the system will approach an equilibrium condition related to the forcing and the background flow field.
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Figure 11. Meridional velocity associated with two zonal jets (UJ,1 = 40 m s−1 with φJ,1 = 30◦ N and UJ,2 = 40 m s−1 with φJ,2 = 60◦ N)

at the equilibrium state from the linear analysis (a) and averaged between 10 and 100 days from the simulation start with the nonlinear solver

(b).

The proposed linear framework has been compared with nonlinear simulations performed with a spectral code based on280

spherical harmonics. The analysis of the jet waveguidability showed small quantitative differences between the linearised

solution and the nonlinear simulations. Strong-jet cases, characterised by unstable eigenvalues, showed a different behaviour

from the expected divergence of the linear solution: the flow field did not diverge exponentially, instead oscillating around an

unstable equilibrium state. This dynamics was further investigated by means of empirical orthogonal functions, showing that

modes with an azimuthal wavenumber of 5 up to 7 are associated with traveling waves and a limit cycle, a dynamics driven by285

nonlinear effects. Nevertheless, the averaged flow field in the nonlinear simulation resembles (equally well as for other stable

cases) the unstable equilibrium state calculated from the linear method: this is an equilibrium state obtained by removing the

time derivative and is therefore an approximation of the equilibrium condition of the nonlinear system too. This consideration

is not just restricted to the center of the limit cycle (i.e. the mean of the atmospheric state), but also to the other modes of the

EOF: this was verified by comparing higher EOF modes with the unstable modes from the linear analysis, and the two showed290

good resemblance.

Another point of interest came from the linear stability analysis. For a jet placed at a latitude of 45◦ N, the linear method

estimated a transition from stable to unstable at around UJ ≈ 20 m s−1, beyond which a limit cycle should be observed.

However, the nonlinear simulations actually achieved a stationary state at large time (namely without any limit cycle) up to

UJ ≈ 28 m s−1, beyond which a limit cycle was established. We hypothesize that this transition delay is associated with the295

role of nonlinear terms as stabilizing elements. This was also observed from the spatial distribution of the wave that appeared

always smoother in the nonlinear simulations compared to the linear approach (ruling out possible differences in the numerical

diffusion). This transition delay could be investigated using nonlinear stability methods to reveal wave-wave interactions and

the role of nonlinear terms in the instability onset, although this has not been attempted in the present work. It seems clear

however that linear instability is necessary to observe the emergence of nonlinear instability, but not sufficient.300

15

https://doi.org/10.5194/egusphere-2023-316
Preprint. Discussion started: 13 March 2023
c© Author(s) 2023. CC BY 4.0 License.



The stability analysis also allowed to estimate the preferred azimuthal wavenumber of the moving Rossby wave train as-

sociated with the barotropic instability. The wavenumber decreases with jet latitude and is only weakly dependent on the jet

intensity. A high sensitivity of the preferred azimuthal mode and of the instability onset was instead observed for different

jet widths: very narrow jet widths promote higher growth rates and shorter wavelengths, in agreement with the link between

vorticity gradients and instability.305

The application of the proposed approach to a double-jet configuration indicates that: a) the equatorward propagation of

Rossby waves is weakened in a double-jet case; and b) the double-jet response roughly corresponds to the linear combination

of the individual jet responses. However, the possibility of an interaction between the wave trains associated with the two

jets cannot be not ruled out, especially if the two are not located sufficiently far apart. We stress that these conclusions about

double-jet configurations should be regarded as preliminary undertakings on the matter, and they need to be backed up by the310

comprehensive analysis of several background flow and forcing configurations.

In conclusion, we believe that the proposed method is a relatively simple and computationally efficient way to study the

steady and unsteady Rossby wave response to topography in a variety of idealized background flow configurations. This study

should be regarded as an introduction and explanation of the techniques, but possible applications of this approach could include

systematic waveguidability assessments for different forcings and background zonal wind profiles. A relevant application of315

this approach would be to understand the role of orography in forcing Rossby waves with specific zonal wavenumbers, which

appear to get amplified and involved in surface weather extremes during summer (as noticed, among others, by Jiménez-Esteve

et al., 2022).

Appendix A: Spectral solution of the barotropic vorticity equation

Equation (11) introduces the Laplace operator L in the transformed space together with the boundary conditions needed to320

avoid the pole singularity

ψ̂(θ = 0) = 0 for m ̸= 0 and
∂ψ̂

∂θ

∣∣∣∣∣
θ=0

= 0 for m ̸=±1 , (A1)

and similarly for θ = π. Consequently, there are two boundary conditions for |m| ≤ 1 and four otherwise. An additional bound-

ary condition must be introduced at m= 0 as ψ̂(θ = 0) = 0 in order to set the value of the streamfunction at one pole since,

otherwise, the streamfunction would be defined up to an additive constant, making the numerical problem singular.325

Following Peyret (2002), the solution of (10) is calculated by a spectral collocation method in terms of orthogonal polyno-

mials. In the present work, Chebyshev polynomials, Tq (θ), and the decomposition

ψ̂ (θ, t;m)≈
N∑

q=0

aq(t;m)Tq (θ) , (A2)
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are used since the transform process is analytic. The N + 1 collocation points are described by a shifted Gauss-Lobatto distri-

bution330

θj =
π

2

[
1− cos

(
π
j

N

)]
with j ∈ {0, 1, . . . , N − 1, N} , (A3)

implying a refinement of the colatitude distribution near the poles. This is in contrast with the Legendre and associated Legendre

polynomials that account for a more appropriate resolution at the poles. Nevertheless, Chebyshev polynomials have been

preferred here since an exact method to calculate the spectral coefficients exists for them, while the Legendre polynomials

require a numerical quadrature scheme (Krishnamurti et al., 2006).335

Rather than working with the spectral coefficients, aq(t;m), here it is preferred to work directly with the value of the

streamfunction at the collocation points, ψ̂j = ψ̂ (θj , t;m), as unknowns collected to a vector, significantly facilitating the

interpretation of the results. The derivatives of the streamfunction are calculated as

∂ψ̂

∂θ

∣∣∣∣∣
j

≈D(1)ψ̂j ,
∂2ψ̂

∂θ2

∣∣∣∣∣
j

≈D(2)ψ̂j , (A4)

where the matrices D(1) and D(2) provide the first- and second-order derivatives (Peyret, 2002). Another advantage of the340

Chebyshev basis is that the matrices D(1) and D(2) are analytically known (Peyret, 2002; Canuto et al., 2006), although some

modifications to limit the effect of round-off errors have been implemented (Bayliss et al., 1995).

By exploiting (A4), the discretised Laplace operator becomes

L ≈D(2) + cotθD(1)− m2

sin2 θ
I , (A5)

where I indicates the identity matrix. This implies that the Laplace operator becomes a numerical matrix since the spatial345

dependence of the variables is provided by the Fourier modes (in the zonal direction) and by the Chebyshev polynomials (in

the meridional direction). Once the Laplace operator has been discretised, the matrices A and B in equation (12) are obtained

from their definition.

As stated in (A1), the boundary conditions at the poles have been imposed by removing 2, 3 or 4 points from the analysis so

that the size of the matrices A or B is N − 2×N − 2 for m= 0, N − 1×N − 1 for |m|= 1 and N − 3×N − 3 otherwise.350

This has the advantage that the reduced forms of A and B are just related to the dynamics of the modeled system rather than

the boundary conditions (the reader is referred to section 3.7.1 of Peyret, 2002, for a detailed description on how the matrices

can be reduced), together with a decrease of the computational cost.

If B is nonsingular, it is possible to perform the eigendecomposition B−1A= PΛP−1 where the columns of P are the

eigenvectors and Λ is a diagonal eigenvalue matrix. The analytical solution of (12) is found to be355

ψ̂j(t;m) = Pe−iΛt


P−1ψ̂j(0;m) + i

t∫

0

eiΛτP−1B−1F̂ (τ)dτ


 , (A6)

with ψ̂j(0;m) indicating the initial condition of the streamfunction. In the special case of a steady forcing, (A6) becomes

ψ̂j(t;m) = Pe−iΛtP−1ψ̂j(0;m) +
(
I −Pe−iΛtP−1

)
A−1F̂ . (A7)
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The first term of (A6) and (A7) is the homogeneous unforced solution of the linear system with initial condition ψ̂j(0;m),

while the second term is the forced solution with zero initial condition.360

Since the eigenvalues Λ and eigenfunctions P depend on the zonal velocity U , Rossby number, Ro, and wavenumber, m,

they are calculated and stored for all the considered wavenumbers for a given zonal velocity profile and Rossby number. Since

they do not depend on the actual forcing applied, once they are computed they can be used with any kind of forcing according

to (A6-A7). Furthermore, since the equation is linear, no aliasing instability is present and each eigenmode does not interact

with the others.365
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