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Comments to Reviewer #1:
(the text of the reviewer is in italic)

We are extremely grateful for the detailed review, which we genuinely
believe has helped to improve the explanations of what are a number of
technically or theoretically complex passages of our study. In the following
we address the reviewer’s suggestions for improvement, and point out the
changes compared to the original manuscript. Parts that have been rewritten
or added due to comments by the referees have been highlighted in red in
the revised version of the manuscript.

In the current version, the motivation is clearer, and the con-
nection between the new numerical method and the concept of
waveguidability is clearer. I think the manuscript could fit for
publication in WCD, after another round of revision.

We thank the reviewer for the support to our work.

1) Consistency of terms. (a). There are 3 types of models used
in this study. Their names, according to the legend in figure 2a
are: Linear Chebyshev, Linear SHT and Nonlinear SHT, where
“SHT” stands for spherical harmonics transform. However, these
names are not used consistently throughout the paper. The linear
Chebyshev method is often called “linear” (e.g., line 186, caption
of figures 1 and 3), which may confuse it with the linear SHT
method. The nonlinear SHT method is simply called “nonlinear”.
The authors should choose a name for each method and use it
consistently.

This is a good suggestion. To avoid weighing the text with repeated
references to SHT and Chebyshev, we now clarify explicitly at the end of
Sect. 3 that we only discuss the linear Chebyshev and nonlinear SHT in
the main text, and that these are referred to as “linear” and “nonlinear”
simulations throughout.
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1) Consistency of terms. (b). Waveguidability is sometimes called
“normalized meridional enstrophy density”, though it is not made
clear if these are two terms for the same physical variable. Specif-
ically, is the expression in equation (17) the same as the waveg-
uidability presented in figure 2?

We thank the reviewer for pointing out this important point. We define
the normalized meridional enstrophy density E (Equation (19) in the cur-
rent manuscript version) so that it can be used to obtain a waveguidability
metric (Equation (20)), which is apt to compare the waveguidability of jets
located at different latitudes. In these steps, it is important to separate the
waveguidability metric (the tool) from the waveguidability (the concept), in
the sense of the capability of the large-scale flow to zonally duct Rossby
waves. Thus, the long name given to E is a precise way to describe the latter
quantity, but it is not the new waveguidability metric we propose.

The assessment of waveguidability shown in Fig. 2b employs the metric
proposed by Wirth (2020), and stands as a proof of concept of the capa-
bility of the Linear Chebyshev method to reproduce previous results. The
definition by Wirth (2020), however, becomes problematic when the waveg-
uidability has to be assessed for jet streams located near the pole, since the
smaller and smaller physical distance between the source and the receiver
artificially inflates the value of the metric. We deem the metric in Equation
(20) as a better assessment of the waveguidability property, since it is a num-
ber between 0 and 1, ranging between the two extrema of no waveguide and
of a “perfect” waveguide.

1) Consistency of terms. (c). The variable φ0 is sometimes used
to denote the latitude of the forcing (line 209) and sometimes –
the latitude of the jet (caption of figure 3). The latitude of the
forcing is also called “φF” (equation 15) and the latitude of the
jet is also called “φJ” (equation 16).

As correctly noticed, there are three latitudes involved in our analysis:

1. the forcing latitude, indicated as φF in equation (16);

2. the jet latitude, indicated as φJ in equation (17);

3. the latitude where we compute the normalised meridional enstrophy
anomaly, indicated as φ0 in equation (19).
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In principle one can compute the enstrophy anomaly at every latitude with
or without a jet (φJ ̸= φ0 or UJ = 0) and with or without forcing at the same
latitude, φF ̸= φ0. However, the idea with equation (19) was to introduce a
perturbation at the same latitude φF = φ0 to create an enstrophy source and
use equation (19) to assess how much enstrophy remained at that latitude
(within a small latitude band) and how much escaped. Since we focus on
jet streams and expect that these might act as waveguides, we also chose
the jet latitude as φJ = φ0. Therefore, jet latitude, forcing latitude and
latitude where we compute the enstrophy anomaly coincide almost all the
time, since we are trying to assess how strong a jet stream is by evaluating
its capacity to hold the enstrophy (injected at the same latitude of the jet
stream) within itself. An exception is for the double jet configuration, where
there are two φJ that are different from φF . We have added a sentence to
clarify this delicate point in the revised version of the manuscript in section
5.1 and explicitly state that for a single jet the three latitudes (φ0, φJ , φF )
coincide.

1) Consistency of terms. (d). The term “temporal coefficient”
(e.g, caption of figure 5, line 412) is used interchangeably with
the term “principal component” (line 263) or simply “amplitude”
(caption of figure 6). Please explain if these are all words to
describe the same thing. If so – please be consistent with the
terminology. If not – please explain what “temporal coefficient”
means.

Thank you for noticing this inconsistency, the two terms indeed refer to
the same thing and we have uniformed our terminology to only use ”temporal
coefficients” in the revised version of the manuscript.

1) Consistency of terms. (e). The bar (over-line) is used some-
times to denote the background flow (equation 1) and sometimes
to demote the amplitude of a wave mode (line 124).

That’s correct, thank you for noticing it. We have now resolved this
issue in the revised version of the manuscript. The overline indicates now
the background flow vorticity and background streamfunction only, while the
amplitude of the wave mode is indicated by a tilde.
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2) Missing details. (a). For most of the results presented (at least
figures 3, 4, 5 and 8), it seems that the authors used the same lat-
itude for the jet and for the forcing, however this is not mentioned
explicitly and the reader is left to guess what the latitude of the
forcing is. Specifically, it is confusing the φ0 is initially used for
denoting the forcing latitude, while the jet latitude is sometimes
called φ0 and sometimes φJ (see comment 1c above). Also, it
would help if the authors explain why they chose to use the same
latitude for the jet and for the forcing (when this is the case).

We have added a discussion about this point in the revised version of the
manuscript in section 5.1.

2) Missing details. (b). It is not described how the EOF analy-
sis is done exactly. Specifically, I would expect to find an exact
explanation for how the “temporal coefficients” shown in the bot-
tom panels of figure 5 were calculated. If these are the same as
principle component time series of the EOFs, then it is surprising
that the principle component of the first EOF oscillates around 1
and not around 0. Usually, an EOF analysis is performed after
removing the trend from the time series. Is that the case here or
not? Please explain.

No de-trending was applied to the present simulations. The time average
of the meridional velocity field, V , was not removed and therefore the first
EOF mode is approximately given by the time average of the solution. The
EOF analysis was performed by considering the simulation results after 10
days from the start to exclude the initial transient (the wave generation and
spreading) and the subsequent 90 days were collected and analysed by means
of the singular-value decomposition (SVD) algorithm.

The inclusion of the time average in the SVD process affects only weakly
the subsequent modes since the first vector of the decomposition is approx-
imately provided by the arithmetic mean, while the second mode must be
orthogonal to the first mode and so forth. This orthogonality constraint
can influence the shape of the second mode (and subsequent ones), but the
dimension of the space is sufficiently large to not have a noticeable conse-
quence. On the other hand, the advantage of including the mean is that the
field we reconstruct is complete and the time average is also projected into
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orthogonal directions, facilitating the construction of a reduced-order model.
We have now specified this methodology in section 4.2.

2) Missing details. (c). According to the caption of figure 8a,
the green line marks the “locus beyond which the temporal vortic-
ity variance of the nonlinear simulation becomes 10 times larger
than in the stable regimes”. While this is explained in the fig-
ure caption, this criterion is not mentioned explicitly in the text,
when the “stability” of the nonlinear solution is considered (lines
291-294). I would expect a more detailed description and expla-
nation for this criterion in the text. How is the temporal vorticity
variance calculated? Which stable regime is it compared to?

The green line is a result of several nonlinear simulations performed for
many jet latitudes and jet strengths. We expected that all the points to the
left of the solid black line in Fig. 8a (the linear neutral curve) should be
characterized by a flow that just converges towards the equilibrium solution
(i.e., all transient Rossby waves decay in time in this region), while all points
to the right correspond to an exponential deviation from the equilibrium
solution (i.e., Rossby waves amplify). This is what we see from the linear
eigenvalue analysis with the linear Chebyshev method, but also by running
linear time simulations with spherical harmonics. However, the nonlinear
simulations do not behave like that: the jet must actually be stronger than
the value indicated by the solid black line, in order to see the unsteady waves
grow indefinitely.

The temporal variance of the meridional velocity was computed from the
nonlinear time simulations to diagnose such a growth. If the simulation con-
verges in time, the temporal variance remains low, while the latter increases
significantly when an unsteady behavior is present that is not damped. This
is indicated in figure 1 of the present response where the variance is reported
for different jet conditions. It can be clearly seen that nonlinear simulations
are more stable than linear ones. The threshold has been decided arbitrarily
to ⟨(v−⟨v⟩)2⟩ = 2 m2/s2 to mark a sufficiently strong growth. This has been
clarified in the revised version of the manuscript at lines 238-239.

3) Interpretation of the nonlinear simulations. (b). The authors
interpret the behavior of the nonlinear solution presented in fig-
ures 5 and 6 as evidence for a limit cycle (e.g. line 265, 294).
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Figure 1: Meridional velocity standard deviation for different jet latitudes
and strengths from nonlinear simulations. A logarithmic scale is used in the
color scale. The white dashed line and white solid line indicate the Rayleigh
criterion and the linear neutral curve, respectively, while the red solid line is
the locus where ⟨(v − ⟨v⟩)2⟩ = 2 m2/s2.
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I am skeptic about this interpretation. First, because in order
to identify a limit cycle, a phase space should be defined and the
existence of the limit cycle and its stability need to be shown in
this phase space. I don’t see what is the phase space in which the
authors find a limit cycle. Second, I disagree that the wave modes
shown in figure 5 are not traveling waves. In lines 263-265 the au-
thors argue that “The trajectories. . . behave as traveling waves:
however, the linear stability analysis does not support this inter-
pretation as the waves should grow exponentially in magnitude
because they are unstable”. In this argument the authors ignore
the fact that in the nonlinear simulation the mean flow is modified
by the wave fluxes and therefore it can be stabilized. Additionally,
the wave-wave interactions introduce a dissipative effect. So there
is no reason to believe that these are not traveling waves (actually
figure 6 shows exactly that these are traveling waves).

We thank the reviewer for this comment, which gave us the opportunity
to verify the presence of a limit cycle and to fortify the results we draw from
our analysis.

By traveling wave we meant a neutral solution of the equations where
its amplitude does not change in time. The linearised analysis did indicate
the presence of unstable modes for jet speed 40 m/s, that however did not
amplify exponentially indefinitely. The reviewer is right about the fact that a
nonlinear traveling wave that was neutral with respect to the new equilibrium
point could have, in principle, emerged. Only the nonlinear system can be
used to sort out this matter.

In order to assess whether a limit cycle or a traveling wave takes place,
it is important to define a state space – as the reviewer points out. We
ran a long-time (200 days) simulation starting from the background state
(this is referred as the reference simulation in the following analysis). From
this simulation we calculate the EOF modes of the streamfunction, namely
the variable used to solve the barotropic vorticity equation. As in Fig. 5
of the manuscript, the first mode Ψ0(x) is close to the time average of the
forced system, while the successive modes Ψ1(x), Ψ2(x), . . . are interpreted
as Rossby waves. The projection of the instantaneous streamfunction field
Ψ(x, t) into the nth EOF mode provides the mode amplitude as

an =

∫
Ψ(x, t)Ψn(x)dx . (1)
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The instantaneous values of the coefficients can be collected into a vector

(a0, a1, a2, a3, . . . )

that provides our state space. The EOF analysis of the reference simulation

provided typical amplitudes of the EOF temporal coefficients
√
a2n,ref and

the EOF spatial basis, that is from now on kept constant.
We ran several nonlinear simulations with different initial conditions given

by

Ψ(x, 0) =
√
a20,refΨ0 + α

√
a21,refΨ1 + β

√
a22,refΨ2 + . . . , (2)

namely by initiating our simulation from the time average field plus a set of
Rossby waves with arbitrary amplitudes. If the state space evolution from
different initial conditions will lead to the same orbit, a limit cycle is present,
while if the orbit depends on the initial condition a traveling wave is present.
Figure 2 shows the evolution of the a1 − a2 and a3 − a4 coefficients for four
different initial conditions, that nevertheless lead to a state evolution that
spirals towards the same orbit, supporting our claim about the presence of a
limit cycle.

It appears that, if the modes have a too high amplitude, they will be
damped, while for too small amplitude they will amplify as predicted by
linear theory. This is particularly clear for the a1 − a2 coefficients, while the
a3 − a4 coefficients undergo a transient growth first and decay afterward.

We thank again the reviewer for pointing out that we did not provide
sufficient evidence to support our claim about the limit cycle in the previous
version of the manuscript. We have now added an appendix to discuss this
matter.

3) Interpretation of the nonlinear simulations. (a). As far as I
could understand, the nonlinear simulations solve equation (3).
This equation includes wave-mean flow interactions and wave-
wave interactions. In contrast, the linear equation (equation 7)
includes the effect of the mean flow on the waves, but does not
include the effect of the waves on the mean flow, therefore it ne-
glects both the wave-mean flow interactions and the wave-wave
interactions. In the discussions in the paper, where the nonlinear
simulations are compared with the linear method results, the au-
thors assume that the differences between the solutions arise from
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Figure 2: State space sections. (Top left) a1 − a2 coefficients, (Top right)

a3 − a4 coefficients. (Bottom left) (a21 + a22)
1/2

temporal evolution, (Bottom

right) (a23 + a24)
1/2

temporal evolution. Black circles: state space evolution
over 4000 hours with initial condition Ψ(x, t = 0) = 0. Blue: initial condition
Ψ(x, t = 0) = Ψ0 + 3Ψ1. Red: Ψ(x, t = 0) = Ψ0 + 0.5Ψ2. Magenta:
Ψ(x, t = 0) = Ψ0+3Ψ3. Cyan: Ψ(x, t = 0) = Ψ0+0.5Ψ3. The starting point
of the lines is highlighted by a green asterisk.
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the inclusion of wave-wave interactions in the nonlinear model,
while ignoring the wave-mean flow interactions (e.g., lines 187-
188, 295-296, 387-389). I think this is a very fundamental issue.
When wave-mean flow and wave-wave interactions are included,
the equilibration occurs due to the combination of stabilization of
the mean flow profile by the wave fluxes, and the dissipation by
wave-wave interactions. While the authors mention the latter,
they ignore the former, which could be very important.

We now also briefly discuss the potential role of wave-mean flow interac-
tions in explaining the differences between the simulations in Sect. 4.1 and
4.2, and acknowledge that we cannot separate the role of wave-wave and
wave-mean flow interactions when comparing the simulations.

3) Interpretation of the nonlinear simulations. (c). The compar-
ison between the stationary solution of the linear equation and
the time-mean solution of the nonlinear equation assumes that
we should expect them to be similar (e.g. lines 250-253, 371-
373). I think these two solutions capture a fundamentally dif-
ferent phenomenon. The linear stationary solution captures a
stationary (i.e. zero-phase speed) wave, forced by the topogra-
phy. The nonlinear time-mean solution captures a statistically
steady state. The paragraph in lines 253-268 (as well as parts
of the conclusions section) tries to explain the similarity between
the stationary solution of the linear equation and the time-mean
solution of the nonlinear equation in an unstable case. They ar-
gue that one should expect the nonlinear solution to diverge in
the unstable conditions (e.g. lines 236-237). Their interpretation
for the lack of instability in the nonlinear case is that the sys-
tem reaches a limit cycle. I would argue instead that the system
reaches a nonlinear statistically steady state, where the mean flow
is stabilized by the waves (in the time-mean sense), and the waves
are equilibrated in the sense that their life cycles give a net zero
growth, when averaged over time. I would definitely expect to find
traveling waves in such a solution. These traveling waves don’t
necessarily need to be identical to the most unstable modes of the
mean flow. They could be neutral modes in the linear sense, but
they need to be able to maintain the mean flow in a profile that
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enables them to go through cycles of growth and decay (see for
example DelSole 2004, Lachmy and Harnik 2016).

The linear equilibrium solution is a result of a linearised analysis while the
time average of the nonlinear solution is another entity, as the reviewer points
out. In both the paragraphs indicated by the reviewer our statement is that
“the averaged flow field in the nonlinear simulation resembles ... the unstable
equilibrium state calculated from the linear method”. We did not expect
them to be the same, but the qualitative similarity is only a result of empirical
evidence. The discrepancies can arise in the linearised approximation because

1. the linear model is linearised around the background state and not
around the equilibrium state: this error is enhanced when the topo-
graphic forcing has large amplitude.

2. the linearised model is unstable: in this case the perturbation growth
leads to some wave fluxes that transfer energy from the wave to the
mean flow

The remedy to the first issue is to linearize around the time average instead,
an approach done by one of the authors in (Matsubara M, Alfredsson PH,
Segalini A. Linear modes in a planar turbulent jet. Journal of Fluid Me-
chanics. 2020 Apr;888:A26.). However, the linear analysis with a nonzonal
background flow is more computationally expensive since the Fourier decom-
position is not separating the individual waves anymore.

In principle we were expecting that, if the background flow is linearly sta-
ble, perturbations should decay and the flow should approach the equilibrium
point again, with minor discrepancy due to the linearisation approximation,
as in the case with no jet. However, we were surprised to see that this good
resemblance kept being the case even beyond the onset of linear instability,
probably because the wave-mean flow terms in the time-averaged vorticity
equation ∇ · ⟨u′ζ ′⟩ remains bounded by our damping term (see our previous
comment on the limit cycle).

Our aim while discussing the limit cycle in the conclusions was more ori-
ented towards the perturbation evolution, since we were expecting the onset
of turbulence motion rather than a quasi-periodic wave activity. The sce-
nario depicted by the reviewer is correct. Our statement about the unstable
modes from the linear analysis resembling the EOF modes was also specula-
tive: however, it is true that the linearly unstable modes are the infinitesimal
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waves expected to grow the most, although this does not automatically ex-
clude the possibility on non-normal growth (transient growth) of other waves.

Once again the description of the waves dynamics around the statistical
equilibrium point requires a more accurate analysis linearised around the
statistical steady state with a model of the wave-mean flow terms, an ap-
proach that we have not yet attempted and that goes beyond the scope of
the present work.

4) Interpretation of the stability analysis. Figure 8a shows the
maximum of the imaginary part of the linear eigenvalues (i.e.,
the linear growth rate) normalized by the damping time scale. The
dashed line marks the locus where the absolute vorticity gradient
changes sign (the Rayleigh stability criterion). The authors argue
that the distance between the line where the linear growth rate is
zero and the dashed line in figure 8a shows that “the Rayleigh
criterion provides a necessary but not sufficient condition for the
onset of instability” (lines 282-285). In the conclusions section
(lines 382-384) they argue that the Rayleigh criterion was not
capable of detecting the onset of barotropic instability. I disagree
with this interpretation, because the linear stability criterion could
easily be adapted to incorporate the effect of the damping term,
by examining the line where the growth rate is equal to minus
the damping time scale (i.e. where the growth rate is equal to
-1 in figure 8a). Note that this line corresponds to the dashed
line, meaning that it is consistent with the Rayleigh criterion of
instability. This is not a coincidence. When the wave equation
includes a linear damping term, the growth rate is expected to be
the same as the linear growth rate of a model without damping,
minus the damping time scale. Therefore, the results are consis-
tent with the theory of barotropic instability, where the Rayleigh
criterion marks the state where the linear growth rate of a model
without damping is zero, and when linear damping is added, the
growth rate is reduced by the damping time scale.

We agree with the reviewer on this point. However, it is still true that
the change in sign of the potential vorticity gradient is not associated to an
unstable regime, but rather to a less stable one. The analysis is reported
here below, although it follows the arguments of the reviewer.
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The analysis starts by considering the barotropic vorticity equation in
perturbation form (Eq. 10 in the manuscript)

∂ζ̂

∂t
+
imU

sin θ
ζ̂ − im

sin θ

∂Q

∂θ
ψ̂ + χζ̂ = 0 with Q = ζ +

f

cos θ
. (3)

By introducing the modal ansatz ζ̂ = ψ̃e−iωt it is possible to simplify (3) into

− (iχ+ ω) ζ̃ +
mU

sin θ
ζ̃ − m

sin θ

∂Q

∂θ
ψ̃ = 0 . (4)

By multiplying all terms with sin2 θζ̃∗/ (∂Q/∂θ) and integrating in colat-
itude one obtains

− (iχ+ ω)

∫ π

0

sin2 θ

∂Q/∂θ

∣∣∣ζ̃∣∣∣2 dθ+m∫ π

0

sin θU

∂Q/∂θ

∣∣∣ζ̃∣∣∣2 dθ−m∫ π

0

sin θ ζ̃∗ψ̃dθ = 0 ,

(5)
where the last integral can be rewritten since ζ = ∇2ψ leading to∫ π

0

sin θ ζ̃∗ψ̃dθ = −
∫ π

0

sin θ

∣∣∣∣∣∂ψ̃∂θ
∣∣∣∣∣
2

dθ −m2

∫ π

0

1

sin θ

∣∣∣ψ̃∣∣∣2 dθ . (6)

The last two terms of Eq. (5) are indeed real and do not contribute to
the instability (i.e., the imaginary part of ω). The only imaginary term is

− (χ+ ωi)

∫ π

0

sin2 θ

∂Q/∂θ

∣∣∣ζ̃∣∣∣2 dθ = 0 , (7)

Equation implies that either ωi = −χ or the integral must be zero, the latter
happening only when ∂Q/∂θ changes sign, namely the Rayleigh criterion.
We have described this aspect in the paper in Sect. 4.1 without providing
the equations to avoid shifting the focus on this aspect. However, as men-
tioned in the manuscript, the inclusion of the damping term does not inhibit
the application of the Rayleigh criterion, but it limits that to the fact that
when the absolute vorticity gradient changes sign the imaginary part of the
eigenvalue can be different than −χ, therefore still stable.

5) Section 6 This section doesn’t include a discussion of the im-
plications of the results. I couldn’t understand the motivation for
looking at the time-dependent solution and what the conclusions
from this analysis are.
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We have decided to remove this section since it was interesting to us only
as an analytical solution of the linearized equations, without however pro-
viding additional insight into the atmospheric dynamics than what already
obtained from the stability analysis.

1) Line 84: Lambda is defined, but it is not used in equation (1).

Since we are defining the colatitude θ and the latitude φ, it is natural to
introduce the notation for the longitude there too, rather than later on at
equation (4).

2) Line 105: Since equation (9) includes variables with a “hat”,
denoting the amplitude of the Fourier components, it would be bet-
ter to define the Fourier components (Psi-hat(theta, t)exp(imx))
here, before the equation, or at least mention what the hat symbol
means.

We have now fixed this point in the revised version of the manuscript by
providing the Fourier transform definition (Eq.- (9)).

3) Line 118: Something in the wording is not correct, “achieved
at regime” doesn’t sound right. What does it mean?

We meant that equation (13) is the streamfunction field after sufficiently
long time. Initially we denoted this as the infinite-time solution. However,
when this equilibrium state is unstable, an exponential divergence from the
equilibrium state is expected and equation (13) should never be observed: in
the nonlinear simulations we do observe anyhow a similar field in the time
averaged field instead. We have reworded this sentence to clarify the above
interpretation.

4) Line 124: The bar (over-line) was used before to denote the
time-mean background solution, here it is the amplitude of the
Fourier component in time.

We have now fixed these inconsistencies in the revised version of the
manuscript. The overbar denotes the background flow while the tilde is used
to indicate the Fourier transform of the perturbation.
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5) Lines 137-138: This would be a good place to refer again to
the appendix.

Thank you for the good suggestion; we have now added a reference to the
Appendix there.

6) Line 141-142: The first sentence of this paragraph seems to
belong to the previous paragraph.

Thank you for spotting this error. We have now corrected and moved the
sentence to the previous paragraph.

7) Line 144: Please mention exactly which linear and nonlinear
equations the SHT package solves. Are these equations 7 and 3?

Yes. Three solvers were developed in this project. Two based on the SHT
transform (one solving nonlinear equation (3) and the other solving the linear
equation (7)), and one based on the Chebyshev formulation (solving only the
linear equation (7)). Since the two linear solvers gave the same answer, the
majority of the paper is based on the analysis of the linear Chebyshev code
and the nonlinear SHT code. One could argue that it would have been more
consistent to just do the entire work with the SHT method only: however,
the Chebyshev methodology provides an analytical form for the derivative
matrices (equation A4 in the appendix) so that the eigenvalue problem could
be easily formulated. We have specified this more clearly in the revised
version of the manuscript at lines 185-190.

8) Line 153: Bar (over-line) was used before to denote the time-
mean, but here it is used to denote the zonal wind divided by
cosine latitude.

Thank you again for the careful review. This issue has now been fixed by
replacing U with U0 or directly with 15 m/s.

9) Line 167: created by -¿ forced by.

Corrected.

10) Line 183: Delete the second “for the”.
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Corrected.

11) Line 190: “between the forcing the the monitoring sector” –
the first “the” after “forcing” should be replaced by “and”.

Corrected.

12) Caption of figure 2: It says that “N” is the number of lati-
tude/longitude grid points for the Chebyshev simulations and the
truncation number for the SHT method. Why not define N as the
number of latitude grid points for all the cases, to be consistent?

We have modified the caption of figure 2 according to the suggestion of
the reviewer so that we use the number of latitudes in both simulation setups.

13) Line 239: “. . . is also not be ruled out” – delete the “be”.

Corrected.

14) The authors use expressions related to time when referring to
the behavior of the system as a function of the model parameters
(the word “after” in line 299 and the words “started” and “later”
in lines 387-388).

We indeed used incorrect terms and we have now fixed this in the revised
version of the manuscript, replacing for instance “after” with “beyond”.

15) Line 300: “. . . the maximum growth rate in Fig.8b. . . ” – fig-
ure 8b shows the wavenumber, not the growth rate.

That is the wavenumber associated to the maximum growth rate. We
have now corrected this in the revised version of the manuscript.

16) Line 310: “jets” – change to “jet”.

Corrected.

17) Line 325: “. . . equally efficient waveguides” – why do you say
they are equally efficient if their waveguidabilities are not equal?
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What we meant was that the waveguidability is high in both cases, but
the reviewer is right and we have reformulated the sentence to: “. . . similarly
efficient waveguides”.

18) Line 338: “. . . the waveguidability is reduced. . . ”. I assume
the authors mean that in the double jet case it is reduced compared
to the single jet case. However, this should be mentioned explicitly
and not left for the reader to guess.

Correct. We now state this explicitly in the revised manuscript.

19) Line 384-385: This sentence is not clear. Specifically, the
phrasing of the part: ”. . . the condition of instability corresponds
to a first increase of the. . . ”.

Here we wanted to highlight how the application of the Rayleigh criterion
leads to a necessary but not sufficient condition for the instability. We have
rewritten the concluding section to facilitate the reading of the manuscript
so we hope that the overall clarity has improved.

20) Line 388: Please explain what were the signs of barotropic
instability in the nonlinear simulations? Why do you consider
them to be signs of barotropic instability?

For the adopted extremely simplified simulation setup only a barotropic
instability can take place. We noted and discussed in the stability section
that the nonlinear simulations remain temporally stable even beyond the
neutral curve (namely for a jet strong enough to trigger a linear instability),
although beyond the green curve in Figure 4a, even the nonlinear simulations
show an unsteady behavior that is not decaying in time and the overall flow
field remained time dependent.

21) Line 401: Delete the “that” after c).

Corrected.

22) Line 410: “these evidences” – change to “this evidence”.

Corrected.
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23) Lines 412-413: The sentence “the temporal coefficients could
be determined by solving a small set of nonlinear ordinary differ-
ential equations” is not clear. What do you mean by “temporal
coefficients”? Are these the same as the principle component time
series (see major comment 2b)? Which small set of equations are
you referring to?

The EOF temporal coefficients are the main subject of this sentence.
As specified in our previous reply, we have now uniformed our terminology
throughout the text to always refer to these as ”temporal coefficients”. If we
substitute the EOF decomposition of the form

Ψ(x, t) =
N∑

n=0

an(t)Ψn(x) , (8)

in the barotropic vorticity equation (3), and exploit the orthogonality of the
modes Ψn(x) it is possible to obtain a nonlinear system of ODEs where the
unknowns are the coefficients a0, a1, a2, . . . . This model is extremely cheaper
than the original equation (3) since only a small set of ODEs are solved. The
book of Holmes et al. provides a detailed description of this methodology as
a reduced-order model. We have added a clarification of this methodology
in the manuscript.
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A linear assessment of barotropic Rossby wave propagation in different
background flow configurations

by
A. Segalini, J. Riboldi, V. Wirth & G. Messori

Comments to Reviewer #2:
(the text of the reviewer is in italic)

We appreciate the feedback regarding our manuscript. In the following
we address the reviewer’s suggestions for improvement, and point out the
changes compared to the original manuscript. Parts that have been rewritten
or added due to comments by the referees have been highlighted in red in
the revised version of the manuscript.

The reviewers made a significant attempt in responding to my
concerns. However, considering the length of the response, which
is almost as long as a short manuscript, one wonders why so much
clarification was needed for a piece of work that was apparently
deemed ready for peer-review. Furthermore, the revisions almost
amount to this manuscript becoming a new manuscript and thus a
new submission. For future submissions, the authors are encour-
aged to assess the significance, context, and clarity of the work
more carefully before entering the peer-review process.

The purpose of peer-review is not merely that of a one-way communi-
cation from the reviewer to the authors, but also for the authors, reviewer,
editor (and in the case of EGU journals the broader scientific community)
to engage in a discussion on specific scientific aspects of the submission be-
ing reviewed. Indeed, if the sole purpose was one-way communication, the
whole concept behind EGU journals publishing both reviewer comments and
author replies would be somewhat moot.

Some topics, notably those of a more theoretical nature, may lead to
longer written discussions than others, due to the need to clearly explain tech-
nical aspects, assumptions and details that may be relevant to the framing of
the broader discussion. Moreover, the length of the replies is determined as
much by the authors as by the reviewers. Thorough reviews, raising relevant
points of discussion, will naturally lead to thorough replies, discussing those
points. A superficial review will likely elicit short and simple replies.
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Coming to our specific case, we have received two very thorough reviews
on our original submission, which we are grateful for. The fact that we
disagreed with some of the reviewer’s points, further contributed to a lengthy
reply. Indeed, to facilitate the editor in their decisional role, we opted to
provide particularly detailed replies to those points where we partly or wholly
challenged the criticisms of the reviewer. Based on the above, we believe that
judging the quality of a submission by the length of the replies to reviewers
is a very poor call.

We further stand by our initial judgment that our manuscript is scientifi-
cally significant and clearly describes a set of new results. We are grateful for
the time you have dedicated to reviewing our paper, as we are well aware it
is an entirely voluntary and unremunerated undertaking, but disagree with
your stance.

Regarding my general comment about the introduction not lead-
ing to the actual research question addressed in this manuscript
and that it left one wondering what this manuscript is about, the
authors responded: “we believe that an introduction should pro-
vide context and motivation for the work, beyond a simple list of
points that will be addressed in the analysis.” It is exactly that
what the authors have not provided in their first version, i.e.,
the context and motivation of their work. The revised introduc-
tion is an improvement, but one still wonders about the relevance
of, for example, resonance, for which the authors use an entire
paragraph. Does their method address this challenge? If so, it
should be pointed out in the introduction, otherwise it leaves the
reader wondering about the relevance of this discussion on res-
onance. The authors also discuss extremes and the context to
climate change in the introduction, which is not followed up in
the rest of the manuscript.

We wish to keep the discussion of the first version of our manuscript as
short as possible, since this is not what is being reviewed here. We nonethe-
less wish to point out that our original introduction was structured as follows:

1. General background on atmospheric wave propagation (broad topic);

2. Relevance for surface weather (practical implications of studying the
topic);
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3. More detailed background on waveguidability and existing knowledge
gaps;

4. Research question being addressed and structure of the paper.

We see no lack of contextualization in this structure.
Coming to the revised version, the new paragraph on wave amplifica-

tion and resonance (we note that resonance takes up less than half of the
paragraph) was restructured and expanded following the suggestion of this
reviewer to split a paragraph in the original text. Splitting a paragraph sel-
dom leads to a shorter text. In the introduction, we explicitly address the
relevance of our analysis for wave resonance (lines 25-32). We agree that the
single sentence on climate change is superfluous, and have removed it in the
new version of the manuscript.

My specific comment on L16 was not understood correctly. My
point was that there has been extensive previous work on the con-
cept of wave guiding, not only as recent as the last ten years. It
was this context that I was missing.

We cite several studies from the 70s, 80s and 90s, so we still struggle to
correctly understand the point the reviewer is making. It would be helpful to
a constructive communication if the reviewer were to point to specific bodies
of work that they think are lacking from our introduction.

The new abstract clearly states that the main thrust of the paper
is a novel algorithm, which would imply that my original inter-
pretation that this is piece of work is mainly a technical paper was
correct. As indicated in my previous review, for such a more tech-
nical manuscript, it would be recommendable to resort to more
technical journals, such as GMD. While I find the method and
results interesting, the still somewhat confusing presentation of
arguments and rather technical character make it not suitable for
WCD in my point of view.

The authors of the study have noticed – albeit without any factual data
to support it – a trend towards fewer and fewer technical/theoretical con-
tributions in climate dynamics journals, in favour of papers performing sta-
tistical or climatological analyses of large climate datasets. This may have
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involuntarily led to the notion that more technical analyses are ill-suited for
dynamics journals – something that we disagree with.

Concerning the focus of the study, we note that notable previous con-
tributions on algorithms to study wave propagation have been published in
WCD (Wirth 2020), J. Geophys. Res.: Atmos (Manola 2013) and J. Atmos.
Sci. (Hoskins and Ambrizzi, 1993). A good rule of thumb to judge the rele-
vance of a study for a particular sub-field is to look at its bibliography. In our
case, none of the studies we cite has been published in GMD nor in JAMES,
currently the two leading Earth System modelling journals. The journal we
cite most often is J. Atmos. Sci., whose scope very much overlaps that of
WCD.

To further address the concerns of the Reviewer, we emphasized in the
manuscript, we emphasized in the manuscript the physical insights that can
be gained from the analysis, which leads to an improved understanding of
the idealized simulations used to study waveguidability in previous literature
(such as Wirth 2020). In particular, we re-arranged the presentation of the
results by grouping them in two new sections, one about results concerning
barotropic Rossby waves and the other about results concerning the waveg-
uidability problem. The structure of the conclusions was also modified to
reflect the novel exposition of the results. We believe the knowledge gained
will prove useful in designing future research efforts to study Rossby waves
and their waveguides.
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