
A linear assessment of barotropic Rossby wave propagation in different
background flow configurations

by
A. Segalini, J. Riboldi, V. Wirth & G. Messori

Comments to Reviewer #1:
(the text of the reviewer is in italic)

We appreciate the feedback regarding our manuscript. In the following
we address the reviewer’s suggestions for improvement, and point out the
changes compared to the original manuscript. Parts that have been rewritten
or added due to comments by the referees have been highlighted in red in
the revised version of the manuscript.

I think the method and results presented in this manuscript are
interesting and significant, and could be useful for future studies.

We thank the referee for the support to our work.

I personally had to read through the manuscript carefully twice
before I had a sense of what it is about.

We have extended the introduction and extensively modified Sect. 4–7
to better motivate the work (both in terms of introducing the methodology
and of highlighting which new scientific insights result from our analysis) as
both referees pointed out that the previous manuscript had a structure that
hindered readability.

1) In my opinion, the introduction, the abstract and perhaps even
the title do not express clearly what the paper is about. They
give the impression that the paper is more about the physics of
waveguides, whereas the main contribution of the paper, as I see
it, is the computational method. The single and double jet cases
shown in the paper are used as test cases for the computational
method, rather than going deep into the dynamics of waveguides.

We agree with the referee that part of the novelty of the study lies in
the new computational approach. However, we would also like to highlight
that the implementation of such approach provides novel physical insights
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(see e.g. the analysis of the double jet in Sect. 5). We thus believe that the
contents of the study cannot be fully appreciated without an understanding
of the current state of research on Rossby waveguides. The intertwining be-
tween methodology, theory and physical insights is particularly relevant for
this topic, as a universally accepted definition of waveguide is still lacking.
White et al. (2022) and Wirth and Polster (2021) showed that our capability
to “see” waveguides critically depends on the methodological approach cho-
sen to diagnose them. We perhaps described this problem in excessive detail
in the Introduction, with the effect of de-emphasizing the methodological
novelty of our approach. We have now added a new paragraph to the intro-
duction focusing on methodologies for waveguide analysis in the literature.
In parallel with this, we have extensively modified the results and concluding
sections (including a new Sect. 6) to better highlight the physical insights
gained from the proposed linear analysis. Finally, we have revised the title
to better reflect the focus of the paper, which is on wave propagation rather
than waveguidability.

In the last paragraph of the paper the authors write that “This
study should be regarded as an introduction and explanation of the
techniques, but possible applications of this approach could include
systematic waveguidability assessments for different forcings and
background zonal wind profiles.” I think this sentence should ap-
pear in the introduction, and the abstract should emphasize the
main point of the paper.

The paper has been partially re-written to better address the final out-
comes of the paper. In particular:

• The waveguidability has been discussed more by means of the definition
proposed by Wirth (2020) and an extension of this definition has been
proposed to be able to assess jets at different latitudes;

• The improvements compared to ray-tracing theory (limited by slowly-
varying background flow, steady wave propagation, Mercator projec-
tion) have been described in the introduction, in section 2 and in the
manuscript concluding section;

• The difference between the classic barotropic stability criterion, lin-
ear neutral curve and locus where the nonlinear simulations become
unstable has been extended in section 4.3.
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2) Perhaps the authors could add some more motivation for spe-
cific choices in the derivation of the mathematical model, that
could add to the clarity of the paper. One choice that wasn’t im-
mediately clear to me was including a damping term in equation
(1). It wasn’t clear what this damping term represents physically.
It was also not clear to me what the motivation was for looking
at the stationary solution in equation (13). Only after I finished
reading it became clearer. I think that in section 2 it could help
to explain better what the model is supposed to represent, before
the derivation of the equations.

We thank the reviewer for this suggestion. It is quite common to introduce
this kind of damping term (see for instance Hoskins and Karoly, 1981, Hoskins
and Ambrizzi, 1993, Wirth, 2020). Yet, we agree that its use should be
explained and that we did not elaborate this important term adequately
in the previous version of the manuscript. The latter has been updated
according to the suggestions of the referee around equation (1) and (13) to
clarify the meaning of the attenuation term and of the equilibrium solution.
Furthermore, following the suggestion of the other referee, we have changed
the symbol of the attenuation parameter from λr to χ.

3) The authors present stationary solutions and time-dependent
solutions, but it is not mentioned explicitly at which section each
type of solution is examined, what each type of solution represents
physically, what is the motivation for looking at each type of so-
lution and what are the different methods for solving for a sta-
tionary or time-dependent solution. Each of these are explained
somewhere, often after presenting the results, but it is not ex-
plained in an organized manner.

Our aim in the results section was to highlight that the linearised method-
ology provides a simple and reasonably good assessment of the temporal
evolution of the waves, while the majority of the analyses in the literature
were focused on the equilibrium solution (for the linearised system) or on
the temporally averaged nonlinear numerical solution. We nonetheless un-
derstand the confusion our previous framing of the results caused. We have
now rearranged the structure of the results to separate the discussions of
the stationary solution from the time-dependent solutions. In particular, we
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have moved the discussion of the unsteady case at the end of section 5 as a
new section about time-dependent analyses. While the procedure to obtain
the stationary solution is described in Sec. 2 [Eq. 12], the derivation of the
temporal analytical solution (in the sense that no temporal discretisation is
needed) is provided in the paper appendix with both steady and unsteady
forcing.

4) Section 4.3 analyzes the stability of the problem for different
parameters of the jet profile. I was missing a discussion on the
connection of this instability to linear barotropic instability, in
the sense of the necessary conditions for instability including a
change of sign of the PV gradient. Some more physical context
would be useful.

We thank the referee for this comment. By repeating the derivation of
the Rayleigh stability criterion it is found that a necessary condition for the
instability is that the PV gradient becomes zero for the spherical case as well.
However, this condition is not sufficient, since it enables the imaginary part
of ω to be different from −λr (−χ in our current notation), so that there is
still a large stability margin until the imaginary part of ω becomes positive
and the mode unstable. This is actually what we observe from the present
analysis since the PV gradient changes sign when UJ = 9 m/s (for a jet
at 45◦ N and σJ = 5◦), while the flow becomes linearly unstable at around
UJ ≈ 20 m/s. In the stability analysis part we have now discussed this and
updated the figure with the eigenvalue and the neutral curve to show the
curve where the PV gradient changes sign: as visible in the new figure 8
(figure 1 of the present reply), the Rayleigh criterion is violated in a region
that is still stable. If the damping was absent, then the Rayleigh criterion
will become a sufficient condition for the instability. We have added this
discussion in both Sect. 4.3 and Sect. 7 of the revised version of the paper.

5) The analysis of the double jet case shown is much shorter than
that of the single jet case and does not include a calculation of
waveguidability. Based on the last sentence of the abstract (“Ex-
amples using single- and double-jet configurations are discussed to
illustrate the method and study how the background flow can act
as a waveguide for Rossby waves”) I was expecting a comparison
between the waveguidability of the two cases. If the authors choose
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Figure 1: (a) Maximum of the imaginary part of the eigenvalues for a given
jet velocity (normalised by χ) when σJ = 5◦. The black line indicates the
neutral curve, the dashed line is the locus where the absolute vorticity
gradient changes sign (Rayleigh stability criterion), while the green thick
line is the locus beyond which the temporal vorticity variance becomes 10
times larger than in the stable regimes (approximating the neutral curve
in the nonlinear case). (b) Azimuthal wavenumber of the most unstable
eigenvalue for UJ = 40 m/s for different jet widths. The black lines are
curves m ∝ cosφJ fitting the linear stability results.

not to include a calculation of waveguidability for the double jet
case, they should otherwise motivate the choice for the analysis
that is presented.

We have followed the suggestion of the reviewer and have now assessed
the waveguidability of both jets in the revised version of the manuscript,
always using a new diagnostic that is a modified version of the one proposed
by Wirth (2020) and able to account for jets at different latitudes. These
results have been added to Sect. 4.1 as a new figure 3 (figure 2 of the present
reply). The waveguidability of the two jets taken separately is around 84%
for the southern jet and 92% for the northern one, so that the northern
jet has similar waveguidability than the southern one. When two jets are
simultaneously present, the northern jet shows again a higher waveguidability
(82%) compared to the southern jet (70%), although both values are lower
than the isolated case due to additional leakage of enstrophy from one jet to
the other and the surrounding. This is not necessarily an intuitive result and
highlights the type of physical insight that our approach can provide.

The term “analytical solution” used in the abstract and introduc-

5



0 5 10 15 20 25 30 35 40
0

20

40

60

J
et

la
ti
tu
d
e
[◦
]

(a)
0

15

30

45

60

75

90

0 5 10 15 20 25 30 35 40
0

20

40

60

J
et

la
ti
tu
d
e
[◦
]

(b)
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

UJ [m s−1]

0

20

40

60

J
et

la
ti
tu
d
e
[◦
]

(c)
0

20

40

60

80

100

Figure 2: (a) Enstrophy meridional density of the single jet zonal profiles
for different jet latitudes and strengths, estimated according to Eq. (17) of
the revised manuscript. The enstrophy field has been computed from the
equilibrium state obtained from Eq. (12), namely from the linear method. (b)
Difference E(UJ , φ0)−E(0, φ0) used to highlight the increment in enstrophy
density with the jet speed with respect to the solid-body case. (c) Calculated
value of waveguidability according to Eq. (18) of the revised manuscript.
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tion was confusing for me. I expected to see a solution expressed
as a mathematical function. It is true that the Chebyshev polyno-
mials are analytical functions and in that sense the solution is an-
alytical, but eventually there is a numerical calculation that leads
to the solution, so perhaps a different terminology would describe
the method more clearly. As I see it, the main difference between
what is called a “numerical solution” and “analytical solution” by
the authors is that the former is a time-integrated solution and
the latter is an eigenvalue problem.

We agree and we have removed the adjective “analytic” from the majority
of the manuscript where a numerical assessment was involved. As the referee
acknowledges, Chebyshev polynomials are just a basis for the projection of
the streamfunction and they are characterised by an exponential convergence
as typical of spectral methods. However, the analytical form of the solution
(obtained with pen and paper) is absent even if the solution is nearly exact.

Lines 181-182: In what sense is it counterintuitive that the non-
linear solution is more dissipative?

The presence of nonlinearities is associated with turbulent effects by the
onset of an energy transfer towards other scales. This energy transfer across
scales often leads to the divergence of the solution and to the onset of turbu-
lence in fluid dynamics problems (e.g., flow in a tube, Kundu & Cohen, Fluid
Mechanics, 2013), but instead here the nonlinear terms appear to smooth the
solution. This is also pointed out by the stability analysis. In the linear case
with narrow jet (σJ = 5◦ and jet latitude at 45◦ N) the flow becomes linearly
unstable with a jet intensity of UJ ≈ 20 m/s, while the nonlinear simulation
becomes unstable at UJ ≈ 28 m/s, highlighting an unexpected stabilizing
effect of the nonlinear terms. We have removed the adjective counterintu-
itive in the revised version of the manuscript since the damping/amplifying
effect of nonlinearities is probably an heuristic feature that requires more
investigation.

Perhaps the appendix can include some more details of the com-
putational method, such as the matrices D(1) and D(2), and how
the time-dependent solution is calculated.
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The matricesD1 andD2 are obtained by considering the first-order deriva-
tive of the Chebyshev polynomials (grouped as a matrix T where the columns
are the polynomials and the rows are the colatitude locations). The deriva-
tive polynomials can be collected by means of a matrix T1. The matrix
D1 can be written as D1 = T1 · T−1 so that the matrix T−1 converts the
streamfunction distribution into the associated polynomial coefficients and
T1 provides the derivative in physical space. This discussion is not strictly
necessary in the article and we fear that including it would shift the focus
on the numerical details rather than on the methodology, so we prefer to
omit that. However, we provide a reference to Peyret that goes sufficiently
in detail about estimates of these matrices and on how round-off errors can
be reduced.

Regarding the time integration, we provide details in equation (A7): The
matrices A, Λ and P (together with their inverses) are computed in the pre-
processing stage once and for all, together with the Rossby waves features. At
any arbitrary time t only a few matrix multiplications are needed to obtain
the solution evolution in the stable case (in the unstable case it works well
too until the unstable eigenmodes become too large). No time integration
(or time stepping) is needed in the linear stable case, and we now explicitly
state this in the Appendix.
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A linear assessment of barotropic Rossby wave propagation in different
background flow configurations

by
A. Segalini, J. Riboldi, V. Wirth & G. Messori

Comments to Reviewer #2:
(the text of the reviewer is in italic)

We appreciate the feedback regarding our manuscript. In the following
we address the reviewer’s suggestions for improvement, and point out the
changes compared to the original manuscript. Parts that have been rewritten
or added due to comments by the referees have been highlighted in red in
the revised version of the manuscript.

While the manuscript is well written and the figures well pre-
pared, it is not fully clear what this paper is about. The title and
introduction suggest that the manuscript is about an assessment
of waveguidability for different background flows, whereas the re-
sults mainly focus on introducing a solution technique for Rossby
waves, which is not entirely novel in its design. The discussion
and conclusions leave the reader wondering how the introduced
methodology is aiding the overall question on waveguidability for
different flow configurations, as only very few highly idealized se-
tups are tested. Hence, given the more technical character of the
manuscript and lack of presentation of direct scientific usage of
the method, this manuscript is not suited for Weather and Climate
Dynamics in its current form and a resubmission to a more tech-
nical journal, such as Geoscientific Model Development, should
be considered after major revisions have been implemented.

Although we agree with the reviewer’s critique that the structure and the
aims of the paper can be made more intelligible, we believe that the novelty
of our contribution is not exclusively methodological (see for example the
double jet results presented in Sect. 5). Indeed, what we seek to do is
propose a new paradigm to study the flow evolution of forced Rossby waves
that rapidly enables to investigate in principle any background flow and
forcing combination. As far as we are aware, the “very few idealised setups”
we present are currently the largest systematic collection of background flows
investigated in any single paper in the literature (see e.g. the new Fig. 3

1



of the manuscript, namely Fig 1 of the present reply). Moreover, since our
study specifically speaks to the meteorological community, we believe that
Weather and Climate Dynamics is the best-suited outlet for its publication.
The consideration of idealised setups should not be an issue per se, as WCD’s
scope explicitly includes “idealized numerical studies”, by the journal’s own
description.

To better understand the innovative character of our approach, we com-
pare it to the classic ray-tracing approach proposed 40 years ago by Hoskins
and Karoly (1981), and still used in the literature today. The ray-tracing
technique requires the tracking of the wave during its evolution. However, a
wave written in the form

ψ = ψ̂ exp [i (kx+ ly − ωt)] , (1)

is correct only when the background flow U is constant in the β plane. This
requires several approximations to apply this simple theory to general flow
over a sphere:

1. A Mercator projection of the flow field

2. The background flow must be slowly varying compared to the spatial
scale given by the wavelength of the Rossby wave

3. Although not an intrinsic limitation, in practice the analysis is typically
conducted on stationary waves

Under these assumptions we can use WKB theory and extend the classical
Rossby solution to more realistic cases with jet streams, for instance. How-
ever, we lose information about how the waves are evolving in time or whether
the flow will ever approach a steady state: Wirth (2020) noted that, when
a strong jet stream was present, the Hovmöller diagram did not approach a
steady state and filtering was required to get it.

The approach that we propose is completely different from previous works
since any generic zonal background flow can be considered and no ray tracing
is required. The waves are obtained as a result of the equations independently
from the forcing so that general conclusions can be obtained. No assumption
of scale-separation is required nor do we need to project the flow in a Mercator
plane, with the consequent deformation at the poles. Furthermore, a stability
analysis can now be performed systematically, enabling an estimate of the
flow evolution. Even the interpretation of the nonlinear simulation results is
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Figure 1: (a) Enstrophy meridional density of the single jet zonal profiles
for different jet latitudes and strengths, estimated according to Eq. (17) of
the revised manuscript. The enstrophy field has been computed from the
equilibrium state obtained from Eq. (12), namely from the linear method. (b)
Difference E(UJ , φ0)−E(0, φ0) used to highlight the increment in enstrophy
density with the jet speed with respect to the solid-body case. (c) Calculated
value of waveguidability according to Eq. (18) of the revised manuscript.
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much facilitated by the proposed linear framework, for example in terms of
obtaining a lower bound for (nonlinear) instability onset. Therefore, we see
the added value of this work for the atmospheric dynamics community as a
paradigm shift in wave propagation analysis. While the technical details of
our approach are essential to ensure reproducibility of the study, they should
be viewed as functional to the proposed new wave analysis paradigm, and
not as a key result in themselves. To address the Reviewer’s concerns, we
have now reworded the final two paragraphs of the introduction to frame more
clearly the motivation for our work. We have further modified the title to shift
the focus from waveguidability to wave propagation, which is the core of our
results. The new title now reads: “A linear assessment of barotropic Rossby
wave propagation in different background flow configurations”. Finally, we
have clarified earlier on in the introduction the key limitations of ray-tracing
that our approach overcomes.

The very notion of waveguidability defined as in line 31 demands
an a priori philosophical choice about the separability of the at-
mospheric state into a “basic state” and “wave perturbations”. In
the beginning of the second paragraph, the authors first emphasize
the relevance of waveguidability for extreme weather events but at
the end of the same paragraph the authors state that the assump-
tion of separating the perturbation from the basic state is violated
during extreme events. What should the reader take home from
this obvious contradiction? Are there particular limits that the
authors would like to point the reader to?

As the reviewer notices, we are indeed trying to point the reader to a con-
tradiction in how previous research on the topic has been conducted. The
first paragraph introduces Rossby waveguides and discusses how they have
been invoked by several studies as decisive contributors to recent extreme
weather events. The second paragraph, on the other hand, cites research
work that has pointed out the limitations of available diagnostics and theo-
retical frameworks to diagnose Rossby waveguides. For instance, Wirth and
Polster (2021) noticed how the methods used in the previous studies can lead
to misleading conclusions, pinpointing to the presence of waveguides even if
there aren’t any. This critical review of the literature aims at highlighting
this contradiction to the reader and at justifying attempts to move forward,
towards an improved understanding and a shared definition of Rossby waveg-
uides.
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We agree with the reviewer that any wave analysis requires the separation
of the flow into a background component (usually steady or slowly changing
in time and in space) and a wave component (as a perturbation that is faster
in time and characterized by smaller spatial scales). However, the question
about how we can identify the background flow remains unsolved and it is not
our aim to address this very important task. Wirth and Polster (2021) have
recently investigated this problem by applying various spatial and temporal
filters to artificially perturbed potential vorticity fields to determine the abil-
ity of these methods to identify the (known) background flow. It was noted
by Wirth and Polster that standard average methods work well when distur-
bances have small amplitudes and are not persistent, while large-amplitude
waves influence very much the identified background flow. If the background
flow is erroneous, the associated waves (obtained from the present analysis
for instance) are erroneous too, underlining the high importance of this task.
Once again, it is not our aim to identify the actual background flow from
a snapshot of ERA5 data, for instance. Instead, the goal of this work is to
assess the wave properties given the background flow where they operate. In
this respect, our paragraph in the introduction is informative and provides a
note of caution about a task that should not be underestimated.

In the final paragraph of the introduction, the authors state the
actual content of the paper, though the very aspects that they test
are not really motivated in the previous paragraphs of the intro-
duction. What is the actual question at hand? What is the context
of this study? If this study is only about the linear solution for
various basic states, one won’t be able to address the conundrum
pointed out in the second paragraph, and in a way most of the
wave refraction arguments have already been put forward in pre-
vious publications two to three decades ago. The comparison to
the non-linear simulation can provide an assessment to the limits
of the analytic solution, though it is not assessed in greater detail
in the manuscript vis-à-vis the limitations of philosophical choices
to thinking in a framework of waveguidability.

As outlined in our first reply, the approaches currently used in the lit-
erature for the study of waveguidability have a number of conceptual and
practical limitations (we highlight in particular three main ones on p. 2
of this reply document). One way to phrase the scientific question behind
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our work could be: is it possible to overcome these limitations? In this
study, we set out to develop a new paradigm for the study of flow evolution
of forced Rossby waves, which provides a computationally efficient, forcing-
independent wave solution applicable in principle to any background flow.
Crucially, this also overcomes the above-mentioned limitations present in the
literature. The benefits of such an approach compared to the state of the
art on the topic are multiple, as again outlined in our first reply. Concerning
the link to the introduction, we believe that an introduction should provide
context and motivation for the work, beyond a simple list of points that
will be addressed in the analysis. We have nonetheless shortened the intro-
duction and limited the discussion of background flow derivation, to provide
a more focused text in the spirit of the Reviewer’s comment. Concerning
the Reviewer’s comment on the linear solution, we argue that even without
invoking the comparison to the nonlinear case, our results provide new un-
derstanding compared to the literature. Specifically, we can understand how
one approaches the steady-state solution and even infer physical information
about the temporal evolution of the waves when there is no steady state (e.g.
in the strong jet case). To our knowledge this is not something presented
in previous analyses. The linear simulation additionally facilitates the inter-
pretation of the nonlinear case by providing a lower bound for the onset of
(nonlinear) instability. We see the above, and in particular the inferences we
make on the nonlinear (in)stability from the linear analysis, as independent
of a waveguidability assessment. Indeed, the very concept of waveguidability
is complementary to having a full wave solution.

From line 109 onwards the authors state that the question arises
as to how the equilibrium state is obtained and subsequently mainly
address the homogenous time-evolving part of the solution that
does not project onto the forcing and thereby the equilibrium state.
This is rather confusing, as these transient modes, stable or not,
will not project onto the stationary forcing and the equilibrium
state. It is thus unclear what the authors try to achieve and con-
struct. In the ensuing section, indeed only the forced response is
focused on again. The authors need to more clearly outline the
rationale of their work, as it is currently difficult to follow what
they aim to achieve.

We agree with the reviewer’s comment and we modified the structure
of the results to address it. In particular, we now discuss separately the
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equilibrium state and the transients (now shifted to section 6), avoiding to
jump back and forth between the two. Hoping to further clarify the results,
we discuss now why the stability analysis and the analysis of the transients
are important elements in the rationale of our work. The equilibrium point
can be conveniently obtained by eliminating the time derivative and therefore
looking only at the stationary solution. This was already done by Hoskins and
Karoly (1981) for instance. However, if the steady-state solution is linearly
unstable, then this state will not be achieved (within the linear formulation).
Therefore, inspired by dynamical system theory, we named this solution an
equilibrium state where the temporal derivative is zero. If this state is stable,
the system will evolve to approach the equilibrium solution regardless of the
initial condition (for a linear system there is only one equilibrium state).
Otherwise, the linear system should diverge from that. Our interest is not
the determination of this state but rather if it is ever possible to achieve
and how. One of the most surprising discoveries in this work has been the
observation that, even if the equilibrium state is unstable, the state of the
nonlinear system oscillates around this equilibrium condition.

The comment of the referee about the homogeneous/forced part is partly
correct. It is true that the modal basis is obtained for a homogeneous system,
but it is also true that the forced system response is obtained by means of the
variation of constants method where the same functions are exploited to get
the solution (A6). Equation (A7) provides the full solution of the steadily-
forced system. When looking at the time-dependent forced response, this is
once again known analytically for the linear system once the eigenfunction
and eigenvectors are known. We intended to show this by including the
new figure 12 (figure 3 in the previous version of the manuscript) where the
temporal evolution of the solution is shown. While most of the present work
is still focused on the equilibrium state, we felt that it was important to
highlight that our approach also enables a study of the temporal evolution.

Also in the results sections the focus is more on the actual method
and its performance when compared to other solution techniques.
The authors also include a discussion on the influence of model
resolution on the performance of their method. While this is all
interesting and relevant, it again emphasizes the more technical
character of this manuscript with an absent focus on actual ap-
plications to more general background flows.

We hope that the modifications we are bringing to the revised manuscript
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will further emphasize the physical aspects behind Rossby waveguides, rather
than the technical details. The grid-convergence analysis as well as the com-
parison with the solid-body velocity distribution Uλ = 15 sin θ (where the
analytic solution of the linear problem is known) is placed at the beginning
of section 3 “Model validation” to validate the model, namely to assess its
consistency with what known already from the literature. The comparison of
the waveguidability estimated by Wirth (2020) by means of nonlinear simu-
lations is a warning to the reader to keep in mind that linear and nonlinear
estimations are not always the same and, in particular, to highlight that lin-
ear simulations provide qualitative trends that are easy to interpret in light
of the system’s linearity.

We have tried to limit the technical details within the manuscript as
much as we could,moving some more technical parts in the paper appendix.
However, we are keen to ensure full reproducibility of our results, and thus
believe that it is important to have a detailed description of the methodology,
even if this may partly dilute the focus from the physical insights obtained
by its implementation. Once the methodology is introduced, it provides a
new way to interpret linear and nonlinear simulations and to understand the
wave evolution in a more general and systematic framework that we believe
to be valuable.

We recognize that we did not discuss sufficiently waveguidability in a
general context and we have now included the new figure 3 in the revised
manuscript (also provided as figure 1 of the present reply document) that
provides the waveguidability (calculated by means of a new formula that
extends the one proposed by Wirth (2020) and able to account for jets at
different latitudes) for a variety of single jet latitudes and strengths. We
highlight that such a figure would have been very demanding to produce
without the new approach we propose. Furthermore, we have now reported
the waveguidability values in the double jet case in Sect. 5. We hope that
these improvements highlight the physical insights brought by our analysis,
and the fact that our study goes beyond the simple description of a new
method.

For the strong single jet case, the authors discuss unstable solu-
tions and even perform an EOF analysis on the non-linear simu-
lation. The relevance of this to the presented solution technique is
unclear. The authors discuss some of the linear unstable modes in
the light of the identified EOFs, though indicate that the match-
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ing is not convincing. The ensuing subsection on stability analy-
sis is therefore also difficult to contextualize with the rest of the
manuscript. In particular, it is unclear if the authors present the
unstable modes to discuss instability, or if they present the un-
stable modes to assess the validity of their linear method. This
confusion relates back to the general comment further above about
the general topic of the manuscript being unclear.

The EOF analysis is presented to give information about the temporal
evolution of the flow. Wirth (2020) noted that the strong jet case exhibited
oscillations that did not decay even after a long time. He solved this point
by taking the temporal average of the simulation, as we also did. The com-
parison between the temporal average and the equilibrium state was judged
reasonably good and is reported in the manuscript. At the same time, it
was strange to admit that, according to our analysis, the strong jet case was
linearly unstable and therefore it should diverge from the equilibrium state,
which it did not in the nonlinear case (what we consider as the ground truth).
In order to explain this paradox, we started looking at the EOFs as a way to
simplify the temporal variation now summarized by the modal coefficients.
The first mode was provided by the time-averaged solution, while all the
other modes were traveling waves centered at the jet location (irrespective of
the forcing location), and their topology is strikingly similar to the most un-
stable modes. A discussion about this is now reported in the revised version
of the manuscript in Sect. 4.2.

The characteristic of these traveling waves is actually not relevant if only
the time-average state is of interest (as in ray-tracing theory). However,
at any instant the unstable linear modes should be the ones growing the
most and receiving the highest energy from the background flow. In a linear
system they should just grow unbounded, while in a nonlinear system their
growth should not be unbounded and their energy is transferred to other
wave components by nonlinear interactions. Most likely we were expecting
that the linear unstable modes will keep competing to receive the transferred
energy and start growing again. Therefore, we wanted to point out that the
linear analysis, much less useful in the unstable regime, was still providing
useful insight since the first EOF modes (the first is just the mean in our
analysis) were actually very similar to the most unstable waves identified in
the linear analysis. Practically, this implies that the most energetic EOF
modes are approximately known from the linear analysis and one does not
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need to compute them a posteriori with the EOF methodology, enabling the
development of a reduced-order model. We now mention this possibility at
the end of Sect. 4.2.

The double jet discussion is interesting and in fact one of the parts
of the manuscript that also makes a scientific contribution beyond
the technical aspects. However, most of the findings there are not
necessarily new or unexpected and should thus be put in context
to existing literature on wave refraction, ducting, and tunneling.

Following the referee’s suggestion, we decided to extend this section of
the result: we calculated waveguidability also for double-jet configurations
and included a new figure for the single-jet case (new Fig. 3). As far as we
are aware, neither of these results has previously been presented in the liter-
ature. For example, despite the large interest in the subject (e.g., Rousi et
al. 2022), to our knowledge there hasn’t been any quantitative assessment of
waveguidability for double jet configurations. The resulting waveguidability
values are, at least for the authors of this manuscript, not necessarily intu-
itive. We thus believe that the results in the revised manuscript are indeed
new and partly unexpected.

Overall, it is not clear how the presented approach is novel or how
it yields additional information compared to more traditional lin-
ear approaches to assess wave propagation, such as the method the
authors compare their results to (spectral harmonical method). If
their method is arguable superior to existing methods, this should
be made clearer in the manuscript.

We have already mentioned that the proposed methodology goes beyond
limitations of the ray-tracing theory, namely that

1. steady and unsteady waves can be discussed

2. waves without scale separation from the background flow can be ana-
lyzed

3. no need to perform Mercator projections without the consequent de-
formation at the poles
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We feel indeed that new physics can be investigated with more confidence
since the framework enables for a systematic assessment of the wave propa-
gation in both steady and unsteady conditions, namely to understand how
we approach the steady-state solution (if it exists).

The reviewer also raises a point concerning spherical harmonics. In our
analysis, we opt for Chebyshev polynomials (compared to spherical harmon-
ics that use Legendre polynomials) as mentioned in the manuscript appendix.
The choice of Chebyshev polynomials was motivated by their mathematical
properties. Legendre polynomials are used in spherical harmonics but they
necessitate numerical integration to assess the spectral coefficients, while in
Chebyshev polynomials the spectral coefficients can be computed analyti-
cally or even by means of the FFT algorithm. This choice influences only
the meridional derivative operators. In the zonal direction we also use the
Fourier transform, so spherical harmonics and the proposed approach are
equivalent in the zonal direction. We now clarify this point in the Appendix.

L15: Hoskins and Ambrizzi (1993) should be stated, as it is prob-
ably the most classical reference in this context.

Good suggestion. It is a very clear paper that we have now included in
the revised version of the manuscript.

L16: Wave guiding also goes back to the early work on refraction
of Rossby waves, so this sentence reads a bit redundant in the
light of the previous sentence.

We agree with the referee that redundancies should be avoided but at the
same time we think that the referred lines are necessary for readers that may
not be acquainted with the waveguidability concept.

L10-29: The first paragraph is rather long and the main topic is
not clear. The paragraph might benefit from splitting it and more
clearly addressing the context for this manuscript.

We agree and we will rework the paragraph accordingly. The idea here
was to motivate why Rossby wave propagation is important to understand
extreme events as the latter are often occurring under special circumstances
associated with amplified Rossby wave propagation.

11



L31: Waveguidability is explained here for the first time, while
the reader is left wondering during the first paragraph about its
meaning.

We now specify in the first paragraph that waveguidability relates to the
“capability of jet streams to promote Rossby wave propagation”. We then
provide further details in the subsequent paragraphs. Section 4.1 has been
added to analyse the waveguidability and to propose an extended definition
able to cope for jets at different latitudes.

L61: Do the authors really mean “stability” in the sense of a wave
instability or in the sense of applicability of the linear analytic
solutions?

We thank the reviewer for their remark. We are indeed referring here to
stability in the sense of temporal wave (in)stability. The fact that we have
an analytical solution is not related to wave instability. As briefly mentioned
in the manuscript, we developed an additional linear code based on spheri-
cal harmonics and we solved it similarly to what we did with the nonlinear
code. With both spherical harmonics solvers the analytical solution was not
at hand and only a numerical assessment was done. For certain conditions
(for instance, when the single-jet speed exceeded 20 m/s), the solution of
the linear system diverged to infinity, exactly as and when predicted by the
proposed model. However, by means of a modal analysis we are aware of all
the possible unstable modes (if more than one are present) and therefore we
have more understanding about the flow evolution. However, this stability
feature and the corresponding divergence, can be even investigated numeri-
cally (for instance by simulating sufficiently long in time until the instability
grows), although here we preferred an analytical tool since it was at hand.

L74: It is confusing to refer to Lambda as longitude, which is
not even used in the equations thus far, while at the same time
using λr as a dampening parameter. The authors are encour-
aged to change the naming of the dampening parameter to avoid
confusion.

We agree, we have now changed λr to χ in the revised version of the
manuscript .
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L147-153: Almost everything stated here is not new, even though
the authors make it sound like a new discovery. Previous findings
should be clearly stated and referenced.

As the reviewer points out, the facts stated in these sentences are not new.
We strongly disagree about the comment that we are making them “sound
like a new discovery”, and indeed in the original text we stated that these are
“well-known analytical results” and further underscore this by stating that
“it is already known . . . ”. What we do is to use this well-assessed material
to validate our model, namely to quantify the discrepancy between the an-
alytic solution (known in the case of solid-body velocity, without jets) and
the proposed model estimation of the dispersion relationship. For instance,
the error in the dispersion relationship (namely the value of the computed
ω for a given m) was within machine precision (namely O(10−11)), while the
waves were coincident with spherical harmonics with similar accuracy. Ev-
erything included in the validation section follows the same spirit. To avoid
misunderstandings, we removed the word “Interestingly” from the sentence
at line 147.

L163-173: It is not made clear to the reader why this resolution
sensitivity study is performed and its relevance to the assessment
of waveguidability.

A numerical algorithm is convergent when it approaches a constant value
for sufficiently high resolution. The quantification of “sufficiently-high” is not
determinable a priori, and requires numerical experiments. Thanks to this
convergence study, we could state that a resolution of at least 128 latitudes
is required to achieve good results. Smaller waves should require even higher
resolution.
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