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Comments to Reviewer #1:
(the text of the reviewer is in italic)

We appreciate the feedback regarding our manuscript. In the following
we address the reviewer’s suggestions for improvement, and point out the
changes compared to the original manuscript. Parts that have been rewritten
or added due to comments by the referees have been highlighted in red in
the revised version of the manuscript.

I think the method and results presented in this manuscript are
interesting and significant, and could be useful for future studies.

We thank the referee for the support to our work.

I personally had to read through the manuscript carefully twice
before I had a sense of what it is about.

We have extended the introduction and extensively modified Sect. 4–7
to better motivate the work (both in terms of introducing the methodology
and of highlighting which new scientific insights result from our analysis) as
both referees pointed out that the previous manuscript had a structure that
hindered readability.

1) In my opinion, the introduction, the abstract and perhaps even
the title do not express clearly what the paper is about. They
give the impression that the paper is more about the physics of
waveguides, whereas the main contribution of the paper, as I see
it, is the computational method. The single and double jet cases
shown in the paper are used as test cases for the computational
method, rather than going deep into the dynamics of waveguides.

We agree with the referee that part of the novelty of the study lies in
the new computational approach. However, we would also like to highlight
that the implementation of such approach provides novel physical insights
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(see e.g. the analysis of the double jet in Sect. 5). We thus believe that the
contents of the study cannot be fully appreciated without an understanding
of the current state of research on Rossby waveguides. The intertwining be-
tween methodology, theory and physical insights is particularly relevant for
this topic, as a universally accepted definition of waveguide is still lacking.
White et al. (2022) and Wirth and Polster (2021) showed that our capability
to “see” waveguides critically depends on the methodological approach cho-
sen to diagnose them. We perhaps described this problem in excessive detail
in the Introduction, with the effect of de-emphasizing the methodological
novelty of our approach. We have now added a new paragraph to the intro-
duction focusing on methodologies for waveguide analysis in the literature.
In parallel with this, we have extensively modified the results and concluding
sections (including a new Sect. 6) to better highlight the physical insights
gained from the proposed linear analysis. Finally, we have revised the title
to better reflect the focus of the paper, which is on wave propagation rather
than waveguidability.

In the last paragraph of the paper the authors write that “This
study should be regarded as an introduction and explanation of the
techniques, but possible applications of this approach could include
systematic waveguidability assessments for different forcings and
background zonal wind profiles.” I think this sentence should ap-
pear in the introduction, and the abstract should emphasize the
main point of the paper.

The paper has been partially re-written to better address the final out-
comes of the paper. In particular:

• The waveguidability has been discussed more by means of the definition
proposed by Wirth (2020);

• The improvements compared to ray-tracing theory (limited by slowly-
varying background flow, steady wave propagation, Mercator projec-
tion) have been described in the introduction, in section 2 and in the
manuscript concluding section;

• The difference between the classic barotropic stability criterion, lin-
ear neutral curve and locus where the nonlinear simulations become
unstable has been extended in section 4.2.
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2) Perhaps the authors could add some more motivation for spe-
cific choices in the derivation of the mathematical model, that
could add to the clarity of the paper. One choice that wasn’t im-
mediately clear to me was including a damping term in equation
(1). It wasn’t clear what this damping term represents physically.
It was also not clear to me what the motivation was for looking
at the stationary solution in equation (13). Only after I finished
reading it became clearer. I think that in section 2 it could help
to explain better what the model is supposed to represent, before
the derivation of the equations.

We thank the reviewer for this suggestion. It is quite common to introduce
this kind of damping term (see for instance Hoskins and Karoly, 1981, Hoskins
and Ambrizzi, 1993, Wirth, 2020). Yet, we agree that its use should be
explained and that we did not elaborate this important term adequately
in the previous version of the manuscript. The latter has been updated
according to the suggestions of the referee around equation (1) and (13) to
clarify the meaning of the attenuation term and of the equilibrium solution.
Furthermore, following the suggestion of the other referee, we have changed
the symbol of the attenuation parameter from λr to χ.

3) The authors present stationary solutions and time-dependent
solutions, but it is not mentioned explicitly at which section each
type of solution is examined, what each type of solution represents
physically, what is the motivation for looking at each type of so-
lution and what are the different methods for solving for a sta-
tionary or time-dependent solution. Each of these are explained
somewhere, often after presenting the results, but it is not ex-
plained in an organized manner.

Our aim in the results section was to highlight that the linearised method-
ology provides a simple and reasonably good assessment of the temporal
evolution of the waves, while the majority of the analyses in the literature
were focused on the equilibrium solution (for the linearised system) or on
the temporally averaged nonlinear numerical solution. We nonetheless un-
derstand the confusion our previous framing of the results caused. We have
now rearranged the structure of the results to separate the discussions of
the stationary solution from the time-dependent solutions. In particular, we
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have moved the discussion of the unsteady case at the end of section 5 as a
new section about time-dependent analyses. While the procedure to obtain
the stationary solution is described in Sec. 2 [Eq. 12], the derivation of the
temporal analytical solution (in the sense that no temporal discretisation is
needed) is provided in the paper appendix with both steady and unsteady
forcing.

4) Section 4.3 analyzes the stability of the problem for different
parameters of the jet profile. I was missing a discussion on the
connection of this instability to linear barotropic instability, in
the sense of the necessary conditions for instability including a
change of sign of the PV gradient. Some more physical context
would be useful.

We thank the referee for this comment. By repeating the derivation of
the Rayleigh stability criterion it is found that a necessary condition for the
instability is that the PV gradient becomes zero for the spherical case as well.
However, this condition is not sufficient, since it enables the imaginary part
of ω to be different from −λr (−χ in our current notation), so that there is
still a large stability margin until the imaginary part of ω becomes positive
and the mode unstable. This is actually what we observe from the present
analysis since the PV gradient changes sign when UJ = 9 m/s (for a jet
at 45◦ N and σJ = 5◦), while the flow becomes linearly unstable at around
UJ ≈ 20 m/s. In the stability analysis part we have now discussed this and
updated the figure with the eigenvalue and the neutral curve to show the
curve where the PV gradient changes sign: as visible in the new figure 8
(figure 1 of the present reply), the Rayleigh criterion is violated in a region
that is still stable. If the damping was absent, then the Rayleigh criterion
will become a sufficient condition for the instability. We have added this
discussion in both Sect. 4.2 and Sect. 7 of the revised version of the paper.

5) The analysis of the double jet case shown is much shorter than
that of the single jet case and does not include a calculation of
waveguidability. Based on the last sentence of the abstract (“Ex-
amples using single- and double-jet configurations are discussed to
illustrate the method and study how the background flow can act
as a waveguide for Rossby waves”) I was expecting a comparison
between the waveguidability of the two cases. If the authors choose
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Figure 1: (a) Maximum of the imaginary part of the eigenvalues for a given
jet velocity (normalised by χ) when σJ = 5◦. The black line indicates the
neutral curve, the dashed line is the locus where the absolute vorticity
gradient changes sign (Rayleigh stability criterion), while the green thick
line is the locus beyond which the temporal vorticity variance becomes 10
times larger than in the stable regimes (approximating the neutral curve
in the nonlinear case). (b) Azimuthal wavenumber of the most unstable
eigenvalue for UJ = 40 m/s for different jet widths. The black lines are
curves m ∝ cosφJ fitting the linear stability results.

not to include a calculation of waveguidability for the double jet
case, they should otherwise motivate the choice for the analysis
that is presented.

We have followed the suggestion of the reviewer and have now assessed the
waveguidability of both jets in the revised version of the manuscript, always
using the diagnostic by Wirth (2020). These results have been added to Sect.
5 as a new figure 3 (figure 2 of the present reply). The waveguidability of
the two jets taken separately is around 37% for the southern jet and 58% for
the northern one, so that the northern jet has more waveguidability than the
southern one. When two jets are simultaneously present, the northern jet
shows again an even higher waveguidability (98%) compared to the southern
jet (71%). This is not necessarily an intuitive result and highlights the type
of physical insight that our approach can provide.

The term “analytical solution” used in the abstract and introduc-
tion was confusing for me. I expected to see a solution expressed
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Figure 2: Waveguidability of the single jet zonal profiles for different jet
latitudes and strength. Only narrow jets with σJ = 5◦ have been considered.

as a mathematical function. It is true that the Chebyshev polyno-
mials are analytical functions and in that sense the solution is an-
alytical, but eventually there is a numerical calculation that leads
to the solution, so perhaps a different terminology would describe
the method more clearly. As I see it, the main difference between
what is called a “numerical solution” and “analytical solution” by
the authors is that the former is a time-integrated solution and
the latter is an eigenvalue problem.

We agree and we have removed the adjective “analytic” from the majority
of the manuscript where a numerical assessment was involved. As the referee
acknowledges, Chebyshev polynomials are just a basis for the projection of
the streamfunction and they are characterised by an exponential convergence
as typical of spectral methods. However, the analytical form of the solution
(obtained with pen and paper) is absent even if the solution is nearly exact.

Lines 181-182: In what sense is it counterintuitive that the non-
linear solution is more dissipative?

The presence of nonlinearities is associated with turbulent effects by the
onset of an energy transfer towards other scales. This energy transfer across
scales often leads to the divergence of the solution and to the onset of turbu-
lence in fluid dynamics problems (e.g., flow in a tube, Kundu & Cohen, Fluid
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Mechanics, 2013), but instead here the nonlinear terms appear to smooth the
solution. This is also pointed out by the stability analysis. In the linear case
with narrow jet (σJ = 5◦ and jet latitude at 45◦ N) the flow becomes linearly
unstable with a jet intensity of UJ ≈ 20 m/s, while the nonlinear simulation
becomes unstable at UJ ≈ 28 m/s, highlighting an unexpected stabilizing
effect of the nonlinear terms. We have removed the adjective counterintu-
itive in the revised version of the manuscript since the damping/amplifying
effect of nonlinearities is probably an heuristic feature that requires more
investigation.

Perhaps the appendix can include some more details of the com-
putational method, such as the matrices D(1) and D(2), and how
the time-dependent solution is calculated.

The matricesD1 andD2 are obtained by considering the first-order deriva-
tive of the Chebyshev polynomials (grouped as a matrix T where the columns
are the polynomials and the rows are the colatitude locations). The deriva-
tive polynomials can be collected by means of a matrix T1. The matrix
D1 can be written as D1 = T1 · T−1 so that the matrix T−1 converts the
streamfunction distribution into the associated polynomial coefficients and
T1 provides the derivative in physical space. This discussion is not strictly
necessary in the article and we fear that including it would shift the focus
on the numerical details rather than on the methodology, so we prefer to
omit that. However, we provide a reference to Peyret that goes sufficiently
in detail about estimates of these matrices and on how round-off errors can
be reduced.

Regarding the time integration, we provide details in equation (A7): The
matrices A, Λ and P (together with their inverses) are computed in the pre-
processing stage once and for all, together with the Rossby waves features. At
any arbitrary time t only a few matrix multiplications are needed to obtain
the solution evolution in the stable case (in the unstable case it works well
too until the unstable eigenmodes become too large). No time integration
(or time stepping) is needed in the linear stable case, and we now explicitly
state this in the Appendix.
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