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Abstract. Droughts in Thailand are becoming more severe due to climate change. Developing a reliable Drought Monitoring 

and Early Warning System (DMEWS) is essential to strengthen a countryôs resilience to droughts. However, for a DMEWS 

to be valuable, the drought indicators provided to stakeholders must have relevance to tangible impacts on the ground. Here, 

we analyse drought indicator-to-impact relationships in Thailand, using a combination of correlation analysis and machine 20 

learning techniques (random forest). In the correlation analysis, we study the link between meteorological drought indicators 

and high-resolution remote sensing vegetation indices used as proxies for crop-yield and forest-growth impacts. Our analysis 

shows that this link varies depending on land use, season, and region. The random forest models built to estimate regional crop 

productivity allow a more in-depth analysis of the crop-/region-specific importance of different drought indicators. The results 

highlight seasonal patterns of drought vulnerability for individual crops, usually linked to their growing season, although the 25 

effects are somewhat attenuated in irrigated regions. Integration of the approaches provides new detailed knowledge of crop-

/region-specific indicator-to-impact links, which can form the basis of targeted mitigation actions in an improved DMEWS in 

Thailand, and could be applied in other parts of Southeast Asia and beyond. 

1 Introduction  

Droughts are one of the costliest natural hazards worldwide (FAO, 2021). Their frequency and duration are expected to increase 30 

in many parts of the world due to climate change (IPCC, 2021, 2022; WBG & ADB, 2021). Over the past decades, Thailand 

has already seen a rise in impacts from a warming world, experiencing an increasingly unpredictable weather, with an 
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alternation of droughts and floods on a two-three year cycle (Ikeda & Palakhamarn, 2020), causing a wide range of impacts. 

This trend is expected to intensify further in the near future in South-East Asia as highlighted by Hariadi et al. (2023). 

One notable recent example is the severe 2020 drought, which was driven by a shorter monsoon period and a strong El Niño 35 

event (CFE-DMHA, 2022). The drought caused impacts in water supply, water quality, crop production and the economy, 

with an economic loss of THB46 billion (US$1.4 billion, £1.1 billion; Sowcharoensuk & Marknual, 2020). Other notable 

recent droughts include the 2005 event, in which 11 million people in 71 (out of 77) provinces were affected by water shortages; 

the 2008 event where over 10 million people in rural areas were affected (Ikeda & Palakhamarn, 2020); and the 2015-2016 

event, which affected the upper-middle part of the country most, and was so severe that at the Ubolrat dam, in Northeastern 40 

Thailand, steps were taken to use ñdead storageò (i.e., the last 1% in the bottom of the reservoir; CFE-DMHA, 2022). Overall, 

the National Disaster Relief Centre estimates that drought events between 1989 and 2017 caused more than B19.1 billion 

(US$0.6 billion, £0.5 billion) of damage to the Thai economy, with average annual economic damages of almost THB0.6 

billion per year (US$20 million, £16 million; NESDC, 2021).  

One sector particularly affected by droughts in Thailand is agriculture (Yoshida et al., 2019); in particular, rice, corn, and other 45 

cash crops periodically suffer economic losses (Ikeda & Palakhamarn, 2020). Thailand is currently the second largest rice 

exporter in the world (OECD, 2020), and rice fields utilises 70% of Thailandôs total water supply (ICID, 2020). Thailand is 

also the second biggest sugar exporter, and the 2020 drought resulted in a 28% fall in production (Thammachote & Trichim, 

2021).  However, drought risk is also moderated or exacerbated by human activities. Areas with water reservoirs and extensive 

irrigation facilities are more resilient and impacted less by droughts than rainfed agriculture and areas without reservoir storage. 50 

In the Northeast, higher water demand for rice cultivation during the dry seasons, combined with limited irrigation 

infrastructure, exacerbates water scarcity (CFE-DMHA, 2022).  

Thirty percent of Thailandôs population work in agriculture, and drought threatens their income and poses food security issues. 

Given this considerable impact that droughts have on Thai society, and the expectation of a worsening in the coming years and 

decades, there is an urgent need to improve preparedness and resilience of the country to droughts (UNDRR & ADCP, 2020). 55 

This also aligns with the priorities of the UNDRRôs Sendai Framework for Disaster Risk Reduction 2015-2030, which aims 

to achieve the substantial reduction of disaster risk and losses in lives, livelihoods and health and in the economic, physical, 

social, cultural and environmental assets of persons, businesses, communities and countries over the next 15 years (UNDRR, 

2015). One important aspect of improving drought resilience lies in enhancing the Drought Monitoring and Early Warning 

(DMEW) capabilities of the country, in order to detect droughts in their early stages such that proactive mitigation strategies 60 

can be implemented (Bachmair et al., 2016a).  

According to the World Meteorological Organization (WMO), drought can be defined as a prolonged dry period in the natural 

climate cycle (WMO, 2014). Since Wilhite and Glantz (1985), drought has commonly been categorised into various types 

often differentiating between meteorological, hydrological, and soil moisture (or agricultural) droughts, alongside various 

others. Many drought indices have been developed for drought monitoring purposes for these different types of drought over 65 

the past decades (Lloyd-Hughes, 2014). In this paper, we consider a drought to be a period drier than normal for that time of 
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year at a given location and is distinct from the impacts it causes. Droughts can occur without causing any impacts, in which 

case they are not a concern for water managers or water users. 

Drought impacts (e.g. crop failure, water quality issues, etc.) are what stakeholders are interested in from a DMEW point of 

view. However, impact data is scarce, and generally not routinely monitored. There are significant challenges in collecting and 70 

monitoring drought impacts, including the visibility of drought impacts, which can be diffuse, delayed and non-structural (e.g. 

in comparison to the impacts of flooding). Nevertheless, while impact research is inherently challenging, it is also pivotal to 

drought management. While rainfall or river flow deficits can help track drought evolution, ultimately it is the impacts of 

drought which are of greatest importance for water managers and other stakeholders. Numerous international initiatives have 

highlighted that information on drought impacts is the key ómissing pieceô of drought monitoring and forecasting (e.g. 75 

Bachmair et al., 2016a), and some effort has been invested in collating drought impact data at national or international scale 

(e.g. Europe: European Drought Impact report Inventory (EDII), Stahl et al. (2016); U.S.: Drought Impact Reporter (DIR), 

Smith et al. (2014)). In an age where there have been huge advances in real-time hydrometeorological monitoring, better 

prediction of impacts would be the single greatest practical advance in paving the way for improved drought resilience. 

Understanding the link between drought indicators and impacts is an essential first step to achieve this goal (Bachmair et al., 80 

2016a). 

Some of the most commonly used indices in operational DMEWS are the meteorological standardised indices such as 

Standardised Precipitation Index (SPI, McKee et al., 1993) and Standardised Precipitation-Evapotranspiration Index (SPEI, 

Vicente-Serrano et al., 2010). However, these indicators based purely on meteorological status are not always well correlated 

to drought impacts (Bachmair et al., 2018), as impacts often occur when precipitation deficits have propagated through the 85 

hydrological cycle to deficits in soil moisture or river flows, for example. Moreover, precipitation deficit is likely to cause 

more impacts in water-limited regions than in regions with abundant water, though water management practices can counteract 

this effect to a certain extent. Drought indices are only meaningful to decision makers if the relationship to drought impacts is 

known, i.e. understanding the type and magnitude of impacts that can be expected for different drought index values. For 

regions where drought impact data are available, the relationship between drought indices to drought impacts can be studied  90 

(e.g., Bachmair et al., 2016b; Parsons et al., 2019; Wang et al., 2020). Where drought impact data are not readily available, 

remote sensing vegetation indices (VIs) can provide a proxy for drought impacts on vegetation.  

VIs are commonly used to monitor the impacts of drought on vegetation. The Normalised Difference Vegetation Index (NDVI) 

is one of the most established and widely used VIs (Tucker, 1979). It exploits the sharp increase in vegetation reflectance 

across the red and near-infrared (NIR) regions of the electromagnetic spectrum, known as the 'red-edge', to detect 95 

photosynthetically active plant material and infer plant stress. However, the Vegetation Condition Index (VCI), a pixel-based 

normalization of NDVI, offers a more robust indicator for seasonal droughts by minimising spurious or short-term signals and 

amplifying long-term trends (Anyamba & Tucker, 2012; Liu & Kogan, 1996). VCI has been widely used and has proved to be 

effective in monitoring vegetation change and signalling agricultural drought (e.g. Jiao et al., 2016). The Vegetation Health 

Index (VHI) is a composite index that combines the VCI and Temperature Condition Index (TCI) ï a pixel-based normalisation 100 
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of the Land Surface Temperature (LST) ï and is also commonly used to monitor vegetation stress and drought conditions 

(Kogan, 1997). VHI incorporates the effect of temperature and is therefore more suitable for monitoring the effect of drought 

in species more sensitive to concurrent water and heat stress. VHI has been successfully used worldwide to monitor vegetation 

stress and drought conditions (e.g. Jain et al., 2009; Singh et al., 2003; Unganai & Kogan, 1998). Note that these VIs are 

relative indices that compare current conditions to the long-term average to measure vegetation health, and therefore are 105 

dependent on the environmental and climatic conditions of the study area. As such, they should be used in conjunction with 

information on the drought hazard situation to distinguish between drought and different hazards on vegetation (e.g. disease, 

floods, anthropogenic impacts, etc.).  

In addition to their use as drought indicators as discussed above, VIs are often used as proxies for agricultural drought impacts. 

The relationship between crop yield and VIs varies by crop type and location but has been shown to be strong in many locations. 110 

For example, strong correlations were found between VIs and crop yield in North America (e.g. maize in Bolton & Friedl, 

2013; winter wheat, sorghum and corn in Kogan et al., 2012), South America (e.g., white oat in Brazil in Coelho et al., 2020), 

Europe (e.g., maize in Germany in Bachmair et al., 2018; cereals in Spain in García-León et al., 2019), Asia (e.g., sugarcane 

in India in Dubey et al., 2018), the Middle East (e.g., paddy rice in Iran in Shams Esfandabadi et al., 2022), Africa (e.g., millet 

and sorghum in the Sahelian region in Maselli et al., 2000), and Australia (e.g., wheat in Smith et al., 1995). 115 

Data science and machine learning is a fast-moving field and is increasingly being used for the study of environmental science, 

though still in its infancy (Blair et al., 2019). Random Forest (RF) models have been used to link drought indicators to drought 

impacts (e.g. Bachmair et al., 2016b), including drought impact forecasting with relative success (Hobeichi et al., 2022; Sutanto 

et al., 2019). These emerging techniques within the field of DMEW offer great potential to move from simply monitoring 

droughts using indices to drought impact estimation, which would revolutionise the early warning aspect of drought mitigation, 120 

enabling action to be taken before impacts occur. 

Despite the significance of droughts in Thailand, few previous studies have analysed the link between drought indices and 

drought impacts in the country. Thavorntam et al. (2015) and Thavorntam and Shahnawaz (2022) looked at links between SPI 

and VIs, but only at four test sites in the North-East of Thailand. Prabnakorn et al. (2018) and Khadka et al. (2021) have both 

focused on the drought-prone Mun River Basin situated in the North-East of Thailand; both studies find that SPEI shows a 125 

good correlation to crop yield. However, no previous study has looked comprehensively at drought indicator-to-impact links 

at a national scale in Thailand, and to our knowledge none has used machine learning techniques to estimate drought impacts 

in the country. 

The ambition of this paper was to fill the gap in the literature on studies investigating the links between drought indicators and 

impacts at a national scale in Thailand. Specifically, we focused on agricultural drought impacts, considering different crops 130 

and seasons, and compared the relative utility of traditional statistical methods at high resolution (i.e. remote sensing data at 

provincial scale) vs. lower resolution sectoral-specific analyses (i.e. applying machine learning approaches to 

regional/provincial yield data), to inform improved approaches for national DMEW.. The overall aim was to support 

agricultural drought management and inform targeted action/policy by water resource managers. To that end, this paper 
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evaluates how relationships between droughts indices and impacts vary according to time of year, index, accumulation period 135 

length and location in Thailand. The approach presented is relevant internationally and could be replicated in other parts of the 

world to improve the management of agricultural droughts and their impacts. 

2. Data and methods 

2.1 Study area 

Thailand is located between 5°30' and 20°30'N latitudes and between 97°30' and 105°30'E longitudes, and has an area of 51 140 

million ha, from which 46.5% is agricultural area (77% of which is rainfed). Paddy fields covers 46% of that cultivated area, 

with around 30% being irrigated (OAE, 2022).  

Most of the country experiences distinct wet and dry seasons, except some parts of the southern region, which experience a 

wet and humid climate throughout the year. The average annual rainfall of the whole country is about 1,700 mm ranging from 

1,200 mm in the north and central plain up to 2,000 - 2,700 mm in the western part of the south and the eastern part of the 145 

country (ICID, 2020). 

Droughts often occur in two distinct periods: between June and September as a consequence of a delay in the onset of rainfall, 

or due to low precipitation during the dry season between October and May. The occurrence of drought in Thailand is 

increasingly associated with the El Niño-Southern Oscillation (ENSO) cycle, which brings drier-than-average rainfall 

conditions (UNDRR & ADCP, 2020). 150 

Figure 1 shows the six regions and 77 provinces that were used in our analysis. Provinces (changwat) are the primary local 

government unit in Thailand. The regions do not have an administrative character, but are commonly used for geographical 

and scientific purposes (e.g. Martin & Ritchie, 2020; Sanoamuang & Dabseepai, 2021). The dominant land cover for each 

province is shown in Fig. SF1 in the Supplementary Information (SI). 

In addition to these regions and provinces, in the results and discussion sections, we use óthe Northô to refer to the area 155 

encompassing regions N, NE, C, W and E, as opposed to óthe Southô comprising only region S. 
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Figure 1: Map of Thailand showing provinces and regions used in this study. The provinces are the smaller areas shown within each 

of the coloured regions. 

Regional differences: 160 

The Northeastern region (NE) consists mainly of the dry Khorat Plateau. Unlike the more fertile areas of Thailand, the NE has 

a long dry season, and much of the land is covered by sparse grasses. The main crops cultivated in this region are glutinous 

rice (two harvests), cash crops such as sugar cane and cassava, and to a lesser extent rubber. This region is the most prone to 

drought (LePoer, 1987), and as such, is particularly vulnerable to agricultural droughts as highlighted by several studies (e.g. 

Mongkolsawat et al., 2001; Sa-nguansilp et al., 2017; Wijitkosum, 2018).  165 

The Northern region (N) is a mountainous region, and the most forested region of Thailand. Al though it has suffered from 

extensive deforestation due to agricultural expansion over the past few decades, there has been some reforestation in recent 

years (RFD, 2022). Many dams and irrigated croplands are situated in this region. 

The Western (W) region is characterised by high mountains and steep river valleys. Western Thailand hosts much of Thailand's 

less-disturbed forest areas. The region is home to many of the country's major dams.  170 
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The Eastern (E) region is characterised by short mountain ranges alternating with small basins of short rivers which drain into 

the Gulf of Thailand; fruit is a major component of agriculture in the area. 

The Central (C) region is a natural self-contained basin often termed "the rice bowl of Asia". A complex irrigation system and 

fertile soil supports the cultivation of rice paddies. It is the most densely populated region of Thailand, with Metropolitan 

Bangkok on its southern edge (LePoer, 1987). 175 

The Southern region (S) is part of a narrow peninsula, and is distinctive in climate, terrain, and resources. This region is 

characterised by North-south mountain barriers, tropical forest, and the absence of large rivers. It is the wettest region in 

Thailand, and is not generally considered to suffer from drought impacts (LePoer, 1987). 

2.2 Data 

Table 1 lists the data used in this study, with details on the type of data, spatial resolution, temporal resolution, period available, 180 

post-processing applied in this study and reference.  

From these datasets, the following drought indicators were calculated: 

- Standardised meteorological indicators: Standardised Precipitation Index (SPI, McKee et al., 1993) and Standardised 

Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al., 2010) for accumulation periods of 1-6, 9, 12, 18 

and 24 months. For the SPI, the data was fitted to a gamma distribution, whereas for SPEI, a generalised logistic 185 

distribution was used, as recommended by the original authors.  

- Vegetation Indices (VIs) from remote sensing: Vegetation Condition Index (VCI), Temperature Condition Index 

(TCI) and Vegetation Health Index (VHI) were calculated on a monthly time-step following Bachmair et al. (2018) 

methodology, which is detailed in the Supplementary Text 1 (ST1) of the SI.  

In this study, when the word óindicatorsô is used on its own, we refer to both meteorological indicators (SPI and SPEI) and VIs 190 

(VCI, TCI and VHI). 

Annual crop yield data (OAE, 2021) are used as a measure of agricultural drought impacts. Although drought is not the only 

factor that can cause crop yield departure, Venkatappa et al. (2021) have shown that it is the main driver of crop loss in 

Thailand. 

 195 

Table 1: Details of the datasets used in this study 

Dataset Type of data Variable Spatial 

reso-

lution 

Tem-

poral 

reso-

lution 

Period 

avai-

lable 

Post-processing Reference 

APHRODITE 
(Asian 

Precipitation - 

Highly-
Resolved 

Observational 

Data 

Gridded data 
interpolated 

from ground 

observations 

Precipitation 
(P) 

0.25deg Daily 1998-
2015 

Used to calculate the 
Standardised Precipitation 

Index (SPI). 

Yatagai et al. 
(2012) 
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Integration 

Towards 
Evaluation) 

MOD16A2 

product from 

MODIS 

Gridded data 

from remote 

sensing / 
modelled data 

Potential 

Evapotrans-

piration (PET) 

500m 16-day 2000-

2020 

The Climatic Water 

Balance (CWB) is 

calculated as P ï PET. 
CWB used to calculate the 

Standardised Precipitation 

Evapotranspiration Index 
(SPEI). 

Running et al. 

(2017) 

MCD12Q1 

product from 
MODIS 

Gridded data 

from remote 
sensing 

Land cover 

map 

500m Annual 2000-

2015 

Land cover map and 

dominant land cover for 
each province are shown in 

Figure SF1 of the SI. 

Used to create cropland 
and forest masks. 

Friedl and 

Sulla-Menashe 
(2019) 

MOD13A1 

and 
MYD13A1 

products from 

MODIS 

Gridded data 

from remote 
sensing 

Normalized 

Difference 
Vegetation 

Index (NDVI) 

500m 16-day 2000-

2020 

NDVI and LST masked 

using crop and forest 
masks, before aggregation 

at province level. 

Used to calculate the 
Vegetation Condition 

Index (VCI), Temperature 

Condition Index (TCI) and 
Vegetation Health Index 

(VHI). VCI for crops de-

trended to remove effect 
from technological 

advances. 

Didan (2015a, 

2015b) 

MOD11A2 
product from 

MODIS 

Gridded data 
from remote 

sensing  

Land Surface 
Temperature 

(LST) 

1km Monthly 2000-
2022 

Wan et al. 
(2015) 

Crop yield data Yearly time 

series per 
crop and 

province 

Crop yield Pro-

vince 
level 

Annual 1984-

2019 

Main crop in each province 

identified. 
Time series de-trended to 

remove effect from 

technological advances. 

Office of 

Agricultural 
Economics 

(OAE, 2021) 

 

 

Spatial and temporal aggregation 

To derive the meteorological indicators, we first averaged the meteorological variables (precipitation and PET) for each 200 

province and then calculated the standardised indicators based on the province-averaged time series. For VIs, we first derived 

them at the pixel level for the entire country, and then used a land cover map to differentiate between forest and crop-covered 

pixels. We then calculated province-level VIs averages separately for forest and crops, using the corresponding land cover 

mask. We used monthly time series for most of our analysis, with the exception of the comparative analysis between VIs and 

crop yield (described further in section 2.3.1.1) where VIs were averaged over the growing season for each crop. 205 
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Figure 2: Schematic diagram of the steps involved in this study   
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2.3 Methods 

Figure 2 shows a schematic representation of the methodological steps involved in this study. 

2.3.1 Indicator -to-Indicator Correlation analyses 

For the correlation analysis, data was used at the finer province resolution. 

2.3.1.1. VIs vs. crop yield 215 

Firstly, a correlation analysis was performed between the vegetation indices (VIs) and the crop yield data. This was done to 

investigate whether the VIs could be used as a proxy for agricultural impacts as spatially distributed data on crop areas were 

unavailable to accompany the yield data. VIs were masked using the land cover data to ensure that only areas covered by 

cropland were considered. The cropland-masked monthly VIs were then averaged to the province level, the time series filtered 

to only include the growing season of the spatially-dominant crop within each province, and an annual average was taken. The 220 

growing season was taken from Lacombe et al. (2017) for Cassava, FAO GIEWS Country Brief (FAO, 2021) for Paddy rice, 

Arunrat et al. (2022) for Corn and FFTC (2015) for Longan. The annual time series for the VIs for each province was correlated 

with the yield of the dominant crop for that province using a Pearson correlation (Pearson, 1920). The Pearson correlation was 

selected since it estimates the strength of normalised covariance between two variables, allowing for insight into how closely 

related the two variables are. 225 

2.3.1.2. Meteorological drought indicators vs. VIs 

The Pearson correlation was also used to compare the standardised indicators (SPI and SPEI) and vegetation indices (VCI and 

VHI) for both forest areas and cropland, where the crop-masked vegetation indices were treated as a proxy for the agricultural 

impact. This approach was used to investigate the effect of meteorological conditions on crops and forests, and identify the 

most relevant indicators from a drought monitoring perspective. Monthly crop-masked VCI values were regressed against time 230 

using linear regression, and the residuals used to remove linear trends, accounting for increased biomass from developments 

in agricultural technology and practices. The analysis was done spatially, making use of province averaged indicators, and 

temporally, by splitting the time series into wet and dry seasons. Whilst the specific months of these seasons varies across the 

country, a general approach was taken with the wet season being May to October and the dry season November to April, 

inclusive. Correlation coefficients were calculated between standardised meteorological indicators for all given accumulation 235 

periods and the VIs. For each VI and province, the standardised meteorological indicator with the largest magnitude correlation 

was identified, and critical values were calculated by accounting for autocorrelation using Pyper and Peterman (1998)ôs 

methodology.  
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To check how much difference there is between SPI and SPEI, and verify that they are different enough to justify using both 

indices in our analysis, we compared the two indicators to determine how much of SPEI can be explained by SPI over the 240 

whole period, each season and each accumulation period, details of which are given in ST2 of the SI. 

2.3.2 Simulating Crop Productivity  

Regional Random Forest (RF) models were used to predict agricultural impacts (crop yield). RF Regression is a machine 

learning algorithm that combines predictions from multiple decision trees to make a more accurate prediction than a single 

tree. The analysis was carried out at regional level by aggregating all provincial data to the regional level, as data was too 245 

scarce at the provincial level to be able to train the models at that higher resolution. 

As input data to the models, we used SPI, SPEI, VCI, and TCI for each individual month separately. Note that VHI was not 

used here as it is a combination of VCI and TCI, and is therefore strongly correlated to both. Accumulation periods of 1-6, 9, 

12, 18 and 24 months, were used for SPI and SPEI. All input data were first regressed against time, and the residuals used as 

input to the random forest models to account for linear trends. Annual crop yield data for a range of individual crops were used 250 

to train the models and evaluate them. 

First, a correlation analysis of all input data against each cropôs annual yield was carried out with the objective of ranking the 

indicators in order of highest to lowest correlation with crop yield. All indicators were split by month (i.e. all the Januarys 

lumped together, all the Februarys, and so on), and the correlations were ranked by p-value. 

In a second step, we built the feature set by adding features (i.e. indicators) in order of ascending correlation p-value, whilst 255 

maintaining all Variance Inflation Factor (VIF) values below 5 (to minimise multicollinearity). This means that for strongly 

correlated input variables, only the variable with the strongest correlation with crop yield was used to build the model. 

In the final step, we built the forests to predict crop yield. A total of 38 individual RFs were built for each combination of crop 

and region using the six regions shown in Figure 1, and seven crops ï Cassava, Corn S1 (March-October), Corn S2 (November-

February), Mixed Corn (Corn S1 + Corn S2), Paddy rice, Second rice and Longan. Only combinations that had more than 50 260 

samples (province yield-year combinations) were used, and as a result, Corn S1, Corn S2 and mixed Corn were removed from 

region S, and Corn S2 was removed from region E.  Figure 3 shows a schematic representation of the steps involved to build 

the RF models. 

Due to the considerable number of RFs trained and evaluated, the number of trees within each RF was selected using an 

automated process by evaluating the mean squared error for RFs consisting of 50, 100, 1000, 10000 trees. The number of trees 265 

that resulted in the lowest mean squared error was used to train the final model for each region-crop combination. To enable 

parameters to be estimated on the full dataset, estimation of the optimal number of trees, and training of the final model, was 

performed using 5-fold cross validation.  

Finally, using these models, we investigated the relative importance of features in explaining the variance in crop yield. The 

average decrease in Gini Impurity resulting from the exclusion of a certain feature can provide insights into its relative 270 

importance for simulating the target variable. In this case, indicators with relatively high decreases in Gini Impurity resulting 
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from their exclusion were considered important for the simulation of the productivity of the crop in question. While RFs were 

built to predict crop yields, the main focus of our study was their use to study feature importance to identify monitoring 

priorities for different regions and crops. 

 275 

 

Figure 3: Schematic representation of the steps involved to build RF models and associated analysis in this study.   
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3. Results 

3.1 Correlation analysis: Indicator-to-indicator 

3.1.1 VIs vs. crop yield 280 

In most provinces, we found that VCI is positively correlated to crop yield for the dominant crop in that province, and in the 

majority of cases, that correlation is statistically significant (pÒ0.05) (See Fig. 4a). In thirteen provinces (out of 77), VCI is 

negatively correlated to crop yield (provinces in blue in Fig. 4a), which suggests VCI is not directly linked to crop yields in 

these provinces and may not be suitable as a proxy for agricultural impacts. In the most northern provinces, the land cover is 

highly dominated by dense forest (Fig. SF1), and the limited crop area has a mixture of crops which might explain these poor 285 

relationships. 

VHI is negatively correlated to yields in more provinces than VCI, but has stronger correlation than VCI in some provinces 

(Fig. 4b). Figure 4d shows the VI best correlated to crop yield (for dominant crop) in each province. For more than 90% of the 

provinces, at least one of the VIs is positively correlated to crop yield. Note that in some provinces, the dominant crop ï 

especially provinces in W, C and E regions ï accounts for less than 50% of the total cultivated area (Fig. 4c). This can introduce 290 

significant noise in the data, and therefore these results should be treated with caution and be considered as a general indication 

that VIs are a reasonable proxy for crop yield, rather than an absolute validation. In some cases, there is no obvious reason as 

to why the correlation is very different between two neighbouring provinces which share similar topography, land cover, 

climatology and dominant crop type. However, differences in irrigation or agricultural practices, or in the outbreak of pests 

and diseases, could be contributing factors. Exploring these factors in future research may provide insights into the observed 295 

differences in correlations. Crop yield at field scale or a high-resolution land cover map which includes information on crop 

type would be needed to carry out a robust validation, but in the absence of such data, we consider that the strong correlation 

between VIs and crop yield found in most provinces provide enough confidence to utilise VIs as a reasonable proxy for crop 

yield in subsequent analysis in this paper.  

The following analysis focusses on VCI to simplify the messaging, but the equivalent plots for VHI can be found in the SI. 300 

Note that for this analysis, TCI was not considered, as its effect is implicit within VHI as described in Section 2.2 above. 

Note that we also use VIs as proxy for forest growth in the following analysis, but we had no verification data to validate this 

assumption. However, VIs have shown strong links to forest health and drought impacts in previous studies (e.g. Byer & Jin, 

2017; Torres et al., 2021). Therefore, we consider that the assumption that VIs are good proxies to drought impacts on forest 

to be reasonable. 305 

 



14 

 

 

Figure 4: (a) Correlation between VCI and crop yield for dominant crop in each province; (b) Correlation between VHI and crop 

yield for dominant crop in each province, (c) map of dominant crop in each province and the percentage area of said crop over the 

total crop area in each province; and (d) map of VI best correlated with crop yield for dominant crop in each province. 310 
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3.1.2 Meteorological indicators vs. VIs 

Meteorological drought indicators were then correlated with VIs to assess the effect of meteorological conditions on crops and 

forests and identify the most relevant drought indicator for impacts on crops and forests. The analysis was divided between 

dry and wet seasons. 315 

3.1.2.1 Dry season 

Figure 5 shows the strongest correlation for all the combinations of meteorological indicators vs. VCI for the dry season (Fig.5a 

and b) with the corresponding meteorological indicator (Fig. 5c and d), for crops (Fig 5a and c) and for forest (Fig 5b and d). 

Strong and statistically significant correlations can be seen for most provinces in the North. Correlations are higher for crops 

than for forest. 320 

For crops, we find high correlations between VCI and SPEI of relatively short accumulation period during the dry season, 

suggesting that short droughts affect crops most. The fact that SPEI is generally more highly correlated to crop production 

than SPI highlights the important link between the evaporative demand and impact on crops. 

For forests, we observe a very clear North-South split, with positive correlations in the North and negative in the South. A 

positive correlation between VCI and the meteorological indicators suggests that a deficit in water availability (as indicated 325 

by negative SPI or SPEI) leads to a decline in vegetation growth (reduced VCI). In contrast, a negative correlation suggests 

that such a deficit leads to an increase in vegetation growth. This second scenario may seem counterintuitive, but it can occur 

in energy-limited environments where water is not the limiting factor. In such cases, short duration droughts (i.e., periods drier 

than usual for the time of year) can stimulate increased vegetation growth, as droughts in energy-limited environments are 

often associated with increased radiation (i.e. energy) due to decreased cloud cover. This is discussed further in section 4.3. 330 

Except in the South, the best correlated accumulation period is generally longer for forest than for crops. Impacts on forests 

happen during longer droughts than for crops. 
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Figure 5: For the dry season, maximum correlation (all combinations of meteorological indicator with VCI) for each province for 

(a) crops and (b) forest; and the corresponding meteorological indicator and accumulation period for each province for (c) crops 335 
and (d) forest. 

 

3.1.2.2 Wet season 

Figure 6 shows the highest correlation for all the combinations of meteorological indicators with VCI for the wet season (Fig.6a 

and b) with the corresponding meteorological indicator (Fig. 6c and d), for crops (Fig 6a and c) and for forest (Fig 6b and d). 340 

The maximum correlation is, in general, lower than for the dry season, which indicates that the impact of meteorological 

droughts on crops and forest is less severe during the wet season. 


