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Abstract. Droughts in Thailand are becoming more severe due to climate change. Developing a reliable Drought Monitoring
and Early Warning System (DMEWS) is essenti al to streng
to be valuable, the droughtdicatorsprovided to stakeholderaust have relevance to tangible impacts on the ground. Here,

we analyse drought indicattw-impact relationships in Thailand, using a combination of correlation analysis and machine
learning techniques (random forest).the correlation analysis, we study the link between meteorological drought indicators
and highresolution remote sensing vegetation indices used as proxies feyietd@and foresgrowth impacts. Our analysis

shows that this link varies depending ondaise, season, and region. The random forest models built to estimate regional crop
productivity allow a more wdepth analysis of the crepegionspecificimportanceof different drought indicators. The results
highlight seasonal patterns of droughtnerability for individual crops, usually linked to their growing season, although the
effects are somewhat attenuated in irrigated regions. Integration of the approaches provides new detailed knowledge of croy
/regionspecific indicatoito-impact links, wlch can form the basis of targeted mitigation actions in an improved DMEWS in

Thailand, and could be applied in other parts of Southeast Asia and beyond.

1 Introduction

Droughts are one of the costliest natural hazards worldiil®, 2021) Their frequency and duration are expected to increase
in many parts of the world due to climate chafigCC, 2021, 2022; WBG & ADB, 2021Dver the past decades, Thailand

has already seen a rise in impacts from a warming world, experiencing an increasingly unpredictable weather, with an



35

40

45

50

55

60

65

alternation of droughts and floods on a tthoee year cyclélkeda & Palakhamarn, 202®ausing a wide range of impacts.
Thistrendis expected to intensify furth@r the near futurén SouthEast Asiaas highlightedy Hariadi et al. (2023)

One notable recent example is the severe 2020 drought, which was driven by a shorter monsoon period and a strong El Nif
event(CFEDMHA, 2022). The drought caused impacts in water supply, water quality, crop production and the economy,
with an economic loss of THB46 billiofUS$1.4 billion, £1.1 billion; Sowcharoensuk & Marknual, 2020}her notable

recent droughts include the 2005 event, in which 11 million people in 71 (out of 77) provinces were affecteddhpviatgss;

the 2008 event where over 10 million people in rural areas were affgktei & Palakhamarn, 2020and the 2012016

event, which affected the upperiddle part of the country most, and was so severe that at the tUthaina in Northeastern
Thail and, steps wer e(iet, thklastil% in the hokoe offtheé eseoir,KIHBREHA, 2@22).dverall,

the National Disaster Relief Centre estiesathat drought events between 1989 and 2017 caused more than B19.1 billion
(US$0.6 billion, £0.5 billion) of damage to the Thai economy, with average annual economic damages of almost THBO.6
billion per yeafUS$20 million,£16 million; NESDC, 2021)

One sector particularly affected by droughts in Thailand is agricy¥aghida et al., 2019)n particular, rice, corn, and other

cash cropgeriodically suffer economic loss¢ikeda & Palakhamarn, 2020Thailand is currently the second largest rice
exporter in the world{OECD, 20D), and rice fields wutilise@CIDIBOW) Théilaniisai | a
also the second biggest sugar exporter, and the 2020 drought resulted in a 28% fall in prothetionachote & Trichim,

2021) However, drought risk is also moderated or exacerbated by human activities. Areas with water reservoirs and extensive
irrigation facilities are more resilient and impacted less by droughts than rainfed agriculture and areas without resg@oir sto

In the Nortleast higher water demand for rice cultivation during the dry seasons, combined with limited irrigation
infrastrwcture, exacerbates water scar¢ifFE-DMHA, 2022).

Thi rty percent of Thailandés population work in agricult:
Given this considerable impact that droudtdseon Thai society, and the expectation of a worsening in the coming years and
decades, there is an urgent need to improve preparedness and resilience of the country t¢UdNiDBRE ADCP, 220)

This also aligns with the priorities of t he-2080NvhRRaims Sen
to achieve the substantial reduction of disaster risk and losses in lives, livelihoods and health and in the econoaijc, physic
social, cultural and environmental assets of persons, businesses, communities and countries over the nexiNBREars

2015) One important aspect of improving drougésilience lies in enhancing the Drought Monitoring and Early Warning
(DMEW) capabilities of the country, in order to detect droughts in their early stages such that proactive mitigatiogsstrategi
can be implemente@Bachmair et al., 2016a)

According b the World Meteorological Organization (WMO), drought can be defined as a prolonged dry period in the natural
climate cycle(WMO, 2014) SinceWilhite and Glantz (1985)drought has commonly been categorised into various types
often differentiating between meteorological, hydrological, aridmsoisture (or agricultural) droughts, alongside various
others. Many drought indices have been developed for drought monitoring purposes for these different types of drought ovel
the past decaddkloyd-Hughes, 2014)in this paper, we consider a dghu to be a period drier than normal for that time of
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year at a given location and is distinct from the impacts it causes. Droughts can occur without causing any impacts, in whict
case they are not a concern for water managers or water users.

Drought impats (e.g. crop failure, water quality issues, etc.) are what stakeholders are interested in from a DMEW point of
view. However, impact data is scarce, and generally not routinely monitored. There are significant challenges in audlecting a
monitoring drou@pt impacts, including the visibility of drought impacts, which can be diffuse, delayed arsdrootural (e.g.

in comparison to the impacts of flooding). Nevertheless, while impact research is inherently challenging, it is also pivotal
drought managenme. While rainfall or river flow deficits can help track drought evolution, ultimately it is the impacts of
drought which are of greatest importance for water managers and other stakeholders. Numerous international initiatives hav
highlighted that informai on on drought i mpacts is the key O&miegsi ng
Bachmair et al., 20Hj, and some effort has been invested in collating drought impact data at national or international scale
(e.g. Europe: European Drought lagp report Inventory (EDI|)Stahl et al. (2016)U.S.: Drought Impact Reporter (DIR)

Smith et al. (20149) In an age where there have been huge advances 4timeahydroméeorological monitoring, better
prediction of impacts would be the single greatest practical advance in paving the way for improved drought resilience.
Understanding the link between drought indicators and impacts is an essential first step to acltgjeag(Bashmair et al.,

2016a)

Some of the most commonly used indices in operational DMEWS are the meteorological standardised indices such a:
Standardised Precipitation IndéRPI, McKee et al., 1993)nd Standardised Precipitati@vapotranspiration Inde{SPEI,
VicenteSerrano et al., 2010However, these indicators based purely on meteorological status are not always well correlated
to drought impactgBachmair et al., 2018as impacts often occur when precipitation deficits have propagated through the
hydrological cycle to deficits in soil moigte or river flows, for example. Moreover, precipitation deficit is likely to cause
more impacts in watdimited regions than in regions with abundant water, though water management practices can counteract
this effect to a certain extent. Drought indiees only meaningful to decision makers if the relationship to drought impacts is
known, i.e. understanding the type and magnitude of impacts that can be expected for different drought index values. Fo
regions where drought impact data are availableralationship between drought indices to drought impacts can be studied
(e.g., Bachmair et al., 2016b; Parsons et al., 2019; Wang et al., 2086)e drought impact data are not readily available,
remote sensing vegetation indices (VIs) can provide a proxy for drought impacts on vegetation.

Vls are commonly used to monitor the impacts of drought optegign. The Normalised Difference Vegetation Index (NDVI)

is one of the most established and widely ugesl(Tucker, 1979) It exploits the sharp increase in vegetation reflectance
across the red and neafrared (NIR) regions of the electromagnetic spectrum, known as theedgsl, to detect
photosynthetically active plant material and infer plant stress. However, the Vegetation Condition Index (VChbaseitel
normalization of NDVI, offers a more robuatlicator for seasonal droughts by minimising spurious or gkant signals and
amplifying longterm trendgAnyamba & Tucker, 2012; Liu & Kogan, 1996)ClI has been widely used and has proved to be
effective in monitoringvegetation change and signalling agricultural droygltd. Jiao et al., 2016 he Vegetation Health

Index (VHI) is a composite index that combines thd ¥@ Temperature Condition Index (TClx pixetbased normalisation
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of the Land Surface Temperature (LSTand is also commonly used to monitor vegetation stress and drought conditions
(Kogan, 1997)VHI incorporates the effect of temperature and is therefore more suitable for monitoring the effect of drought
in species more sensitive to concurneater ancheat stress. VHI has been successfully used worldwide to monitor vegetation
stress and drougttonditions(e.g. Jain et al., 2009; Singh et al., 2003; Urgah Kogan, 1998) Note that thes¥Is are
105 relative indices that compare current conditions ® ldngterm average to measure vegetation health,thedkfore are
dependenbn the environmental and climatic conditions of the study @seauch they should be used in conjunction with
information on the drought hazard situation to distinguish betwleeught and different hazards on vegetation (e.g. disease,
floods, anthropogenic impactstc).
In addition totheir use as drought indicatas discussed abowél s are often used as proxies for agricultural drought impacts.
110 The relationship between crop yield afig varies by crop type and location but has been shown to be strong in many locations.
For example, strong correlations were found betwélenand crop ield in North America(e.g. maize in Bolton & Friedl,
2013; winter wheat, sorghum and corn in Kogan et al., 2@d)th Americde.g., white at in Brazil in Coelho et al., 2020)
Europe(e.g., maize in Germany in Bachmair et al., 2018; cereals in Spain in Gafrieet al., 2019)Asia(eg., sugarcane
in India in Dubey et al., 2018)he Middle Easte.g., paddy rice in Iran in Shams Esfandabadi et al., 20#23a (e.g., millet
115 and sorghum in the Sahelian region in Maselli et al., 2G0@) Australige.g., wheat in Smith et al., 1995)
Data science and machine learning is affiasting field and is increasingly being used for the study of environmental science,
though still in its infancyBlair et al., 2019)Random Forest (RF) models have been used to link drought indicators to drought
impacts(e.g. Bachmair et al., 2016 cluding drought impact forecasting with relative suc€esdbeichi et al., 2022; Sutanto
et al., 2019) These emerging techniques within the field of DMEW offer great potential to move from simply monitoring
120 droughts using indices to drought impact estimation, which would revolutionise the early warning aspecfafrditigation,
enabling action to be taken before impacts occur.
Despite the significance of droughts in Thailand, few previous studies have analysed the link between drought indices anc
drought impacts in the countJhavorntam et al. (201&ndThavorntam and Shahnawaz (208#)ked at links between SPI
and Vls,but only at four test sites in the No#iast of ThailandPrabnakorn et al. (2018nhdKhadka et al. (2021have both
125 focused on the drougimrone Mun River Basin situated in the NeEhst of Thailand; both studidind that SPEI shows a
good correlation to crop yieltHowever no previous study hdeoked comprehensively droughtindicatorto-impact links
at a national scale Thailand and to our knowledge noras usednachine learning techniques to estimate drought impacts
in the country
The ambitiorof this papewvas to fill the gap in the literature on studies investigating the links between drought indicators and
130 impacts at a national scale in Thailand. Specifically, we focused on agricultural drought impacts, considering different crop
and seasons, and comtbe relative utility of traditional statistical methods at high resoluiienrémote sensing data at
provincial scale) vs. lower resolution sectespkecific analyses i.e. applying machine learning approaches to
regional/provincial yield data), to fiorm improved approaches for national DMEWhe overall aim was to support

agricultural drought management and inform targeted action/policy by water resource managers. To that end, this pape
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evaluates how relationships between droughts indices andtsngayg according to time of year, index, accumulation period
length and location in Thailand. The approach presented is relevant internationally and could be replicated in othtbeparts of

world to improve the management of agricultural droughts aridithpacts.

2. Data and methods
2.1 Study area

Thailand is located between 5°30' and 20°30'N latitudes and between 97°30' and 105°30'E longitudes, and has an area of !
million ha, from which 46.5% is agricultural area (77% of which is rainfed). Paddisftelvers 46% of that cultivated area,

with around 30% being irrigat§@AE, 2022)

Most of the country experiences distinct wet and dry seasaospt some parts of the southern region, which experience a
wet and humid climate throughout the year. The average annual rainfall of the whole country is about 1,700 mm ranging from
1,200 mm in the north and central plain up to 2,6@0700 mm in the waern part of the south and the eastern part of the
country(ICID, 2020)

Droughts often occur in two distinct periods: between June and September as a consequence of a delay in the onset of rainfe
or due to low precipitation during the dry season between October and May. The occofrengeght in Thailand is
increasingly associated with the El NiSouthern Oscillation (ENSO) cycle, which brings dtleanaverage rainfall
conditions(UNDRR & ADCP, 2020)

Figure 1shows the six regions and 77 provinces that were used in our analysis. Prostisecgsvg) are the primary local
government unit in Thailand. The regions do not have an administrative character, but are commonly used for geographica
and scientific purpass (e.g. Martin & Ritchie, 2020; Sanoamuang & Dabseepai, 201§ dominant land covdor each

province is shown in Fig.F& in the Sipplenmentarylnformation (SI)

In addition to these regions and provincesthe results anddiscussionsectionsweused t h e it oeferttohtlée area

encompassingegions N, NEC,WandEas opposed to 6the Southoé comprising o
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Figure 1: Map of Thailand showing provinces and regions used in this study. The provinces are the smaller areas shown within each
of the coloured regions.

Regional differences:

The Northeastern region (NE) consists mainly of the dry Khorat Plateau. Unlike the more fertile areas of Thailand, the NE has
a long dry season, and much of the land is covered by sparse grasses. The main crops cultivated in this region are glutinot
rice (two harvests), cash crops such as sugar cane and cassava, and to a lesser extent rubber. This region is the most pron
drought(LePoer, 1987)and as suchs particularly vulnerable to agricultural droughts as highlighted by several stadjes
Mongkolsawaet al., 2001; Saguansilp et al., 2017; Wijitkosum, 2018)

The Northern region (N) is a mountainous region, and the most forested region of Thalitandgh it has suffered from
extensive deforestation due to agricultural expansion over the past few decades, there has been some reforestation in rece
years(RFD, 2022) Many dams and irrigated croplands are situated in this region.

The WesterifW) region is characterised by high mountains and steep river valleys. Western Thailand hosts much of Thailand's

lessdisturbed forest areas. The region is home to many of the country's major dams.
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The Eastern (E) region is characterised by short maurdaiges alternating with small basins of short rivers which drain into
the Gulf of Thailand; fruit is a major component of agriculture in the area.

The Central (C) region is a natural setfntained basin often termed "the rice bowl! of Asia". A complégation system and

fertile soil supports the cultivation of rice paddies. It is the most densely populated region of Thailand, with Metropolitan
Bangkok on its southern ed{lecsPoer, 1987)

The Southern region (S) is part of a narrow peninsula, and is diséinotiglimate, terrain, and resources. This region is
characterised by Nortbouth mountain barriers, tropical forest, and the absence of large rivers. It is the wettest region in
Thailand, and is not generally considered to suffer from drought imgiaefeeer, 1987)

2.2 Data

Table 1 lists the data used in this study, with details on the type of data, spatial resolution, temporal resolutianajtebied

postprocessing applied in this study and reference.

From these datasets, the following drought indicateere calculated:

- Standardised meteorological indicators Standardised Precipitation Indé&P1, McKee et al., 1993)nd Standardised
Precipitation Evapotranspiration Indg¢$PEI, VicenteSerrano et al., 201Gpr accumulation periods of8, 9, 12, 18
and 24 months. For the SPI, the data was fitted to a gamma distribution, whereas for SPEI, a generalised logistic
distribution was used, as recommended by the original authors.

- VegetationIndices (VIs) from remote sensingVegetation Condition Index (VCI), Temperature Condition Index
(TCI) and Vegetation Health Index (VHI) were calculated on a monthly-stege followingBachmair et al. (2018)
methodology, which is detailed the Supplementary Tegt(ST1) of the Sl

In this study, whetthe wordd i n d i is esédmm its Gwrnwerefer tobothmeteorological indicators (SPI and SP&hdVIs
(VCI, TCI and VHI).

Annual crop yield datéOAE, 2021)are used as a measure of agiiatal drought impactsAlthoughdroughtis not the only
factor that can causerop yield departureyenkatappa et al. (202have shownthat it isthe main driver of crop loss in
Thailand

Table 1: Details of the datasets used in this study

Dataset Type of data | Variable Spatial Tem- Period | Postprocessing Reference
reso- poral avai-
lution reso lable
lution
APHRODITE | Gridded data | Precipitation 0.25deg | Daily 1998 Used tocalculate the Yatagai et al.
(Asian interpolated P) 2015 Standardised Precipitation| (2012)
Precipitation from ground Index (SPI).
Highly- observations
Resolved
Observational
Data




Integration

Towards

Evaluation)

MOD16A2 Gridded data | Potential 500m 16-day 2000 TheClimatic Water Running et al.

product from from remote | Evapotrans 2020 Balance (CWB) is (2017)

MODIS sensing / piration (PET) calculated as P PET.
modelled data| CWB used to calculate the|

Standardised Precipitation
Evapotranspiration Index
(SPEI).

MCD12Q1 Gridded data | Land cover 500m Annual | 2006 Land cover map and Friedl and

product from from remote | map 2015 dominant land cover for SullaMenashe

MODIS sensing each province are shown ij (2019)

Figure 31 of theSl.
Used to create cropland
and forest masks.

MOD13A1 Gridded data | Normalized 500m 16-day 2006 NDVI and LST masked Didan (2015a,

and from remote | Difference 2020 using crop and forest 2015b)

MYD13Al sensing Vegetation masks, before aggregation

products from Index (NDVI) at province level.

MODIS Used to calculate the

MOD11A2 Gridded data | Land Surface | 1km Monthly | 2000 Vegetation Condition Wan et al.

product from from remote | Temperature 2022 Index (VCI), Temperature | (2015)

MODIS sensing (LST) Condition Index (TCI) and

Vegetation Healttindex
(VHI). VCI for crops de
trended to remove effect
from technological
advances.

Cropyield data| Yearly time Crop yield Pro- Annual | 1984 Main crop in each provincg Office of
series per vince 2019 identified. Agricultural
crop and level Time series dérended to | Economics
province remove effect from (OAE, 2021)

technological advances.

Spatial and temporal aggregation

200 To derivethe meteorological indicators, we firaveraged the meteorological variables (precipitation and PET) for each
province and then calculated the standardised indicators based on the paveraged time series. Fgts, we first derived

them atthe pixel level for the entire country, and then used a land cover map to differentiate between forest@nckedp
pixels. We then calculated provintavel VIs averages separately for forest and crops, using the corresponding land cover
mask.We usednonthly time series for most of our analysisth the exception dhe comparative analysis betweéls and

205 crop yield (described further in section 2.3.where ViIs were averaged over the growing season for each crop
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2.3 Methods

Figure 2 shows achematic representation of the methodological steps involved in this study.

2.3.1 Indicator -to-Indicator Correlation analyses

For the correlation analysis, data was used at the finer province resolution.

2.3.1.1. Vis vs. crop yield

Firstly, acorrelation analysis was performed between the vegetatiores(Mts) and the crop yield data. This was done to
investigate whether the Vs could be used as a proxy for agricultural impacts as spatially distributed data on crog areas wer
unavailable teaccompany the yield data. VIs were masked using the land cover data to ensure that only areas covered by
cropland were considered. The croplandsked monthly VIs were then averaged to the province level, the time series filtered

to only include the growip season of the spatialiominant crop within each province, and an annual average was taken. The
growing season was taken frdracombe et al. (201#pr Cassava, FAO GIEWS Country BrigfAO, 2021)for Paddy rice,

Arunrat et al. (2022fpr Corn and=FTC (2015¥or Longan. The annual time series for the VIs for each province was correlated
with the yield of the dominant crop for that province using a Pearson corrRé&arson, 1920The Pearson correlation was
selected since it estimates the strength of normalised covariance between two variables, allowightfantmsiow closely

related the two variables are.

2.3.1.2. Meteorological drought indicators vs. VIs

The Pearson correlation was also used to compare the standardised indicators (SPI and SPEI) and veget(ii gualic

VHI) for both forest areas and cropland, where the -tcnagked vegetation indiswere treated as a proxy for the agricultural
impact. This approach was used to investigate the effect of meteorological conditions on crops and forests, ritkdeidentif
most relevant indicators from a drought monitoring perspedieathly cropmasked VCI values were regressed against time
using linear regression, and the residuals used to remove linear trends, accounting for increased biomass from developmer
in agricultural technology and practicéhe analysis was done spatially, making use of province averaged indicators, and
temporally, by splitting the time series into wet and dry seasons. Whilst the specific months of these seasons vaties across
country, a general approach was taken with the wet season being May to October and the dry season November to April
inclusive. Correlation coefficients were calculated between standardistesrologicaindicators for all given accumulation

periods and the ViIgor each VI and province, the standardisexeorologicaindicator with the largest magnitude correlation

was identified, and critical values were calculated by accounting for autocorrelationPygiag and Peterman (19983

methodology.

10
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To check how much difference there is between SPI and SPEI, and verify that they are differghttefastify using both
indicesin our analysis, we compared the two indicators to deterhmme much of SPEI can be explained by SPI over the

whole period, each season and each accumulation period, details of which are §iV2ofithe SI

2.3.2Simulating Crop Productivity

Regional Random Forest (RF) models were used to predict agricultural impacts (cropRieRiggression is a machine
learning algorithm that combines predictions from multiple decision trees to make a more accuretiemptbdin a single

tree. The analysis was carried out at regional level by aggregating all provincial data to the regional level, as data was to
scarce at the provincial level to be able to train the models at that higher resolution.

As input data to thenodels, we used SPI, SPEI, VCI, and TCI for each individual month separately. Note that VHI was not
used here as it is a combination of VCI and TCI, and is therefore strongly correlated to both. Accumulation pe6o@s of 1

12, 18 and 24 months, weread for SPI and SPEAIl input data were first regressed against time, and the residuals used as
input to the random forest models to account for linear tréxisual crop yield data for a range of individual crops were used

to train the models and evale them.

First, a correlation analysis of all/l i nput data aggeai nst
indicators in order of highest to lowest correlation with crop yield. All indicators were split by month (thee ddnuarys

lumped together, all the Februarys, and so on), and the correlations were rankesiusy p

In a second step, we built the feature set by adding features (i.e. indicators) in order of ascending co+velatomnvhilst
maintaining all Vardnce Inflation Factor (VIF) values below 5 (to minimise multicollinearity). This means that for strongly
correlated input variables, only the variable with the strongest correlation with crop yield was used to build the model.

In the final step, we builtie forests to predict crop yield. A total of 38 individual RFs were built for each combination of crop
and region using the six regions shown in Figure 1, and severid@gssava, Corn S1 (Margbctober), Corn S2 (November
February), Mixed Corn (Corn SA.Corn S2), Paddy rice, Second rice and Longan. Only combinations that had more than 50
samples (province yielgear combinations) were used, and as a result, Corn S1, Corn S2 and mixed Corn were removed from
region S, and Corn S2 was removed from regiorFigure 3 shows a schematic representation of the steps involved to build
the RF models.

Due to the considerable number of RFs trained and evaluated, the number of trees within each RF was selected using «
automated process by evaluating the mean sdwarer for RFs consisting of 50, 100, 1000, 10000 trees. The number of trees
that resulted in the lowest mean squared error was used to train the final model for eaetropgimmbination. To enable
parameters to be estimated on the full dataset, atimof the optimal number of trees, and training of the final model, was
performed using %old cross validation.

Finally, using these models, we investigated the relative importance of features in explaining the variance in crog yield. Th
average deease in Gini Impurity resulting from the exclusion of a certain feature can provide insights into its relative

importance for simulating the target variable. In this case, indicators with relatively high decreases in Gini Impuiityg resul
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from their exclision were considered important for the simulation of the productivity of the crop in qu¥gtiba RFs were
built to predict crop yields, the main focus of our stwestheir use to study feature importance to identify monitoring
priorities for different regions and crops.

275
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* (Cassava and 10000 trees .. ..
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Figure 3: Schematic representation of the steps involved to build RF models and associated analysis in this study.
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3. Results
3.1 Correlation analysis: Indicator-to-indicator
3.1.1VIs vs. crop yield

In most provinces, we found that VCI is positively correlated to crop yield for the dominant crop in that province, and in th
maj ority of cases, that corr el at i olnthiiteenprevinees(autsof 77)cvV&llisl y s i
negatively correlated to crop yie{drovinces in blue in Fig. 4ayvhich suggests VCI is not directly linked to crop yields in
these provinces amday not be suitablas a proxy for agricultural impacts. In the most northern provinces, the land cover is
highly dominated by dense for€gig. S-1), and the limited croprea has a mixture of crops which might explain these poor
relationships.

VHI is negatively correlated to yields in more provinces than VCI, but has stronger correlation than VCI in some provinces
(Fig. 4b). Figure 4d shows the VI best correlated to crefyfor dominant crop) in each proviné&ar more than 90%f the
provinces,at least one of the VIs igositively correlated to crop yieldNote that in some provinces, the dominant crop
especially provinces in W, C and E regidreccounts foless than 50% of the total cultivated area (Fig. 4c). This can introduce
significant noise in the data, and therefore these results should be treated with caution and be considered as acggoeral indi
that Vis are a reasonable proxy for crop yieldheatthan an absolute validatidn.some cases, there is no obvious reason as

to why the correlation is very different between two neighbouring provinces which share similar topography, land cover,
climatology and dominant craype However, dfferences i irrigation or agricultural practices, or in the outbreak of pests

and diseases, could be contributing factors. Exploring these factors in future research may provide insights into tthe observe
differences in correlation€rop yield at field scale or d@dh-resolution land cover map which includes information on crop
type would be needed to carry out a robust validation, but in the absence of such data, we consider that the stramg correlati
between VIs and crop yield found in most provinces provide gimoonfidence to utilise Vis as a reasonable proxy for crop
yield in subsequent analysis in this paper.

The following analysis focusses on VCI to simplify the messaging, but the equivalent plots for VHI can be four#l.in the
Note that for this analysi3,Cl was not considered, as its effect is implicit within VHI as described in Section 2.2 above.

Note that we also uséls as proxy for forest growth in the following analysis, but we had no verificdatamto validate this
assumption. Howeve¥/Is have shown strong links to forest headtid drought impact® previous studieée.g. Byer & Jin,

2017; Torres et al., 2021y herefore, we consider thtte assumption that VIs are good proxies to drought impacts on forest

to be reasonable.
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Figure 4: (a) Correlation between VCI and crop yield for dominant crop in each province; (b) Correlation between VHI and crop
yield for dominant crop in each province, (c) map of dominant crop in each province and the percentage area of said crop ower
310 total crop area in each province; and (d) map of VI best correlated with crop yield for dominant crop in each province.
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3.1.2Meteorological indicators vs. VIs

Meteorological droughihdicatorswere then correlated with VIs to assess the effect of métepeal conditions on crops and
forests and identify the most relevant drought indicator for impacts on crops and. fbhesgnalysis was divided between

dry and wet seasons.

3.1.2.1Dry season

Figure 5 shows the strongest correlation for all the contibimaof meteorological indicators vs. VCI for the dry season (Fig.5a
and b) with the correspondimgeteorologicalndicator (Fig. 5¢ and d), for crops (Fig 5a and c) and for forest (Fig 5b and d).
Strong and statistically significanbrrelations can be seen for most provinces in the North. Correlations are higher for crops
than for forest.

For crops, we find high correlations betwee@\and SPEI of relatively short accumulation period during the dry season,
suggesting that short drghts affect crops most. The fact that SPEI is generally more highly correlated to crop production
than SPI highlights the important link between the evaporative demand and impact on crops.

For forests, we observe a very clear NeBthuth split, with positie correlations in the North and negative in the Sofith
positive correlation between VCI and the meteorological indicators suggests that a deficit in water availability (ad indicate
by negative SPI or SPEI) leads to a decline in vegetation growth @@d(Cl). In contrast, a negative correlation suggests
that such a deficit leads to an increase in vegetation growth. This second scenario may seem counterintuitive, buirit can occ
in energylimited environments where water is not the limiting factosuoh cases, shattirationdroughts (i.e., periods drier

than usual for the time of year) can stimulate increased vegetation growth, as droughts idiraitethgnvironments are

often associated with increased radiation (i.e. energy) due to decreastdaler. This is discussed further in section 4.3.
Except in theSouth, the best correlated accumulation periodéserallylongerfor forest than for crops. Impacts on forests

happen during longer droughts than for crops.
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Figure 5: For the dry season, maximum correlation (all combinations of meteorological indicator with VCI) for each province for
335 (a) crops and (b) forest; and the corresponding meteorological indicator and accumulation period for each province for (c)ops
and (d) forest.

3.12.2 Wet season

Figure 6 shows the highest correlation for all the combinations of meteorological indicators with VCI for the wet se&son (Fig
340 and b) with the correspondimgeteorologicaindicator (Fig. 6¢ and d), for crops (Fig 6a and c¢) and for f¢Fégt6b and d).

The maximum correlation is, in general, lower than for the dry season, which indicates that the impact of meteorological

droughts on crops and forest is less severe during the wet season.
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