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RESPONSE TO REVIEWER #1 (Samuel Jonson Sutanto) 

We would like to express our gratitude to Samuel for taking the time to review our 

paper and for providing valuable feedback and suggestions. We appreciate the 

thoroughness of your review, which has significantly contributed to improving the 

quality of the manuscript.  

Below is a point-by-point response to all comments. Original comments are in 

black, whereas the authors’ responses are in blue, and changes made in the 

manuscript are in red. 

 

Title: Indicator-to-impact links to help improve agricultural drought preparedness in 

Thailand 

Authors: Tanguy et al. 

Recommendation: minor revision 

Summary 

This paper correlates meteorological drought indices, represented by SPI and SPEI, 

and vegetation indices such as VCI, TCI, and VHI with forest growth and crop yield 

impacts. Two approaches were used in the analysis, which are the Pearson 

correlation and the Random Forest machine learning model. The authors found that 

the strength of correlations depends on land use, season, region, and drought 

duration. Crops are strongly impacted by drought in both wet and dry seasons. The 

impact of droughts, however, is less apparent for forest growth. The use of the 

Random Forest technique allows a more in-depth analysis of the importance of 

different drought and vegetation indicators. The authors also highlighted that the 

knowledge of linking specific indicators to the drought’s impact on crops will help to 

improve the DMEWS and perform mitigation actions. 

Assessment 

This paper analyzes the use of different drought and vegetation indicators to link 

these indices with the impact of drought on crop yields and forest growth. The 

manuscript is interesting and well written. I have a few minor comments below and 

two general comments, but only for clarification. I believe this work is well suited for 

NHESS. 

Thank you for the encouraging and positive feedback. 

General Comments 
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I have two general comments regarding the manuscript but all of them are only for 

clarification and improvement of the manuscript. 

1. I am wondering why the authors used the Random Forest (RF) approach only 

to find the importance of all indicators on crop yields and forest growth. RF 

can also be used to predict the crop yields by: 1) training the predictor 

variables, here are e.g., drought and vegetation indices, and the response 

variables (e.g., crop yields), resulting in crop yield impact model; 2) using the 

developed model to predict the impact of drought on crop yield by leaving 

out the predicted year from the training period. Maybe it is interesting to do 

this since the authors already have the script to develop the RF model and 

mentioned this in Figure 2. The authors can train the RF model again without 

the predicted year and in the end forecast the yields and validate the result 

with the observed crop yield data. Otherwise, it is worth to discuss the use of 

machine learning to predict crop yield and not only to find the importance of 

predictor variables. 

Thank you for your comment. We agree that RFs can be used to predict crop 

yield and we have indeed used it in that way, as mentioned in line 221, where we 

state that "Regional Random Forest (RF) models were used to predict agricultural 

impacts (crop yield)." However, we appreciate the suggestion to explore this 

application of RFs more explicitly in our manuscript. To make it clearer that the 

RFs were used to predict crop yield, although this was not the main focus of our 

study, we have added the following sentence to the end of section 2.3.2: 

“While RFs were built to predict crop yields, the main focus of our study is their use to 

study feature importance to identify monitoring priorities for different regions and 

crops.” 

Regarding the suggestion to use leave-one-out cross-validation, we used 5-fold 

cross-validation instead, as we explained in lines 243-245. Our choice was based 

on computational efficiency, as 5-fold cross-validation is faster than leave-one-

out cross-validation. 

We also agree that we could have emphasised more the potential of RFs to 

predict drought impacts (crop yields in our case). To address this, we have 

rephrased the first paragraph of the "Future Work" section (line 511-514) as 

follows: 

“In this study, we used RF models primarily to analyse the relationships between 

drought indicators and impacts, and to identify the relative importance and timing of 

relevant indicators for impacts on crops and forests. While the main focus of our 

analysis was on feature importance, our analysis also demonstrated the potential of 

RFs to simulate unseen data, which suggests they could be used for impact prediction. 

With further work, such as addressing the limitations discussed above, these models 
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could be used for DMEWSs, support and compensation schemes, long-term planning, 

etc.” 

2. I have difficulty to understand figures 8, 9, and 10. I read the caption over and 

over again but still cannot interpret the figures. Is there any other way to 

present your results in a simple manner, so thus the readers can understand 

the results? For example, it is not clear to me why some lines are thick, and 

some are thin. Also, why VCI N has 6 thin lines and VCI E has only 3 thick 

lines? How to indicate 24 months accumulation periods in the results? Maybe 

modify the Y-axis? 

Thank you for your valuable feedback regarding the difficulty in interpreting figures 

8, 9, and 10. We acknowledge the deficiencies in these plots and have carefully 

considered the best way to present our results. We have developed two 

alternatives, one that is a slightly modified version of the existing plots and a second 

that is an alternative version of the heatmaps. We will present both here, but we 

have included the modified version of the existing plots for the revised version. We 

have also provided a more detailed explanation in the caption to improve the 

interpretation of the figures. 

Regarding the number of lines in the plots, we apologize for the lack of clarity in our 

original caption. Figure 8 shows the feature importance for all variables used in all 

models within each region. The number of variables per model and the number of 

models vary across regions and crops, resulting in different numbers of lines for 

each subplot. Specifically, the number of crops modelled per region varies, and RFs 

were not able to model some of the crops in some of the regions. For example, in 

the N region, we modelled 5 crops, but in the NE region, we were only able to model 

one crop (cassava). The caption has been revised to provide a clearer explanation. 

The thickness of the lines does not have any meaning attached to it and only reflects 

the number of variables in that subplot. There are more variables used in all the 

models in the N region than in the other regions, resulting in thinner lines in the N 

subplot. An option would have been to have different sized subplots to have lines 

with equal thickness. However, this solution would have been much more 

complicated technically, as we have used python module seaborn’s ‘heatmap’ 

functionality, which doesn’t have that option built in. 

We also understand that it was not clear why VCI (for example) has multiple lines in 

the plots. We separated the VCI for each individual month separately (see line 225), 

and sometimes VCI for the same month is repeated because it was used in different 

models for different crops. Hopefully the revised caption explains this better. 

Finally, we acknowledge that the accumulation period of 12, 18, and 24 months 

could not be differentiated in the original plots. In the revised version, we have 
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added the full variable name explicitly, so the accumulation period can now be 

identified. 

Thank you again for your feedback, which has helped us improve the clarity and 

interpretation of our results. 

Alternative Figure 8: 

Option 1: We have revised Figure 8 by explicitly labelling each indicator to improve 

its readability (y-axis). This is the only difference between the revised and original 

versions. We acknowledge that the labels for Region N may appear small, but we 

hope that readers can still discern them by zooming in. We believe this is preferable 

to omitting the labels altogether, as was done in the original version. Additionally, 

we have updated the caption with more detailed explanations to clarify the 

information presented in the figure.   

 

Figure 8: Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random 
forest models (for all crops) for each region. Each row corresponds to a different indicator, with the y-axis representing 
the indicator and the length of the bar representing the accumulation period. The x-axis indicates the time of year 
(month) when the indicator is most relevant for predicting crop yield. For instance, spi6Mar in the NE region represents 
SPI with a 6-month accumulation period for March, and the bar covers October to March (i.e. the six month period 
ending in March). The bars are shaded darker for indicators that are more important in the models. Unlike Fig. 9 and 10, 
which show only one crop per subplot, this figure includes all crops that can be modelled in each region. Region N has 
five models (cassava, corn S1, corn S2, mixed corn, and paddy rice models), while Region NE, Region C, and Region E 
have one, one, and two models respectively. The number of rows (i.e., indicators) in each subplot is a consequence of 
the number of models in each region and the number of variables in each model. The thickness of the lines is a result of 
the number of indicators displayed for each region and has no meaning attached. Finally, note that different crop 
models within a region can use the same indicators, leading to some indicators being repeated and having multiple rows 
within the same region (e.g., vciDec in Region N). 
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Option 2: We attempted an alternative method of displaying the information in our 

plots. In these visualisations, we included all indicators, including those that were 

not used to construct the random forest models (which are greyed out). This 

approach ensures that each subplot has the same number of indicators and avoids 

the issue of varying line thicknesses. However, this method omits an important 

dimension: the period covered by the accumulation period. We rely on this 

information extensively in our text to explain differences between regions and 

crops. Consequently, we have decided to retain option 1 for our plots. 

 

Figure 8: Heatmap depicting the importance of each feature (indicator) for all models in each region. The x-axis shows 
the indicators, with the accumulation period included where relevant, and the y-axis shows the feature importance for 
each month of the year. Greyed areas represent indicators that were not used to build any of the models in that region. 
Unlike Fig. 9 and 10, where only one crop is shown per subplot, each subplot in this figure includes all crops that could 
be modelled in that region. Region N has five models (cassava, corn S1, corn S2, mixed corn, and paddy rice models), 
while Region NE, Region C, and Region E have one, one, and two models, respectively. 

Alternative Figure 9: 

Option 1: Similar to the new Figure 8 (option 1), the only difference between this 

figure with the original version is the explicit labelling of each indicator, and 

improved caption. 
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Figure 9: Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random 
forest models for Cassava for each region. Each row corresponds to a different indicator, with the y-axis representing 
the indicator and the length of the bar representing the accumulation period. The x-axis indicates the time of year 
(month) when the indicator is most relevant for predicting crop yield. For instance, spi6Mar in region NE represents SPI 
with a 6-month accumulation period for March, and the bar covers October to March (i.e. the six month period ending in 
March). The bars are shaded darker for indicators that are more important in the models. Unlike Figure 8, each subplot 
here shows only cassava models for each region. However, the number of indicators can still differ between models due 
to the feature selection process that eliminates highly correlated indicators, which may vary between regions. The 
number of rows (i.e., indicators) in each subplot reflects the number of variables in each model, and the thickness of the 
lines is a result of the number of indicators displayed for each region and has no meaning attached. 

Option 2: Similar to the alternative option 2 for Figure 8, this heatmap has the 

advantage of displaying an equal number of indicators in each subplot, which can 

facilitate the comparison of feature importance between regions. However, this 

alternative visualisation does not include information on the accumulated period of 

the indicators, which is a relevant aspect for our analysis and discussion. Therefore, 

we chose to use the improved version of our original heatmap (option 1) in our 

study, as it provides a more comprehensive representation of the feature 

importance for each indicator, including its temporal relevance for predicting 

cassava yield. 
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Figure 9: Heatmap depicting the importance of each feature (indicator) for cassava models in each region. The x-axis 
shows the indicators, with the accumulation period included where relevant, and the y-axis shows the feature 
importance for each month of the year. Greyed areas represent indicators that were not used to build the cassava 
model in that region. Note that despite modelling the same crop in each region, the number of indicators can differ 
between models due to the feature selection process that eliminates highly correlated indicators, which may vary 
between regions. 

Alternative Figure 10: 

Option 1: Similar to the new Figure 8 (option 1), the only difference between this 

figure with the original version is the explicit labelling of each indicator, and 

improved caption. 
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Figure 10: Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random 
forest models for five different crops in region N. Each row corresponds to a different indicator, with the y-axis 
representing the indicator and the length of the bar representing the accumulation period. The x-axis indicates the time 
of year (month) when the indicator is most relevant for predicting crop yield. For instance, spi5Sep for Mixed Corn 
represents SPI with a 5-month accumulation period for September, and the bar covers May to September ((i.e. the five 
month period ending in September). The bars are shaded darker for indicators that are more important in the models. 
Unlike Figure 8, each subplot here only shows the model for a single crop in region N. The number of rows (i.e., 
indicators) in each subplot reflects the number of variables in each model, and the thickness of the lines is a result of the 
number of indicators displayed and has no meaning attached.  

Option 2: Same comment as Fig. 9, option 2. 
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Figure 10: Heatmap depicting the importance of each feature (indicator) for RF models for five different crops in region 
N. The x-axis shows the indicators, with the accumulation period included where relevant, and the y-axis shows the 
feature importance for each month of the year. Greyed areas represent indicators that were not used to build the 
cassava model in that region.  

 

Line by line comments 

L refers to line and P refers to page. 

P1L19: Maybe re-write “…it provides stakeholders…” as “…provided to 

stakeholders…”? 

Thank you. This has now been corrected. 

P2L33: The authors may add a study on extreme high and low flow events in 

Southeast Asia including Thailand due to climate change (Hariadi et al., 2023). 

Thank you for your suggestion. We agree that this study would be valuable in setting 

the context for our research by highlighting the expected impact of climate change 

on high and low flows in the region. We have incorporate the reference you 

provided into our revised manuscript. Line 34: “This trend is expected to intensify 

further in the near future in South-East Asia as highlighted by Hariadi et al. (2023).” 



10 
 

P2L46: Full stop after the ICID reference. 

Thank you, this has now been corrected. 

P2L53: “has” -> “have” 

Thank you for spotting this mistake, we have corrected this. 

P3L75: Double reference from Stahl et al., 2016. 

Thank you for pointing this out. We apologise for the confusion. The reference in 

question actually comprises two different sources: Bachmair et al., 2016 and Stahl et 

al., 2016. It appears that our citation management software incorrectly displayed 

the first one as Bachmair, Stahl et al., 2016. We have rectified this issue in the 

revised manuscript. 

Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, 

C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., & Overton, I. C. (2016). Drought 

indicators revisited: the need for a wider consideration of environment and society. 

WIREs Water, 3(4), 516-536. https://doi.org/https://doi.org/10.1002/wat2.1154  

Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. 

H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, 

C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., & Van Lanen, H. A. 

J. (2016). Impacts of European drought events: insights from an international 

database of text-based reports. Nat. Hazards Earth Syst. Sci., 16(3), 801-819. 

https://doi.org/10.5194/nhess-16-801-2016  

P3L76: Better to place the EDII and DIR references here. EDII: Stahl et al., 2016 and 

DIR: Smith et al., 2014? 

Thank you for your suggestion. We agree that providing references to the EDII and 

DIR here would enhance the clarity of the manuscript. We have made the suggested 

change and addition in the revised version. 

P4L109: I suggest to mention again the gap (instead of “that” gap) here since it is a 

new paragraph. 

Thank you for the suggestion. In the revised manuscript, we have mentioned 

explicitly the gap again. We have replaced this sentence: 

“In this paper, the ambition was to fill that gap, with a focus on agricultural drought 

impacts at the national scale, across different crops and seasons, comparing the relative 

utility of traditional statistical methods at high resolution (remote sensing data at 

provincial scale) vs. lower resolution sectoral specific analyses (applying machine 

https://doi.org/https:/doi.org/10.1002/wat2.1154
https://doi.org/10.5194/nhess-16-801-2016
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learning approaches to regional/provincial yield data), to inform improved approaches 

for national DMEW.” 

With the following two sentences: 

“The ambition of this paper was to fill the gap in the literature on studies investigating 

the links between drought indicators and impacts at a national scale in Thailand. 

Specifically, we focused on agricultural drought impacts, considering different crops and 

seasons, and compared the relative utility of traditional statistical methods at high 

resolution (i.e. remote sensing data at provincial scale) vs. lower resolution sectoral-

specific analyses (i.e. applying machine learning approaches to regional/provincial yield 

data), to inform improved approaches for national DMEW.” 

P5L144: Suggestion to rephrase the sentence: “….of Thailand. Although it has 

suffered….decades, there has been some…” 

Thank you for the helpful suggestion. We agree that the suggested modification 

enhances the paragraph's readability. We have made this change in the revised 

manuscript. 

P8: Figure 2. Here the authors clearly indicated that the RF model can be used to 

predict the crop yield (my general comment 1). This is one thing that I miss from the 

result. 

As highlighted in our response to your general comment 1, we have used RF models 

primarily to study feature importance to better understand the link between 

drought indicators and drought impacts. However, we recognise the importance of 

using these models for impact prediction as well. To empathise this more, we have 

modified the first paragraph of the "Future Work" section (line 511-514) as follows: 

“In this study, we used RF models primarily to analyse the relationships between drought 

indicators and impacts, and to identify the relative importance and timing of relevant 

indicators for impacts on crops and forests. While the main focus of our analysis was on 

feature importance, our analysis also demonstrated the potential of RFs to simulate 

unseen data, which suggests they could be used for impact prediction. With further work, 

such as addressing the limitations discussed above, these models could be used for 

DMEWSs, support and compensation schemes, long-term planning, etc.” 

 

P9L8: Please elaborate more how the authors did “detrended”. The authors only 

said using a simple linear regression. 

Thank you for highlighting the need to elaborate the way detrending was performed 

in our study. We have clarified on lines 208-210 and 227 that variables were 
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regressed against time using linear regression, and the residuals used to remove 

linear trends in the data. These are the edits in our manuscript: 

Lines 208-210: 

Before: “The monthly crop-masked VCI was detrended before the correlation analysis 

(using a simple linear regression) in order to remove long-term trends, accounting for 

increased biomass from developments in agricultural technology and practices.” 

After: “Monthly crop-masked VCI values were regressed against time using linear 

regression, and the residuals used to remove linear trends, accounting for increased 

biomass from developments in agricultural technology and practices.”  

Line 227: 

Before: “All input data were first de-trended using a simple linear regression” 

After: “All input data were first regressed against time, and the residuals used as input to 

the random forest models to account for linear trends.” 

P10L217: “…both “indices” in our……. 

Thank you for the correction, this has been added in the revised manuscript. 

P14L291: I am wondering, it is VI or VCI? 

Thank you for pointing out this potential confusion. To clarify, VI stands for 

Vegetation Index (as noted in line 90), while VCI stands for Vegetation Condition 

Index, which is one of the VIs we used in this study. The statement on line 291, “For 

crops, we find high correlations between VI and SPEI of relatively short accumulation 

period during the dry season”, applies to both VIs considered in this study (VCI shown 

in the main manuscript, and VHI shown in the supplementary material). However, to 

avoid further confusion, we have revised the manuscript to only mention VCI in this 

sentence.  

P14L294-296: Maybe elaborate more about the meaning of positive and negative 

correlations between VCI and meteo indicators. Also, the authors stated that short 

droughts are beneficial for forest growth. In my opinion, drought is never beneficial 

for any ecosystem. I suggest to rephrase the word beneficial. 

Thank you for bringing up the need to elaborate on the meaning of positive and 

negative correlations between VCI and meteorological indicators and to rephrase 

our use of the word 'beneficial'. We agree with your points and have provided 

further clarification in the revised version. Specifically, we have added the following 

text: 
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“A positive correlation between VCI and the meteorological indicators suggests that a 

deficit in water availability (as indicated by negative SPI or SPEI) leads to a decline in 

vegetation growth (reduced VCI). In contrast, a negative correlation suggests that such a 

deficit leads to an increase in vegetation growth. This second scenario may seem 

counterintuitive, but it can occur in energy-limited environments where water is not the 

limiting factor. In such cases, short duration droughts (i.e., periods drier than usual for 

the time of year) can stimulate increased vegetation growth, as droughts in energy-

limited environments are often associated with increased radiation (i.e. energy) due to 

decreased cloud cover. This is discussed further in section 4.3.”  

P14L297: The authors can consider to re-write “…the accumulation period best 

correlated is…” as “…the best correlated accumulation period is…” 

Thank you for the suggestion. We have changed this in the revised version. 

P14L298: Here and also in the discussion, the authors conclude that forest is more 

resistant to short droughts. I believe that this strongly relates to the ability of forest 

to subtract water from deeper layers, e.g. groundwater. Discuss this. 

Thank you for bringing this to our attention. We agree that the deeper root systems 

of forest trees allow them to extract water from deeper layers of soil, making them 

more resilient to droughts compared to most crops. However, we have overlooked 

this point in our manuscript. To address this, we have included this explanation in 

the discussion section (4.3), along with references such as Breda et al. (2006) and 

Schenk and Jackson (2002), which support the role of deep roots in conferring 

resilience to droughts in forests. This is the new paragraph: “Generally, the indicator 

showing the highest correlation with impacts is for longer accumulation period for 

forests than for crops, suggesting that shorter droughts will have impacts on crops 

whereas only longer droughts will affect forests. The higher resilience to droughts of 

forests compared to crops is at least partially explained by the deeper root systems of 

forest trees allowing them to extract water from deeper layers of the soil (Bréda et al., 

2006; Schenk & Jackson, 2002).”  

Breda, N.; Huc, R.; Granier, A.; Dreyer, E. 2006. Temperate forest trees and stands 

under severe drought: a review of ecophysiological responses, adaptation processes 

and long-term consequences. Annals of Forest Science. 63(6): 625-644. 

Schenk, H.J.; Jackson, R.B. 2002. The global biogeography of roots. Ecological 

Monographs. 72(3): 311-328. 

P18L343-346: How to see the SPI24 from Figure 9 and to see 11 SPEI, 10 VCI, and 6 

TCI from Figure 11? See my general comment 2. 

We hope that the revised versions of Fig. 8-10 have addressed this issue.  
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P22L397: The authors stated that SPI is more important than SPEI. I am wondering 

whether the low precipitation in the N region has something to do with the result. 

Thank you for your comment. This is an interesting point. The low precipitation in 

region N leads to the Actual Evapotranspiration (AET) to be water limited (i.e. AET < 

PET) and therefore SPEI could be less closely linked to agrometeorological 

conditions. However, this is also the case for region W and C, and to lesser extend 

NE as well, where precipitation is also low, but in these other regions, SPEI’s 

importance is mostly dominant (Fig. 5c). We believe the dominant importance of SPI 

in region N is linked to the reliance of water storage for irrigation in this region, 

particularly for Corn_S2 which is planted in the dry season and relies heavily on 

irrigation (Fig. 10). Therefore, a deficit in rainfall (and consequent depleted storage) 

will have a strong impact on crop yield. We have added these reflections in the 

revised manuscript: “This last point could be explained by the fact that low precipitation 

in region N leads to the Actual Evapotranspiration (AET) to be water limited (i.e. AET < 

PET) meaning SPEI may be less closely linked to agrometeorological conditions. However, 

this is also the case for region W and C, and to lesser extend NE as well, where 

precipitation is also low, but in these other regions, SPEI’s importance is generally 

dominant (Fig.5c). Therefore, it is likely that the dominant importance of SPI in region N is 

linked to the reliance of water storage for irrigation in this region, particularly for Corn 

S2 which is planted in the dry season and relies heavily on irrigation (Fig.10). Therefore, a 

deficit in rainfall (and consequent depleted storage) will have a strong impact on crop 

yield.” 

P22L410-411: You may discuss the difference in water consumption by each crop.   

Thank you for your comment. We appreciate your suggestion to discuss the 

difference in water consumption by each crop. The irrigation requirement indeed 

varies greatly between crops. Paddy rice is the most water-intensive crop, with an 

irrigation requirement of around 520m3/ton if cultivated during the wet season and 

1140m3/ton in the dry season. Corn, on the other hand, requires irrigation only if 

cultivated in the dry season, with an irrigation requirement of approximately 

850m3/ton. Finally, cassava is the least water-demanding crop, with an irrigation 

requirement of around 20m3/ton in the wet season and 65m3/ton in the dry season 

(Gheewala et al., 2014). 

We have included these numbers in our revised manuscript to provide a more 

comprehensive understanding of the impact of drought on crop yields. Thank you 

for this helpful suggestion. This is the paragraph that has been added to section 4.1: 

“Also, Cassava is the least water-demanding crop of the list (irrigation requirement of 

around 20m3/ton in the wet season and 65m3/ton in the dry season, Gheewala et al., 

2014). This explains the comparatively lower importance of long accumulation indicators 

for Cassava (Fig.10), given less reliance on water storage, especially compared with the 

most water-intensive crops, such as paddy rice (irrigation requirement of 520m3/ton 
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during the wet season and 1140m3/ton in the dry season) and Corn S2 (irrigation 

requirement of 850m3/ton in the dry season).” 

Reference: 

Gheewala, S.H.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.R.; 

Chaiyawannakarn, N. Water Footprint and Impact of Water Consumption for Food, 

Feed, Fuel Crops Production in Thailand. Water 2014, 6, 1698-1718. 

https://doi.org/10.3390/w6061698  

P23L437: Rephrase “though this effect is highly variety specific: 

This has been rephrased as: “However, it should be noted that this effect varies 

significantly depending on the specific crop variety, […]” 

P24L453-455: Make two sentences. 

Thank you for the suggestion. We agree that the sentence is too long and we have 

splitted it into two sentences as follows: 

“For the crops where it was possible to build a RF model, the analysis of the temporal 

variation in feature importance and the indicator-to-impact relationships provide 

insights into critical periods of the year for early warning of impacts and relevant 

accumulation period. Specifically, these are periods of interest when dry conditions could 

lead to impacts.” 

P24L459: “…seasons, which suggests… -> “…seasons, suggest…” 

Thank you, this has been changed in the revised manuscript. 

P24L468-470: Explain this already in the beginning, thus the readers will not be 

confused. 

We have mentioned this as a response to your comment on P14L294-296 earlier. 

Hopefully this addresses this point too. 

P25L498: Here, the authors can link the short drought events with the limitation of 

using data-driven model, such as machine learning. 

Thank you for your comment. To clarify, did you mean 'short drought events' or 

'short period of record'? Assuming you meant the latter, we agree that the limitation 

of using data-driven models such as machine learning is the need for a large 

amount of data to train the model effectively. In our study, we had a relatively short 

period of record, which limited the amount of data available for training the models. 

As a result, the models may not have been able to accurately capture the full range 

https://doi.org/10.3390/w6061698
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of conditions that could occur in the real world. For example, for species such as 

longan, which are more susceptible to long drought events, the limited instances of 

these events in our training data may have affected the model's ability to accurately 

predict impacts. We have added the following paragraph to section 4.4 of the 

discussion in the revised manuscript: “Lastly, another limitation of using data-driven 

models such as RFs is the need for a large amount of data needed to train the model 

effectively. In our study, we had a relatively short period of data available, which limited 

the amount of data available for training the models. As a result, the models may not 

have been able to accurately capture the full range of conditions that could occur in the 

real world. For example, for species such as longan, which are more susceptible to long 

drought events, the limited instances of these events in our training data may have 

affected the model's ability to accurately predict impacts.” 

P25L505-506: Rephrase “Though powerful tools to produce predictive models from 

data” 

We have rephrased this sentence as follows: 

“RFs are powerful tools for producing predictive models from data, but they are 

considered 'black boxes' since they do not explicitly extract the relationships between 

input features and the predicted outcomes. However, RFs can aid in the interpretation of 

the model through the analysis of feature importance, which identifies the most 

influential variables in making predictions.”  

References: 

Hariadi et al. (2023). A high-resolution perspective of extreme rainfall and river flow 

under extreme climate change in Southeast Asia, https://doi.org/10.5194/hess-2023-

14. 

Smith et al. (2014). Local observers fill in the details on drought impact reporter 

maps, https://doi.org/10.1175/1520-0477-95.11.1659. 
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================================================================== 

 

RESPONSE TO REVIEWER #2 (Veit Blauhut) 

We would like to thank Veit for taking the time to review our manuscript and for 

providing insightful and constructive comments, which have contributed to 

strengthen our manuscript. 

Below is a point-by-point response to all comments. Original comments are in 

black, whereas the authors’ responses are in blue, and actual changes in the 

manuscript are shown in red.  

Dear authors, 

First of all I have to apologise for the strong delay in reviewing your paper. Overall it 

was a pleasure to review your excellent paper. Very well written and designed in a 

carefully thought-out way. I believe this study to be essential to support agricultural 

drought management in the future. 

Thank you very much for your positive feedback and kind words regarding our 

manuscript. We appreciate the time and effort you have invested in reviewing our 

work, and we understand that the delay in the review process can be unavoidable. 

We are grateful for your thorough evaluation of our study and for recognising its 

significance in supporting agricultural drought management. Once again, thank you 

for your valuable contribution to our research. 

In addition to the comments of SJ Sutantos comments there is only few to add on. 

All over I recommend this manuscript to be published after minor revisions. 

I would appreciate if you could add some introductionary thoughts on the usage of 

the vegetation indices and their classification it they are rather used a drought index 

or as a proxy for impacts/ impacts. Also, if VHI can be used without any knowledge 

on the hazard situation? 

Thank you for drawing our attention to the need for introductory thoughts on 

vegetation indices in our manuscript. We agree that this was missing, and in 

response, we have included the following text in our introduction on the usage of 

vegetation indices in the revised manuscript. We have removed any duplicate 

information from the Data section (2.2). 

VIs are commonly used to monitor the impacts of drought on vegetation. The Normalised 

Difference Vegetation Index (NDVI) is one of the most established and widely used VIs 

(Tucker, 1979). It exploits the sharp increase in vegetation reflectance across the red and 
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near-infrared (NIR) regions of the electromagnetic spectrum, known as the 'red-edge', to 

detect photosynthetically active plant material and infer plant stress. However, the 

Vegetation Condition Index (VCI), a pixel-based normalization of NDVI, offers a more 

robust indicator for seasonal droughts by minimising spurious or short-term signals and 

amplifying long-term trends (Anyamba & Tucker, 2012; Liu & Kogan, 1996). VCI has been 

widely used and has proved to be effective in monitoring vegetation change and 

signalling agricultural drought (e.g. Jiao et al., 2016). The Vegetation Health Index (VHI) is 

a composite index that combines the VCI and Temperature Condition Index (TCI) – a 

pixel-based normalisation of the Land Surface Temperature (LST) – and is also commonly 

used to monitor vegetation stress and drought conditions (Kogan, 1997). VHI 

incorporates the effect of temperature and is therefore more suitable for monitoring the 

effect of drought in species more sensitive to concurrent water and heat stress. VHI has 

been successfully used worldwide to monitor vegetation stress and drought conditions 

(e.g. Jain et al., 2009; Singh et al., 2003; Unganai & Kogan, 1998). Note that these VIs are 

relative indices that compare current conditions to the long-term average to measure 

vegetation health, and therefore are dependent on the environmental and climatic 

conditions of the study area. As such, they should be used in conjunction with 

information on the drought hazard situation to distinguish between drought and 

different hazards on vegetation (e.g. disease, floods, anthropogenic impacts, etc.).  

In addition to their use as drought indicators as discussed above, VIs are often used as 

proxies for agricultural drought impacts. The relationship between crop yield and VIs 

varies by crop type and location but has been shown to be strong in many locations. For 

example, strong correlations were found between VIs and crop yield in North America 

(e.g. maize in Bolton & Friedl, 2013; winter wheat, sorghum and corn in Kogan et al., 

2012), South America (e.g., white oat in Brazil in Coelho et al., 2020), Europe (e.g., maize 

in Germany in Bachmair et al., 2018; cereals in Spain in García-León et al., 2019), Asia 

(e.g., sugarcane in India in Dubey et al., 2018), the Middle East (e.g., paddy rice in Iran in 

Shams Esfandabadi et al., 2022), Africa (e.g., millet and sorghum in the Sahelian region in 

Maselli et al., 2000), and Australia (e.g., wheat in Smith et al., 1995). 
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In your methods you mention that you spatially aggregated the standardised 

indices. Please elaborate on your practise applied with a focus on a) the spatial 

aggregation method of drought indices, were the standardised indices aggregated 

to province levels or the indicators (temp, precip.) and then the distribution done? 

And b) how did you aggregate the indices in time. 

Thank you for bringing up the need for more details on how the aggregation was 

carried out in our study. We have added additional information on this aspect in the 

revised manuscript, with a specific focus on spatial aggregation. To address your 

questions: 

a) Spatial aggregation: 

To conduct the correlation analysis, we spatially averaged the meteorological 

variables (precipitation and PET) for each province and then calculated the 

standardised indicators based on the province-averaged time series. For vegetation 

indices, we first derived them at the pixel level for the entire country, and then used 

a land cover map to differentiate between forest and crop-covered pixels. We then 

calculated province-level vegetation indices averages separately for forest and 

crops, using the corresponding land cover mask. 

Regarding the random forest modelling, we used the same data as for the 

correlation analysis, but grouped all the data belonging to the provinces included in 

each of the 6 regions. This was done because there was not enough data to train 

machine learning models at the provincial level. 

b) Temporal aggregation: 
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We used monthly time series for most of our analyses, with the only exception 

being when we compared vegetation indices with crop yield data to validate the use 

of VIs as proxies for drought impact. In this case, we averaged the VIs over the 

growing season for each crop, as explained in lines 197-200 of the manuscript. 

We hope that these additional details have addressed your concerns and provide a 

better understanding of the methods used in our study. This is the paragraph that 

has been added to our revised manuscript: 

Spatial and temporal aggregation 

To derive the meteorological indicators, we first averaged the meteorological variables 

(precipitation and PET) for each province and then calculated the standardised indicators 

based on the province-averaged time series. For VIs, we first derived them at the pixel 

level for the entire country, and then used a land cover map to differentiate between 

forest and crop-covered pixels. We then calculated province-level VIs averages separately 

for forest and crops, using the corresponding land cover mask. We used monthly time 

series for most of our analysis, with the exception of the comparative analysis between 

VIs and crop yield (described further in section 2.3.1.1) where VIs were averaged over the 

growing season for each crop. 

 

In my opinion, the discussion on your initial analysis (Fig 4) is a little short and could 

tolerate a little more discussion on possible drivers (maybe in the discussion section 

and not in the results). In figure 4b) East inland Thailand, there are three regions 

neighbouring, having the same major crops paddy rice (and high percentages), but 

there are either VHI, VCI or negatively correlated.--> why do they perform so 

different? Irrigation practise (e.g. river fed irrigation?) Elevation? 

We agree that this is an interesting question that could be further investigated. 

However, we have deliberately kept that discussion short, as we conducted this 

analysis as a test to ensure that using vegetation indices as proxies for drought 

impacts was a reasonable assumption for the rest of our (main) analysis. Based on 

our results, we are generally satisfied with this assumption. However, there are 

some exceptions where neighbouring provinces with similar land cover, climatology 

and dominant crop show very different correlations with VIs, as you note in the case 

of some eastern provinces in Thailand. It is conceivable that differences in irrigation 

or agricultural practices, or in the outbreak of pests and diseases, could be 

contributing factors, but we do not have any evidence to support these hypotheses. 

Therefore, we have chosen not to delve further into this topic in the present study. 

However, we have highlighted this gap in our revised manuscript and added a 

sentence as follows: ‘In some cases, there is no obvious reason as to why the correlation 

is very different between two neighbouring provinces which share similar topography, 

land cover, climatology and dominant crop type. However, differences in irrigation or 
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agricultural practices, or in the outbreak of pests and diseases, could be contributing 

factors. Exploring these factors in future research may provide insights into the observed 

differences in correlations.’  

Some minor points: 

Figure 1-4 – Names of neighbouring countries are not readable 

We thank you for bringing to our attention the issue with the readability of 

neighbouring countries' names in these maps. We have tried to address this 

concern in the revised version. However, we would like to inform you that there are 

limitations to the modifications we can make to the background layer since we used 

ESRI Basemap, which has pre-set formatting and display for its layers. Nevertheless, 

we have made an effort to increase the font size of the country names by resizing 

the images. See for example the amended Figure 1: 
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Figure 4+ please increase legend size 

The legend for these maps have been made larger in the revised version. 

Please find the new Figures 4-6 in the following pages. 
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New Figure 4: 
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New Figure 5: 

 



26 
 

New Figure 6: 
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Furthermore, you might check on the following literature. Their results might be 

useful for some discussion and or introduction. 

Sa-Nguansilp, C., Wijitkosum, S., Sriprachote, A., 2017. Agricultural drought risk 

assessment in Lam Ta Kong Watershed, Thailand. International Journal of 

Geoinformatics 13 (4), 37–43. 

Monkolsawat, C., et al., 2001. An. Evaluation of Drought Risk Area in NE Thailand 

Asian Journal of Geoinformatics 1 (4), 33–44. 

Wijitkosum S 2018. Fuzzy AHP for drought risk assessment in lam Ta Kong 

watershed, the north-eastern region of Thailand. Soil and Water Research, 13(4), 

218–225. doi:10. 17221/158/2017-SWR 

 

Thank you for bringing these references to our attention. We have reviewed them 

and believe they are relevant to our study, particularly in highlighting the 

vulnerability of the Northeast of Thailand to agricultural drought. We have cited 

these references in our introduction to provide additional context. The following 

sentence was added to the paragraph on regional differences in section 2.1: “This 

region is the most prone to drought (LePoer, 1987), and as such, is particularly 

vulnerable to agricultural droughts as highlighted by several studies (e.g. Mongkolsawat 

et al., 2001; Sa-nguansilp et al., 2017; Wijitkosum, 2018).” 


