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Abstract. It has been demonstrated that decadal variations in the North Atlantic Oscillation (NAO) can be predicted by current

forecast models. While Atlantic Multidecadal Variability (AMV) in sea surface temperatures (SSTs) has been hypothesised as

the source of this skill, the validity of this hypothesis and the pathways involved remain unclear. We show, using reanalysis and

data from two forecast models, that the decadal predictability of the NAO can be entirely accounted for by the predictability

of decadal variations in the speed of the North Atlantic eddy-driven jet, with no predictability of decadal variations in the jet5

latitude. The sub-polar North Atlantic (SPNA) is identified as the only obvious common source of an SST-based signal across

the models and reanalysis, and the predictability of the jet speed is shown to be consistent with a forcing from the SPNA

visible already within a single season. The pathway is argued to be tropospheric in nature, with the SPNA-associated heating

extending up to the mid-troposphere, which alters the meridional temperature gradient around the climatological jet core. The

relative roles of anthropogenic aerosol emissions and the AMOC at generating predictable SPNA variability are also discussed.10

The analysis is extensively supported by the novel use of a set of seasonal hindcasts spanning the 20th century and forced with

prescribed SSTs.

1 Introduction

European winter weather is strongly influenced by the variability of the North Atlantic eddy-driven jet, and it is therefore of high

societal value to predict this variability as far in advance as possible. Recent studies have shown that, remarkably, retrospective15

ensemble forecasts (‘hindcasts’) are now able to skillfully predict some components of the low-frequency variability of the

winter jet at lead times of up to 10 years (Smith et al., 2019; Athanasiadis et al., 2020). However, the exact source of the

predictable signal and mechanisms involved remain unclear, making it uncertain to what extent one can rely on this skill to

remain for genuine decadal forecasts of the future. The aim of this paper is to try to clarify these points.

In Simpson et al. (2018), by considering a jet index based on zonal winds at 700hPa, it was shown that the decadal variability20

of the jet is much stronger in March than in the boreal winter months December, January, February (DJF). This late winter jet

variability was argued to arise from the internally generated component of Atlantic Multidecadal Variability (AMV) in North

Atlantic sea surface temperatures (SSTs), though the mechanisms were not elucidated; they also showed that models failed to
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capture the connection. In alignment with the enhanced decadal variability, the observed connection between the AMV and

the jet was shown to be far greater in March than during DJF. Nevertheless, Smith et al. (2019) and Athanasiadis et al. (2020)25

showed that skillful decadal forecasts of the DJF-averaged North Atlantic Oscillation (NAO) could be achieved, and the latter

suggested that the skill appeared to be driven by the AMV. Both Smith et al. (2019) and Athanasiadis et al. (2020) emphasised

an apparent ‘signal-to-noise paradox’ in these forecasts, mimicking the phenomenon observed for seasonal winter NAO fore-

casts (Scaife and Smith, 2018). This ‘paradox’ effectively says that the real world appears to be much more predictable than

the forecast model thinks it is, with the model underestimating the response to forcing or the response to predictable boundary30

conditions on seasonal-to-decadal timescales relative to the unpredictable noise. A practical consequence of this behaviour is

that models are likely underestimating the predictable component of decadal winter jet variability, suggesting that the results

of Simpson et al. (2018) and Athanasiadis et al. (2020) are consistent with a hypothesis that the AMV is driving predictable

decadal jet1 variability from December through March. In fact, several studies have found that even the total decadal variability

appears to be systematically underestimated in models (Kravtsov, 2017; Wang et al., 2017; Kim et al., 2018; Simpson et al.,35

2018; Bracegirdle, 2022).

Numerous studies have been conducted on the potential for air-sea coupling to generate links between the AMV and the jet,

starting with the pioneering work of Bjerknes (1964). The decadal variability of the AMV itself has been hypothesised to be

driven by a combination of the Atlantic Meridional Overturning Circulation (AMOC) (Bjerknes, 1964; Delworth et al., 1993;

Kushnir, 1994), anthropogenic aerosols and other greenhouse gases (Booth et al., 2012; Bellomo et al., 2018; Robson et al.,40

2022), and stochastic atmospheric forcing (Hasselmann, 1976; Clement et al., 2015; O’Reilly et al., 2019). An excellent recent

overview on these topics with more complete references can be found in Zhang et al. (2019). Different mechanisms have been

put forward for how the AMV affects the jet, including the direct modulation of low-level baroclinicity and stationary waves

by the North Atlantic SST anomalies (Kushnir, 1994; Msadek et al., 2011; Kushnir et al., 2002; Peings et al., 2016); forcing

from the tropical Atlantic (Davini et al., 2015); and stratospheric pathways (Omrani et al., 2014). However, the response in45

climate models to imposed AMV anomalies appears inconsistent and model dependent (Ruggieri et al., 2021), and the period

of highly reliable observational data is short, making it challenging to distinguish between different hypotheses.

One major source of uncertainty in and across many studies is that the decadal variability is an average over several different

processes occurring on different timescales, due to (a) the continuous nature of air-sea coupling and (b) the fact that the AMV

pattern itself evolves over time, with the anomalies in the sub-polar North Atlantic (SPNA) arising first before propagating50

towards the tropical Atlantic (Zhang et al., 2019; Wills et al., 2019). This makes it difficult to attribute causality between

atmospheric versus oceanic forcing and makes it unclear how to interpret the presence of multi-year lags in AMV-NAO links,

such as the result that the AMV appears to force the NAO most strongly when leading by around 10 years (Peings and

Magnusdottir, 2014a; Kwon et al., 2020). Furthermore, it becomes challenging to distinguish between the role played by

particular regions in the Atlantic ocean, such as the sub-polar versus tropical North Atlantic. However, several studies have55

emphasised the importance of the SPNA in particular (Gastineau and Frankignoul, 2015; Woollings et al., 2015; Ortega et al.,

2017; Wills et al., 2019), especially on longer timescales (Delworth et al., 2017).

1Since the NAO is largely describing the variability of the jet, we will conflate these without comment for the remainder of the paper.
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In this paper, we make crucial use of two techniques to help address these challenges:

1. The separation of the eddy-driven jet into two components, corresponding to the speed and latitude of the jet.

2. The use of two seasonal hindcast ensembles, named ASF20C and CSF20C, spanning the period 1900-2010. ASF20C60

is forced with prescribed, observed boundary conditions (Weisheimer et al., 2017), while CSF20C is fully coupled

(Weisheimer et al., 2020) (more details in Section 2.1).

The �rst point is motivated by the fact that the variability and sensitivity of the latitude and speed of the jet are very different.

The jet latitude exhibits multimodality and considerable variability on seasonal timescales, but shows no signi�cant variability

on decadal timescales beyond white noise (Woollings et al., 2010, 2014). The jet speed, on the other hand, is approximately65

Gaussian across all timescales and exhibits robust decadal variability (Woollings et al., 2014). Furthermore, Baker et al. (2017)

showed that the latitude and speed respond differently to thermal forcing, and Woollings et al. (2015) showed that the processes

responsible for latitudinal shifts in the jet clearly differ from those responsible for changes to the jet speed. This means that

analysis based on single indices which amalgamate the latitude and speed (such as the NAO index) may struggle to identify

robust links between the jet and SST anomalies. This approach has also recently been taken in Marcheggiani et al. (2023) using70

a complementary set of decadal forecasts.

To motivate the second point, we note that existing decadal forecasts only go back to 1954 at the earliest, leaving them

with a relatively small effective sample size once any low-pass �ltering or decadal averaging has taken place. The period

1954 to present also does not adequately sample the variability associated with the AMV and the AMOC. There is therefore

great value in extending the analysis back to 1900. While taking decadal averages of a seasonal hindcast obviously does not75

constitute an actual decadalforecast, it nevertheless turns out to be useful to think of it as being like a `nudged' forecast, where

both the atmospheric and oceanic state are being nudged back towards observations at the start of each winter (and moreover,

for ASF20C, the SSTs are being forecasted perfectly). We will show that in fact the decadal variability reproduced by the

seasonal hindcasts completely matches the predictable decadal variability of a genuine decadal forecast ensemble, justifying

this perspective post hoc. This not only allows us to con�dently use ASF20C/CSF20C to extend our analysis back to 1900, but80

also introduces two considerable bene�ts: the lack of coupling in ASF20C simpli�es the question of causality between ocean

and atmosphere, and the fact that the forecasts making up ASF20C/CSF20C only cover a single season simpli�es the question

of timescales.

We will show that on decadal timescales there is no predictability of the latitude of the jet, and that all the observed skill

at predicting the winter NAO arises from the predictability of thespeedof the jet. By comparing observations with the85

ASF20C/CSF20C seasonal hindcasts and the Decadal Prediction Large Ensemble (DPLE) decadal forecasts (Yeager et al.,

2018), we argue that predictable forcing of the jet speed arises from SST anomalies in the SPNA. Furthermore, we argue that

the predictable forcing occurring on decadal timescales arises as the accumulation of a smaller forcing taking place on seasonal

timescales, with no need to consider multi-year lags. Finally, we argue that the response of the jet speed to SST anomalies in

the SPNA can be understood simply as the adjustment of the jet to changes in the tropospheric meridional temperature gradient90

across the climatological jet core.
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2 Data and Methods

2.1 Data

2.1.1 ERA20C

We use the 20th century reanalysis dataset ERA20C, spanning 1890-2010, as our observational `truth' (Poli et al., 2013). This95

reanalysis is constructed using a cycle of the Integrated Forecast System (IFS) forecast model, and is made up of consecutive

1-day forecasts with data assimilation. Due to differences in available observations between the beginning and end of the

20th century, the atmospheric component of ERA20C only assimilates surface pressure, in order to maintain coherence over

the whole period. Both ocean and sea-ice boundary conditions come from the HadISST2.1.0.0 dataset (Rayner et al., 2003).

Although it is known that the internal variability is underestimated in the early 20th century (Dell'Aquila et al., 2016), ERA20C100

constitutes a reasonable reference for the status of the North Atlantic climate.

2.1.2 ASF20C and CSF20C

The ASF20C model data considered comes from an atmosphere-only seasonal hindcast experiment covering the 20th century

(Weisheimer et al., 2017). A 51 ensemble member seasonal forecast is initialised every 1st of November from 1901 to 2010

and allowed to run for 4 months, thereby producing a December-January-February (DJF) prediction for every year in this105

period. The model used is version CY41R1 of the IFS. Its spectral resolution is TL255, corresponding to roughly 80km grid

spacing near the equator, with 91 levels in the vertical. The model is run in atmosphere-only mode with prescribed observed

sea-surface temperatures (SSTs) with boundary conditions and initial conditions from ERA20C. Further details can be found

in Weisheimer et al. (2017).

We will additionally make use of the CSF20C hindcast. This hindcast is identical to ASF20C except it is run with dynamic110

coupling between the atmosphere and ice/ocean, and is initialised using the coupled reanalysis CERA20C (Laloyaux et al.,

2018). The con�guration is described in Weisheimer et al. (2020) and is similar to the SEAS5 operational seasonal forecast

at the European Centre for Medium-range Weather Forecasts (Johnson et al., 2019). The ocean model used is NEMO version

3.4 (Madec and the NEMO team, 2016), and the ice model is LIM2 (Fichefet and Maqueda, 1997). Both are run at a 1 degree

horizontal resolution, with NEMO using 42 vertical levels.115

2.1.3 Decadal Prediction Large Ensemble (DPLE)

DPLE is made up of a suite of 40-member ensemble forecasts, each initialised on November 1st and run for 10 years. Forecasts

are initialised every year from 1954 to 2015. The forecasts are run using CESM version 1.1, using the same model and

component con�guration as that used in the CESM1 large ensemble (Kay et al., 2015). The atmosphere component is version

5 of the Community Atmosphere Model (CAM5: Hurrell et al. (2013)), with a horizontal resolution of around 1 degree and 30120

levels in the vertical. The ocean component is version 2 of the Parallel Ocean Program (Danabasoglu et al., 2012) and the sea
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ice model is version 4 of the Los Alamos National Laboratory (LANL) Community Ice Code (Hunke et al., 2010). Both are

run at a 1 degree spatial resolution, with 60 vertical ocean levels. Further details can be found in Yeager et al. (2018).

To be consistent with CSF20C/ERA20C we restrict analysis to the overlapping period 1954-2010. When assessing the

decadal forecast skill of DPLE, we always take averages over the entire 10-year period. For example, suppose we have a125

timeseriesJ made up of DJF averages of some quantity in reanalysis, and we want to assess the capacity of DPLE to predictJ ,

where overline denotes the average across the 10 winters from November 1954 to February 1964. Then the DPLE forecast of

J is taken to be the ensemble mean overxk (k = 1 ; : : : ;40), where thexk are the 10-year forecasts initialised on November 1st

1954, withk referring to ensemble member. By doing this for consecutive 10-year periods we obtain estimates of the decadal

variability predicted by DPLE which we can correlate with the observed decadal variability.130

Importantly, we do not perform any drift-correction of any kind in our analysis. The main goal of this paper is to understand

how the atmosphere responds to decadally varying SSTs, and this can be assessed in DPLE irrespective of any drift taking

place. Furthermore, it is not customary to de-drift seasonal forecasts, so no drift correction is done for ASF20C/CSF20C:

not de-drifting DPLE therefore makes the analysis more directly comparable between the forecast products. For DPLE we

will only ever consider two timescales: the response taking place in the �rst season or the 10-year mean across the whole135

forecast period. The drift taking place in the former is small, and the imprint of the drift in the latter is smoothed out by the

large averaging-window. Finally, we note that Athanasiadis et al. (2020) found that robust decadal NAO forecast skill can be

diagnosed in DPLE irrespective of whether drift-correction is carried out or not.

2.1.4 EC-Earth3 data

We will make use of two piControl CMIP6 (500-year and 603-year long respectively) integrations from EC-Earth3 (Döscher140

et al., 2022). These simulations are atmosphere-ocean coupled runs with pre-industrial forcings. These simulations are specif-

ically interesting owing to their large internal variability induced by an internally-driven centennial oscillation of the AMOC

(Meccia et al., 2022), and we will use them to assess the potential role of the AMOC.

2.2 Methods

2.2.1 Metrics145

The NAO index is computed as the leading EOF of daily deseasonalized DJF 500hPa geopotential height anomalies in the

Euro-Atlantic sector 30-90N, 80W-40E. A seasonal cycle is estimated by taking the average daily NAO value, for each day in

DJF, across all years available: this cycle is then removed. When computing the NAO index for ensemble forecast data, all the

ensemble member data is used to compute the EOF, after which each members geopotential height �eld is projected onto the

EOF pattern to obtain the individual NAO indices. The timeseries is not standardised further.150

To compute indices of the jet speed and latitude, we follow the simpli�ed methodology of Parker et al. (2019). Wind �elds

are �rst interpolated to a regular 1 degree grid. Daily DJF 850hPa zonal winds are then restricted to the region 15-75N, 60-20W

and smoothed with a 5-day running mean. For any given day, the jet is said to be located at the latitude where the magnitude of
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the zonally averaged winds in this region is maximum. The jet latitude on that day is precisely this latitude, while the jet speed

is the magnitude of the maximum. As with the NAO, a seasonal cycle is removed.155

An `SPNA' index measuring SST variability in the sub-polar North Atlantic is also used extensively. This is de�ned as the

DJF-averaged SSTs, averaged over the region 49-57N, 50-25W. The motivation for this precise choice is given in the main

text. The results are not sensitive to small shifts in this region.

A more standard AMV index is also computed for comparison with the SPNA index. DJF SSTs in the North Atlantic domain

0-70N, 80W-0W are detrended at every gridpoint; the �rst empirical orthogonal function of the resulting �eld is the standard160

AMV `horseshoe' pattern, and we thus take the corresponding principal component to be our AMV index.

Note that we do not remove linear trends from any of these timeseries. The question of whether and how to isolate internal

variability in the AMV and related timeseries is not entirely clear (Deser and Phillips, 2021) and trends in the SPNA and jet

speed timeseries we primarily consider here are small (e.g. around -0.5% per year on average for the SPNA), with the decadal

variability dominated by the oscillations characteristic of internal variability. Removing the trends is thus found to have no165

impact on the analysis (e.g. conclusions drawn concerning signi�cance).

2.2.2 Statistics

Our default stance on signi�cance testing is to explicitly specify a statistical model representing the null hypothesis, and then

generate signi�cance thresholds by making 10,000 random draws using the model; all tests carried out in this way are 2-sided.

Because the motivation behind the choice of each statistical model depends on the situation at hand, we introduce each such170

model in the main text as and when it is required. However, we note that when modelling SSTs we generally make use of

the `Fourier Phase Shuf�ing' method (Ebisuzaki, 1997). This method can be loosely described as follows. First compute the

Fourier transform of the timeseries of interest. Secondly, for each Fourier mode, replace the computed phase by a randomly

chosen one. Third, convert the resulting Fourier series back to a timeseries. The resulting randomly generated timeseries is

guaranteed to have the same autocorrelation (at all lags) and degrees of freedom as the original timeseries, which is important175

given the considerable autocorrelation present in the SST timeseries we will be examining. In particular, a null hypothesis

modelling SSTs in this way will typically produce much stricter signi�cance thresholds than those that model SSTs using an

AR1, which only speci�es the autocorrelation at lag 1.

3 Predictable jet variability in ASF20C and DPLE

3.1 Predictability of the jet speed and not the jet latitude180

We �rst examine what low-frequency jet variability is skillfully reproduced by ASF20C. Figure 1 shows 10 and 30-year running

means of the NAO, jet latitude and jet speed for ERA20C and the ASF20C ensemble mean. One aspect of the `signal-to-noise

paradox' is that the ASF20C ensemble mean standard deviation is considerably smaller than that of ERA20C: this can be seen

here by comparing the magnitudes of the twoy-axes, which highlight that the standard deviation in ERA20C is around 4-5
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times greater than that of the ensemble mean. It can be seen that ASF20C skillfully reproduces decadal NAO variability across185

the entire period 1900-2010, with a correlation coef�cient of� 0:4� 0:7 depending on the choice of smoothing: using the raw

seasonal data gives a correlation of 0.21. The correlations obtained using 10-year smoothing closely match those reported in

Smith et al. (2019) and Athanasiadis et al. (2020) using genuine decadal forecasts, suggesting that the decadal forecast skill

they reported might extend all the way back to 1900. Figure 1 also clearly shows that ASF20C cannot skillfully reproduce

decadal jet latitude variability, butcan skillfully reproduce decadal jet speed variability. Furthermore, if we regress out the190

(decadally averaged) ensemble mean jet speed from the ensemble mean NAO and correlate the residual with the observed

NAO, we obtain� 0:1 using 10-year averages and� � 0:1 using 30-year averages. Therefore, the majority of the skill that

ASF20C has at reproducing decadal NAO variability is related to the jet speed. Figure A1 in the Supporting Information (SI)

shows that, similarly, the coupled hindcast CSF20C has signi�cant skill at predicting decadal variations in the speed but not

the latitude.195

Figure 1. Timeseries of 10-year running DJF means of (a) the NAO, (b) the jet latitude, and (c) the jet speed. The same but with 30-year

running means in (d), (e) and (f). The thick black curves are always ERA20C and the dashed blue curves are always the ASF20C ensemble

mean. Note the differenty-axes for the black and blue curves. The value C in each subplot is the correlation between the two timeseries.

Figure 2 shows that the same conclusion is true for the DPLE forecasts: there is no apparent predictability of decadal shifts

in the jet latitude, but high skill at predicting shifts in the jet speed. Note that taking 30-year means is much less sensible for

DPLE, given its shorter coverage of 56 years, but these are included anyway for direct comparison with Figure 1.
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