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Abstract. It has been demonstrated that decadal variations in the North Atlantic Oscillation (NAO) can be predicted by current

forecast models. While Atlantic Multidecadal Variability (AMV) in sea surface temperatures (SSTs) has been hypothesised as

the source of this skill, the validity of this hypothesis and the pathways involved remain unclear. We show, using reanalysis and

data from two forecast models, that the decadal predictability of the NAO can be entirely accounted for by the predictability

of decadal variations in the speed of the North Atlantic eddy-driven jet, with no predictability of decadal variations in the5

jet latitude. The sub-polar North Atlantic (SPNA) is identified as the only obvious common source of an SST-based signal

across the models and reanalysis, and the predictability of the jet speed is shown to be consistent with a forcing from the

SPNA visible already within a single season. The pathway is argued to be tropospheric in nature, with the SPNA-associated

heating extending up to the mid-troposphere, which alters the meridional temperature gradient around the climatological jet

core. The link between SSTs and surface temperatures, which mediates this pathway, is shown to be underestimated in the10

forecast models by approximately a factor of two, with potential implications for the ‘signal-to-noise paradox’. The relative

roles of anthropogenic aerosol emissions and the AMOC at generating predictable SPNA variability are also discussed. The

analysis is extensively supported by the novel use of a set of seasonal hindcasts spanning the 20th century and forced with

prescribed SSTs.

1 Introduction15

European winter weather is strongly influenced by the variability of the North Atlantic eddy-driven jet, and it is therefore of high

societal value to predict this variability as far in advance as possible. Recent studies have shown that, remarkably, retrospective

ensemble forecasts (‘hindcasts’) are now able to skillfully predict some components of the low-frequency variability of the

winter jet at lead times of up to 10 years (Smith et al., 2019; Athanasiadis et al., 2020). However, the exact source of the

predictable signal and mechanisms involved remain unclear, making it uncertain to what extent one can rely on this skill to20

remain for genuine decadal forecasts of the future. The aim of this paper is to try to clarify these points.

In Simpson et al. (2018), by considering a jet index based on zonal winds at 700hPa, it was shown that the decadal variability

of the jet is much stronger in March than in the boreal winter months December, January, February (DJF). This late winter jet
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variability was argued to arise from the internally generated component of Atlantic Multidecadal Variability (AMV) in North

Atlantic sea surface temperatures (SSTs), though the mechanisms were not elucidated; they also showed that models failed to25

capture the connection. In alignment with the enhanced decadal variability, the observed connection between the AMV and

the jet was shown to be far greater in March than during DJF. Nevertheless, Smith et al. (2019) and Athanasiadis et al. (2020)

showed that skillful decadal forecasts of the DJF-averaged North Atlantic Oscillation (NAO) could be achieved, and the latter

suggested that the skill appeared to be driven by the AMV. Both Smith et al. (2019) and Athanasiadis et al. (2020) emphasised

an apparent ‘signal-to-noise paradox’ in these forecasts, mimicking the phenomenon observed for seasonal winter NAO fore-30

casts (Scaife and Smith, 2018). This ‘paradox’ effectively says that the real world appears to be much more predictable than

the forecast model thinks it is, with the model underestimating the response to forcing or the response to predictable boundary

conditions on seasonal-to-decadal timescales relative to the unpredictable noise. A practical consequence of this behaviour is

that models are likely underestimating the predictable component of decadal winter jet variability, suggesting that the results

of Simpson et al. (2018) and Athanasiadis et al. (2020) are consistent with a hypothesis that the AMV is driving predictable35

decadal jet1 variability from December through March. In fact, several studies have found that even the total decadal variability

appears to be systematically underestimated in models (Kravtsov, 2017; Wang et al., 2017; Kim et al., 2018; Simpson et al.,

2018; Bracegirdle, 2022).

Numerous studies have been conducted on the potential for air-sea coupling to generate links between the AMV and the jet,

starting with the pioneering work of Bjerknes (1964). The decadal variability of the AMV itself has been hypothesised to be40

driven by a combination of the Atlantic Meridional Overturning Circulation (AMOC) (Bjerknes, 1964; Delworth et al., 1993;

Kushnir, 1994), anthropogenic aerosols and other greenhouse gases (Booth et al., 2012; Bellomo et al., 2018; Robson et al.,

2022), and stochastic atmospheric forcing (Hasselmann, 1976; Clement et al., 2015; O’Reilly et al., 2019). An excellent recent

overview on these topics with more complete references can be found in Zhang et al. (2019). Different mechanisms have been

put forward for how the AMV affects the jet, including the direct modulation of low-level baroclinicity and stationary waves45

by the North Atlantic SST anomalies (Kushnir, 1994; Msadek et al., 2011; Kushnir et al., 2002; Peings et al., 2016); forcing

from the tropical Atlantic (Davini et al., 2015); and stratospheric pathways (Omrani et al., 2014). However, the response in

climate models to imposed AMV anomalies appears inconsistent and model dependent (Ruggieri et al., 2021), and the period

of highly reliable observational data is short, making it challenging to distinguish between different hypotheses.

One major source of uncertainty in and across many studies is that the decadal variability is an average over several different50

processes occurring on different timescales, due to (a) the continuous nature of air-sea coupling and (b) the fact that the AMV

pattern itself evolves over time, with the anomalies in the sub-polar North Atlantic (SPNA) arising first before propagating

towards the tropical Atlantic (Zhang et al., 2019; Wills et al., 2019). This makes it difficult to attribute causality between

atmospheric versus oceanic forcing, and also to distinguish between the role played by particular regions in the Atlantic ocean,

such as the sub-polar versus tropical North Atlantic. However, several studies have emphasised the importance of the SPNA55

in particular (Gastineau and Frankignoul, 2015; Woollings et al., 2015; Ortega et al., 2017; Wills et al., 2019), especially on

longer timescales (Delworth et al., 2017).

1Since the NAO is largely describing the variability of the jet, we will conflate these without comment for the remainder of the paper.
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In this paper, we make crucial use of two techniques to help address these challenges:

1. The separation of the eddy-driven jet into two components, corresponding to the speed and latitude of the jet.

2. The use of two seasonal hindcast ensembles, named ASF20C and CSF20C, spanning the period 1900-2010. ASF20C60

is forced with prescribed, observed boundary conditions (Weisheimer et al., 2017), while CSF20C is fully coupled

(Weisheimer et al., 2020) (more details in Section 2.1).

The first point is motivated by the fact that the variability and sensitivity of the latitude and speed of the jet are very different.

The jet latitude exhibits multimodality and considerable variability on seasonal timescales, but shows no significant variability

on decadal timescales beyond white noise (Woollings et al., 2010, 2014). The jet speed, on the other hand, is approximately65

Gaussian across all timescales and exhibits robust decadal variability (Woollings et al., 2014). Furthermore, Baker et al. (2017)

showed that the latitude and speed respond differently to thermal forcing, and Woollings et al. (2015) showed that the processes

responsible for latitudinal shifts in the jet clearly differ from those responsible for changes to the jet speed. This means that

analysis based on single indices which amalgamate the latitude and speed (such as the NAO index) may struggle to identify

robust links between the jet and SST anomalies. This approach has also recently been taken in Marcheggiani et al. (2023) using70

a complementary set of decadal forecasts.

To motivate the second point, we note that existing decadal forecasts only go back to 1954 at the earliest, leaving them

with a relatively small effective sample size once any low-pass filtering or decadal averaging has taken place. The period

1954 to present also does not adequately sample the variability associated with the AMV and the AMOC. There is therefore

great value in extending the analysis back to 1900. While taking decadal averages of a seasonal hindcast obviously does not75

constitute an actual decadal forecast, it nevertheless turns out to be useful to think of it as being like a ‘nudged’ forecast, where

both the atmospheric and oceanic state are being nudged back towards observations at the start of each winter (and moreover,

for ASF20C, the SSTs are being forecasted perfectly). We will show that in fact the decadal variability reproduced by the

seasonal hindcasts completely matches the predictable decadal variability of a genuine decadal forecast ensemble, justifying

this perspective post hoc. This not only allows us to confidently use ASF20C/CSF20C to extend our analysis back to 1900, but80

also introduces two considerable benefits: the lack of coupling in ASF20C simplifies the question of causality between ocean

and atmosphere, and the fact that the forecasts making up ASF20C/CSF20C only cover a single season simplifies the question

of timescales.

We will show that on decadal timescales there is no predictability of the latitude of the jet, and that all the observed skill

at predicting the winter NAO arises from the predictability of the speed of the jet. By comparing observations with the85

ASF20C/CSF20C seasonal hindcasts and the Decadal Prediction Large Ensemble (DPLE) decadal forecasts (Yeager et al.,

2018), we argue that predictable forcing of the jet speed arises from SST anomalies in the SPNA. Furthermore, we argue that

the predictable forcing occurring on decadal timescales arises as the accumulation of a smaller forcing taking place already

on seasonal timescales, with no need to invoke mechanisms spanning multiple seasons as in several other studies (Peings and

Magnusdottir, 2014b; Kwon et al., 2020). Finally, we argue that the response of the jet speed to SST anomalies in the SPNA90
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can be understood simply as the adjustment of the jet to changes in the tropospheric meridional temperature gradient across

the climatological jet core.

The structure of the paper is as follows. The data and methods are described in Section 2. In Section 3 we assess the

predictability of the NAO, jet speed and jet latitude in the models, while Section 4 is devoted to identifying potential sources of

skill from SSTs. Section 5 addresses the pathways, mechanisms and the ‘signal-to-noise paradox’, while Section 6 considers95

the roles of sulphate aerosols and the AMOC at generating predictable decadal variability in the SPNA. The results are finally

summarised and discussed in Sections 7 and 8.

2 Data and Methods

2.1 Data

2.1.1 ERA20C100

We use the 20th century reanalysis dataset ERA20C, spanning 1890-2010, as our observational ‘truth’ (Poli et al., 2013). This

reanalysis is constructed using a cycle of the Integrated Forecast System (IFS) forecast model, and is made up of consecutive

1-day forecasts with data assimilation. Due to differences in available observations between the beginning and end of the

20th century, the atmospheric component of ERA20C only assimilates surface pressure, in order to maintain coherence over

the whole period. Both ocean and sea-ice boundary conditions come from the HadISST2.1.0.0 dataset (Rayner et al., 2003).105

Although it is known that the internal variability is underestimated in the early 20th century (Dell’Aquila et al., 2016), ERA20C

constitutes a reasonable reference for the status of the North Atlantic climate.

2.1.2 ASF20C and CSF20C

The ASF20C model data considered comes from an atmosphere-only seasonal hindcast experiment covering the 20th century

(Weisheimer et al., 2017). A 51 ensemble member seasonal forecast is initialised every 1st of November from 1901 to 2010110

and allowed to run for 4 months, thereby producing a December-January-February (DJF) prediction for every year in this

period. The model used is version CY41R1 of the IFS. Its spectral resolution is TL255, corresponding to roughly 80km grid

spacing near the equator, with 91 levels in the vertical. The model is run in atmosphere-only mode with prescribed observed

sea-surface temperatures (SSTs) with boundary conditions and initial conditions from ERA20C. Further details can be found

in Weisheimer et al. (2017).115

We will additionally make use of the CSF20C hindcast. This hindcast is identical to ASF20C except it is run with dynamic

coupling between the atmosphere and ice/ocean, and is initialised using the coupled reanalysis CERA20C (Laloyaux et al.,

2018). The configuration is described in Weisheimer et al. (2020) and is similar to the SEAS5 operational seasonal forecast

at the European Centre for Medium-range Weather Forecasts (Johnson et al., 2019). The ocean model used is NEMO version

3.4 (Madec and the NEMO team, 2016), and the ice model is LIM2 (Fichefet and Maqueda, 1997): both are run at a 1 degree120

horizontal resolution.
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2.1.3 Decadal Prediction Large Ensemble (DPLE)

DPLE is made up of a suite of 40-member ensemble forecasts, each initialised on November 1st and run for 10 years. Forecasts

are initialised every year from 1954 to 2015. The forecasts are run using CESM version 1.1, using the same model and

component configuration as that used in the CESM1 large ensemble (Kay et al., 2015). The atmosphere component is version125

5 of the Community Atmosphere Model (CAM5: Hurrell et al. (2013)), with a horizontal resolution of around 1 degree and 30

levels in the vertical. The ocean component is version 2 of the Parallel Ocean Program (Danabasoglu et al., 2012) and the sea

ice model is version 4 of the Los Alamos National Laboratory (LANL) Community Ice Code (Hunke et al., 2010). Both are

run at a 1 degree spatial resolution. Further details can be found in Yeager et al. (2018).

To be consistent with CSF20C/ERA20C we restrict to the overlapping period 1954-2010. When assessing the decadal130

forecast skill of DPLE, we always take averages over the entire 10-year period. For example, suppose we have a timeseries

J made up of DJF averages of some quantity in reanalysis, and we want to assess the capacity of DPLE to predict J , where

overline denotes the average across the 10 winters from November 1954 to February 1964. Then the DPLE forecast of J is

taken to be the ensemble mean over xk(k = 1, . . . ,40), where the xk are the 10-year forecasts initialised on November 1st

1954, with k referring to ensemble member. By doing this for consecutive 10-year periods we obtain estimates of the decadal135

variability predicted by DPLE which we can correlate with the observed decadal variability.

Importantly, we do not perform any drift-correction of any kind in our analysis. The main goal of this paper is to understand

how the atmosphere responds to decadally varying SSTs, and this can be assessed in DPLE irrespective of any drift taking

place. Furthermore, it is not customary to de-drift seasonal forecasts, so no drift correction is done for ASF20C/CSF20C:

not de-drifting DPLE therefore makes the analysis more directly comparable between the forecast products. For DPLE we140

will only ever consider two timescales: the response taking place in the first season or the 10-year mean across the whole

forecast period. The drift taking place in the former is small, and the imprint of the drift in the latter is smoothed out by the

large averaging-window. Finally, we note that Athanasiadis et al. (2020) found that robust decadal NAO forecast skill can be

diagnosed in DPLE irrespective of whether drift-correction is carried out or not.

2.1.4 CMIP data145

In order to help assess the mechanisms, we will be examining intermodel spread in the mean state of the jet across a number

of climate model simulations. We analyse data drawn from the 5th (CMIP5) and 6th (CMIP6) phases of the coupled model

inter-comparison project. We analyse the CMIP6 historical experiments for 31 CMIP6 models (Eyring et al., 2016) detailed in

Table A1 of Appendix A in the Supporting Information (SI): only one member was selected for each model. We also analyse

a total of 71 ensemble members from 28 distinct CMIP5 models (Taylor et al., 2012) detailed in Table A2. These historical150

experiments consist of coupled uninitialised climate runs forced with historical greenhouse gas and aerosol forcings over the

20th century, with initial conditions sampled from a free-running pre-industrial control run.

To further boost the sample size, we also make use of model data produced as part of the PRIMAVERA project (Roberts

et al., 2018b), detailed in Table A3. These coupled simulations all follow the HighResMIP protocol (Haarsma et al., 2016),
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and are therefore initialised in 1950, following a short 50-year spin-up. The simulations span the 65 years between 1950 and155

2015. The historical forcing data is the same as for CMIP6, with the exception of aerosols and land-use. Six underlying models

were used, each run at a number of different resolutions: CMCC-CM2 (Cherchi et al., 2019), CNRM-CM6 (Voldoire et al.,

2019), EC-Earth3 (Haarsma et al., 2020), ECMWF-IFS (Roberts et al., 2018a), HadGEM3-GC31 (Williams et al., 2018),

MPI-ESM1-2 (Gutjahr et al., 2019), and AWI-CM-1.0 (Sein et al., 2017).

Note that the model data is the same as that used in Dorrington et al. (2022), and the tables of this paper have been reproduced160

from there with permissions. In total, the climate model data used consists of more than 8400 DJF seasons generated from 76

different climate models.

In addition to the historical CMIP6 data, we make use of two piControl CMIP6 (500-year and 603-year long respectively)

integrations from EC-Earth3 (Döscher et al., 2022). These simulations are atmosphere-ocean coupled runs with pre-industrial

forcings. Such simulations are specifically interesting owing to their large internal variability induced by an internally-driven165

centennial oscillation of the AMOC (Meccia et al., 2022).

2.2 Methods

2.2.1 Metrics

The NAO index is computed as the leading EOF of daily deseasonalized DJF 500hPa geopotential height anomalies in the

Euro-Atlantic sector 30-90N, 80W-40E. A seasonal cycle is estimated by taking the average daily NAO value, for each day in170

DJF, across all years available: this cycle is then removed. When computing the NAO index for ensemble forecast data, all the

ensemble member data is used to compute the EOF, after which each members geopotential height field is projected onto the

EOF pattern to obtain the individual NAO indices.

To compute indices of the jet speed and latitude, we follow the simplified methodology of Parker et al. (2019). Wind fields

are first interpolated to a regular 1 degree grid. Daily DJF 850hPa zonal winds are then restricted to the region 15-75N, 60-20W175

and smoothed with a 5-day running mean. For any given day, the jet is said to be located at the latitude where the magnitude of

the zonally averaged winds in this region is maximum. The jet latitude on that day is precisely this latitude, while the jet speed

is the magnitude of the maximum. As with the NAO, a seasonal cycle is removed.

An ‘SPNA’ index measuring SST variability in the sub-polar North Atlantic is also used extensively. This is defined as the

DJF-averaged SSTs, averaged over the region 49-57N, 50-25W. The motivation for this precise choice is given in the main180

text. The results are not sensitive to small shifts in this region.

Note that we do not remove linear trends from any of these timeseries. The question of whether and how to isolate internal

variability in the AMV and related timeseries is not entirely clear (Deser and Phillips, 2021) and trends in the SPNA and jet

speed timeseries we primarily consider here are small (e.g. around -0.5% per year on average for the SPNA), with the decadal

variability dominated by the oscillations characteristic of internal variability. Removing the trends is thus found to have no185

meaningful impact on the analysis (e.g. conclusions drawn concerning significance).
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2.2.2 Statistics

Our default stance on significance testing is to explicitly specify a statistical model representing the null hypothesis, and then

generate significance thresholds by making 10,000 random draws using the model. Because the motivation behind the choice

of each statistical model depends on the situation at hand, we introduce each such model in the main text as and when it190

is required. However, we note that when modelling SSTs we generally make use of the ‘Fourier Phase Shuffling’ method

(Ebisuzaki, 1997). This method can be loosely described as follows. First compute the Fourier transform of the timeseries of

interest. Secondly, for each Fourier mode, replace the computed phase by a randomly chosen one. Third, convert the resulting

Fourier series back to a timeseries. The resulting randomly generated timeseries is guaranteed to have the same autocorrelation

(at all lags) and degrees of freedom as the original timeseries, which is important given the considerable autocorrelation present195

in the SST timeseries we will be examining. In particular, a null hypothesis modelling SSTs in this way will typically produce

much stricter significance thresholds than those that model SSTs using an AR1, which only specifies the autocorrelation at lag

1.

Finally, in cases where ASF20C/CSF20C and DPLE disagree on whether an effect is statistically significant or not, we

always choose to place higher credence in ASF20C/CSF20C, due to the fact that (a) their sample size is approximately twice200

as large (N = 109 vs N = 56); and (b) they have more ensemble members (51 vs 40). It is possible that such disagreements

reflect genuine differences in physical mechanisms, but we do not consider this possibility here.

3 Predictable jet variability in ASF20C and DPLE

3.1 Predictability of the jet speed and not the jet latitude

We first examine what low-frequency jet variability is skillfully reproduced by ASF20C. Figure 1 shows 10 and 30-year running205

means of the NAO, jet latitude and jet speed for ERA20C and the ASF20C ensemble mean. One aspect of the ‘signal-to-noise

paradox’ is that the ASF20C ensemble mean standard deviation is considerably smaller than that of ERA20C: this can be seen

here by comparing the magnitudes of the two y-axes, which highlight that the standard deviation in ERA20C is around 4-5

times greater than that of the ensemble mean. It can be seen that ASF20C skillfully reproduces decadal NAO variability across

the entire period 1900-2010, with a correlation coefficient of ∼ 0.4−0.7 depending on the choice of smoothing: using the raw210

seasonal data gives a correlation of 0.21. The correlations obtained using 10-year smoothing closely match those reported in

Smith et al. (2019) and Athanasiadis et al. (2020) using genuine decadal forecasts, suggesting that the decadal forecast skill

they reported might extend all the way back to 1900. Figure 1 also clearly shows that ASF20C cannot skillfully reproduce

decadal jet latitude variability, but can skillfully reproduce decadal jet speed variability. Furthermore, if we regress out the

(decadally averaged) ensemble mean jet speed from the ensemble mean NAO and correlate the residual with the observed215

NAO, we obtain ≈ 0.1 using 10-year averages and ≈−0.1 using 30-year averages. Therefore, the majority of the skill that

ASF20C has at reproducing decadal NAO variability is related to the jet speed. Figure B1 in Appendix B of the SI shows that,

similarly, the coupled hindcast CSF20C has significant skill at predicting decadal variations in the speed but not the latitude.
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Figure 1. Timeseries of 10-year running DJF means of (a) the NAO, (b) the jet latitude, and (c) the jet speed. The same but with 30-year

running means in (d), (e) and (f). The thick black curves are always ERA20C and the dashed blue curves are always the ASF20C ensemble

mean. Note the different y-axes for the black and blue curves. The value C in each subplot is the correlation between the two timeseries.

JetSpeed correlations 10 year smoothing 30 year smoothing

Corr(ERA20C, ASF20C) 0.44 0.70

10% significance threshold ±0.42 ±0.70

5% significance threshold ±0.48 ±0.80

Corr(ERA20C, DPLE) 0.64 0.86

10% significance threshold ±0.62 ±0.80

5% significance threshold ±0.71 ±0.85

Table 1. DJF jet speed correlations between different data sets at different levels of smoothing. Significance thresholds assume a null

hypothesis of the interannual jet speed timeseries being uncorrelated white noise.

Figure 2 shows that the same conclusion is true for the DPLE forecasts: there is no apparent predictability of decadal shifts

in the jet latitude, but high skill at predicting shifts in the jet speed. Note that taking 30-year means is much less sensible for220

DPLE, given its shorter coverage of 56 years, but these are included anyway for direct comparison with Figure 1.
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Figure 2. Timeseries of 10-year running DJF means of (a) the jet speed, and (b) the jet latitude. The same but with 30-year running means in

(c) and (d). The thick black curves are always ERA20C and the dashed red curves are always the DPLE ensemble mean. Note the different

y-axes for the black and red curves. The value C in each subplot is the correlation between the two timeseries.

How significant are the jet speed correlations reported in Figures 1 and 2? The 1-year autocorrelation is ≈ 0.0 for all

three data sets, and we are therefore justified in assuming a null hypothesis of the DJF jet speed as being white noise. The

approximate Gaussianity of the jet speed distribution has been previously noted (Woollings et al., 2010; Parker et al., 2019).

By simulating 10,000 randomly generated DJF jet speed timeseries for each data set, taking 10 or 30-year running means225

and then computing correlations, we build up a distribution of correlations that can be obtained by chance. Note that taking

running means will automatically introduce considerable autocorrelation to the resulting timeseries. Table 1 summarises the

result of this significance testing. This shows that for ASF20C, whether considering 10 or 30 year smoothing, the decadal

jet speed correlations are only significant to within p < 0.1 and not p < 0.05: the same is true for CSF20C (see Figure B1).

For DPLE, the conclusion is the same except that the correlations using 30-year smoothing appear to be significant also with230

p < 0.05. However, as cautioned already, the small effective sample size here means that this level of confidence is probably

not justified. It goes without saying that the jet latitude correlations are never significant. We also note that the relatively large

negative correlation emerging for 30-year jet latitude variability in DPLE is not statistically significant when using a similar

null hypothesis.

Our results here contrast somewhat with those of Smith et al. (2019) and Athanasiadis et al. (2020), which both report statis-235

tically significant decadal NAO forecasts with p < 0.05. However, their significance tests differ from ours, and the smoothing

they use is also very close, but not identical, to the 10-year running means we use. Table 1 shows that the 10-year ASF20C

and DPLE jet speed correlations sit neatly between the bounds of the 5 and 10% significance thresholds, and it is therefore

9



plausible that these differences can explain why they report a p-value less than 0.05 and we do not. For this article, we will

assume that ASF20C and DPLE really do have significant skill at predicting decadal variations in the jet speed.240

3.2 Signals driving decadal jet predictability are visible on interannual timescales

The similar behaviour of ASF20C and DPLE suggests that the extra information provided to ASF20C (the correct climate state

every November 1st and the correct SSTs at all times) is not adding any extra jet speed skill beyond what is expected from an

actual free-running, coupled decadal forecast. We interpret this as strong evidence for the assertion that the signals responsible

for predictable decadal shifts in the jet speed are fully represented in ASF20C, and we will from now on assume that this is the245

case. This assumption has two important consequences.

Firstly, since each of the 109 ASF20C winter forecasts only knows about the initial conditions and boundary forcings of the

season in question, the sources of predictable decadal jet speed forcing must be present in their entirety within a single winter

season. Put differently, since the atmospheric variability in ASF20C is entirely generated by forecasts of a single season, any

decadal variability ASF20C generates must arise due to atmospheric variability taking place within single seasons. In particular,250

the predictable atmospheric signals, and the mechanisms involved, do not seem to require multi-year lags as some studies have

suggested they do (Peings and Magnusdottir, 2014b; Kwon et al., 2020). Secondly, since the ASF20C forecasts are uncoupled,

the forcing being exerted on the jet does not essentially depend upon atmosphere-ocean coupling, in the sense that no within-

season-feedbacks are necessary. To the extent that there is any interaction between the SSTs and the atmosphere in AS2F20C,

it must purely be from the former to the latter. In the sections that follow we will make use of these two points repeatedly to255

simplify the analysis and reasoning.

We emphasise straight away that while surface coupling appears to not be required to reproduce the low frequency jet speed

variability, missing or deficient coupling may play a role in generating the ‘signal-to-noise paradox’, as suggested in Scaife

and Smith (2018).

4 Sources of predictability from sea surface temperatures260

The midlatitude troposphere broadly speaking has a decorrelation timescale of about 2 weeks (Judt, 2020), and this is also true

for the daily jet speed index (not shown). This strongly suggests that the skill in both ASF20C and DPLE cannot be explained

by the persistence of atmospheric initial conditions, and is rather a result of forcing from some other slow timescale process.

Due to the considerable body of work emphasising the importance of SSTs in generating forecast skill, we make the assumption

here that decadal jet speed skill is a result of SST forcing. The validity of this assumption is discussed in Section 7.1.265

4.1 Sub-polar North Atlantic SSTs as a common signal across observations and forecasts

In order to locate potential sources of skill in SSTs, we compute correlations of the winter jet speed against winter SSTs at

every gridpoint. Because of our conclusion that these sources must be visible already on seasonal timescales (see Section 3.2),

we do this using both the raw DJF timeseries as well as timeseries obtained by applying a 10-year running mean. Sources of
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Figure 3. Correlations between the DJF JetSpeed timeseries and DJF SSTs at each gridpoint. In (a) for ERA20C using seasonal data; (b)

for ERA20C with a 10-year running mean applied; (c) for ASF20C using seasonal data; (d) for the ASF20C ensemble mean with a 10-year

running mean applied. In (e) are shown the correlations from (b) that are the same sign across all subplots and significant (p < 0.05) in each

subplot by itself. Stipling indicates significance using a two-tailed t-test (p < 0.05). The period 1900-2010 is used.

Figure 4. Correlations between the DJF JetSpeed timeseries and DJF SSTs at each gridpoint. In (a) for CSF20C using seasonal data; (b) for

the CSF20C ensemble mean with a 10-year running mean applied; (c) for DPLE using seasonal data; (d) for the DPLE ensemble mean with

a 10-year running mean applied. In (e) are shown the correlations from (b) that (i) are of the same sign in both (a) and (b) of this plot and

subplots (a) and (b) of Figure 3, and (ii) significant (p < 0.05) in each of these four subplots by themselves. Stipling indicates significance

using a two-tailed t-test (p < 0.05). The period 1900-2010 is used.

skill are then assumed to correspond to regions of significant correlations that are common to ERA20C, ASF20C, CSF20C270

and DPLE across both interannual and decadal timescales. While it is of course possible that the locations of signals differs
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somewhat across the datasets (e.g. due to mean state biases in the forecast models), the simplest - and more physically sound -

possibility is that the signals are identical across the datasets, so we consider this possibility first.

Figure 3 shows gridpoint correlations for ERA20C and ASF20C, at interannual (top row, (a) and (c)) and 10-year (bottom

row, (b) and (d)) timescales. Similarly, Figure 4(a)-(d) shows interannual and 10-year gridpoint correlations but for CSF20C275

and DPLE. It is an instructive exercise to search for commonalities across these four subplots by eye, and doing so quickly

highlights the SPNA. Already just comparing Figures 3(a) and (c) makes this clear. A comparison with CSF20C and DPLE

corroborates this, and furthermore seems to rule out signals from both the tropical Pacific, tropical Atlantic and Indian ocean,

since the correlations are opposite in sign between ASF20C/CSF20C and DPLE in these regions.

To justify this visual inspection further, we can filter the interannual-to-decadal correlations for common signals. In order to280

minimise false negative rates, i.e. accidentally discarding regions that are actually important, we deliberately use a relatively

lenient filter here. Concretely, a gridpoint passes the filter if (i) the correlations at that gridpoint are of the same sign across

the four subplots (a)-(d) of Figure 3, and (ii) statistically significant at p= 5% in each of the four subplots with respect to a

two-tailed t-test. This is a lenient filter by virtue of the fact that the t-test does not take into account the long memory of SSTs

and will therefore suggest significance far more often than reasonable. This leniency has the benefit that regions not passing285

the filter are unlikely to be important: stronger significance tests can then be applied to any regions that do pass the filter.

The results are shown in Figure 3(e), where we have plotted the 10-year gridpoint correlations from Figure 3(d) that satisfy

conditions (i) and (ii). This strongly suggests is that there are only two obvious signals common to ERA20C and ASF20C on

interannual-to-decadal timescales: the SPNA, and an isolated patch in the south Pacific.

Similarly, Figure 4(e) shows the 10-year correlations of CSF20C common across ERA20C and CSF20C on both timescales.290

Note that the south Pacific patch has now nearly vanished. Comparing Figure 3(e) with Figure 4(e) therefore suggests that

the SPNA is the only location where potentially robust correlations can be found on interannual-to-decadal timescales for

ERA20C, ASF20C and CSF20C simultaneously. The same conclusion is drawn if one applies the same filter to search for

common signals between ASF20C and CSF20C (not shown). Inspection of the signals in DPLE shows that the SPNA is also

clearly highlighted on 10-year timescales (Figure 4(d)). On interannual timescales (Figure 4(c)), the signal from the SPNA is295

evidently weaker and mostly confined to the eastern side. However, because the sample size of ERA20C, ASF20C and CSF20C

is almost twice that of DPLE, we consider it justified to weight these datasets higher than DPLE, and suggest that the weaker

interannual DPLE signal is simply due to the reduced sample size.

To summarise the above discussion, the SPNA emerges as a common region of interannual-to-decadal correlations between

SSTs and the jet speed across ERA20C, ASF20C, CSF20C and DPLE, and appears to be the only such common region. We300

interpret this as strong evidence for the importance of the SPNA in driving decadal jet predictability. Crucially, the coupled

DPLE forecasts have skill at predicting the decadal SST variability in the SPNA region (Yeager et al., 2018; Yeager, 2020).

We therefore define an SPNA timeseries as the DJF averaged SSTs across the domain 49-57N, 50-25W. This box was chosen

because it encloses almost precisely the negative correlations highlighted in Figure 3(e). The remainder of the analysis we carry

out is not sensitive to small shifts in the definition of this box. Other differences between the datasets seen in the two Figures,305

while interesting, do not seem relevant to the study at hand, and so are not discussed.
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It is worth mentioning the phenomenon of false discovery rates, namely the fact that if one looks for correlations across

sufficiently many predictors then some are bound to be significant by chance. This effect would a priori be expected to be high

when considering correlations across thousands of gridpoints with high spatial autocorrelation. However, based on the results

and discussion of previous sections, we are now assuming that (a) there is decadal forecast skill which needs to be explained310

and (b) that this skill comes from the SSTs. A rejection of any and all gridpoint correlations as ‘false discoveries’ would be

directly counter to this assumption, and is therefore not done. The discovery of a region of correlations common across 4 data

sets on the other hand can be seen as providing additional evidence towards our assumption.

4.2 Significance of the SPNA-JetSpeed link

Figure 5. Timeseries of 30-year running means of ERA20C SPNA SSTs (thick purple: the sign has been flipped for visual convenience),

ERA20C jet speeds (thick black), ASF20C ensemble mean jet speeds (dashed blue) and DPLE ensemble mean jet speeds (dashed red). The

values of C in the legend indicate the correlation between the jet speed timeseries and the relevant SPNA timeseries, and the values of σ

indicates the standard deviations of the jet speed timeseries. Note the different y-axes for the jet speed and SPNA timeseries. The jet speed

indices have all been normalised to have mean 0 and standard deviation 1.

Table 2 summarises the correlations between SPNA SSTs and jet speed for the different datasets across different timescales.315

Figure 5 visualises the 30-year running mean timeseries: the sign of the SST index has been flipped for visual convenience.

To generate the 5% significance threshold reported in the table, we assume a null hypothesis that the jet speed and SPNA

are uncorrelated random variables. The interannual jet speed timeseries is modelled as a normal distribution with no memory

across years, as before. To create synthetic SPNA timeseries, we apply the Fourier phase shuffle method to the interannual

SPNA timeseries, in order to generate random draws that preserve the considerable autocorrelation. By correlating 10,000 such320

synthetic timeseries, along with those obtained by applying a 10 or 30-year smoothing, we can then numerically estimate the

5% significance threshold. Note that the confidence intervals for ERA20C, ASF20C and CSF20C were found to be almost
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SPNA vs JetSpeed Raw 10 year smoothing 30 year smoothing

ERA20C -0.45 -0.88 -0.97

ASF20C -0.24 -0.41 -0.68

CSF20C -0.27 -0.57 -0.70

5% significance threshold ±0.19 ±0.56 ±0.84

DPLE -0.13 -0.28 -0.88

5% significance threshold ±0.29 ±0.81 ±0.92

Table 2. Correlations between DJF averaged SPNA SSTs and DJF averaged jet speed at different levels of smoothing. The 5% significance

thresholds shown using the null hypothesis described in the main text. Significant correlations are highlighted in bold.

identical, so we only report a single confidence interval encompassing all three, obtained by taking the average across the three

individual intervals.

The correlation between SPNA and the jet speed is highly significant in ERA20C for all timescales considered here, suggest-325

ing a robust physical link between these quantities. Both ASF20C and CSF20C have significant correlations on the interannual

timescale, and CSF20C also for 10-year timescales. The other correlations obtained do not pass the threshold. Of course, the

lack of consistent statistical significance does not mean the physical link in ERA20C is not simulated by the forecast models,

only that these correlations would not be sufficient to establish such a link when viewed in isolation. As emphasised in Shep-

herd (2021), it is crucial to include physical reasoning and prior knowledge when drawing conclusions about significance. We330

return to this, and the question of causality, in the Discussion section.

4.3 Decadal timescale forcing as the accumulation of seasonal timescale forcing

In Section 3.2, we argued that the presence of skill in ASF20C implies that predictable jet speed variability is a result of forcing

from the boundary conditions taking place already within a single season. Having now argued that this forcing is coming from

SPNA SSTs, it remains to test whether the forcing exerted by the SPNA on the jet taking place on seasonal timescales suffices335

to explain decadal timescale correlations seen in Table 2. That is, while the SPNA may be varying on decadal timescales, we

want to now test whether the forcing it exerts on the atmosphere above can be understood as taking place on seasonal timescales

without the need to invoke slower multi-annual-to-decadal timescale atmospheric processes.

To test this, we model the SPNA-JetSpeed system as follows. For a given dataset, we perform a linear regression of the

interannual SPNA timeseries against the interannual JetSpeed timeseries to get340

JetSpeed = a ·SPNA+ b+ ϵ (1)

for some constants a,b and a noise term ϵ which is normally distributed with mean 0. We then generate a random, synthetic

timeseries of DJF SPNA using the Fourier phase shuffle method, as in the previous subsection. A corresponding JetSpeed

timeseries is then obtained using the linear relationship just derived. We then take 10 and 30-year running means of these
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Figure 6. Histograms of the SPNA-JetSpeed correlations expected by chance from the seasonal timescale link, (a) and (d); taking 10-year

averages of the seasonal link, (b) and (e); taking 30-year averages of the seasonal link, (c) and (f). See main text for details. The top row uses

data fitted to ASF20C and the bottom to ERA20C. In each subplot the red line indicates the actually observed correlation in that dataset, and

the dashed lines indicate the 95% confidence interval. The histograms are normalised so that the area underneath is 1.

synthetic DJF timeseries and compute the correlations between them. By repeating this procedure 10,000 times we can assess345

what decadal timescale correlations are expected from taking running means of the interannual SPNA-JetSpeed link.

The result of this for ASF20C is summarised in Figures 6(a), (b) and (c). The synthetic seasonal timescale correlations (Fig-

ure 6(a)) capture the observed seasonal correlation by construction. After taking running means, the distribution of synthetic

correlations becomes notably skewed. For both 10 and 30-year running means (Figure 6(b) and (c)), the observed correlation

is still comfortably within the 95% confidence interval of the synthetic correlations. The same analysis for ERA20C is shown350

in Figures 6(d), (e) and (f). The observed 10 and 30-year correlations are closer to the upper threshold here, but still fall within.

This implies that the decadal timescale correlations of ASF20C and ERA20C can be completely explained by the interannual

SPNA-JetSpeed link, as hypothesised.

We emphasise that we are not suggesting the SPNA variability is purely interannual, but that the connection between the

SPNA and the atmosphere occurs within the span of a single season. The same conclusion can be seen to hold for CSF20C by355

comparing Table 2 with Figure 6; we also verified the analysis using the shorter DPLE (not shown).
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5 Physical pathways and the signal-to-noise paradox

5.1 What affects the speed of the jet in climate models?

Figure 7. Filled contours: correlations between the spread in CMIP models’ climatological DJF jet speeds and (a) the model spread in

DJF SSTs at every gridpoint; (b) the model spread in DJF 500hPa air temperatures at every gridpoint. Line contours: the multimodel mean

climatological zonal winds at 850hPa (contours drawn at 4, 6, 8 and 10 m/s). The climatologies are computed over the period 1980-2015.

See main text for details of the models used. In (b), green boxes highlight the SPNA region and the jet-core region used in the computation

of Ujet in Section 5.2. Stipling highlights statistical significance (p= 5%) with respect to a two-tailed t-test.

In order to shed light on the pathways involved, it is helpful to first understand the related question of what affects the

climatological speed of the eddy-driven jet in climate models. To this end, we show in Figure 7 correlations between the360

multimodel climatological DJF jet speeds and climatological DJF temperatures (SSTs and air temperatures at 500hPa) at

multiple gridpoints for 76 coupled CMIP5 and CMIP6 climate models (see Section 2). In other words, for a given gridpoint

x and model n, let Tx,n be the climatological temperatures (at sea-surface or 500hPa) of model n at gridpoint x, and let

JetSpeedn be the climatological jet speed for model n. Then the correlations plotted at gridpoint x is the correlation between

the variables Tx,n and JetSpeedn indexed by n. Thus a positive correlation at a gridpoint means that a model with warmer365

temperatures at that gridpoint would be expected to have a faster jet. The period used to compute the climatologies is 1980-

2015. Stipling indicates significance (p= 5%) with respect to a two-tailed t-test, where we simply assume the model means

are all independent of each other and distributed normally.

Figure 7(a) shows the typical NAO-related tripole pattern in the North Atlantic, with the northern pole corresponding to the

sub-polar North Atlantic and the southern pole corresponding to the tropical Atlantic. This is consistent with both a driving370

of the jet by the SSTs (Deser et al., 2007; Baker et al., 2019) and vice versa (Seager et al., 2000; Deser et al., 2010). Figure

7(b) shows that in the mid troposphere the dominant signal is the meridional temperature gradient between the jet core and the

poleward flank of the jet. By computing an index based on the difference in 500hPa DJF temperatures across the two peaks in

16



Figure 7(b), we found that this meridional gradient accounts for more than 60% of the intermodel spread (correlation C ≈ 0.8;

not shown). Notably, at 500hPa the atmosphere above the tropical Atlantic has a relatively weak association with the model375

spread.

Changes to meridional temperature gradients in the midlatitudes necessarily alter the eddy-driven jet, both directly and

immediately via thermal wind balance and more indirectly by changing the baroclinicity. We interpret Figure 7(b) as saying

that the meridional gradient most relevant for the speed of the eddy-driven jet in climate models is the local one between the

jet core and the atmosphere situated directly above the SPNA2. This offers independent evidence for the potential importance380

of the SPNA region, and will be made use of in the following section.

5.2 The tropospheric pathway from sub-polar North Atlantic SSTs to the jet speed

Figure 8. Correlations in ERA20C between SPNA SSTs and (left column) zonally averaged air temperatures at different pressure levels;

(right column) zonally averaged zonal winds at different pressure levels. November averages are used in (a) and (b), while DJF averages are

used in (c) and (d). The period 1900-2010 is used. The climatological zonal winds are shown in grey contours. Stipling indicates significance

(p= 5%): see main text for details.

2By contrast, in the southern hemisphere, Ceppi and Hartmann (2013) showed that the width of the Hadley Cell could explain intermodel spread in the

southern hemisphere eddy-driven jet speed, suggesting a clear role for the tropics. They further reported that no such relationship could be found in the northern

hemisphere, consistent with the lack of a strong tropical signal in Figure 7(b).

17



Figure 9. Correlations in ERA20C between jet speeds and (a) zonally averaged air temperatures at different pressure levels; (b) zonally

averaged zonal winds at different pressure levels. DJF averages are used in both. The period 1900-2010 is used. The climatological zonal

winds are shown in grey contours. Stipling indicates significance (p= 5%) with respect to a two-tailed t-test.

Returning now to the question of how SPNA SSTs can modulate the jet speed, the results of the previous section suggest

a simple explanation in keeping with the analysis of Woollings et al. (2015): anomalously cold SSTs in the SPNA cools the

atmosphere aloft, thereby strengthening the local meridional temperature gradient around the jet, causing an intensification of385

the eddies and thereby an increased jet speed. Similarly for warm anomalies. To strengthen the case for this pathway, Figure

8 shows the vertical extent of the anomalies associated with SPNA SSTs in ERA20C, by correlating November SPNA SSTs

with zonally averaged (a) temperatures and (b) zonal winds at different pressure levels: the averaging is done over longitudes

60W-20E. Significance at 5% (indicated by stipling) uses a null hypothesis which models the SPNA using the Fourier phase

shuffle method and temperatures/winds as white noise. Figures (c) and (d) show the same but using DJF means. Figures 8(a)390

and (c) suggest that the heating does not remain confined to the surface, but extends up to around 300hPa, making the robust

impact on the jet seen in Figure 8(b) plausible. For completeness, the reverse link from the jet speed to temperatures and winds

is shown in Figure 9. Figure 9(a) shows that the heating pattern associated with the jet is maximal in the mid-troposphere.

The heating associated with the SPNA (Figure 8(a) and (c)) projects well onto the jet pattern, but is maximal at the surface.

Comparing Figures 8(d) and 9(b) confirms that the association between the SPNA and the zonal winds projects onto the jet395

speed signature.

Detailed analysis of the tropospheric response to an SST anomaly in the North Atlantic, such as in Deser et al. (2007), show

that the response generally proceeds in two stages. To begin with, the induced anomaly is baroclinic in nature and localised

to the heat source. In the second stage the baroclinic anomalies are removed by eddy heat and momentum transport, leading

to a relatively barotropic structure with a more hemispheric scope. Figure 8 shows that in DJF, the structures are relatively400

barotropic in nature, consistent with this tropospheric pathway having taken place. Note that this approximately barotropic

structure is also visible when plotting regression coefficients instead of correlations (not shown).

To further test the importance of the tropospheric heating anomalies over the SPNA, we will compute a rough estimate of

what ERA20C jet speed anomalies are expected from SPNA variability using geostrophic wind balance. We define a region
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labeled ‘South’ by 35-43N, 75-40W, and a region labeled ‘North’ using the same domain as the SPNA. Both regions are high-405

lighted in Figure 7(b) with green boxes. We then assume a constant layer-thickness between 1000 and 300hPa, where 300hPa

is the upper limit of the heating associated with the SPNA, as seen in Figure 8(c). Let T̂N and T̂S denote the layer-averaged

DJF air temperature between 1000 and 300hPa in the North and South regions. By regressing our SPNA SST timeseries against

T̂N , we obtain the SPNA-driven component which we denote by T̂N (SPNA). We let [T̂S ] denote the average of T̂S across

all years 1900-2010. The timeseries of the difference T̂N (SPNA)− [T̂S ] thereby roughly measures the layer-averaged merid-410

ional temperature gradient across the jet core purely associated with SPNA SST variability. The discussion of the previous

section suggests this gradient should be highly relevant for determining the jet speed. Geostrophic balance with a constant

layer-thickness relates this gradient to the zonal winds Ujet in the jet core according to

Ujet =−R

f
· log(1000/300) · 1

dy
(T̂N (SPNA)− [T̂S ]), (2)

where R= 287.05 is the gas constant, f = 1× 10−4 is the approximate midlatitude Coriolis, and dy = 2.553× 106 metres.415

Here we have used that 1 degree latitude is roughly 111km. The Ujet timeseries is compared to the jet speed timeseries for

ERA20C in Figure 10 using 30-year averages. They not only correlate extremely well (C = 0.97), but also share virtually

identical magnitudes. In other words, the decadal jet speed variability of ERA20C can be fully accounted for by tropospheric

temperature anomalies associated with the SPNA. It is worth emphasising that the key simplifying assumption made to compute

Ujet (that the only temperature gradient variability which matters is that associated with SPNA SSTs) is not part of standard420

geostrophic balance, and it is therefore not obvious, a priori, that such good agreement should be obtained.

Figure 10. Black curve: 30-year averaged ERA20C DJF jet speed. Blue dashed curve: 30-year averages of the ERA20C Ujet timeseries,

which roughly estimates the zonal wind variability associated with SPNA-induced changes to the meridional temperature gradient assuming

geostrophic balance (see main text for details). The value C denotes the correlation coefficient between the two timeseries.
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5.3 The signal-to-noise paradox and biases in heat transfer

As discussed in the Introduction, there is a ‘signal-to-noise paradox’ in the forecast models, which suggests that the models

are responding too weakly to sources of predictable forcing. Since we have argued that the predictable forcing originates in

the SPNA, it is natural to consider why the response to SST anomalies in this region may be too weak in the forecast models.425

As previously noted, the response of the atmosphere to an imposed SST anomaly proceeds in two stages, with the first stage

dominated by the immediate localised response, and the second stage dominated by the eddies and eddy-meanflow interactions.

There is already evidence to suggest that the second stage contributes to the ‘paradox’, due to a deficient eddy feedback in the

forecast models (Hardiman et al., 2022). Here we would like to raise the possibility that biases in the first stage may also be

contributing.430

Figure 11. In (a): daily lag correlations between area-averaged SPNA SSTs and area-averaged SPNA two-meter temperatures (T2M). In (b):

correlations between area-averaged SPNA SSTs on November 1st and between area-averaged SPNA T2M on subsequent days. In (c): daily

autocorrelation of area-averaged SPNA T2M. In each case the thick black line is ERA20C, the dashed red line is the ASF20C ensemble

mean, and the red shading shows the full range of the ASF20C ensemble spread. Only days in DJF are used, covering the period 1900-2010.

The fast atmospheric response to an SST anomaly is a result of forcing exerted by heatflux anomalies. There are several

issues involved in comparing the heatflux variability across the forecast data we have considered here, which comprise a mix

of coupled and uncoupled models whose heatflux variability will necessarily differ (Barsugli and Battisti, 1998). Furthermore,

while ERA20C is created using daily forecasts of an uncoupled model, and thus at face value similar to ASF20C, the heatfluxes

in ERA20C actually behave much more like those of a coupled model, like CSF20C or DPLE, and not like those in ASF20C435

(not shown). This is likely due to the constraints placed by the data assimilation, as well as the fact that the effects of air-sea

coupling are small on daily timescales. Such subtleties would be important to account for carefully, since they may have a big

impact on the interpretation of any analysis performed (O’Reilly et al., 2023). Finally, it is in general not straightforward to

isolate the component of the heatflux variability associated with forcing by SSTs, as opposed to atmospheric forcing.

In an attempt to sidestep these complications, we will assess potential biases in the immediate localised response by analysing440

the link between daily SSTs and 2-metre air temperature (T2M). In Figure 11(a) we show the lagged correlations between

these quantities averaged across the SPNA region for ERA20C and ASF20C. A bias in these correlations would be expected
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in ASF20C when T2M leads the SSTs, due to the lack of coupling. However, a substantial bias is also evident when the SSTs

lead T2M, even (and especially) at lag 0, with none of the 51 ensemble members able to replicate the behaviour of ERA20C.

This implies that, in ASF20C, there is a substantial underestimation of how tightly linked SSTs and near-surface temperatures445

are.

The lag correlations in Figure 11(a) are computed using all days in DJF, so this underestimation could in principle be taking

place exclusively in late winter. However, Figure 11(b) shows that the same bias is visible even when only correlating SSTs on

November 1st (the initialisation day) with the T2M on subsequent days. We conclude that the daily SST-T2M link is likely too

weak in ASF20C at all times. In particular, this suggests that the weak link is unlikely to be purely a result of deficiencies in450

the atmospheric adjustments due to the eddies, as these would be expected to manifest more clearly only after some time has

passed. Instead, the weak link seems more obviously consistent with biases in the immediate surface temperature response.

Such an inadequate surface temperature response from the slowly varying SSTs would also explain the significantly reduced

T2M autocorrelation in ASF20C, shown in Figure 11(c).

We have argued that SPNA SSTs force the jet by altering the meridional temperature gradient around the jet core, not just455

at the surface but at depth (Figure 8(a)). In ASF20C the atmospheric temperature response to SSTs is already substantially

weaker than observed just 2 metres above sea-level. We therefore cautiously propose that the ‘signal-to-noise paradox’ in

decadal NAO forecasts may be related at least partially to deficiencies in the direct transfer of heat from the ocean to the

atmosphere in models. Note that biases in extratropical surface coupling have previously been suggested as contributing to the

‘paradox’ (Scaife and Smith, 2018; Zhang et al., 2021). It is not clear if the bias we report here is due to the lack of coupling460

in ASF20C or due to a more fundamental problem with the one-way communication from the ocean to the atmosphere, though

the fact that CSF20C and DPLE suffer just as badly from the ‘paradox’ as ASF20C is suggestive of the latter. We discuss this

point more in Section 7.5.

6 Drivers of decadal SST variability and their link to the jet speed

We have highlighted SSTs in the SPNA as the main source of decadal predictability of the jet speed. Understanding what is465

driving the variability of these SSTs and their relation to jet speed variability is thus important to understand how reliable

forecast skill is likely to be in the future. A comprehensive examination of this using the jet speed framework goes beyond the

scope of the paper. Here we limit ourselves to only considering two key potential drivers: anthropogenic sulphate aerosols and

the AMOC.

6.1 The role of sulphate aerosols470

The question of how aerosols affect North Atlantic SSTs is still actively debated, and could include the role of both direct

radiative adjustments local to the region, as well as more indirect impacts from upstream emissions (Booth et al., 2012; Robson

et al., 2022). Here we will only consider the hypothesis put forth by Robson et al. (2022), due to it being based on a large

multimodel ensemble, unlike most other studies. In their study, they argued that sulphate aerosol emissions over the eastern
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Figure 12. In (a): the climatological SO4 emissions of ERA20C (in parts per billion by volume), which is the same as those in ASF20C and

CSF20C. In (b), timeseries of the 10-year averaged ERA20C SPNA SSTs, jet speed and area-averaged East North American SO4. The sign

of the SPNA timeseries has been flipped for visual convenience. In (a), the domain of the East North American region has been marked with

a thick black box and the SPNA domain with a thin black box.

part of North America led to a cooling of surface temperatures there, and that this cool air was then advected over the North475

Atlantic, thereby cooling the SSTs and ultimately modulating the AMOC. The possible direct impacts of emissions over the

SPNA region itself will not be considered, since the emissions are generally very low in this region.

ERA20C, ASF20C and CSF20C all share the same prescribed aerosol emissions, namely those used in CMIP5 (Lamarque

et al., 2010). The climatological SO4 emissions are shown in Figure 12(a), showing a clear concentration of emissions over the

eastern North American region. To study the impact of these emissions on the SPNA and jet speed, we define an SO4 timeseries480

by averaging the emissions over the box 30-45N, 260-285E. This box is visualised in Figure 12(a) and approximately covers

the eastern North American continent. This timeseries is compared to the 10-year averaged SPNA SSTs and ERA20C jet speed

in Figures 12(b) and (c). The SO4 timeseries matches both the SSTs and jet speed in the period 1940-2010, with a correlation
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of around 0.8. However, in the earlier period 1900-1940, the SO4 emissions are anticorrelated with the SSTs and jet speed,

with a correlation of around -0.3. Note that the CMIP5 aerosol forcing data is constant across each 10-year period, explaining485

the step-like quality of the SO4 timeseries.

We conclude that while aerosol emissions over North America may have played a role in driving decadal SPNA variability,

they are unlikely to explain the entire 20th century variability, especially in the early period when emissions are still very

low. Similar conclusions were drawn in earlier work by Zhang et al. (2013). Note that the forecast models are able to capture

the strong jet in this early period, despite the low aerosol emissions (Figure 1). If the aerosols are driving some of the SPNA490

variability, then this would be expected to lead to predictable shifts in the jet speed, as discussed in the present paper. It should

also be noted that an aerosol-induced cooling of North America would strengthen the land-sea contrast, which would also be

expected to drive a stronger jet (Portal et al., 2022). It is unclear if such a change in land-sea contrast alone can generate decadal

timescale forecast skill.

6.2 The role of the AMOC495

Figure 13. Timeseries of 30-year averages of the DJF SPNA SSTs (purple) and DJF jet speeds (black) in (a) the first EC-Earth3 pre-industrial

control ensemble member, and (b) the same for the second ensemble member. The sign of the SPNA timeseries has been flipped for visual

convenience. The value C in the titles indicates the correlation between the two timeseries. The timeseries have been normalised to have

mean 0 and standard deviation 1.

To understand if the AMOC alone can drive SPNA-induced jet speed variability, we examine the two EC-Earth3 pre-

industrial control simulations, which we refer to as piControl r1 and piControl r2. These simulations are particularly useful for
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assessing AMOC forcing, since they are known to exhibit large and striking centennial timescale AMOC oscillations (Meccia

et al., 2022). The lack of any anthropogenic emissions means the associated variability in the SPNA will be entirely due to the

AMOC.500

Figure 13 shows 30-year running DJF means of SPNA SSTs vs JetSpeed for the two ensemble members. The centennial

AMOC oscillations are clearly visible in the SPNA timeseries. The correlations obtained between the SPNA and JetSpeed are

-0.63 for the r1 member and -0.34 for the r2 member. A 5% significance threshold using the same null hypothesis as before

(modelling JetSpeed as white noise, SPNA with the Fourier phase shuffle method) is approximately ±0.5, implying that the r1

correlation is highly significant while the r2 is not.505

We cannot directly compare the correlations from these free-running coupled simulations to the ensemble mean correlations

of ASF20C. However, we note that if we concatenate back-to-back 5 ASF20C ensemble members, we get a timeseries of

length 5 · 109 = 545, approximately the same length as the piControl members. By randomly drawing 5 ASF20C members,

concatenating them, and computing the correlations between the resulting SPNA and JetSpeed timeseries, we can compare

ASF20C and piControl in a like-for-like manner. If we carry out 1000 random such draws, we find that the expected ASF20C510

correlation is around -0.2 with a 95% confidence interval of approximately [-0.51, 0.18]. Almost identical results are obtained

if using the CSF20C ensemble. This clearly suggests that the r2 correlation of -0.34 is perfectly consistent with the SPNA-

JetSpeed link diagnosed in ASF20C/CSF20C. It also suggests that the r1 correlation of -0.63 is larger than expected, though not

impossible, with a handful of concatenated ASF20C/CSF20C members producing correlations of around -0.6. Since the AMOC

oscillations are particularly strong in the piControl runs, it is possible that this translates into SPNA-JetSpeed correlations which515

may be unrealistically large. The r1 member may also just be a random outlier.

Based on the above analysis we conclude that AMOC oscillations alone can in principle produce SPNA variations associated

with an SPNA-JetSpeed link of the same strength as in the forecast models, even in the absence of any aerosol forcing. It is

therefore natural to speculate that the AMOC is responsible for the coherent SPNA and jet speed variability seen in the early

20th century (Figure 12), and likely contributes to the variability later on as well.520

7 Discussion

7.1 Other potential sources of skill

Our key argument for the importance of the SPNA can be understood as a conditional one: if one assumes that the skill comes

from SSTs, then Figures 3 and 4 suggest that the SPNA is the responsible region. How reasonable is this assumption? In other

words, could the skill originate from somewhere other than the ocean?525

It is possible in principle that the skill comes from the stratosphere (Omrani et al., 2014), which has a decorrelation timescale

of several months. However, the initial conditions of ASF20C (CSF20C) come from ERA20C (CERA20C), which only assim-

ilates surface variables. Because these do not strongly constrain the stratosphere, the stratospheric variability in ERA20C is

highly biased. Indeed, O’Reilly et al. (2019) found that the amplitude of the quasi-biennial oscillation (QBO) is substantially

weaker in ERA20C compared to reanalysis products that assimilate the atmosphere. They also reported a greatly reduced down-530
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ward propagation in ERA20C. O’Reilly et al. (2019) also considered the same ASF20C hindcasts and found that the seasonal

timescale association between the QBO and the NAO was essentially zero, unlike in forecasts assimilating the stratosphere. We

interpret this as evidence that there is limited scope for skill from stratospheric initial conditions in ASF20C. Another argument

towards the stratosphere not driving the predictability was given in Simpson et al. (2018), which showed using reanalysis that

the magnitude of stratospheric anomalies do not match those of the jet on decadal timescales. Note that while they discussed535

only March explicitly, their Figure B1 suggest similar conclusions would likely be drawn for DJF.

Besides the stratosphere, the remaining obvious candidates are ice and anthropogenic emissions such as carbon dioxide

and aerosols. However, the impact of ice on decadal jet variability has been found to be small compared to SSTs (Peings

and Magnusdottir, 2016; Ogawa et al., 2018; Liang et al., 2021). Furthermore, observations of ice are sparse and unevenly

distributed prior to 1979, with obvious implications for the potential quality of the ice data used in the ASF20C boundary540

forcing files. As for anthropogenic emissions, the analysis in Simpson et al. (2018) showed that globally averaged emissions

cannot explain the decadal variability of a closely related jet index. This leaves open the possible influence of local emissions.

The most obvious way for such local emissions to alter the jet is indirectly, by altering the radiative forcing and hence surface

temperatures. Such indirect forcings on the jet would manifest themselves as an apparent forcing from surface temperatures.

While this could potentially include forcing from temperatures over land, the decorrelation timescale over land is much faster545

than for SSTs, making a decadal timescale forcing seem less likely. On the other hand, any indirect forcing via the SSTs would

already be visible in Figures 3 and 4, which highlight the SPNA.

It is hard to exclude the possibility of a more direct impact of aerosols on the jet, e.g. due to an altering of the local radiative

fluxes in the troposphere (as opposed to at the surface). Figure 12(a) shows that sulphate aerosol concentrations are small on

the north side of the jet core, making a direct contribution from there seem less likely. There are more emissions centred around550

the jet core, so these could be playing a role. However, as pointed out in Section 6.1, aerosol emissions drop considerably prior

to 1940 and become anticorrelated with the jet speed timeseries in the period 1900-1940, even as forecast skill remains high

(Figure 12(b)). Such direct effects are therefore unlikely to explain all the observed skill.

While all these other potential sources of skill cannot be conclusively ruled out without targeted forecast experiments, we

nevertheless conclude by process of elimination that there is strong evidence towards our assumption that the skill comes from555

the SSTs, and hence from the SPNA in particular.

7.2 The question of causality between ocean and atmosphere

There is an obvious question concerning the causality of the SPNA-JetSpeed link we have proposed, especially since SSTs in

the SPNA are known to be particularly sensitive to forcing from the jet (Visbeck et al., 2003; Barrier et al., 2014; Ma et al.,

2020). Are the correlations in Table 2 in fact just indicative of stochastic atmospheric forcing on the ocean? Here we discuss560

several lines of evidence which suggest that at least a considerable portion of the correlations are due to a genuine forcing from

the ocean to the atmosphere.

The first key point is the apparent existence of skillful decadal forecasts. We have shown that the SPNA appears to be the only

clear, common SST-based signal between reanalysis and the forecasts we have analysed. If the SPNA-JetSpeed correlations
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are mostly or entirely reflecting a causal influence of the atmosphere on the ocean then one seems forced to conclude that the565

decadal skill does not originate from the SSTs. This is problematic, given the discussion of Section 7.1.

Secondly, we remind the reader that ASF20C is uncoupled and uses prescribed boundary forcing, so correlations on inter-

annual timescales in ASF20C cannot arise from a causal influence of the atmosphere on the SSTs in the model. While this is

not true for CSF20C and DPLE, which are coupled, the fact that the correlations they attain are entirely comparable to those

of ASF20C, and all these correlations are explainable from the interannual link alone (Section 4.3), suggests that forcing from570

the SSTs to the atmosphere constitutes a pragmatic common explanation for the correlations found in all three forecast models.

An alternative explanation would be the existence of a different source of skill, not related to SSTs, which influences both the

jet and the SSTs (possibly via the jet). Since the correct SSTs are prescribed to ASF20C, such a common driver could result

in correlations of the sort seen in Table 2. However, as before, the hypothetical existence of such a non-SST related driver is

problematic and currently unfounded.575

Figure 8 showed correlations between DJF SPNA and DJF temperatures/winds. If we rather correlate November SPNA

anomalies against DJF temperatures/winds, we get a similar picture, albeit weaker in magnitude, especially for the winds: see

Figure B2 in the SI. This suggests that the vertical heating is not purely coming from the adjustment of the jet itself, but also

from processes induced by the SST anomalies. The fact that the heating associated with the SPNA peaks at the surface (Figure

8(a) and (c)), is also suggestive of SST driving. In general, replacing DJF SPNA SSTs with November averages leads to smaller580

but non-zero correlations of the same sign.

Another important reason for having a high prior for a causal influence from the SPNA are that several studies using idealised

models and GCMs have demonstrated that SST anomalies can causally affect the jet (Palmer and Zhaobo, 1985; Deser et al.,

2007; Hassanzadeh and Kuang, 2016; Baker et al., 2017, 2019). Of particular relevance is the recent work of Drews et al.

(2023), who carried out pacemaker experiments which suggest that SSTs in the SPNA have a positive impact on decadal585

forecast skill. We also highlight Baker et al. (2017), who used a dry model to show that imposed heating anomalies modulate

the speed of the eddy-driven jet by altering the meridional gradient around the jet core, making the causal pathway we propose

here a plausible explanation for the observed decadal forecast skill. An important caveat here is the increasingly recognized

role played by moist processes in determining the jet variability, which are not represented in such a dry model (Willison et al.,

2013; Papritz and Spengler, 2015; Schemm, 2023; Fuchs et al., 2023). Note however that the results of Baker et al. (2017) are590

generally consistent with those in Baker et al. (2019) using a full moist GCM.

Finally, Simpson et al. (2018) showed that the DPLE forecasts can skillfully predict decadal SPNA SST variability, but

fails to predict shorter timescale North Atlantic winds of an appreciable magnitude, strongly suggesting that decadal SPNA

variability is not purely driven by stochastic atmospheric forcing. This was further corroborated by Yeager (2020), which found

evidence that the SST skill has an abyssal origin. We add to this by showing that quantitative estimates suggest the stochastic595

atmospheric forcing is weak on decadal timescales, as follows. Let xk denote the 10-year averaged jet speed timeseries for

each of the k CSF20C ensemble members (k = 1, . . . ,50). We can decompose xk as xk = s+ ϵk, where s is the ensemble

mean and ϵ is the residual for each member. The ϵk’s can then be interpreted as different instances of stochastic atmospheric

variability, with s representing a forced signal from the initial conditions and boundary forcings (e.g. SSTs). We then subtract
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Figure 14. Correlations between the ‘stochastic noise’ component of the 10-year averaged DJF CSF20C jet speed and 10-year averaged DJF

SSTs at each gridpoint. The period 1900-2010 is used. Stipling indicates statistical significance (p= 5%) with respect to a Fourier phase

shuffle test. Note the different colorscale compared to Figures 3 and 4.

the ensemble mean from each xk and concatenate the resulting ϵk’s back to back for all k. By correlating this timeseries with600

the CSF20C SSTs at each gridpoint (where ensemble members are again concatenated back to back in the same order), we get

an estimate of the link between the SSTs and the atmospheric variability unrelated to initial or boundary conditions, shown in

Figure 14. It can be seen that the stochastic components of the 10-year jet speed in CSF20C exhibit a tripole pattern consistent

with atmospheric forcing associated with the NAO (Seager et al., 2000). The association in the SPNA region is weak and not

significant almost everywhere, with correlations of around -0.06 (note the colorscale). It is unclear how such weak stochastic605

forcing could be responsible for the high correlations found in the ensemble mean. A different estimate of the stochastic forcing

using the method of Ma et al. (2020) gave qualitatively similar results (not shown).

To conclude, we consider it likely that there is a sufficient causal influence of the SPNA on the jet to explain the observed

decadal skill. Unambiguously confirming this would, however, require performing expensive forecast experiments, such as

rerunning the full ASF20C hindcast using boundary forcing files for which the SPNA SST variability has been eliminated.610

7.3 Relationship with Atlantic Multidecadal Variability

We have proposed that decadal timescale predictability of the NAO arises from a forced response to SSTs in the SPNA. It is

natural to ask how this relates to previous studies suggesting a forced response from the AMV, with the NAO response typically

lagging the AMV by several years (Zhang et al., 2019). We suggest that this apparent discrepancy is a result of two factors.

Firstly, while the AMV pattern on interannual timescales is the famous ‘horseshoe’ pattern, the pattern largely collapses to615

a signal confined to the SPNA after performing decadal timescale smoothing (Delworth et al., 2017; Simpson et al., 2018).

This suggests that as far as decadal atmospheric variability is concerned, the sub-polar North Atlantic SSTs are more relevant

than the ‘horseshoe’ pattern. The importance of this region has been highlighted previously (Gastineau and Frankignoul, 2015;

Woollings et al., 2015; Ortega et al., 2017; Delworth et al., 2017; Wills et al., 2019).
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Secondly, anomalies in the SPNA (the northern part of the ‘horseshoe’) are observed to lead anomalies in the tropical Atlantic620

(the southern part of the ‘horseshoe’) by around 2 years (Zhang, 2007). It is likely that this propagation of anomalies takes

place both via subsurface ocean dynamics and coupling with the atmosphere (Zhang et al., 2019). This means that performing

analysis based on the standard AMV ‘horseshoe’ pattern is likely mixing together several different processes happening on

different timescales. Since the SPNA anomalies arise first, restricting attention to these might be expected to give a clearer

picture and better highlight causal pathways from the ocean to the atmosphere. This argument has also recently been made by625

Wills et al. (2019). Note that this second point is presumably related to the first. The ‘horseshoe’ pattern includes the effects

of the interannual timescale processes associated with the propagation of SST anomalies along the ‘horseshoe’: taking decadal

timescale averages would be expected to remove these and highlight processes operating at much slower timescales, such as

those associated with deep convection in the Labrador sea. This argument was also made in Delworth et al. (2017).

We therefore suggest that the apparent existence of an NAO response lagging the AMV by several years is, in fact, largely630

reflecting the existence of an essentially instantaneous atmospheric response to sub-polar North Atlantic SSTs, with the multi-

year lag being an artefact of using an AMV index which averages across several different processes. A final point here is

that the reverse impact of the NAO on the AMV has also been noted to be essentially lagged (Ma et al., 2020), additionally

complicating analysis based on the AMV index.

7.4 Why is the jet latitude not predictable?635

Several studies have argued that an AMV-driven NAO response involves a shift in both the strength and location of the storm

track and/or baroclinic region (Msadek et al., 2011; Peings and Magnusdottir, 2014a; Frankignoul et al., 2015; Peings et al.,

2016; Ortega et al., 2017). Such systematic latitudinal shifts in the storm track/baroclinicity, and hence the eddies, would be

expected to manifest as predictable latitudinal shifts in the eddy-driven jet itself. However, as discussed in Section 3, there is

no decadal predictability of the latitude of the jet in ASF20C, CSF20C or DPLE. This suggests that on decadal timescales, the640

eddies are randomly distributed around their mean position, and that the mechanism driving predictable jet variability does not

essentially depend on latitudinal shifts in the storm track. Rather, such predictable changes appear to be more clearly related

to the direct constraint of thermal wind balance along with an intensification of the storm track. This is fully consistent with

Woollings et al. (2015), who highlighted the contrasting nature of forced shifts to the latitude and speed of the jet.

Of course, it cannot be ruled out that SST anomalies in the SPNA, or indeed elsewhere, force shifts in the latitude of the645

jet in the real world that are simply not captured by the forecast models we considered. However, until predictability has been

established it does not seem possible to reject the null hypothesis that decadal variability in the jet latitude is chaotic and

unpredictable. Indeed, the inconsistent latitudinal response in multimodel studies such as Ruggieri et al. (2021) lends concrete

evidence for such inherent chaos. Further evidence for this is given in Figure B3 of the SI, which repeats the procedure of

Section 4 to search for potential sources of jet latitude skill in ASF20C. This shows that there are no regions of significant650

SST-jet latitude correlations common to both ERA20C and ASF20C, consistent with the lack of jet latitude predictability.

It is also possible that biases in the climatological jet latitude (i.e., in the model mean state) of the forecast models are

contributing to the apparent lack of jet latitude predictability. The sensitivity analysis of Baker et al. (2017) showed that the
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response of the jet latitude to thermal forcing changes sign abruptly around the jet core, while the response of the jet speed is

more uniform across the jet. The accurate response of a model jet to a given SST anomaly may therefore differ dramatically655

based on its climatological position. This could go some way to explaining the inconsistent jet latitude response in multimodel

studies such as Ruggieri et al. (2021).

7.5 Some speculation concerning the ‘signal-to-noise paradox’ and turbulent heat transfer

In Section 5.3 we highlighted a bias in the daily timescale link between SSTs and T2M in ASF20C compared to ERA20C. As

discussed there, the relationship of this bias with biases in the heatfluxes is non-trivial and requires its own investigation. How-660

ever, we would like to briefly remark on a seemingly unexplored possibility, namely the potential impact of biases in the surface

roughness lengths of forecast models. Indeed, the heatflux parameterisation in ASF20C uses the Charnock formula to compute

surface roughness length (ECMWF, 2015). Greater roughness lengths are, broadly speaking, associated with increased friction

and hence greater heat transfer, and GCM experiments have found that varying the roughness length in a localised ocean region

can have substantial impacts on the fluxes and surface temperatures (Kirk-Davidoff and Keith, 2008). Over the ocean, rough-665

ness is strongly influenced by unresolved processes such as waves. In ASF20C these effects are represented by a globally fixed

‘Charnock constant’, which is undoubtedly inadequate, since the relationship between turbulent heat transfer and roughness

length depends sensitively on the exact type of roughness and there is no general theory encapsulating all experiments: see e.g.

the introduction to Wagner and Shishkina (2015). These biases would be expected to manifest immediately in the forecast, and

it would be of interest to assess the potential role they play in driving the ‘paradox’.670

8 Conclusions

We briefly summarise the main results and arguments.

1. Decadal forecast skill of the winter NAO appears to be entirely due to the decadal predictability of the speed of the North

Atlantic jet. There is no apparent predictability of decadal variations in the latitude of the jet, even in seasonal hindcasts

with prescribed SSTs (Figures 1 and 2).675

2. Initialised seasonal hindcasts can skillfully reproduce decadal variations in jet speed all the way back to 1900, and match

the behaviour of a genuine decadal forecast in the period 1954-2010. This justifies using such seasonal hindcasts to

diagnose decadal forecast signals using the full period 1900-2010, effectively doubling the available years compared to

existing decadal forecasts. In addition, this strongly suggests that the decadal forecast signals are already fully present

and visible on interannual timescales.680

3. The only clear source of an interannual-to-decadal jet speed signal coming from SSTs, common to reanalysis and fore-

casts, is the SPNA region (Figures 3 and 4). SSTs in this region enjoy large and statistically significant correlations with

the jet speed, which we argue are due at least in part to a causal link from the ocean to the atmosphere (Figure 5). We
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also show that all of the decadal SPNA-JetSpeed link in the forecast models, along with the associated forecast skill, can

be explained by a small but consistent seasonal timescale forcing from the SSTs (Figure 6).685

4. The pathway from SPNA SSTs to the jet speed is argued to be tropospheric in nature: the surface heating anomaly

extends relatively deeply into the troposphere (Figure 8) and is optimally situated to perturb the jet speed (Figures 7 and

10) both by direct adjustments consistent with thermal wind balance and subsequent reinforcements by the eddies.

5. The forecast models are found to significantly underestimate the link between SSTs and surface temperatures in the

SPNA (Figure 11). This may lead to the forecast models underestimating the atmospheric response to SPNA anomalies,690

thereby contributing to the ‘signal-to-noise paradox’.

6. Sulphate aerosol emissions in North America may explain part of the 20th century variability in the SPNA, but do not

explain the early 20th century (Figure 12). AMOC oscillations alone are shown to be capable of inducing SST shifts of

strength comparable to those connected with jet speed variability (Figure 13).

Note that the importance of the SPNA in driving predictable decadal jet variability was emphasised in Simpson et al. (2018)695

using a different metric of North Atlantic jet variability in March. Our work here is clearly closely related and was directly

inspired by theirs.

There are several shortcomings to our analysis, chief of which is the fact that we have only studied two independent forecast

models. However, Marcheggiani et al. (2023) have recently analysed the decadal forecasts used in Smith et al. (2019) and

found that the jet speed is much more predictable than the jet latitude. They also linked the predictability to Noth Atlantic700

SSTs, thereby reinforcing two of our key conclusions using independent data. Our argument that the stratosphere is unlikely to

be relevant due to the initialisation biases of the seasonal hindcasts may also be flawed, and it would be of interest to examine

the role of the stratosphere more closely. We also interpreted the similar jet speed correlations in ASF20C/CSF20C and DPLE

as evidence that the mechanisms involved are the same for these data sets. However, it may be that ASF20C/CSF20C obtain

most of their ‘skill’ from the initialisation (lag 0), while DPLE obtains most of its skill from representing slower frequency705

coupled processes better (lags > 0). If so, conclusions drawn using ASF20C/CSF20C may not carry over to a genuine forecast

context. Nevertheless, our findings have some important implications.

To begin with, we have reinforced the conclusion of earlier studies such as Baker et al. (2017) that the speed and latitude

of the jet should be considered separately, and that the use of indices like the NAO (which amalgamate the two) may be

misleading. Our finding that the decadally averaged jet speed is predictable while the latitude is not stands in amusing contrast710

to work on seasonal forecasts, which suggest the opposite picture of a predictable latitude and unpredictable speed (Parker

et al., 2019). This reinforces the analysis of Woollings et al. (2015), who showed that the nature of forced jet variability differs

depending on the timescale. On interannual timescales, the variability is dominated by the jet latitude, in turn associated with

meridional shifts in the transient eddies and location of blocking. On decadal timescales, the variability is dominated by the jet

speed, in turn associated with changes both to the strength of the eddy forcing and to the occurrence of transient Rossby wave715

breaking on both sides of the jet. Our analysis corroborates the speculation in Woollings et al. (2015) that this may result in
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the nature and sources of predictability being different on the two timescales. In particular, our results are consistent with the

following hypothetical view of the jet variability:

(a) On seasonal timescales the forcing from the SPNA is too small to be visible (resulting in the appearance of no jet speed

skill), with jet latitude skill arising from accurately predicting meridional shifts in the eddies;720

(b) On decadal timescales the eddies are varying essentially chaotically around their climatological position (resulting in

no jet latitude predictability), but their intensity can vary predictably depending on the underlying SPNA SSTs, which

strengthen or weaken the meridional temperature gradient.

A novelty of our work is the use of the initialised 20th century seasonal hindcast products ASF20C and CSF20C. While

Parker et al. (2019) considered the fast and slow variability of the jet speed and latitude in ASF20C, the possibility of utilising725

these hindcasts to study the mechanisms underpinning decadal predictability seems to have been overlooked. The fact that

ASF20C covers the entire 20th century, is reinitialised every year, and is uncoupled, are all highly attractive properties for

simplifying analysis which we made extensive use of. We believe that ASF20C may be similarly beneficial for the study of

decadal predictability in many other contexts.

Finally, we add to a growing body of literature suggesting that the SPNA is the main source of North Atlantic jet forcing on730

decadal timescales, and that the use of a larger AMV or AMO pattern might be counterproductive for questions of predictability

by mixing together different mechanisms and timescales. We have shown that the SST variability in the SPNA driving pre-

dictable jet speed shifts can in principle be due to both the AMOC and aerosol emissions, and it seems likely that the observed

20th century variability is a result of both of these. We have also highlighted a model bias of an overly weak link between

SSTs and surface temperatures, which may contribute the ‘signal-to-noise paradox’. In future work we hope to examine this735

bias more carefully, and assess if the ‘paradox’ can be alleviated by improving the parameterisation of air-sea interactions in

forecast models, e.g. through the use of stochastic physics and/or machine-learning methods.
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