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Abstract. Satellite-based detection of methane (CH4) point sources is crucial in identifying and mitigating anthropogenic 

emissions of CH4, a potent greenhouse gas. Previous studies have indicated the presence of CH4 point source emissions from 10 

coal mines in Shanxi, China, an important source region with large CH4 emissions, but a comprehensive survey has remained 

elusive. This study aims to conduct a survey of CH4 point sources over Shanxi's coal mines based on observations of the 

Advanced HyperSpectral Imager (AHSI) on board the Gaofen-5B satellite (GF-5B/AHSI) between 2021 and 2023. The 

spectral shift in center wavelength and change in full-width-half-maximum (FWHM) from the nominal design values are 

estimated for all spectral channels, which are used as inputs for retrieving the enhancement of column-averaged dry-air mole 15 

fraction of CH4 (ΔXCH4) using a matched-filter based algorithm. Our results show that the spectral calibration on GF-5B/AHSI 

reduced estimation biases of emission flux rate by up to 5.0%. We applied the flood-fill algorithm to automatically extract 

emission plumes from ΔXCH4 maps. We adopted the integrated mass enhancement (IME) model to estimate the emission flux 

rate values from each CH4 point source. Consequently, we detected CH4 point sources in 32 coal mines with 93 plume events 

in Shanxi province. The estimated emission flux rate ranges from 761.78 ± 185.00 kgꞏh-1 to 12729.12 ± 4658.13 kgꞏh-1. Our 20 

results show that wind speed is the dominant source of uncertainty contributing about 84.84% to the total uncertainty in 

emission flux rate estimation. Interestingly, we found a number of false positive detections due to solar panels that are widely 

spread in Shanxi. This study also evaluates the accuracy of wind fields in ECMWF ERA5 reanalysis by comparing with 

ground-based meteorological station. We found large discrepancy, especially in wind direction, suggesting incorporating local 

meteorological measurements into the study CH4 point source are important to achieve high accuracy. The study demonstrates 25 

that GF-5B/AHSI possesses capabilities for monitoring large CH4 point sources over complex surface characteristics in Shanxi.  
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1 Introduction 

Due to its potent radiative forcing and relatively short lifespan of about a decade, methane (CH4), the second most significant 30 

anthropogenic greenhouse gas after atmospheric carbon dioxide, is an effective target that attracts increasing attention for 

emission reduction and climate change mitigation (IPCC, 2021). Human activity related sources of atmospheric CH4 primarily 

include agricultural activities like livestock farming and rice cultivation, industrial processes such as petroleum, natural gas, 

and coal extraction, as well as landfills and waste management (Lu et al., 2022). Among these, industrial activities related to 

fossil fuel production contribute nearly 35% of global anthropogenic CH4 emissions (Saunois et al., 2020), not only triggering 35 

the greenhouse effect but also leading to significant energy wastage (Chen et al., 2023). Methane emissions escaping from 

energy production activities primarily stem from industrial infrastructure emissions, such as wells, collection and compression 

stations, storage tanks, pipelines, and processing plants, easily forming "point sources" of CH4 emissions (Varon et al., 2019). 

With the destruction of geological processes involved in mining activities, the release of coalbed methane captured in coal 

seams and surrounding rock strata forms the point source of CH4 emission from coal mines (Zheng et al., 2019). These 40 

emissions plumes of gas release from point sources contain high concentrations of CH4 over relatively small surface areas 

(Duren et al., 2019). The overall plumes formed by point source emissions exhibit a notable heavy-tailed distribution 

(Irakulis-Loitxate et al., 2021). However, due to the comprehensive effect of emission magnitude, land cover types, wind 

speed and direction, these plumes often show different characteristics across different time and space changes (Sánchez-

García et al., 2022), which makes the plume detection and emission estimation challenging. Given that such emissions 45 

contribute significantly to regional CH4 emissions (Frankenberg et al., 2016), it is important to have accurate detection and 

estimation. As atmospheric CH4 is colourless and odourless, coupled with the strong uncertainty in the temporal and spatial 

distribution of point source emissions, satellite remote sensing using high resolution spectroscopy has become a crucial means 

for detecting CH4 point source emissions due to its high sensitivity, wide coverage and high revisit capabilities (Pandey et al., 

2021). 50 

Satellite observations for detecting global atmospheric CH4 concentrations with high spatiotemporal resolution, provides data 

support for accounting and assessing reduction measures (Jacob et al., 2022). Satellite detection and quantification of CH4 

super-emitters was first demonstrated in the 2015 Aliso Canyon blowout incident using the Hyperion imaging spectrometer 

on board EO-1 (Thompson et al., 2016). Satellites with high spatial resolution but with moderate spectral resolution have 

successfully detected and traced CH4 point source emissions. The currently in orbit satellites include  GHGSat operated by a 55 

private company in Canada (2016-present; Jervis et al., 2021), Italy's PRISMA (2019-present; Guanter et al., 2021), China's 

GF-5 and ZY-1 satellites (Irakulis-Loitxate et al., 2021), NASA’s EMIT (Thorpe et al., 2023), and the German EnMAP 

mission (Guanter et al., 2015). While multispectral (Landsat-8/9, Sentinel-2, and WorldView-3) and coarse-resolution high-

spectral satellites (Sentinel-5P TROPOMI) have also been widely validated for detecting extra-large CH4 plumes (Ehret et 

al., 2022; Varon et al., 2021; Sanchez-Garcia et al., 2022; Lauvaux et al., 2022), limitations in spectral or spatial resolution 60 

result in differences in detection sensitivity, estimation uncertainty, and tracing capabilities. The first generation AHSI on 
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board China’s GF-5A (GF-5A/AHSI) exhibits high capabilities in detecting CH4 point source emissions. As shown in Irakulis-

Loitxate et al. (2021), 37 unexpected emission point sources exceeding 500 kgꞏh-1 can be identified in the Permian Basin oil 

and gas fields using a total of 30 images from GF-5A and PRISMA satellites during several days in 2019 and 2020, illustrating 

the potential of AHSI in regional CH4 point source survey. To estimate emissions from CH4 point source, these studies typically 65 

employ spectral matching filtering method to derive CH4 increment (△XCH4) and then estimate flux rate using integrated 

mass enhancement (IME) model (Varon et al., 2018). These studies have previously provided available techniques in the 

identification of point sources in local or national scales (e.g., Algeria, Permian, China, USA), and flux estimation and 

uncertainty analyses for these point sources (Guanter et al., 2021; Irakulis-Loitxate et al., 2021).  

As the world's largest coal producer, China contributes 50.7% of the global coal production in 2020, making it one of the 70 

largest emitters of CH4 from coal mining (Chen et al., 2022b), especially in Shanxi province, where most underground coal 

mines are located (Qin et al., 2023). However, due to the influence of complex surface conditions on the background spectral 

characteristics, satellite observations exhibit notably lower sensitivity in the detection of CH4 point source emissions in Shanxi 

compared to other regions with more homogeneous land surfaces (Sánchez-García et al., 2022; Guanter et al., 2021). In 

addition, the wind fields from reanalysis datasets may be subject to high uncertainty due to the complex terrain in Shanxi, 75 

leading to highly uncertain emission flux rate estimation (Jongaramrungruang et al., 2021). Although TROPOMI imagery 

and convolutional neural networks have been shown to effectively detect potential large CH4 emission point sources globally 

(Schuit et al., 2023), the specific localization and tracing of CH4 emission point sources in China remain difficult due to the 

limitations of coarse spatial resolution and complex regional backgrounds, warranting further surveying efforts. 

This study aims to conduct a survey of the CH4 point source plumes in Shanxi by developing a framework to detect and 80 

estimate emissions flux rate using the latest hyperspectral observations from GF-5B/AHSI from 2021 to 2023. Specifically, 

this study focuses on (1) quantifying the impact of the shift in spectral wavelength and the change in spectral instrument line 

shape (ILS) from the nominal design values for the spectral channels of GF-5/AHSI on CH4 retrieval and emission estimation; 

(2) Identifying CH4 point source plumes using the matched filter method; (3) automating the segmentation of emission plumes 

from the retrieved CH4 enhancement maps; (4) Estimating emissions flux rate from point sources using IME method; (5) 85 

Understanding the spatial and temporal patterns of CH4 emissions from point sources in Shanxi.  

2 Study area and used datasets 

2.1 Study area 

Shanxi Province is the most extensively mined region in China, harbouring nearly half of the nation's suspected point sources 

based on TROPOMI observations (Schuit et al., 2023). It stands as a typical area for CH4 point source emissions in China and 90 

has been a focal point in prior comparative studies on point source emissions (Sanchez-Garcia et al., 2022; Guanter et al., 

2021). Shanxi Province (Figure 1), situated in northern China, experiences a temperate continental monsoon climate 



4 
 

characterized by cold, dry winters and hot, humid summers. The region boasts diverse topography, comprising mountains, 

plateaus, and basins. Consequently, the stable atmospheric conditions during winter can lead to the accumulation of pollutants 

closer to the ground, impacting the detection of CH4 emissions. Although the region has strict rules in regulating the process 95 

of CH4, a by-product of coal mining, underground coal mines in Shanxi releases CH4 to the atmosphere from mine venting. 

Therefore, the identification of these plumes will help mitigate CH4 emissions over this region. 

2.2 GF-5B/AHSI dataset 

The GF-5B satellite is the 2nd satellite of the Gaofen-5 series and was launched on September 7, 2021. It has accumulated over 

two years' worth of global observational data to date. Equipped with the Advanced Hyperspectral Imager (AHSI), it can capture 100 

spectral information spanning 400 to 2500 nm with a spatial resolution of 30 meters over a 60 km swath, encompassing 330 

spectral channels with spectral resolutions of 5 and 10 nm in the VNIR and SWIR, respectively (Liu et al., 2019). Its relatively 

high signal-to-noise ratio (around 500 in the Short-Wave Infrared, SWIR) presents notable advantages in detecting CH4 point 

source emissions (Irakulis-Loitxate et al., 2021). The retrieval of the enhancement of column-averaged dry-air mole fraction 

of CH4 (ΔXCH4) relies primarily on strong CH4 absorption features near 2300 nm, while the 2100 to 2450 nm spectral window 105 

of the GF-5B/AHSI demonstrates higher sensitivity to XCH4 variations, thereby possessing enhanced capabilities for precise 

CH4 concentration inversion. This study focuses on Shanxi Province, using images from 111 GF-5B/AHSI scenes covering 

suspected point sources from September 2021 to September 2023, with a cloud cover of less than 10%, employed for ΔXCH4 

inversion and point source identification (Figure 1b). These images cover the major emission hotspots as identified by 

TROPOMI data (Schuit et al., 2023). Noted that, in Shanxi, the overpassing time of GF-5/AHSI is around 11-12 Beijing Time 110 

(BJT). 
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Figure 1. (a) The study area in Shanxi enclosed by the blue boundary with the background image from © Google Maps, and (b) 
Gaofen-5B observed scene images used for the CH4 plume survey. The black dots represent the potential point sources detected by 115 
TROPOMI (Schuit et al., 2023). The red dots represent the three national weather stations for monitoring meteorological variables 
in Yangquan, Changzhi, and Jincheng used for wind fields comparison with ERA5 reanalysis (Section 4.3). 

 

2.3 Auxiliary data 

Methane point source detection and emission estimation involve various auxiliary datasets, mainly including: (1) Ultra-high-120 

resolution surface imagery for checking false positive in point source detection; (2) Wind fields information for estimate 

emissions from point source plumes; (3) Digital Elevation Model (DEM) data for the geometric correction of AHSI imagery. 

High-resolution surface imagery is an indispensable dataset in point source identification and serves as direct evidence for 

distinguishing interference signals. The high-resolution imagery used in this study primarily comes from Google Earth. Wind 

speed data is a critical parameter for calculating emission flux rates. The study utilized U10 hourly wind speed reanalysis 125 

products from ECMWF ERA5, with a spatial resolution of 0.25x0.25 degrees (Muñoz-Sabater et al., 2021). Terrain data is 

crucial for the geometric correction of AHSI imagery, directly impacting the positioning and identification of ΔXCH4 plume 

signals. The study used DEM data from STRM (Farr et al., 2007), with a spatial resolution of 30 meters. Additionally, the 

study obtained hourly meteorology monitoring data, including wind speed and wind direction, from January 2021 to September 

2023 from three national meteorological stations in Yangquan, Changzhi, and Jincheng (Figure 1), obtained from the China 130 
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Meteorological Administration Data Centre. These data were compared with ERA5's U10 hourly wind speed reanalysis 

products to investigate the uncertainty of the ERA5's wind field. 

3 Methods 

The retrieval of ΔXCH4 and estimation of emission flux rate from high-resolution hyperspectral data have been implemented 

in many previous studies (e.g., Cusworth et al., 2020; Guanter et al., 2021；Huang et al., 2020; Varon et al., 2018; 135 

Frankenberg et al., 2016) using a combination of matched filter method and the IME model. This study primarily applies this 

combined approach to survey the CH4 point source emissions in Shanxi using GF-5B/AHSI. In addition, this study focuses on 

the quantification the impact of the spectral shift and the change in spectral ILS on the point source emission estimation, the 

automation of the segmentation of emission plumes from the retrieved CH4 enhancement maps, and the analysis of the spatial 

and temporal patterns of CH4 emissions from point sources in Shanxi. 140 

3.1 ΔXCH4 retrieval using matched filter method 

3.1.1 Spectral calibration of GF-5B/AHSI 

Spectral shift of centre wavelength and change in FWHM relative to the nominal spectral calibration for spectral channels 

significantly affects the retrieval results of ΔXCH4 using spectral matched filter method (e.g., Guanter et al., 2021). The 

spectral shift and FWHM change vary distinctly between different image scenes. It is therefore important to re-calibrate the 145 

spectra for all channels before further analysis using the observed spectra. While GF-5B AHSI imagery has been utilized in 

CH4 point source detection experiments in various regions, estimation regarding its spectral offset and associated correction 

in FWHM have not yet been undertaken. In this study, we conduct this spectral calibration for the Short-Wave Infrared (SWIR) 

channels from 2110 nm to 2455 nm of GF-5B/AHSI data (Guanter et al., 2009). The basic idea of the spectral calibration is 

to retrieve the wavelength shift and FWHM change that would lead to the best fit between observed GF-5B/AHSI spectra and 150 

the simulated spectra based on radiative transfer model. In practice, we used the forward radiative transfer model and optimal 

estimation method in GFIT3 (Zeng et al., 2021) to iteratively derive the spectral calibration parameters. Similar to Guanter 

et al. (2021), we applied the calibration to the averaged top-of-the-atmosphere radiance from all observations of each across-

track detector and derive the wavelength shift and FWHM change. This calibration is repeated for all detectors and over all 

GF-5B/AHSI images. Eventually, the updated spectral centre wavelength and FWHM, replacing the nominal values, for all 155 

channels are used as inputs in the ΔXCH4 retrieval when the high-resolution CH4 absorption spectra is convolved with Gaussian 

ILS. 
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3.1.2 Spectral matched filter for retrieving ΔXCH4 

Spectral matched filter method derives the ΔXCH4 by calculating the difference between the “polluted” spectra over a source 

region with background spectra of the ambient atmosphere, and expressing the difference by the number of target absorption 160 

spectrum from one unit of XCH4 (e.g., 1 ppm of XCH4; Guanter et al., 2021). The retrieval using matched filter is depicted 

in Equation (1): 

∆XCH 𝒙 𝝁 ∑ 𝒕 𝒕 ∑ 𝒕 ⁄                                                            (1) 

Where, x denotes a vector of the observed SWIR hyperspectral spectra from a target pixel. In this study, the CH4 strong 

absorption band (2110-2455 nm) is used; µ and Σ represent the mean and covariance of the SWIR hyperspectral observation 165 

over background regions, respectively. t is target spectrum, representing the disturbance vector of SWIR hyperspectral due to 

enhanced XCH4 relative to the background. It can be derived from an element-wise multiplication of µ and the unit XCH4 

absorption spectrum κ, which is generated from GFIT3 (Zeng et al., 2021), as shown in Figure 2, assuming a perturbation of 

1 ppm XCH4. 

 170 

Figure 2. Example of unit XCH4 absorption spectrum used as target signature in the matched filter retrieval method. The high-
resolution target signature (in grey) represents absorptivity induced by 1 ppm XCH4 enhancement, which is calculated using GFIT3 
(Zeng et al., 2021). The high-resolution absorptions are then convolved with a Gaussian ILS with nominal FWHM from GF-5B/AHSI 
to derive the spectra (in red) that can be compared with observed from AHSI.   

3.2 Identifying point source plumes from ΔXCH4 maps 175 

After data pre-processing, including spectral re-calibration and ΔXCH4 retrieval, we implemented a geometric localization to 

change the GF-5B/AHSI imagery index for row and column pixels to latitude and longitude under WGS84 projection. The 

detailed description of this geometric localization is in the Appendix A. Then, this study compares the ΔXCH4 maps with 

high-resolution Google Earth imagery to visually inspect and preliminarily identify the CH4 point source plumes. The 

identification criteria include: (1) high ΔXCH4 values displaying plume characteristics; (2) the presence of ground facilities 180 

such as factories or pipelines representing potential CH4 emission sources; (3) plume distribution characteristics not caused by 
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terrain features that may impact short-wave infrared strong absorption in surface features. Although wind conditions directly 

affect plume features, however, reanalysis data (e.g., ERA5) of wind direction may be very different from the plume structure. 

Several factors could contribute to this mismatch, including the temporal and spatial resolution of the reanalysis data, local 

topographical features, and microscale meteorological phenomena that are not fully captured by the reanalysis data. Therefore, 185 

this study temporarily refrains from utilizing wind direction from ERA5 reanalysis as a direct criterion for point source 

identification. 

3.3 Estimation of emission flux rates 

3.3.1 Automatic segmentation of ΔXCH4 plumes using flood-fill algorithm 

The segmentation of ΔXCH4 plumes in previous studies have often been manually drawn, a laborious and time-consuming 190 

process highly influenced by subjective human judgment, leading to possible bias in IME calculations. Hence, there's a need 

to introduce a statistically-based, relatively objective, and easy to implement method for ΔXCH4 plume segmentation. The 

flood-fill algorithm has been widely employed for segmenting and extracting continuous abnormal signals (He et al., 2018; 

Zscheischler et al., 2013), showing potential for ΔXCH4 plume automatic segmentation. Specifically, this study uses statistical 

parameters, including ΔXCH4 mean and one standard deviation, within the study area to segment and identify concentration-195 

enhanced signals of ΔXCH4. It employs the flood-fill algorithm to recognize abnormal pixels in the vicinity of eight directions, 

merging spatially connected pixels into a plume pattern by considering the spatial continuity of plumes. To carry out the flood-

fill method in plume extraction, a background region needs to be defined to calculate the mean and standard deviation of 

ΔXCH4 which set the basis for identifying anomalous high ΔXCH4 in the plume relative to the background. In this study, for 

a specific plume, the origin is first pinpointed through visual interpretation. Then a background region is defined as a square 200 

using the source origin as the center for calculating the mean (μ) and standard deviation (σ) of ΔXCH4. Finally, a threshold 

defined based on μ and σ is used for the flood-fill algorithm to effectively segment the point source plume. The exact numbers 

for the lengths of the background square and the defined thresholds are introduced in Section 3.3.3. 

 

3.3.2 Estimation of CH4 point source emission flux rates 205 

For emission flux rate estimation, this study employs the IME model (Equation (2); Frankenberg et al., 2016; Varon et al., 

2018; Guanter et al., 2021) to calculate the excess mass of CH4 in the plumes relative to the background from the retrieved 

ΔXCH4 plume maps. Then the emission flux rate (Q) is calculated using Equation (3) with inputs of wind speed and the length 

of the plume. These equations are: 

𝐼𝑀𝐸  𝑘 ∑ ∆XCH 𝑖                                                                       (2) 210 

𝑄  𝛼 𝑈 𝛽 𝐼𝑀𝐸 𝐿⁄                                                                  (3) 
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where 𝑛  denotes the number of pixels in the plume; ∆XCH 𝑖  represents the XCH4 enhancement in pixel 𝑖; 𝑘 is the scaling 

factor converting ΔXCH4 from volume mixing ratio to mass based on Avogadro's law, considering the pixel resolution of GF-

5B/AHSI to be 30-meter. In Guanter et al. (2021), 𝑘 is defined as 5.155×10-3 kgꞏppb-1derived from surface pressure of one 

standard atmosphere. However, the average elevation of the identified plumes in Shanxi is 942.41 meters (Figure B1), whose 215 

surface pressure (900.64 hPa on average) is about 10% less than one standard atmosphere. Therefore, we calculated a new 𝑘 

based on the derived averaged surface pressure for all the identified plumes. The derived 𝑘 value (4.565×10-3 kgꞏppb-1) is then 

used for estimating IME in this study. Q denotes the point source emission rate, in unit of mass per unit time, obtained from 

IME calculation; (𝛼 𝑈 𝛽) denotes the effective wind speed derived from wind speed at 10-meter from ERA5 reanalysis; 

𝐿 is the plume length, defined as the square root of the plume mask area (Varon et al., 2018). 𝛼 and 𝛽 can be determined 220 

through Large Eddy Simulation based on the spatial resolution of satellite observation and ΔXCH4 retrieval accuracy from 

GF-5B/AHSI. In this study, we adopted the estimates (𝛼=0.37 and 𝛽=0.64) from Li et al. (2023) derived for the Changzhi 

region in Shanxi. Globally, the values of α and β do not change significantly. For example, the values adopted for PRISMA 

(Gaunter et al., 2021; Irakulis-Loitxate et al., 2021) were 0.34 and 0.44, and for GF-5B in the Permian basin (Li et al., 2023) 

were 0.38 and 0.41, respectively. 225 

3.3.3 Estimation uncertainty of point source emission flux rate 

The uncertainty of point source emission flux rate typically involves two primary aspects: the IME calculation and wind speed. 

For the IME calculation based on the statistically-driven method of flood-fill in plume extraction, the square background region 

and the threshold setting for plume enhancement segmentation are the main factors involved. Referring to the uncertainty 

assessment method by Cusworth et al. (2020), we first assess the uncertainty of IME and then propagate the random errors of 230 

IME and wind speed (U10) to the flux rate Q, thereby evaluating the uncertainty of the estimated emission flux rate. In practice, 

for estimating IME and its uncertainty for a certain plume, we used 6 different lengths for the background square (from 12 km 

to 24 km with an interval of 2.4 km) and 6 different segmentation thresholds (from μ+0.45σ to μ+0.55σ with an interval of 

0.02σ) for the flood-fill segmentation method (Figure C1). Different values of μ and σ are calculated for different background 

regions. This process enabled the extraction of 36 reasonable plume values, defining their mean and standard deviation as the 235 

IME estimation and its uncertainty, respectively. For the wind speed uncertainty, to be consistent with the previous study, we 

set it at 50% for U10 (Cusworth et al., 2020; Guanter et al., 2021). To further understand the uncertainty of the used wind 

fields, in Section 4.3, we have carried out an evaluation of wind speeds and wind directions from ERA5 reanalysis by 

comparison with observations from meteorological sites in Shanxi. 
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4 Results 240 

4.1 Detection and estimation of emission flux rate for single CH4 point source using GF-5B/AHSI 

Figure 3 demonstrates the retrieval results of point sources ΔXCH4 based on multiple capturing of the same point source using 

GF-5B/AHSI from January 2022 to August 2023. Under different emission flux rates and wind conditions, the emission plumes 

exhibited various characteristics. Six observations occurred during the winter-spring seasons (Figure 3(b)-(g)), showing 

ΔXCH4 plumes spreading north-eastward, while the observation in summer (Figure 3(h)) displayed a plume drifting north-245 

westward. An intriguing aspect is the occurrence of two repeated observations of the same point source within an 8-second 

interval (Figure 3(d) and (e), Figure 3(f) and (g)). The short revisit time of the same point source is a result of the special 

observation configuration of the SWIR imagery in the AHSI band, which employs a strategic arrangement of four strips. Each 

SWIR strip corresponds to a 15-km ground swath, resulting in a continuous 60 km swath width across the satellite orbit with 

4 images combined. This configuration yields a total of 2,012 pixels (including 36 overlapped pixels) along the spatial 250 

dimension of the SWIR detectors (Liu et al., 2019b). Therefore, the target inside the overlapped pixels could be observed 

twice in 8 seconds. Theoretically, CH4 emissions from the same point source within an 8-second interval should exhibit very 

similar patterns. However, using the full scene image as the background region for the background spectra calculation for each 

plume, similar to previous studies, the ΔXCH4 of the plumes from the same point source showed large differences, especially 

for Figure 3(f) and (g). The notable difference primarily arises from the different background used, suggesting the importance 255 

of selecting appropriate background regions. Note that the difference may also be slightly caused by the different signal noise 

ratio (SNR), as the plumes appear at different locations (at the bottom for (f) and at the top for (g)) of the imaging scene 

(Figure D1). As a result, they may be observed by different instrument detectors with different SNR that affect the detection 

accuracy of the plumes. 
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 260 

Figure 3. Example of ΔXCH4 retrievals from one typical point source with multiple overpasses by GF-5B/AHSI, with its origin (Lat 
37°57’36’’, Lon 113°16’04’’) marked with a red/black star. The detected plumes from the seven overpasses shown in (b)-(h). The 
observation times (in UTC+8 standard Beijing Time) are shown for each plume event, which are close to the local time. The 
background image in (a) is adopted from © Google Maps. 

Based on the ΔXCH4 retrieval and the flood-fill plume segmentation method, we obtained the plume characteristics and 265 

emission flux rate of the seven detections, as shown in Figure 4. The results indicate the following: (1) differences exist 

between the extracted plume features and visual segmentation. For instance, in Figure 4(c), the elaborate plume automatically 

extracted using flood-fill would be challenged for manually drawing; (2) the point source emission flux rate varies between 

2834.79 ± 1330.98 kgꞏh-1 in Figure 4(e) and 6678.66 ± 2316.49 kgꞏh-1 in Figure 4(g) (excluding incomplete observations in 

Figure 4(d)). Among these observations, four fall within a similar range between 2834.79 and 3247.22 kgꞏh-1; (3) the 270 

uncertainty of IME ranges from 5.07% to 66.38%, with the majority being below 30%, which is lower than the uncertainty 

caused by wind speed (~50%) in the emission flux rate calculation; (4) significant differences are evident in the plumes from 

adjacent detections of the same point source (e.g., Figure 4(f) and (g)), indicating the different backgrounds chosen for 

different imagery scenes are not optimal to monitoring the same emission plumes. 
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 275 

Figure 4. Examples of extracted CH4 point source, marked with red/black star (Lat 37°57’36’’; Lon 113°16’04’’), plume using flood-
fill method based on the retrieved ΔXCH4 maps, as shown in Figure 3, from a single point source with multiple overpasses by GF-
5B/AHSI. The plume mass from IME model and the estimated emission flux rates are also indicated at the bottom of each map. The 
observation time in Beijing Time is shown for each plume event. All background images ((a) – (h)) are from © Google Maps. 

 280 

In order to eliminate the impact of background selection on estimating emission flux rate from the same point source, this 

study conducted a ΔXCH4 retrieval experiment using overlapping area in the imagery maps of Figure 3(f) and (g) as the new 

background. The results based on the new backgrounds shown in Figure 5 demonstrate highly similar ΔXCH4 plume features 

between the two observations that are 8 seconds apart (Figure 5(a) and (b)). The extracted plume distribution and emission 

flux rate calculations shown in Figure 5(c) and (d) are almost identical. The integrated enhanced masses were 1001.59 ± 13.98 285 

kg and 1046.86 ± 15.20 kg, respectively, with emission flux rates of 5477.44 ± 1839.08 kgꞏh-1 and 5730.52 ± 1925.58 kgꞏh-1. 

This reduced estimation discrepancy between the two by 485.11 kgꞏh-1 which is about 8.5% of the emission flux rate. Therefore, 

for the calculation of emissions for all plumes in Shanxi, we adopted a two-step approach to identify CH4 plumes and estimate 

their emission rate. In step 1, the whole image is used to calculate ΔXCH4 and identify plumes; In step 2, when implementing 

the flood-fill method using the strategy of selecting background regions as described in Section 3.3.3, the ΔXCH4 is re-290 

calculated using the same background regions for the flood-fill method. Therefore, the same background regions are used for 

calculating ΔXCH4 using Equation 1, segmenting plumes using the flood-fill method, and estimating IME using Equation 2. 
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Figure 5. ΔXCH4 retrievals from GF-5B/AHSI observations that are 8 seconds apart in (a) and (b) over the same point source, 295 
marked with red/black star (Lat 37°57’36’’; Lon 113°16’04’’). The retrievals are carried out using the same background region. The 
corresponding IME values and emission flux rates (Q) based on the extracted ΔXCH4 maps are shown in (c) and (d), respectively. 
The difference between the two IME values is shown in (e). All background images ((c) – (e)) are from © Google Maps. 

 

4.2 Spatial distribution of point sources and their emission rates in Shanxi 300 

Based on the methods described above for estimating CH4 emission flux rate of point sources, we conducted a survey of all 

detectable point source emissions using all available imagery of GF-5B/AHSI from 2021 to 2023. In total, 93 point source 

plumes were identified. After averaging repetitive observations over the same point sources, a total of 32 point sources were 

identified, and their spatial distribution is depicted in Figure 6. Figures 6(a)-(i) exhibit typical plume extraction results around 

three typical cities of Yangquan, Changzhi, and Jincheng. The emission flux rates range from 2147.08 ± 427.42 to 9198.03 ± 305 
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2059.18 kgꞏh-1. This result demonstrates a reasonably good consistency between the spatial locations of the actual CH4 

emission point sources identified in this study (red dots in Figure 6) and those extracted based on TROPOMI data (black dots 

in Figure 6), primarily concentrated around the three cities of Yangquan, Changzhi, and Jincheng. Given its high spatial 

resolution, the spatial locations derived from GF-5B/AHSI are expected to be more accurate. We found that the number of 

identified point sources is much fewer than those extracted from TROPOMI. This is primarily attributed to the much denser 310 

observations with daily global coverage and the different overpass time of TROPOMI (~13:30 local time). In addition, the 

high-resolution of the ΔXCH4 retrieval results helped eliminate false positive signals due to surface interference elements like 

photovoltaic panels (further details are discussed in section 4.3.2) and greenhouse cultivation structures that are ubiquitous in 

Shanxi. Driven by wind speed and topography, different plumes from various point sources show distinctly varying dispersion 

distances, ranging from less than 1.0 km (e.g., Figure 6(h)) to 5.0 km (e.g., Figure 6(d)). 315 

We further conducted IME calculations and emission flux rate estimations for the 93 plumes extracted from GF-5B/AHSI 

(Figure 7(a) and (c)). Additionally, based on multiple observations (from 2 to 8 times) of the same point source, we provided 

the highest and lowest emission flux rates and IME for the same point source (Figure 7(b) and (d)). The survey results revealed 

a diverse range of point source emission flux rates, varying from 761.78 ± 185.00 (minimum) to 12729.12 ± 4658.13 kgꞏh-1 

(maximum), with an average of approximately 4040.30 kgꞏh-1. The range of IME from point source emissions spans from 320 

33.58 ± 6.27 (minimum) to 6587.50 ± 1925.31 kg (maximum). From the flux rate distribution in Figure 7(a) and the IME 

distribution in Figure 7(c), we can see the order of IME does not strictly follow that of the flux rate for different point sources, 

suggesting contributions from the variability of wind conditions. Moreover, assuming a 50% uncertainty in U10 (wind speed 

at 10-meter), in the uncertainty calculation of Q (emission flux rate), the impact of wind speed and IME uncertainties accounts 

for approximately 84.84% and 15.16%, respectively. 325 

Furthermore, multiple observations of the same point source indicate significant variations in CH4 emissions over time. The 

difference is as large as 10204.71 kgꞏh-1, which is about 7 times between the maximum and the minimum, as shown in Figure 

7(d). This difference suggests that a single observation does not adequately represent the overall or averaged emission scenario 

for any point source. Because the specific emission law of each emission point is unclear, and more coal mine emission time 

series detection experiments (Qin et al., 2023) are needed for the overall emission rate evaluation. Although, Chen et al. 330 

(2022a) used high density (26292 active wells) and highly repeated (115 flight days) measurements from aerial instrument to 

quantify methane emissions from the whole regional study area of New Mexico Permian Basin with persistence-averaged 

method. The persistent emission rate from a single point source was calculated with the emission detection probability derived 

from highly repeated observations. In this study, this may not be feasible, because the observations are too few to calculate the 

possibility of emission detection. The smallest emission rate of all the detected plumes, as shown in Figure 7, is 761.78 ± 335 

185.00 kgꞏh-1, which is likely the detection limit of GF-5B AHSI based on our current method.   
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Figure 6. The spatial distribution of the identified CH4 plumes (in red dots; in total of 93) in Shanxi using GF-5B/AHSI observations, 
as shown in the centre panel. The black dots represent the potential point sources detected by TROPOMI (Schuit et al., 2023). CH4 
plumes (a)-(i) are examples of the identified ΔXCH4 plumes in Shanxi and the yellow arrow points to the origins of the identified 340 
point sources. All background images ((a) – (i)) are adopted from © Google Maps. 
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Figure 7. (a) CH4 emission flux rate from point source plumes #1-#93 in descending order of emissions, with the error bars 
representing the estimation uncertainty; (b) The maximum and minimum emission flux rates for each point source with more than 345 
2 observations; (c) The corresponding IME estimates for plumes #1-#93 following the order in (a); (d) The maximum of minimum 
emission flux rates for each point source with more than 2 observations. 
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4.3 Improvements on ΔXCH4 retrieval and emission flux rate estimation 350 

(1) Spectral calibration of GF-5B/AHSI observations 

The impact of the wavelength shift and changes in FWHM of the spectral observations from GF-5B/AHSI on deriving ΔXCH4 

is demonstrated in Figures 8 and 9. Figure 8 illustrates an example of the cross-track pixel variations of the estimated centre 

wavelength in (a) and FWHM in (b) in a single-scene image collected on 29 January 2022. The results reveal the distinct 

deviations from the nominal centre wavelength and FWHM among different track pixels during satellite imaging. Figure 8(c) 355 

displays the ΔXCH4 of the corrected image, capturing plumes seen in Figures 3(b), 6(c), and 6(d), among others. Figures 8(d) 

and 8(e) show the evident striping differences and spectral calibration's impact on calculating ΔXCH4 of individual plume. 

The difference can reach up to 100 ppb. To further assess the spectral calibration's influence on CH4 point source estimation, 

this study analysed the shift in centre wavelength and changes in FWHM in 111 representative scenes with potential point 

source emissions using GF-5B/AHSI, as shown in Figures 9(a) and 9(b). The results indicate that the average shift in centre 360 

wavelength of GF-5B/AHSI is approximately -0.05 nm, mostly ranging between -0.2 and 0.1 nm. The ratio of change in 

FWHM averages around 1.1, predominantly falling between 1.0 and 1.25 times (between 0-2.13 nm). Furthermore, the study 

evaluated the impact of spectral shift and FWHM change on the estimation of point source emission flux rate, as shown in 

Figures 9(c) and 9(d). The results indicate that the caused difference of point source emission flux rate ranges from 0.43 to 

500.96 kgꞏh-1. The average percentage of change is (1.78±1.39)%. The maximum difference reaches up to about 5.0%. By 365 

considering the shift in central wavelength and change in FWHM in the spectral observations, it exhibits a potential to reduce 

the uncertainty of XCH4 emission rate estimation using GF-5B/AHSI. 

(2) Impact of heterogeneous surface features 

Complex surface features significantly affect the identification of suspected point sources based on ΔXCH4 maps and the 

derivation of point source emissions. In this study, we originally observed 219 instances of 113 suspicious point sources. In a 370 

more refined identification of these sources, we cross-checked and confirmed their positions using ΔXCH4 retrievals from GF-

5B/AHSI against high-resolution Google Earth imagery. Our findings revealed that the identification of point sources was 

significantly affected by the complex surfaces that exhibit strong SWIR absorption similar to CH4 and therefore result in false 

positive signal. Notably, array of solar panels that are widespread in Shanxi is the primary disruptor of the spectral matched 

filter retrieval method. An example of solar panel arrays is shown in Figure 10. Moreover, we found that surface features such 375 

as greenhouse structures, certain buildings, water bodies with plume-like distributions, and moist cultivated lands (like paddy 

fields) also generated noticeable high-value ΔXCH4 interference signals. Therefore, in CH4 point source detection using GF-

5B image, it's essential to consider combining with high resolution images to filter out false positive signals. 

 

 380 
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(3) Evaluating wind fields from ERA5 reanalysis using observations from meteorological stations in Shanxi 

Wind fields, including wind speed and direction, are the primary drivers of uncertainty in estimating point source emissions, 

especially in plume segmentation and flux rate calculations. For plume segmentation, instead of visual interpretation, this study 

introduces the flood-fill method. Instead of searching for all possible directions in the current study, accurate wind direction 

information could enable us to precisely narrow down the flood-fill search directions, thereby removing abnormal signals from 385 

non-point source emissions, enhancing the reliability of plume segmentation. In emission flux rate estimation, aligning with 

previous studies, this study defined an uncertainty in ERA5 wind speed as 50%, thus leading to a significant uncertainty in the 

estimated emission rate. To evaluate the uncertainty of the wind fields from ERA5 reanalysis, which is widely used in many 

previous studies, this study compared them with data from three ground-based meteorological sites in Shanxi over the 

concentrated point source areas (Figure 11). The comparison results indicate that from 2021 to 2023, the overall bias in the 390 

ERA5 wind speed was approximately 1.30 m/s, which is close to 100% of bias on average. It has been recognized that the 

wind speed should be in a moderate range to allow detectable plumes from space. Too small wind speed may hamper the 

plume to develop, while too large wind speed may dilute the plume. It is observed in our cases that the wind speeds roughly 

fall within 0.5 to 2.5 mꞏs-1 for most days with detectable point source plumes. If we assume this is the suitable wind speed 

range for satellite detection, as shown in black dots in the upper panel of Figure 11, the deviation is about 0.45-0.54 mꞏs-1, 395 

which is close to about 50% of the wind speed from ERA5. This uncertainty is consistent with the assumption of wind speed 

uncertainty (50%) in this study. In terms of wind direction, there are significant differences between ERA5 and the observations 

from meteorological sites. While ERA5 reanalysis data (at a height of 10-meter) show relatively constant wind direction, the 

measurements of wind direction from meteorological stations show a much larger range. This discrepancy indicates significant 

deviations between ERA5 reanalysis wind fields and actual wind conditions, challenging their direct application in point source 400 

plume identification and emission estimation. Consequently, leveraging high-density and high-precision meteorological 

observations from automatic meteorological monitoring stations, especially over regions with complex surface properties, 

could reduce the uncertainty and enhance the accuracy of satellite-based detection and estimation of CH4 point source 

emissions. 

However, a flat 50% wind error may underestimate uncertainty for small winds and overestimate uncertainty for large winds. 405 

Therefore, we carried out an evaluation of the plume emission uncertainty using the absolute wind error (1.297 mꞏs-1 on average) 

estimated by comparing wind speeds from EAR5 and local meteorological stations in Shanxi. The results of CH4 flux rates 

and their uncertainty are shown in Figure E1. As we expected, the uncertainty of flux decreased/increased at high/low wind 

speed, respectively. In addition, the impact of wind speed uncertainties accounts for approximately 86.31%, which is similar 

to the previous result based on a flat 50% wind error. This result supports the fact that wind speed remains the dominant factor 410 

contributing to the uncertainty in estimating CH4 point source emissions. 
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Figure 8. Example of the shift in centre wavelength and FWHM change for across-track pixels of channel #142 from GF-5B/AHSI 
SWIR imagery and their impacts for ΔXCH4 retrieval. (a) shows the shift in centre wavelength for across-track pixels; (b) shows the 
FWHM variation ratio for across-track pixels; (c) shows the ΔXCH4 retrieval of a single image with inputs of updated spectral 415 
calibration parameters; (d) and (e) are the comparison of zoom in plumes with and without inputs of updated spectral calibration 
parameters, in which (d-1) and (e-1) are results without calibration, and (d-2) and (e-2) are results with calibration, and (d-3) and 
(e-3) are the corresponding difference in ΔXCH4 retrieval. 
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Figure 9. Statistics of the shift in centre wavelength in (a) and FWHM variation ratio in (b) of all 111 GF-5B/AHSI SWIR images 420 
with potential CH4 point sources. The difference in the estimations of emission flux rates in (c) and corresponding difference in 
percentages in (d) for all detected CH4 plumes shown in Figure 6 and Figure 7. 
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 425 

Figure 10. Examples of the impact of array of solar panels, which generates false positive signals, on the ΔXCH4 retrieval in Shanxi. 
ΔXCH4 retrievals with high values are similar to plume shapes in (a) and (d). There false positive signals are caused by the similar 
patterns of solar panel arrays, which can be seen from high resolution of google maps in (b) and (e). Zoom in details of solar panels 
in the red boxes in (b) and (e) can be found in (c) and (f), respectively. 

  430 
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Figure 11. Comparison of wind speeds (a-c) and directions (d-f) between ERA5 reanalysis and meteorological stations located in 
Yangquan, Changzhi and Jincheng cities in Shanxi, as indicated in Figure 1. Wind fields data from 2021 to 2023 are extracted in the 
daytime correspond to the GF-5B overpass time. Black dot data are selected according to the wind speed range of 0.5 to 2.5 mꞏs-1. 

  435 
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5. Summary 

In this study, we conducted a survey of CH4 point sources emissions from coal mines in Shanxi, China using hyperspectral 

observations of GF-5B/AHSI. We first carried out the spectral calibration based on the estimates of the across-track changes 

in channel center wavelength and FWHM, which are approximately -0.05 nm and 10%, respectively. We adopted the widely 

used matched filter method to calculate the enhancement ΔXCH4. Based on the enhancement, the emission plumes are 440 

extracted using the fill-flood method, which is an automated plume segmentation method. The emission flux rate and the 

associated uncertainty are eventually estimated using IME method. Our results show that the errors caused by spectral 

calibration (wavelength shift and FWHM change) and the selection of different background can reach up to 5.0% and 8.5%, 

respectively. Simultaneously, this study presents the spatial distribution and emission flux rates of 32 point sources and 93 

observed plumes in Shanxi province from 2021 to 2023. The findings indicate that coal mine sources in Shanxi are primarily 445 

located around Yangquan, Changzhi, and Jincheng areas, with plume emission flux rates ranging from 761.78 ± 185.00 (the 

minimum) to 12729.12 ± 4658.13 kgꞏh-1 (the maximum). Multiple repeated observations show significant differences in 

emission flux rates from the same source. The difference can reach to 10204.71 kgꞏh-1 with a different by a factor of more than 

7 times between the maximum and the minimum, indicating that a single overpass observation cannot represent the overall 

emissions of the point source. This study highlights that wind speed remains the primary factor contributing to uncertainty in 450 

point source emission estimation (approximately 84.84%), yet the uncertainty of IME (approximately 15.16%) is also 

important. 

It is important to note that the plume shapes detected based solely on the ΔXCH4 maps contains false positive signals due to 

surface interference. The strong absorption in SWIR by certain surface types significantly disrupts point source detection and 

flux rate emissions. In the future, a fusion of hyperspectral spectra and multispectral image with high spatial resolution could 455 

effectively filter out false positive signals and remove surface covering interference. In addition, the uncertainty of wind field 

data remains significant sources of uncertainty in CH4 point source emission flux rate estimation. From the evaluation of the 

accuracy of wind fields in ECMWF ERA5 reanalysis by comparing with ground-based meteorological station, we found large 

discrepancy, especially in wind directions. For regions with complex terrain like Shanxi, incorporating local meteorological 

measurements into the detection of CH4 point source are important to achieve high accuracy. 460 
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Data availability: 

Gaofen-5B AHSI images are downloaded from China Centre for Resources Satellite Data and Application, accessed from 
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from ECMWF can be accessed from https://cds.climate.copernicus.eu/cdsapp#!/home. Observations from national weather 465 

stations data are from China Meteorological Administration Data Centre, accessed from http://data.cma.cn/en. The dataset of 

detected plumes in Shanxi province of China during 2021-2023 using Gaofen-5B AHSI data will be made available upon 

publication. 
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Appendix A: Geometric localization of GF-5B/AHSI images 

The identification of CH4 point sources using high-resolution satellite imagery is closely linked to land cover, while the 

accurate calculation of ΔXCH4 is significantly affected by spectral differences in the background within the study area. Hence, 615 

precise geometric localization (Equations 4-6) of the GF-5B satellite images is crucial. The retrieval of ΔXCH4 involves both 

forward and inverse computations of the Rational Polynomial Coefficients (RPCs) in high-resolution imagery (Liu et al., 

2019). The forward computation entails transforming the row and column indices (𝑅𝑜𝑤 , 𝐶𝑜𝑙 ) of the image data into 

geographical coordinates (𝐿𝑎𝑡 , 𝐿𝑜𝑛 ), aiding in detecting and identifying ΔXCH4 point sources. Conversely, the reverse 

computation aims to optimize background concentration calculations by transforming detected point source geographical 620 

coordinates back to the image's row and column indices. 

𝑅𝑜𝑤   𝐹 𝑈 , 𝑉 , 𝑊 /𝐹 𝑈 , 𝑉 , 𝑊
𝐶𝑜𝑙  𝐹 𝑈 , 𝑉 , 𝑊 /𝐹 𝑈 , 𝑉 , 𝑊                                                         (4) 

𝐹 U, V, W 𝑎  𝑎 𝑉 𝑎 𝑈 𝑎 𝑊 𝑎 𝑉𝑈 𝑎 𝑉𝑊 𝑎 𝑈𝑊 𝑎 𝑉 𝑎 𝑈 𝑎 𝑊 𝑎 𝑈𝑉𝑊 𝑎 𝑉

𝑎 𝑉𝑈 𝑎 𝑉𝑊 𝑎 𝑉 𝑈 𝑎 𝑉  𝑎 𝑈𝑊 𝑎 𝑉 𝑊 𝑎 U W 𝑎 W              (5) 

𝑈 𝐿𝑎𝑡 𝐿𝑎𝑡_𝑜𝑓𝑓 /𝐿𝑎𝑡_𝑠𝑐𝑎𝑙𝑒
𝑉 𝐿𝑜𝑛 𝐿𝑜𝑛_𝑜𝑓𝑓 /𝐿𝑜𝑛_𝑠𝑐𝑎𝑙𝑒

𝑊 𝐻𝑒𝑖𝑔ℎ𝑡 𝐻𝑒𝑖𝑔ℎ_𝑜𝑓𝑓 /𝐻𝑒𝑖𝑔ℎ_𝑠𝑐𝑎𝑙𝑒
                                            (6) 625 

where，𝑎 … 𝑎 ，𝑏 … 𝑏 , 𝑐 … 𝑐 , 𝑑 … 𝑑 , 𝐿𝑎𝑡_𝑜𝑓𝑓, 𝐿𝑎𝑡_𝑠𝑐𝑎𝑙𝑒, 𝐿𝑜𝑛_𝑜𝑓𝑓,  𝐿𝑜𝑛_𝑠𝑐𝑎𝑙𝑒, 𝐻𝑒𝑖𝑔ℎ_𝑜𝑓𝑓 and 𝐻𝑒𝑖𝑔ℎ_𝑠𝑐𝑎𝑙𝑒 

are rational polynomial coefficients (RPCs), which can be obtained from incidental data of the GF-5B images. 
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Appendix B: Statistics of elevation for the origins of GF-5B AHSI detected plumes 630 

 

Figure B1. Histogram of the elevation for the detected plumes in Shanxi. The elevation data is from the DEM shown in 

Section 2.3. 
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Appendix C: Examples of plume segmentation using flood-fill method with different input parameters 

 
Figure C1. Examples of plume segmentation in flood-fill method using different lengths for the background square and different 
segmentation thresholds. Two plumes are given in a1-a6 and b1-b6 as examples, in which a1-a3 and b1-b3 are for the length of 12 km 
and a4-a6 and b4-b6 are for the length of 24 km. Two different thresholds, μ+0.45σ and μ+0.55σ, are given for the two plume examples. 640 
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Appendix D: An example of the same plume target inside the nearest two full images 

 
Figure D1. The full images of ΔXCH4 for Figure 3f (a) and Figure 3g (b). The plume target (pointed by the white arrow) appears in 
the overlapping region of the two images. 
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Appendix E: CH4 emission flux rates from point source plumes in Shanxi with an absolute wind speed uncertainty 

estimated by comparing wind speeds from EAR5 and local meteorological stations 

 

Figure E1. Uncertainty of CH4 emission flux rates using an absolute wind speed uncertainty. (a) CH4 emission flux rates from point 650 
source plumes #1-#93 in descending order of emissions, with the error bars representing the estimation uncertainty. The uncertainty 
of the wind speed (1.297 mꞏs-1) is estimated by comparing wind speeds from EAR5 and local meteorological stations, as described in 
Section 4.3.3; (b) The maximum and minimum emission flux rates for each point source with more than 2 observations. 

 


