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Abstract:  Identifying the climate-induced variability in the condition of vegetation is particularly important in the context of 

the recent climate change, and plantsô impact on mitigation of the climate change. In this paper, we present the coherence and 

time lags in the spectral response of three individual vegetation types in European temperate zone to the influencing 

meteorological factors, in the period 2002-2022. Vegetation condition in broadleaved forest, coniferous forest and pastures 

was measured with monthly anomalies of two spectral indices ï NDVI and EVI. As meteorological elements we used monthly 10 

anomalies of temperature (T), precipitation (P), vapour pressure deficit (VPD), evapotranspiration (ETo), and teleconnection 

indices North Atlantic Oscillation (NAO) and North Sea Caspian Pattern (NCP). Periodicity in the time series was assessed 

using the Wavelet Transform, but no significant intra- or interannual cycles were detected in both vegetation (NDVI and EVI) 

and meteorological variables. In turn, coherence between NDVI/EVI and meteorological elements was described using the 

methods of Wavelet Coherence and Pearsonôs linear correlation with time lag. In European temperate zone analysed in this 15 

study, NAO produces strong coherence mostly for forests, with circa 1 year delay and ï a weaker coherence ï with circa 3 

year delay. For pastures these interannual patterns are hardly recognizable. The strongest relationships occur between condition 

of the vegetation and T and ETo ï they show high coherence in both forests and pastures. There is a significant cohesion with 

8-16 month (ca. 1 year) delay and 20-32 month (ca. 2 year) delay. More time lagged significant correlations between vegetation 

indices and T occur for forests than for pastures, suggesting a significant lag in the forestsô response to the changes in T. 20 

1 Introduction  

Vegetation is one of the main components of the terrestrial Earth, which plays an important role in regulating climate, through 

evaporative cooling processes and carbon sequestration, among others. Hence, vegetationôs presence between the atmosphere, 

hydrosphere and lithosphere is crucial (Zhang et al., 2017). Among different vegetation types, the major ones, which cover up 

to 78% of the worldôs land area, are forests and grasslands (Ipcc, 2019; Fao and Unep, 2020).  25 

Modern climate change is widespread, rapid and intensifying (Ipcc, 2019). Climate change deepens the processes of land 

degradation through e.g. increase in rainfall intensity and flooding, heat stress or drought frequency and severity (Ipcc, 2019). 
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The influence of climate change on vegetation, especially on forest condition, is highlighted in several studies (Buras and 

Rammig and Zang, 2020; Schuldt et al., 2020; PrŁvŁlie et al., 2022; Yang et al., 2019; Liu et al., 2015). It has the potential to 

cause severe, long-term damage to forest ecosystems by increasing the frequency of extreme weather events, such as droughts, 30 

destructive windstorms, and wildfires in many regions. (Bryn and Potthoff, 2018; Hofgaard et al., 2012; Karlsen et al., 2017; 

Morin et al., 2018). That is why, monitoring vegetation dynamics and precisely characterizing the response of vegetation to 

changing climate is essential in order to maintain a sustainable environment (Tomlinson et al., 2011; Barbosa et al., 2019). 

The most widely used parameter for evaluating vegetationôs response to climate change is the normalized difference vegetation 

index (NDVI), derived from satellite remote sensing (Adole and Dash and Atkinson, 2016; Huang et al., 2021; Soubry et al., 35 

2021; Buras and Rammig and Zang, 2020; Barbosa et al., 2019). The NDVI is a normalized transform of the near-infrared to 

red reflectance ratio, which is intended to standardize vegetation index values to fall between ī1 and +1 (Didan and Munoz, 

2019). According to research, it is a trustworthy ecological indicator, if obtained from properly calibrated satellite-borne 

sensors (Huang et al., 2021). In the research of vegetation vigour, NDVI has a long history spanning 50 years, but in recent 

times the enhanced vegetation index (EVI) has also gained popularity. In EVI formula the blue radiation is additionally used 40 

to stabilize the index value against variations in aerosol concentration levels (Didan and Munoz, 2019).  

Spectral vegetation indices ï NDVI and EVI ï derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data 

were coupled with meteorological elements in many research papers (e.g. Buras and Rammig and Zang, 2020; Li et al., 2010; 

Mao et al., 2012; Mbatha and Xulu, 2018; Moreira and Fontana and Kuplich, 2019; Zhu et al., 2023; Ghaderpour et al., 2023; 

Schuldt et al., 2020). The applied coupling methods used in these studies were often based on single and multiple linear 45 

regressions and Pearsonôs correlations between vegetation indices and climate elements, but assuming the stationary 

relationship. However, the time lag in the correlation between vegetation indices and weather elements should not be 

disregarded. The spectral response to the influencing factor varies depending on the vegetation type ï it is quicker for 

grasslands and agricultural lands (Moreira and Fontana and Kuplich, 2019), while in the case of forests this response might be 

very extended in time (Barbosa et al., 2019; Carl et al., 2013), so a significant delay in correlation between vegetation condition 50 

and meteorological element can occur. For instance, elements such as temperature can influence the treesô phenological timing 

of the following year (Carl et al., 2013). Therefore, nowadays the wavelet coherence (WC) method is often used in order to 
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capture the delay in the spectral response of the vegetation. This method allows to study the multiscale and non-stationary 

processes over finite spatial and temporal domains (Furon et al., 2008), and hence is advantageous when compared to the 

Fourier transform, because the latter requires stationarity (Mart²nez and Gilabert, 2009). WC method has proven to be useful 55 

in geophysics and climatology, linking e.g. rainfall and ENSO index (Torrence and Webster, 1999) or rainfall and monsoon 

in Pakistan (Hussain et al., 2022). WC has already been used several times when coupling between climatological factors such 

as temperature or rainfall and vegetation occurred. The coherence of meteorological elements and grasslands/savannas/forests 

was researched e.g. in Brasil (Moreira and Fontana and Kuplich, 2019; Barbosa et al., 2019), South Africa (Mbatha and Xulu, 

2018), southern China (Zhou et al., 2022), India (Naga Rajesh et al., 2023), or Indonesia (Erasmi et al., 2009). In Europe, 60 

similar research was conducted in the Mediterranean (Ghaderpour et al., 2023). Surprisingly, the coherence between vegetation 

dynamics and climate elements in the temperate zone is very understudied, and the existing studies are limited in time and 

space (Carl et al., 2013; Zhu et al., 2022). Such research is especially important in light of recent vegetation disturbance caused 

by severe drought events that occurred in Europe in recent years (Buras and Rammig and Zang, 2020; Schuldt et al., 2020). 

This study aims to identify patterns in time series of three different types of vegetation (broadleaved and coniferous forests 65 

and pastures) in the temperate zone, and relate them with meteorological elements and teleconnection indices, using the 

Wavelet Transform (WT) and Wavelet Coherence (WC). Thus, the main objectives of this research are: 1) to identify the 

variability and periodic changes in time series of MODIS-based NDVI and EVI of different vegetation types, and in time series 

of meteorological elements and teleconnection indices, using the WT method and 2) to couple the NDVI and EVI vegetation 

indices with meteorological elements and teleconnection indices in order to determine the coherence and time lags in the 70 

spectral response of individual vegetation types to the influencing factors, using the methods of WC and Pearsonôs correlation. 

The analyses are carried out for the broadleaved and coniferous forests and pastures in the temperate zone of central Europe, 

in the period 2002-2022.  
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2 Materials and methods 

2.1 Study area 75 

The study area characterised by three vegetation types ï the two types of forest (broadleaved and coniferous forest) and pastures 

including meadows and other permanent grasslands under agricultural use ï is located in the administrative borders of Poland 

(Fig. 1). The analysed vegetation types are situated within a territory extending from 49Á N to 54.5Á N latitude and from 14Á 

E to 24Á E longitude. From the north, the research area borders onto the Baltic Sea, while the terrain changes towards the south 

- there are mountains at the southern edges of the research area. Because Europe's land relief is arranged mostly latitudinally, 80 

there is no orographic barriers and climate in the study area is influenced by the western transfer of air masses, and therefore 

indirectly by the Atlantic Ocean. The warm temperate climate is characterized by mean winter temperature from -3.5ÁC (in 

the north-east and in the sub-mountain and foothill regions in the south) to 1.5ÁC (in the west), mean summer temperature 

from 14.5ÁC (in foothill regions in the south) to 19.5ÁC (in the centre) and a mean annual precipitation sums from 450 mm in 

the centre of the study area to 1200 mm in the mountains (1991ï2020) (Tomczyk and Bednorz, 2022).  85 

 

Fig. 1. Spatial distribution of three vegetation masks ï broadleaved forest (CLC class 311), coniferous forest (CLC 

class 312) and pastures (CLC class 231) ï used in the study.  
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The selected vegetation types were defined on the basis of Corine Land Cover (CLC) 2006, 2012 and 2018 databases (Clms, 

2021). The CLC database provides data on land cover across 44 classes, in European countries. For areal phenomena, the CLC 

employs a Minimum Mapping Unit (MMU) of 25 ha, and for linear phenomena, a minimum width of 100 m. (Clms, 2021). 

The CLC 2006, 2012 and 2018 were used to prepare masks for broadleaved forests (CLC class 311), coniferous forests (CLC 90 

class 312) and pastures (CLC class 231). The CLC forest vector layers for 2006, 2012 and 2018 were intersected and the 

polygons that were still forest for these three periods made up the broadleaved or coniferous forest mask, respectively. The 

percentage of forest coverage was calculated for each MODIS pixel. The pixels containing at least 80% of forest cover were 

selected for further analysis. To ensure the uniformity of forest pixels, a criterion of 80% coverage of broadleaved or coniferous 

forest was applied. Following these selection criteria, 174,243 pixels were retained as the broadleaved forest mask and 798,777 95 

pixels were retained as the coniferous forest mask, representing the area of 10,890 km2 and 49,924 km2, respectively. Clusters 

of broadleaved forest are rather small, and most of them are located in the north-western part of the study area, in the south-

eastern edge of the area (Bieszczady Mountains) and in the eastern part (BiağowieŨa Forest). The tree species dominating in 

the species composition are birch, oak and beech (2022). On the contrary, coniferous forest prevail in most of the study area, 

and the predominant species, covering 58% of the forest area, is pine (2022). In the mountains, the proportion of spruce and 100 

fir in stands species composition is also apparent (2022). 

The pastures mask was prepared following the same steps, as used for forest masks, except that only CLC vector layers for 

2012 and 2018 were used (because of the poor quality of the 2006 CLC class 231). Following such selection criteria, 338,193 

pixels were retained as the pastures mask, representing the area of 21,137 km2. 

2.2 MODIS data ï NDVI and EVI  105 

This study uses two vegetation indices (VI) ï the normalized difference vegetation index (NDVI) and enhanced vegetation 

index (EVI) ï derived from the Moderate Resolution Imaging Spectroradiometers (MODIS) onboard Terra and Aqua satellites 

ï products MOD13Q1 and MYD13Q1 (Didan, 2021a, b). Theoretical description of the MODIS VI and the NDVI and EVI 

algorithm details are provided in Didan and Munoz (Didan and Munoz, 2019). The MOD13Q1 and MYD13Q1 products were 

downloaded for the period 2002-2022. Because the data from Terra and Aqua is processed 8 days out of phase at 16-day 110 

intervals, combining both satellitesô data streams produces a quasi-8-day product time series (Didan and Munoz, 2019). 
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MOD13Q1 and MYD13Q1 products are published with 250 m spatial resolution. To cover the area between 49Á N and 55Á N 

latitude and 14Á E and 24Á E longitude three granules were required, because each granule has 4,800 x 4,800 pixels. Eventually, 

2,712 granules were needed to cover the time period 2002-2022.  

Together with the NDVI (or EVI) product, the corresponding pixel reliability and day of year layers were used. Because in 16-115 

day composite the adjacent selected pixels may originate from different days, so for each pixel in such composite the day of 

year layer keeps the information about the actual day the pixel originate, while the pixel reliability layer keeps the information 

that describes overall pixel quality (Didan and Munoz, 2019). Based on this, only the pixels indicated as good or marginal 

quality were selected, which is a common practice in similar studies (e.g. Buras and Rammig and Zang, 2020). In the next 

step, based on the day of year information, each of the selected pixels was allocated to the respective month. To get the monthly 120 

values of NDVI (or EVI), a monthly maximum NDVI (or EVI) was calculated for each of the retained pixels. The reason 

behind this approach is that low-value observations are either erroneous or have reduced vegetation vigour for the time period 

under consideration. (Holben, 1986).  

Next, the deseasonalised time series of monthly anomalies from the multi-annual monthly values of NDVI (or EVI) were 

prepared for each MODIS grid cell (i.e. each pixel), so that e.g. the deseasonalised value (anomaly) for January 2002 is the 125 

difference between January 2002 value and multi-annual mean from all Januaries. It should be noted that the term ñanomalyò, 

which is commonly used in climatological studies (e.g. Kulesza, 2021), should be interpreted as a ñdeviation from the mean 

valueò. Finally, spatially averaged 252-element (21 years x 12 months) time series of NDVI (or EVI) anomalies in respective 

vegetation masks were prepared. The spatially averaged values of NDVI (or EVI) were calculated as area averages of all NDVI 

(or EVI) values in the MODIS grid cells (i.e. all pixels) within the respective vegetation masks. The methodology diagram 130 

showing the above-described steps is presented in Fig. 2. 

2.3 Meteorological elements 

In this work, the gridded data from ERA5-Land reanalysis (Mu¶oz-Sabater, 2019, 2021) was used. The monthly data 

representing meteorological elements, which are generally known to have a significant impact on the dynamics of vegetation 

productivity (Chu et al., 2019; Liu et al., 2015; Yang et al., 2019), i.e. 2-metre temperature (T, in ÁC), precipitation (P, in mm) 135 

and evapotranspiration (ETo, in mm) was downloaded for the period 2002-2022. Spatial extent of the meteorological data was 
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49Á N to 55Á N latitude and 14Á E to 24Á E longitude, and the resolution of reanalysis data was 0.1Á x 0.1Á. Additionally, 

monthly data on 2-metre dewpoint temperature was downloaded in order to calculate the water vapour pressure deficit (VPD, 

in hPa), a variable frequently used to explain the tree mortality (Gazol and Camarero, 2022; Schuldt et al., 2020). VPD is the 

difference between saturation vapour pressure (SVP, which is temperature dependant) and actual vapour pressure (AVP, which 140 

is dewpoint temperature dependant). SVP can be approximated from the air temperature records, following the Tetensô formula 

(American Meteorological Society, 2023): 

ὛὠὖφȢρρρπ
Ȣ
Ȣ  

and AVP can be calculated from the same equation, using dewpoint temperature instead of air temperature. Eventually, VPD 

= SVP-AVP.  145 

In the next step the deseasonalised time series of monthly anomalies from the multi-annual monthly mean values of T, P, VPD 

and ETo were prepared for each grid cell of the ERA5-Land reanalysis. As in the case of NDVI (or EVI), the term ñanomalyò 

should be interpreted as a ñdeviation from the mean valueò. The data was then resampled to fit the MODIS grid cells (which 

does not affect much the data accuracy, because monthly mean values of meteorological elements are slowly changing over 

space). Finally, spatially  averaged 252-element time series of T, P, VPD and ETo anomalies in respective vegetation masks 150 

were prepared. The methodology diagram showing the above-described steps is presented in Fig. 2. 
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2.4 

Teleconnection indices 155 

This study uses two well-known teleconnection indices: North Atlantic Oscillation (NAO) and North Sea Caspian Pattern 

(NCP). These large-scale climatic oscillations can be considered as a proxy of the general atmospheric circulation pattern, 

giving aggregated information about the meteorological condition in a given year (e.g. drought-favouring conditions). The 

relationship between teleconnection indices and vegetation condition in different regions of the world was the focus of several 

studies (Brown and De Beurs and Vrieling, 2010; Gong and Shi, 2003; Vicente-Serrano and Heredia-Laclaustra, 2004; He et 160 

al., 2022; Gouveia et al., 2008; Olafsson and Rousta, 2021). According to many research results, NAO is associated with NDVI 

at higher latitudes in parts of the northern hemisphere (Vicente-Serrano and Heredia-Laclaustra, 2004; Olafsson and Rousta, 

2021; Gouveia et al., 2008), while the NCP is associated with vegetation condition in western Eurasia (He et al., 2022).  

Monthly values of NAO index in the period 2002-2022 were downloaded from Climate Prediction Center of the National 

Oceanic and Atmospheric Administration (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). The 165 

procedure used to calculate the NAO teleconnection index is based on the Rotated Principal Component Analysis (RPCA) 

(Barnston and Livezey, 1987). The RPCA technique is applied to monthly mean standardized 500 geopotential height 

anomalies in region 20Á N to 90Á N (and all longitudes) between January 1950 and December 2000. The anomalies are 

standardized by the 1950-2000 climatology. In the positive phase of NAO the westerly circulation of the atmosphere prevails 

 

Fig. 2. Flow chart of the input data and the methodology used in this paper. 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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over central and northern Europe, resulting in relatively warm and humid weather in winter, while cool and rainy in summer. 170 

In the negative phase, the meridional circulation occurs more often, and central Europe can then be reached by cold and dry 

air masses from the north or hot air masses from the south. 

NCP index was calculated on the basis of 500 geopotential height monthly values derived from ERA5 reanalysis (Hersbach et 

al., 2020), in the same period 2002-2022. The NCP index values were calculated from the normalised 500 geopotential height 

difference between averages of North Sea (0ÁE, 55Á N and 10Á E, 55Á N) and northern Caspian Sea (50Á E, 45Á N and 60Á E, 175 

45Á N) regions (Kutiel et al., 2002). In the negative phase, above normal temperatures and below normal precipitation occur 

in the Balkans, western Turkey and the Middle East. In the positive phase ï the other way round. There is no significant 

correlation between the NCP and NAO (Araghi et al., 2019). 

2.5 Methods 

2.5.1 Wavelet analysis  180 

The Wavelet Transform (WT) was applied to the deseasonalised time series of NDVI, EVI, T, P, VPD, ETo, as well as NAO 

and NCP in searching for potential variations in frequency and time at different scales. To this end, the wavelet packet 

(Torrence and Compo, 1998) implemented to MATLAB computing environment was used. The use of wavelet analysis gives 

the information on fluctuations which change frequency over time. This is possible thanks to using wavelets ï structures that 

are time-limited and consist of several short oscillations. The basic wavelet can be stretched and shifted in time, in order to 185 

create a so-called wavelet family ï a collection of similar structures. Wavelet analysis is based on correlating the individual 

elements of wavelet family with values of the time series throughout the observation period. The wavelet power spectrum ï 

|W|2 ï represents this correlation. The higher the power, the wavelet will be more similar to the empirical data at a given point 

in the time series, which means that fluctuations of a given frequency are more likely to occur in a given period. In this paper, 

we used the Morlet wavelet and assessed the statistical significance of the |W|2 values with the ɢ2 test (Torrence and Compo, 190 

1998) (the level of significance Ŭ=0.05). The regions of the wavelet power spectrum, which are especially vulnerable to adverse 

edge effects (because of the finite length of the time series), are delimited by the ócone of influenceô (COI). The values of the 

wavelet power spectrum which are outside of COI, are considered uncertain.  
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2.5.2 Wavelet coherence and time lags 

In order to determine the changing-over-time correlations between NDVI (or EVI) and meteorological elements and 195 

teleconnection indices, the wavelet coherence (WC) was applied to the deseasonalised time series of respective data sets, 

resulting in 6 diagrams (scalograms) for each of the vegetation types for NDVI (for EVI likewise): NDVI with T, NDVI with 

P, NDVI with VPD, NDVI with ETo, NDVI with NAO and NDVI with NCP. Wavelet coherence combines the advantages of 

wavelet analysis and Pearson correlation, allowing for searching for correlations that vary over frequency and time (Torrence 

and Webster, 1999; Grinsted and Moore and Jevrejeva, 2004). In this paper, WC was prepared according to the Grinsted et al. 200 

(2004) in MATLAB computing environment. In the WC scalogram colour scale ranges from blue (low correlation) to red 

(high correlation) and thus represents the wavelet coherence coefficient. The direction of arrows indicates the phase delay 

between signals (time series): right arrows indicate that the series are completely in phase, i.e. positive correlations, while the 

left arrows indicate that the series are completely out of phase, i.e. negative correlations. Statistical significance of values of 

the wavelet coherence coefficient was assessed using Monte Carlo method, at the significance level of Ŭ=0.05 (Grinsted and 205 

Moore and Jevrejeva, 2004). 

In order to additionally investigate the delays in the spectral response of the individual vegetation type to the triggering 

meteorological factors, the overall, linear correlations with appropriate time lags were calculated. The correlated pairs of data 

sets were prepared with 0 to 36 months delay (3 years). 0-month delay means that independent variableôs values (T, P, VPD, 

ETo, NAO, NCP) from month i were correlated with dependent variableôs values (NDVI, EVI) from the same month. In turn, 210 

1-month delay means that independent variableôs values from month i were correlated with dependent variableôs values from 

the i+1 month, and so on. The strength of the correlation between the deseasonalised time series of NDVI (or EVI) and 

meteorological elements and teleconnection indices for three vegetation types was assessed using the Pearson correlation 

coefficient, expressed by the following formula: ὶ
ὧέὺ

ὛὛ, where ὧέὺ is the covariance in the bivariate distribution 

of the variables ὼ (time series of a respective meteorological element or teleconnection index) and ώ (time series of NDVI or 215 

EVI), Ὓ and Ὓ are the standard deviations in the marginal distributions of the variables ὼ and ώ respectively. The significance 

of linear correlations calculated in this way was assessed at the significance levels of Ŭ=0.05.  
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3 Results 

3.1 Basic characteristics of VI and meteorological elements 

In the last two decades a slightly positive trend in condition of the forests in Poland was noticed, with a mean NDVI increase 220 

of 0.088Ĭ10-3 per year (2002-2021) (Kulesza and HoŜciğo, 2023). The biggest increase of mean annual NDVI (by 0.030 in 20 

years) was observed in central-eastern Poland, while it was weaker in southern, western and northern edges of the study area. 

In turn, the biggest mean annual NDVI was observed in forests of the foothill regions in the south and also in the Baltic Sea 

coastal region, while central regions had lower NDVI. In general, broadleaved forests had slightly bigger mean NDVI (0.841) 

than coniferous forests (0.791).  225 

The trend of mean annual T was positive over the entire research area, resulting in the increase in T by 1 to 1.6ÁC (in southern 

and eastern regions) (2002ï2021) (Kulesza and HoŜciğo, 2023). In central and eastern regions the statistically significant 

increase in ETo was also reported, with a mean increase of 1.79 mm per year (while mean annual ETo is ca. 600 mm). The 

slope of the trend in changes in P appeared was insignificant in the whole study area. For the detailed analysis of the 

spatiotemporal variability and trends in NDVI and T, P, ETo over Poland in the last two decades the reader is referred our 230 

previous paper (Kulesza and HoŜciğo, 2023). 

The course of the monthly anomalies of NDVI during the period 2002-2022 showed the dynamics of three vegetation types. 

Positive anomalies of NDVI in the growing season (April-September) were noticeable in 2011, 2013, 2016 and 2021, whereas 

the negative anomalies of NDVI occurred in the growing season of 2003, 2008, 2018, 2019 and 2022 (Fig. 3). In 2015, the 

negative peak of NAO index in July caused the positive T anomaly, negative P anomaly and very big, negative VPD anomaly 235 

(i.e. bigger-than-average deficit of water vapour) in August. In turn, all this resulted in negative values of pasturesô NDVI in 

August and September of 2015, but forest condition seemed unaffected. In 2018, the combined effect of above-average T (in 

warm half-year) and mostly below-average P resulted in gradually decreasing values of NDVI in the growing season. Yet, the 

decrease in NDVI values was not big. Additionally, generally positive T anomaly and negative P anomaly in the growing 

season of 2018 resulted in big, negative VPD anomaly (i.e. deficit of water vapour bigger than average) and big, positive 240 

anomaly of ETo. The following year (2019), experienced similar meteorological condition (although not so severe), but the 

vegetation condition during the growing season was significantly below average. Unlike in 2018, when NAO phase was 
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positive in the growing season, in 2019 the NAO phase was negative during the whole growing season. Moving forward, year 

2021, probably because of the above-average P in April, May and August, experienced the positive anomalies of vegetation 

condition for all three types of vegetation. On the contrary, the following year (2022) experienced the negative anomalies of 245 

NDVI values, especially visible at the beginning of the growing season (April-May), and especially severe for pastures. In 

March, May and June of 2022, there were significant negative anomalies of P and VPD, together with positive anomalies of 

ETo.  

 

 

Fig. 3. The deseasonalised time series of monthly anomalies of NDVI (broadleaved forest, coniferous forest, pastures), 

T, P, VPD, ETo, and NAO and NCP indices, in the period 2002-2022. Grey areas refer to warm half-years (April-

SeptemberOctober). 

 250 
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3.2 Variability and periodic changes in VI and meteorological elements and teleconnection indices  

The data sets used in the study were purposely deseasonalised, so the obvious 1-year cycle in both NDVI (or EVI) and 

meteorological conditions is removed. Thus, WT was used in searching for cycles and fluctuations with lower or higher 

frequency over time (i.e. interannual or intraannual cycles). Consequently, no strong and stable over time cycles are visible 

detected in the graphs which show the wavelet power spectrum |W|2 (Fig. 4 and 5). The pulse of a half-year and 1 year cycle 255 

of fluctuations in NDVI is marked around the 2010 for all three types of vegetation (Fig. 4, left column). Although they are 

statistically significant, neither the power spectrum is strong, nor they last long. The EVI shows similar pattern for pastures, 

but much fewer statistically significant fluctuations for broadleaved and coniferous forests (Fig. 4, right column). These pulses 

come from the big negative NDVI and EVI anomalies in January and December 2010 (Fig. 3), caused by extensive and 

persistent snow cover that significantly changed the values of spectral reflectance.  260 
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Fig. 4. Wavelet power spectrum (|W|2) for deseasonalised time series of NDVI (left column) and EVI (right column) 

for different vegetation types during the period 2002-2022. The COI region is below the thick black line. Statistically 

significant areas at the level of Ŭ = 0.05 are indicated by a thin black line. 

 

Meteorological elements also do not show significant interannual cycles. The components with a period of less than half-year 

are more visible, but, similarly as in the case of NDVI, although they are statistically significant, the power spectrum is rather 

weak (Fig. 5). Only VPD shows a cyclical component of circa 4 years, but it lies partly in the COI region and is statistically 265 

insignificant. NAO and NCP produce significant components with a period of less than half-year (weak power spectrum), and 

additionally a short pulse of a 1 year cycle that is visible around 2011 (NAO and NCP) and 2015 (NAO only) (Fig. 5, lower 

panel). 

 

 

Fig. 5. Wavelet power spectrum (|W|2) for deseasonalised time series of T, P, VPD, ETo (mean value from three 

vegetation masks), and NAO and NCP during the period 2002-2022. The COI region is below the thick black line. 

Statistically significant areas at the level of Ŭ = 0.05 are indicated by a thin black line. 
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 270 

3.3 Coherence and time lags in the spectral response of individual vegetation types to the influencing factors 

The pattern observed for coherence between NDVI and meteorological elements and teleconnection indices is different for 

each of these factors.  

T shows high coherence with the NDVI in all three types of vegetation. There is a significant common power in the 8-16 month 

(circa 1 year) band for the periods 2010-2015 and 2020-2022 (Fig. 6). Second significant common power band is 20-32 months 275 

(circa 2 years), visible for both forest types for the whole time period 2002-2022 (and for pastures only up to 2016). The high 

cohesion values indicate that the data sets exhibit high correlation in a year given in the x axis, and with a delay given in the y 

axis. The observed regularities are additionally proven by the Pearsonôs linear correlations with appropriate time lags. 

Significant positive correlations between NDVI and T occur for broadleaved and coniferous forests for 8-, 12-, 27-, 28-, 29- 

and 30-month delay (Fig. 8). For pastures significant positive correlations between NDVI and T only occur for 12- and 27-280 

month delay. 

Both P and VPD produce few small patches of significantrather weak coherence with NDVI in all three vegetation types. Very 

small patches of high coherence of circa 1 year delay between NDVI and P occur only around 2006 and 2009-2010 for 

broadleaved and coniferous forests (and for pastures only one patch around 2009-2010) (Fig. 6). VPD produces even smaller 

patches of high coherence of circa 8-month delay (around 2006), in where the NDVI and VPD are mostly out of phase, meaning 285 

that the correlation between them is negative (Fig. 6). In fact, significant negative Pearsonôs correlations appear for 7-, 8- and 

9-month delay for all vegetation types (Fig. 8). Fig. 8 indicates also significant correlations between NDVI and VPD for 18- 

and 22-month delay. 

ETo shows high coherence with NDVI in all three vegetation types. The significant common power appears in the intraannual 

(3-8 months) band, from the beginning of the study period until 2008 (Fig. 6). High and significant coherence of circa 1 year 290 

(8-16 month) delay occurs mostly around 2010, while significant coherence of circa 2 year (20-32 month) delay is distributed 

more or less along the whole study period. Surprisingly, it seems the most stable for pastures, which is low grassy vegetation, 

rather independent from interannual weather conditions. Significant positive Pearsonôs correlations between NDVI and ETo 

occur for broadleaved and coniferous forests for 8- and 22-month delay, while for pastures only for 22-month delay (Fig. 8). 
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Correlations in specific bands ï intraannual and interannual ï are also visible between NDVI and NAO index in particular 295 

time periods. NAO produces strong coherence with NDVI mostly for two forest types. Small areas of high positive correlation 

of circa 1 year delay between NDVI and NAO appear mostly for coniferous forest in the period 2013-2016 and 2018-2021, as 

well as for broadleaved forest in the period 2015-2016 and 2019-2020. This is additionally proven by the significant positive 

Pearsonôs correlation between NDVI and NAO for 11-month delay (Fig. 8). For pastures this interannual pattern is hardly 

recognizable (Fig. 6). For broadleaved and coniferous forests the coherence of circa 3 year delay up till 2013 is also visible. 300 

Interestingly, there is a significant common power for NDVI and NAO in the 2-6 month (intraannual) band for the year 2018 

in all three vegetation types. Similar, small patches of high and significant, intraannual coherence for this year are mostly 

visible for broadleaved forest regarding T, VPD and ETo, while for coniferous forest and pastures regarding ETo only (Fig. 

6). 

NCP index produces rather weak coherence with NDVI in all three vegetation types. The cohesion pattern is somehow similar 305 

to the one produced by NAO, with small areas of high and significant coherence of circa 1 year delay around 2015 and 2020, 

which is mostly visible for coniferous and broadleaved forests (Fig. 6). Additionally, for two forest types the coherence of 

circa 32 month (almost 3 year) delay in the period 2010-2015 is also visible. Surprisingly, NCPôs Pearsonôs correlation with 

NDVI is significant for 25- and 35-month delay (for forest types), but, unlike the cohesionôs right arrows, this correlation is 

negative (Fig. 8). 310 

The pattern observed for coherence between EVI and meteorological elements and teleconnection indices resembles in many 

places the pattern observed for NDVI, especially regarding pastures.  

However, in forest types, concerning T and ETo, their coherence with EVI gives substantially smaller areas of high and 

significant cohesion, as compared to NDVI (Fig. 8). Nevertheless, the Pearsonôs linear correlations with time lags, prepared 

for EVI, reveals many significant and positive correlations between EVI and T for broadleaved forest (mostly 1 year delay and 315 

2 year delay), and even more significant correlations for coniferous forest. In turn, significant positive Pearsonôs correlations 

between EVI and ETo occur in broadleaved forest for circa 2 year (22-month) delay, while in coniferous forest for circa 1 year 

(10-month) delay and 2 year (22- and 23-month) delay (Fig. 8). 
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P and VPD show some more areas of significant common power with EVI than with NDVI, but the high cohesion areas are of 

over 3 year delay and lie partly in the COI region (Fig. 8).  320 

In case of NAO, there is a significant common power with EVI in the 30-40 month (circa 3 year) band in the period 2005-

2020, for broadleaved forest (Fig. 7). This is additionally proven by the Pearsonôs linear correlations with 30-month time lag 

(Fig. 8). Similarly as in the case of NDVI, there is a significant common power for EVI and NAO in the 2-4 month (intraannual) 

band for the year 2018 for both forest types. Similar, small patches of high and significant, intraannual coherence for this year 

are visible for broadleaved and coniferous forest regarding T, VPD and ETo (Fig. 7). 325 

NCP shows less areas of significant common power with EVI than with NDVI. However, there are some significant positive 

Pearsonôs correlations between EVI and NCP, but there are also significant negative correlations (30-month delay for 

broadleaved forest) (Fig. 8). Moreover, unlike other meteorological variables, here the arrows on the WC scalograms tend to 

orientate up or down, which could be interpreted as uncoupling between both signals (Fig. 7).  

 330 
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Fig. 6. Wavelet Coherence power spectrum (colour scale) between deseasonalised time series of NDVI and T, P, VPD, ETo, 

NAO and NCP for broadleaved forest (left column), coniferous forest (middle column) and pastures (right column) during the 

period 2002-2022. Colours range from blue (low correlation) to yellow (high correlation). Arrows indicates the phase difference 

between signals: right arrows ï series are completely in phase, left arrows ï series are out of phase. The COI region is below 

the thick black line. Statistically significant areas at the level of Ŭ = 0.05 are indicated by a thin black line. 
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Fig. 7. Wavelet Coherence power spectrum (colour scale) between deseasonalised time series of EVI and T, P, VPD, ETo, NAO 

and NCP for broadleaved forest (left column), coniferous forest (middle column) and pastures (right column) during the period 

2002-2022. Colours range from blue (low correlation) to yellow (high correlation). Arrows indicates the phase difference 

between signals: right arrows ï series are completely in phase, left arrows ï series are out of phase. The COI region is below 

the thick black line. Statistically significant areas at the level of Ŭ = 0.05 are indicated by a thin black line. 

 


