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Abstract. Nitrogen oxide radicals (NOx ≡ NO + NO2) emitted by fuel combustion are important precursors 

of ozone and particulate matter pollution, and NO2 itself is harmful to public health. The Geostationary 

Environment Monitoring Spectrometer (GEMS), launched in space in 2020, now provides hourly daytime 

observations of NO2 columns over East Asia. This diurnal variation offers unique information on the 30 

emission and chemistry of NOx, but it needs to be carefully interpreted. Here we investigate the drivers of 

the diurnal variation of NO2 observed by GEMS during winter and summer over Beijing and Seoul. We 

place the GEMS observations in the context of ground-based column observations (Pandora instruments) 

and GEOS-Chem chemical transport model simulations. We find good agreement between the diurnal 

variations of NO2 columns in GEMS, Pandora, and GEOS-Chem, and we use GEOS-Chem to interpret 35 

these variations. NOx emissions are four times higher in the daytime than at night, driving an accumulation 

of NO2 over the course of the day, offset by losses from chemistry and transport (horizontal flux 

divergence). For the urban core, where the Pandora instruments are located, we find that NO2 in winter 
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increases throughout the day due to high daytime emissions and increasing NO2/NOx ratio from 40 

entrainment of ozone, partly balanced by loss from transport and with negligible role of chemistry. In 

summer, by contrast, chemical loss combined with transport drives a minimum in the NO2 column at 13-14 

local time. Segregation of the GEMS data by wind speed further demonstrates the effect of transport, with 

NO2 in winter accumulating throughout the day at low winds but flat at high winds. The effect of transport 

can be minimized in summer by spatially averaging observations over the broader metropolitan scale, under 45 

which conditions the diurnal variation of NO2 reflects a dynamic balance between emission and chemical 

loss.  

1. Introduction 

The Geostationary Environment Monitoring Spectrometer (GEMS) satellite instrument was launched 

in February 2020 by the National Institute of Environmental Research (NIER) to observe air quality over 50 

East Asia. GEMS is the first geostationary instrument directed at air quality and provides hourly column 

measurements of several gases including nitrogen dioxide (NO2) (J. Kim et al., 2020). NO2 is part of the 

nitrogen oxides (NOx ≡ NO + NO2) radical family, which is emitted by fuel combustion and whose 

chemistry plays a critical role in driving ozone (O3) and fine particulate matter (PM2.5) formation. NO2 

itself is of concern as an air pollutant. Loss of NOx is by atmospheric oxidation by the hydroxyl radical 55 

(OH) and ozone, resulting in a lifetime of a few hours in summer and about a day in winter (Shah et al., 

2020). The diurnal cycle of NO2 measured from geostationary orbit offers unique information on the 

emission, chemistry, and transport of NOx. Here we interpret the GEMS observations with the GEOS-

Chem chemical transport model (CTM) to better understand the processes controlling this diurnal cycle.  

  Several studies have examined the diurnal variation of NO2 in urban air using surface 60 

concentrations from air quality networks. The data typically exhibit bimodal maxima in the morning around 

7-9 local time (LT) and in the evening around 19-21 LT, including over Beijing and Seoul (Cheng et al., 

2018; H. Kim et al., 2020). This has been commonly attributed to high NOx emission during morning and 
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evening rush hours (Kendrick et al., 2015; Cheng et al., 2018), but urban NOx emission inventories show 

little variation during daytime (Miao et al., 2020). Moutinho et al. (2020) found that the morning and 65 

evening NO2 maxima could be driven by shallow mixing depths, in contrast to the middle of the day and 

afternoon hours when surface heating maximizes the mixing depth. This diurnal maximum in mixing depth 

defines the planetary boundary layer (PBL) in daily contact with the surface. The PBL depth extends 

typically to 1-3 km altitude.  

  Ground-based measurements of NO2 columns are available from the Pandora Sun-staring 70 

spectrometer instrument network used for validating satellite observations (Herman et al., 2009; Kanaya et 

al., 2014; Judd et al., 2020; Verhoelst et al., 2021). Column measurements integrate concentrations from 

the surface to the top of the atmosphere and are therefore not directly sensitive to mixing depth. The 

Pandora network consists mainly of urban sites, where the NO2 column and its variability are mainly within 

the PBL (Yang et al., 2023). The Pandora data from Seoul tend to show an increasing trend in the early 75 

morning followed by flat concentrations over the rest of the daytime, with less diurnal variation than NO2 

concentrations in surface air (Crawford et al., 2021). Nearby sites can show different diurnal variations, 

pointing to a major role of local transport in driving this variation (Chang et al., 2022; S. Kim et al., 2023).  

  Satellite observations of NO2 from polar sun-synchronous low-earth orbit (LEO) have been made 

since 1995 starting with the GOME instrument (Martin et al., 2002) but observe by design at a single time 80 

of day. Several studies have combined observations from the SCIAMACHY or GOME-2 instruments 

observing in the morning at 9-10 LT and the OMI instrument observing in the afternoon at 13-14 LT to get 

some information on NO2 diurnal variation. Boersma et al. (2008) found decreases from morning to 

afternoon over urban regions that they attributed to photochemical loss, and increases from morning to 

afternoon over tropical biomass burning regions that they attributed to a midday maximum in emissions. 85 

Boersma et al. (2009) found that the urban morning-to-afternoon decrease was largest in summer and 

absent in winter. Penn and Holloway (2020) found that NO2 column ratios between morning and afternoon 
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were lower than surface NO2 concentration ratios, as would be expected from deeper vertical mixing in the 

afternoon. Ghude et al. (2020) found an important role for transport in driving morning-to-afternoon 

variations in NO2 columns over urban India. Edwards et al. (2024) found that the diurnal variation of the 

NO2 column from GEMS in June is driven by photochemistry at a regional scale and variability in 95 

emissions and meteorology at a local scale.  

  Here we analyze and compare the NO2 diurnal cycles observed by GEMS over the Seoul and 

Beijing metropolitan areas in winter and summer. We compare to the diurnal cycles observed by Pandora in 

the urban cores and to simulations with the GEOS-Chem CTM. We use GEOS-Chem to separate and 

quantify the roles of emission, chemistry, and transport in driving the NO2 diurnal cycles observed from 100 

GEMS over different spatial scales. This work provides a basis for more quantitative application of GEMS 

observations as top-down information on NOx emissions, and more generally for interpreting the diurnal 

cycle of NO2 from geostationary orbit with application to the TEMPO instrument over North America 

launched in April 2023 (Zoogman et al., 2017) and the Sentinel-4 instrument over Europe to be launched in 

2024 (Gulde et al., 2017). 105 

2. Observations and model  

2.1 GEMS data 

GEMS is an ultraviolet-visible instrument measuring back-scattered solar spectra at 300 – 500 nm 

(J. Kim et al., 2020). It was launched in February 2020 in geostationary orbit at a longitude of 128.25°E. 

We use hourly total NO2 slant column density from the GEMS L2 NO2 version 2.0 product at native 3.5 × 110 

8 km2 resolution for December-February (DJF) 2021/22 and June-August (JJA) 2022 (NIER, 2023). The 

GEMS NO2 algorithm uses differential optical absorption spectroscopy (DOAS) to fit back-scattered solar 

spectra within the 432 – 450 nm range (J. Kim et al., 2020). This yields the slant column density along the 

light path (L2 data). We use all GEMS L2 NO2 version 2.0 data that pass algorithm quality flag ≤ 112, 
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final algorithm flag ≤ 1, solar zenith angle (SZA) < 70°, viewing zenith angle (VZA) < 70°, and cloud 

fraction < 0.3 (Lee et al., 2020).  

The vertical column density of NO2 is obtained by dividing the slant column density by an air mass 120 

factor (AMF) characterizing the photon path from the Sun down through the atmosphere and back up to the 

instrument. The AMF depends on the viewing geometry and on the scattering properties of the atmosphere: 

AMF = AMFG∫ 𝑤(𝑧)𝑆(𝑧)𝑑𝑧
!"#
$                                                    (1) 

Here TOA is the top of the atmosphere, AMFG is the geometric AMF defined by the solar zenith angle 

(SZA) and the satellite viewing angle (VZA) as AMFG = sec(SZA) + sec(VZA), 𝑤(𝑧) is the scattering 125 

weight that defines the instrument’s sensitivity to NO2 at altitude z, and 𝑆(𝑧) is a normalized vertical 

profile of NO2 number density called the shape factor (Palmer et al., 2001). Scattering weights are 

calculated with a radiative transfer model and increase with altitude (Martin et al., 2002; Yang et al., 2023). 

The shape factor is usually estimated with a CTM.  

An alternative DOAS retrieval and AMF by Lange et al. (2024) improved the GEMS L2 NO2 130 

version 2.0 vertical column density product, which was biased due to using incorrect vertical profiles for 

AMF computation (Oak et al., 2024). Here, we use our own AMF. We use scattering weights at 448 nm 

compiled as a look-up table dependent on SZA, VZA, relative azimuth angle (RAA), surface albedo, cloud 

top pressure, and effective cloud fraction (R. Park and Kwon, 2020). We specify the shape factor with local 

NO2 concentrations from the GEOS-Chem simulation described in Section 2.3 and extending to the 135 

mesosphere. In simulations of observations from the KORUS-AQ aircraft campaign over South Korea, 

Yang et al. (2023) showed that GEOS-Chem was successful in reproducing the NO2 vertical profile 

observed below 5 km altitude and inferred from NO observations above. They found that the PBL 

extending to 2 km altitude accounted for over 95% of the NO2 tropospheric column and 80-91% of the total 

NO2 atmospheric column in the Seoul and Beijing metropolitan areas of interest here. The model correctly 140 

simulated the observed diurnal variation of the PBL NO2 vertical profile over Seoul as driven by mixed 
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layer growth. This resulted in a diurnal amplitude of 14% for the AMF, peaking in the afternoon when 

mixing depth is maximum.  

2.2 Pandora data 165 

The Pandora instruments measure radiance at 280 – 525 nm (Herman et al., 2018) and fit total 

column NO2 (including the stratosphere). There were two Pandora sites in Seoul and one in Beijing 

(40.0°N, 116.4°E) for the 2021-2022 period. The two Pandora sites in Seoul are at Seoul National 

University (Seoul – SNU; 37.5°N, 127.0°E) in the southern part of Seoul (M. Kim et al., 2021; S. Park et 

al., 2018) and at Yonsei University (Seoul – YSU; 37.6°N, 126.9°E) in the northern part of Seoul (J. Kim., 170 

2017). The Beijing site is located on the north side of Beijing and a more detailed description is in O. Liu et 

al. (2024). We obtain the Pandora direct Sun data from the Pandonia global network (PGN, 2023). We 

exclude low-quality data (quality flag = 12) as recommended by PGN (PGN, 2021).  

2.3 GEOS-Chem model 

We use GEOS-Chem CTM version 13.3.4 (https://doi.org/10.5281/zenodo.5764874) driven by 175 

assimilated meteorological data from the Goddard Earth Observing System – Forward Processing (GEOS-

FP) with a horizontal resolution of 0.25° × 0.3125° (≈ 25×25 km2) over East Asia (24 – 52°N, 104 – 

133°E) and 3-hourly boundary conditions from a global GEOS-Chem simulation with 4° ×	5° resolution. 

GEOS-FP provides the finest spatial resolution available to drive GEOS-Chem. The model has 47 vertical 

levels including 14 vertical levels in the lower 2 km. Simulations were conducted for DJF 2021/2022 and 180 

JJA 2022 with 6 months of initialization for each period.  

Aside from emissions (see below), the simulation is the same as previously described by Yang et al. 

(2023) and features some modifications to the standard GEOS-Chem 13.3.4 to better reproduce KORUS-

AQ aircraft observations over Korea in May-June 2016. These include aerosol nitrate photolysis, volatile 

chemical product (VCP) emissions and chemistry, and reduced HO2 uptake by aerosol.  185 
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Simulations for 2022 require adjustment to NOx emissions beyond the most recent emission 

inventories used in GEOS-Chem for China (MEIC for 2019; Zheng et al., 2021) and Korea (KORUSv5 for 200 

2015; Woo et al., 2020). We apply for this purpose the surface NO2 concentration trends for China from the 

Ministry of Ecology and Environment (MEE) network (MEE, 2023) and for South Korea from the 

AirKorea network (KEC, 2023), focused mostly on urban sites. Mean 2022/2019 surface NO2 

concentration ratios in China are 0.91 in DJF and 0.83 in JJA, and mean 2022/2015 values in Korea are 

0.70 in DJF and 0.51 JJA, which are applied to scale the anthropogenic NOx emissions. We assume these 205 

scaling factors to be applicable to Beijing and Seoul.  

Yang et al. (2023) found that the GEOS-Chem simulation during KORUS-AQ successfully 

reproduced important features of NOx chemistry, notably the NO/NO2 ratio driven by photochemical 

cycling involving ozone and HO2. Several other studies have evaluated the GEOS-Chem simulation of NOx 

over East Asia. R. Park et al. (2021) found that GEOS-Chem successfully reproduced the NOx vertical 210 

profiles observed during KORUS-AQ. Shah et al. (2020) found a good simulation of the seasonality of 

OMI NO2 over China and its long-term trend. M. Liu et al. (2018) found that NO2 diurnal variability at the 

MEE stations was well captured but the model was too low, as would be expected from the urban nature of 

the sites.  

2.4 Diurnal variation of NOx emissions  215 

Figure 1 shows the diurnal cycle of NOx emissions used by GEOS-Chem in Beijing and Seoul. 

MEIC for China provides monthly NOx emissions separately for the transportation, residential, industrial, 

and power sectors while KORUSv5 separates mobile, area, and point sources. Neither inventory specifies 

diurnal variations in emissions. In our work, we apply the diurnal pattern from X. Liu et al. (2019) for the 

power sector and Miao et al. (2020) for other sources in the MEIC inventory. For KORUSv5 we apply the 220 

diurnal pattern from X. Liu et al. (2019) for point sources, supported by results from Bae et al. (2021), and 

the industrial daily pattern from Miao et al. (2020) for area sources. We estimate the diurnal variation of 
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mobile sources in KORUSv5 using hourly Seoul Transport Operation and Information Services (TOPIS, 

2023) data on weekday total traffic and construction equipment activity.  

Figure 1 shows that emissions are dominated by industrial and transport sources in Beijing, and by 

mobile (transport) sources in Seoul. Both sectors show a broad maximum between 7 and 18 LT that defines 

the overall diurnal cycle of emissions and is similar in winter and summer. There are no significant rush 230 

hour peaks in transport emissions, suggesting that the surface NO2 maxima observed in early morning and 

evening are driven more by shallow mixing depths (Moutinho et al., 2020). Total NOx emission in Beijing 

in winter is 30% greater than in summer, driven by the industrial source and possibly due to workplace 

heating. There is less seasonal variation in Seoul where mobile sources are the largest emitters.   

3. Intercomparison of total NO2 columns   235 

 Figure 2 shows the total NO2 columns over eastern China and South Korea observed by GEMS and 

simulated by GEOS-Chem during DJF 2021/22 and JJA 2022. The GEMS data are mapped on the 0.25° × 

0.3125°	GEOS-Chem grid. The yellow box delineates the Seoul Metropolitan Area (SMA). The zoomed-in 

black boxes are Beijing and Seoul and the white boxes are the city centers where Pandora stations are 

located. The maximum NO2 concentrations are in the city centers in summer but are shifted to the south in 240 

winter due to the prevailing winds and the long NOx lifetime (Seo et al, 2021). We see from Figure 2 that 

GEMS and GEOS-Chem have consistent spatial distributions and backgrounds, but GEOS-Chem over 

polluted regions is generally higher than GEMS except for Seoul in winter.  

 Figure 3 further intercompares GEOS-Chem and GEMS using the Pandora stations in Beijing and 

Seoul as evaluation metric. Previous GEMS evaluation with Pandora at the native pixel resolution of 245 

GEMS was presented by S. Kim et al. (2023). Here we conduct the evaluation on the coarser 0.25° × 

0.3125° GEOS-Chem grid as most relevant for our work. GEMS and GEOS-Chem reproduce the diurnal 

and day-to-day variability observed by Pandora in DJF (R2 = 0.87-0.90) and JJA (R2 = 0.77-0.79). NO2 

column magnitudes also agree well with Pandora in winter, with linear regression slopes of 0.94 for GEMS 
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and 0.90 for GEOS-Chem. Summer shows larger biases reflecting differences between the SNU and YSU 

Pandora sites that cannot be resolved at the 0.25° × 0.3125° resolution of GEOS-Chem (there are few 

observations at the Beijing site in JJA). YSU is more polluted than SNU, which is in a mountainous area 

more remote from emissions. Overall, comparison to Pandora supports the diurnal and day-to-day 

variability seen in the GEMS and GEOS-Chem data. The rest of our analysis focuses on the diurnal 255 

variability. 

4. Diurnal variation of NO2 columns on the urban scale   

We start with an urban core analysis focusing on the white boxes shown in Figure 2 for Beijing and 

Seoul, representing single 0.25° ×	0.3125° GEOS-Chem grid cells where the Pandora stations are located. 

Scatterplot comparisons between GEOS-Chem, GEMS, and Pandora for these grid cells were shown in 260 

Figure 3. Figure 4 shows the diurnal variation of the total NO2 column observed from GEMS and Pandora 

and simulated by GEOS-Chem in Beijing. GEOS-Chem results are shown as averages for all days and for 

the subset of days when GEMS observations are available (generally limited by cloud cover). Wintertime 

NO2 in all three datasets is flat from 10 to 11 LT and then increases from 11 to 14 LT. Summertime NO2 

decreases from 8 LT to a minimum at 13-14 LT and then increases to 16 LT, consistent between GEOS-265 

Chem and GEMS. Pandora observations in the summertime are too limited to show.  

We used the GEOS-Chem budget tendency diagnostic to understand the drivers of the diurnal 

variation in NO2 columns. This diagnostic tracks the mean mass-weighted changes of column 

concentrations after each model operation for any selected horizontal domain, vertical column, and time 

period. We focus on the PBL column conservatively defined as extending to 3 km altitude after verifying 270 

that altitudes higher than 3 km make negligible contributions to diurnal changes in the total model column. 

Within the PBL column we consider the budget of NO2 as that of NOx (≡NO + NO2 + NO3 + 2N2O5 + 

HONO + HNO4 + ClNO2) multiplied by the local NO2/NOx PBL column concentration ratio. This 

eliminates from the budget the fast interconversion reactions within the NOx family and provides a more 
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useful budget perspective. It allows us to consider NOx emission as a source of NO2 even though NOx is 275 

emitted mainly as NO. The NOx family is mainly contributed by NO and NO2, and the main 

interconversion reactions defining the NO2/NOx ratio are 

NO + O3 → NO2 + O2       (R1) 

NO + HO2 → NO2 + OH   (R2) 

NO + RO2 → NO2 + RO                                 (R3) 280 

NO + XO → NO2 + X                                     (R4) 

NO2 + h𝑣 
+O2
/0 NO + O3    (R5) 

where RO2 denotes organic peroxy radicals and X denotes halogen atoms. The net tendency for the PBL NO2 

column (ΩNO2) can then be related to that of NOx (ΩNOx) as 

1
%&!"#
%' 2()*

= 𝛼(𝑡) 1
%&!"$
%' 2()*

 (2) 285 

with 

1
%&!"$
%' 2()*

= 1
%&!"$
%' 2)+,--,.(

+ 1
%&!"$
%' 2/0)+,-*12

+ 1
%&!"$
%' 2*13(-4.1*

 (3) 

and where α(t) = Ω5"# /Ω5"$  is the NO2/NOx PBL column ratio. The terms on the right-hand side of Eq. (3) 

are updated by GEOS-Chem over its operator splitting time steps and are archived in the budget diagnostic 

as spatial and temporal averages. NOx dry deposition is included in the emission operator, but its 290 

contribution is very small (Shah et al., 2020). α(t) is archived every hour for application in Eq. (2). 

The second row of Figure 4 shows the different NOx budget terms from Eq. (3) over hourly time 

steps, with the net tendency as the left-hand-side term. The third row shows the NO2/NOx PBL column 

molar ratios in GEOS-Chem. Each data point in the second and third rows (centered on the half hour) 

explains the change between the two successive hours shown in the first row. The GEOS-Chem diurnal 295 

variation in the NO2 column in the first row reflects the net NOx tendency combined with the NO2/NOx 

ratio. We see that the increase in the NO2 column over the course of the day in winter reflects the dominant 

effect of daytime emissions, four times higher than at night and leading to NOx accumulation. Chemical 

loss is slow in winter and transport (flux divergence) is the main loss term. The flat trend of the NO2 

Deleted: R3300 

Deleted: The differential net budget

Formatted: Justified, Line spacing:  1.5 lines

Deleted: In this manner, we



 

 11 

column from 10 to 11 LT corresponds to the diurnal minimum of the NO2/NOx ratio. This ratio increases 

over the rest of the day as the mixed layer deepens and the freshly emitted NO is exposed to higher ozone 

concentrations. The increase in the ratio contributes to the increase in the NO2 column. The NO2 column in 305 

GEOS-Chem thus peaks at 18 LT. During the night, the NOx emission decreases and the loss from transport 

leads to decrease in the total NO2 column. The NO2/NOx ratio at night is only 0.55 mol mol-1, despite no 

NO2 photolysis, because of sustained NO emission and the slow rate of the NO + O3 reaction (low ozone 

and low temperatures).  

The opposite diurnal variation of NO2 in summer reflects weaker daytime emission of NOx and 310 

stronger chemical loss as shown by the GEOS-Chem budget analysis. Even though the emission term 

remains larger than the chemical loss term, there is also a negative transport term from ventilation. The 

chemical loss of NOx peaks at 11-12 LT and then weakens, reflecting the noon maximum of OH 

concentrations (Logan et al., 1981) combined with the decreasing NO2 concentration, and explaining the 

slow recovery of the NO2 column in the afternoon. The NO2/NOx ratio is higher in summer than in winter 315 

and shows little variation during the daytime, reflecting the higher concentrations of O3 and HO2 radicals 

offsetting the effect of NO2 photolysis. The daytime NO2/NOx ratio averages 0.75 mol mol-1 in summer, as 

compared to 0.50 mol mol-1 in winter, contributing to the seasonality of NO2 seen from space.   

Figure 5 shows the same as Figure 4 but for Seoul. The two Pandora stations show differences in 

NO2 columns, particularly in summer, as previously shown in Figure 3. They also show some differences in 320 

diurnal variation, particularly in winter, which we similarly attribute to local effects such as different 

emissions, wind speeds, and geography that cannot be resolved at 25-km resolution. The diurnal variations 

of GEMS and GEOS-Chem agree to within the ranges defined by data from the two Pandora stations. NO2 

columns in winter increase from 10 to 12 LT as in Beijing but then flatten in the afternoon, which we 

attribute in GEOS-Chem to stronger winds. NO2 columns in summer show an increase from 8 to 10 LT, 325 

unlike in Beijing, because of larger emissions initially overwhelming the chemical loss term. There follows 
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a decrease until 13-14 LT and a recovery in the later afternoon, similar to Beijing and driven by the same 

factors.  

5. Separating the influences of emission, chemistry, and transport  335 
 

We showed in Section 4 that the diurnal variation of the NO2 column observed by GEMS on the 

urban scale reflects a balance between emission and transport in winter, and the added influence from 

chemical loss in summer. The transport term can be represented with a CTM in an inversion framework 

(Cooper et al., 2017), but simple quantification of the transport term on the urban scale can also be done 340 

from knowledge of the wind speed with a mass balance approach (Jacob et al., 2016).   

Figure 6 illustrates the sensitivity of the NO2 diurnal variation to wind speed in the wintertime 

GEMS observations over Seoul when chemical loss is a negligible term. A wind speed of 6 m s-1 ventilates 

the  25×25 km2 urban core on a time scale of one hour. Here we segregate the data by GEOS-FP hourly 

wind speed at 850 hPa higher or lower than 6 m s-1. The diurnal variations are very different at high and 345 

low wind speed, and consistent between GEMS and GEOS-Chem. At high wind speed, the NO2 column 

shows little diurnal variability because emission is balanced by transport. At low wind speed, NO2 

accumulates over the daytime hours because the transport term is weaker and does not keep up with 

emissions. Steady state between emissions and ventilation is finally reached at 16 LT but the NO2 column 

keeps increasing until 18 LT because of increasing NO2/NOx ratio. Edwards et al. (2024) found an 350 

anticorrelation between the wind speed and tropospheric NO2 column concentrations consistent with our 

findings. 

One can reduce the effect of transport by spatial averaging over a large domain, thereby increasing 

the ventilation timescale. Edwards et al. (2024) showed that regionally averaging the data over Northeast 

Asia minimized the transport effect, though the interpretation of the result is more complicated due to 355 

averaging over diverse emission and chemical environments. Figure 7 shows the average diurnal pattern of 

the NO2 column observed by GEMS and simulated by GEOS-Chem on the ≈150-km scale of the SMA 
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(Figure 2) in winter and summer. Again, the diurnal variations observed by GEMS and simulated by 

GEOS-Chem are consistent. NO2 columns in winter increase over the course of the day in a more regular 

manner than on the 25-km urban scale (Figure 5a) because the transport loss term is steadier and responds 375 

mainly to the change in the NO2 column. The chemical loss term is not negligible, unlike on the urban 

scale, because its timescale of about 20 hours is comparable to that of transport.  

We see from Figure 7 that the transport term can be successfully marginalized on the scale of the 

SMA in summer because the chemical loss term is faster. The resulting SMA diurnal pattern of the total 

NO2 column is consistent with that of Seoul (Fig. 5b) but with a flatter shape and the early-afternoon 380 

minimum now driven mainly by chemistry. The amplitude is greatly dampened because emissions are five 

times weaker when averaged over the SMA regional domain, and because the chemical loss integrates over 

the residence time within the domain.  

6. Conclusions 

We used the GEOS-Chem model to interpret the diurnal variation of NO2 columns observed from 385 

the GEMS geostationary instrument and Pandora ground-based spectrometers over Beijing and Seoul in 

December-January-February (DJF) 2021/22 and June-July-August (JJA) 2022. This was motivated by the 

need to understand the unique information offered by hourly geostationary satellite observations on the 

budget of NOx through the contributions of emissions, chemistry, and transport to the diurnal cycle of NO2.   

The GEOS-Chem model used in this work had previously shown successful simulation of the NO2 390 

vertical profile and its diurnal variation over Seoul in the KORUS-AQ aircraft campaign, enabling reliable 

computation of the diurnal dependence of the air mass factor (AMF) that contributes to the diurnal 

variation of NO2 observed from space. Here we used the diagnostic budget capability in GEOS-Chem to 

isolate the contributions of NOx emissions, chemistry, transport, and the NO2/NOx column ratio to the 

diurnal cycle of NO2 columns. We also updated NOx emissions to 2022 including their diurnal variations. 395 

The NOx emissions for Beijing and Seoul are a factor of four higher in the daytime than at night, reflecting 
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mobile and industrial sources, and show little variation during the daytime hours. We focused on simulation 

of the total atmospheric NO2 column rather than the tropospheric column, taking advantage of the 

stratospheric capability in GEOS-Chem, to avoid errors in the definition of the tropopause. Diurnal 

variation of the NO2 atmospheric column in the two cities is mainly determined by the planetary boundary 

layer (PBL) up to 3 km altitude. 405 

We investigated the diurnal variation of the NO2 column at the 25-km urban scale over Beijing and 

Seoul. GEMS, Pandora, and GEOS-Chem show similar variability and diurnal variations. NO2 columns in 

winter increase over the course of the daytime hours, reflecting accumulation from high daytime emissions 

offset by loss from horizontal transport (flux divergence), and further enhanced by increase in the NO2/NOx 

over the course of the day as ozone is entrained in the growing mixed layer. Chemical loss of NOx in winter 410 

is too slow to play a significant role in the observed diurnal variation. In summer, by contrast, NO2 columns 

decrease from 10 to 14 local time (LT) because of NOx photochemical oxidation compounding the loss 

from transport.  

We further examined the importance of transport for interpreting the diurnal variation in the GEMS 

urban NO2 data by segregating the Seoul data by wind speed. In winter, the low-wind GEMS data (< 6 m s-415 

1) show steady rise of NO2 over the course of the day while the high-wind data (≥ 6 m s-1) show flat diurnal 

variation, consistent with the GEOS-Chem model. Transport plays an important role in the NOx budget in 

both cases but cannot keep up with the high daytime emissions in the low-wind case.  

We examined whether the role of transport in the diurnal variation of the urban NO2 column could 

be reduced by spatial averaging of the data over the 150-km regional scale of the Seoul Metropolitan Area 420 

(SMA). The SMA data in winter show a steady increase over the daytime hours due to emissions, but the 

transport term remains the major sink of NOx. The SMA data in summer show negligible loss from 

transport in daytime because chemical loss term is much faster, but the diurnal amplitude is weak because 

of diluted emissions and long residence times for the air over the regional domain.  
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Our conclusions regarding the interpretation of the diurnal variation of NO2 columns observed by 

GEMS can be extended to other instruments of the geostationary air quality constellation, such as TEMPO 

over North America, launched in April 2023 and Sentinel-4 over Europe, scheduled for launch in 2024. 

This work further lays the groundwork for use of GEOS-Chem in inversions of the geostationary satellite 440 

data to infer NOx emissions. 
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 680 
 
Figure 1. Diurnal variation of NOx emissions in Beijing and Seoul for DJF 2021/2022 and JJA 2022. Local 
time is Chinese Standard Time (CST) for Beijing and Korean Standard Time (KST) for Seoul. Solar noon 
is at 12:08 – 12:27 CST in Beijing and 12:21 – 12:45 KST in Seoul. Values are for the white boxes in 
Figure 2. Different colors represent different sectors, and the black line shows the total emission.  685 
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Figure 2. Total NO2 columns over East Asia retrieved by GEMS and simulated by GEOS-Chem. The data 
are 3-month averages for December-July-February (DJF) 2021/22 and June-July-August (JJA) 2022 on the 
0.25° ×	0.3125° GEOS-Chem nested grid. The yellow rectangle delineates the Seoul Metropolitan Area 690 
(SMA; 36.6-38.1°N, 126.4-128.3°E). The zoomed-in plots show Beijing and Seoul, and the white boxes are 
the 0.25° ×	0.3125° urban cores where the Pandora stations are located (black circles). Scales are different 
for DJF and JJA.  
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 695 

 

Figure 3. Intercomparison of GEOS-Chem, GEMS, and Pandora NO2 columns for the Pandora sites in 
Beijing and Seoul. The Figure shows scatterplots of daytime hourly data for DJF 2021/2022 and JJA 2022. 
GEMS is mapped on the 0.25° ×	0.3125° GEOS-Chem grid. Coefficients of determination (R2) and 
reduced-major axis linear regressions are shown. The 1:1 line is dashed. The Beijing Pandora site has 700 
limited observations in JJA.  
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Figure 4. Diurnal variation of total NO2 column and driving processes in Beijing. The first row shows the 
average NO2 columns observed by GEMS and Pandora, and simulated by GEOS-Chem, in DJF 2021/22 
and JJA 2022 for the 0.25° ×	0.3125° GEOS-Chem grid cell in the urban core where the Pandora station is 705 
located (white box in Figure 2). GEMS observations are available for the hours indicated by symbols. 
GEOS-Chem results for the full diurnal cycle are shown as averages for all days and for the subset of days 
when GEMS data are available (generally limited by cloud cover). Pandora data are not shown for JJA due 
to a limited number of observations (Figure 3). The second row shows the hourly tendencies in the GEOS-
Chem NOx budget (averaged for all days) for the planetary boundary layer (PBL) conservatively defined as 710 
extending up to 3 km altitude. The tendencies describe the contributions from individual processes to the 
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NOx budget as given by Eq. (3), with NOx defined as NOx ≡ NO + NO2 + NO3 + 2N2O5 + HONO + HNO4 
+ ClNO2. The third row shows the PBL NO2/NOx column molar ratio in GEOS-Chem.  
 

 715 
 Figure 5. Same as Figure 4 but for Seoul.  
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 720 

Figure 6. Same as Figure 4 but for DJF 2021/22 in Seoul with data segregated by wind speed. Segregation 
threshold is 6 m s-1 for the 850 hPa hourly wind speed in the NASA GEOS-FP meteorological data used as 
input to GEOS-Chem.   
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Figure 7. Same as for Figure 4 but for the Seoul Metropolitan Area (SMA; 36.6-38.1°N, 126.4-128.3°E) 
corresponding to the yellow box in Figure 2. Quantities are averages over all 0.25° × 0.3125° grid cells in 
the SMA. 730 
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