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Abstract. This study investigates long-term trends of criteria air pollutants, including 12 

NO2, CO, SO2, O3 and PM2.5, and Ox (=NO2+O3) measured in ten Canadian cities 13 

during the last two to three decades and associated driving forces in terms of emission 14 

reductions, perturbations due to varying weather conditions and large-scale wildfires, 15 

and changes in O3 sources and sinks. Two machine learning methods, the random forest 16 

algorithm and boosted regression trees, were used to extract deweathered mixing ratios 17 

(or mass concentrations) of the pollutants. The Mann-Kendall trend test of the 18 

deweathered and original annual average concentrations of the pollutants showed that, 19 

on the time scale of 20 years or longer, perturbation due to varying weather conditions 20 

on the decade trends of the pollutants are minimal (within 2%) in about 70% of the 21 

studied cases, although it might be larger (but at most 16%) in the remaining cases. 22 

NO2, CO and SO2 showed decreasing trends in the last two to three decades in all the 23 

cities except CO in Montreal. O3 showed increasing trends in all the cities except 24 

Halifax, mainly due to weakened titration reaction between O3 and NO. Ox, however, 25 

showed decreasing trends in all the cities except Victoria because the increase in O3 is 26 

much less than the decrease in NO2. In three of the five eastern Canadian cities, 27 

emission reductions dominated the decreasing trends in PM2.5, but no significant trends 28 
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in PM2.5 were observed in the other two cites. In five western Canadian cities, 29 

increasing or no significant trends in PM2.5 were observed, likely due to unpredictable 30 

large-scale wildfires overwhelming or balancing the impacts of emission reductions on 31 

PM2.5. In addition, despite improving air quality during the last two decades in most 32 

cities, air quality health index of above 10 (representing very high-risk condition) still 33 

occasionally occurred after 2010 in western Canadian cities because of the increased 34 

large-scale wildfires. 35 

 36 

Keywords: Atmospheric pollutants, trend analysis, machine learning, emission 37 

reduction, wildfire emission  38 

1 Introduction  39 

Criteria air pollutants can harm human health and the natural environment. According 40 

to Health Impacts of Air pollution in Canada 2021 Report (Heath Canada, 2021), it is 41 

estimated that air pollution of NO2, O3 and PM2.5 caused 15,300 deaths per year, 42 

corresponding to 42 deaths per 100,000 population in Canada in 2016. To protect 43 

human health and the environment, the Canadian Council of Ministers of the 44 

Environment (CCME) developed the Canadian Ambient Air Quality Standards 45 

(CAAQS) for PM2.5, O3, SO2 and NO2. CAAQS are supported by four colour-coded 46 

management levels with each management level being determined by the amount of a 47 

pollutant within an air zone, from which recommendations on air quality management 48 

actions are provided. Following this standard, multiphase mitigation measures have 49 

been implemented to largely reduce anthropogenic air pollutant emissions in recent 50 

decades (ECCC, 2021). Air quality in Canadian urban atmospheres well meets CAAQS 51 

in recent years, as reported in Air Quality - Canadian Environmental Sustainability 52 

Indictors (ECCC, 2023).  53 

 54 

Nevertheless, the World Health Organization (WHO, 2021) updated the global air 55 

quality guidelines (AQG) on NO2, SO2, CO, O3 and PM2.5 in 2021, based on 56 
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accumulated strong evidence that air pollution can affect public health even at very low 57 

concentrations. In the WHO 2021 AQG, NO2 annual average concentration is set as 10 58 

μg m-3, equivalent to ~ 5 ppb at annual average temperatures of 6-10 °C across Canada, 59 

annual average and 24-hour average PM2.5 concentrations are set as 5 g m-3 and 15 g 60 

m-3, respectively, and peak season mean 8-hr O3 concentration is set as 60 µg m-3. An 61 

urgent issue for all areas of the world is to overcome challenges to further lower ambient 62 

NO2, O3 and PM2.5 concentrations in order to meet the WHO 2021 AQG (Dabek-63 

Zlotorzynska et al., 2019; Griffin et al., 2020; Xu et al., 2019; Jeong et al., 2020; Al-64 

Abadleh et al., 2021; Wang et al., 2021; Zhang et al., 2022; Bowdalo et al., 2022). 65 

 66 

In search of the most efficient mitigation measures for criteria pollutants, the 67 

effectiveness of existing measures on air pollution reduction needs to be first examined. 68 

For this purpose, long-term trends in concentrations of the criteria air pollutants need 69 

to be quantified and the driving forces of the trends, besides anthropogenic emission 70 

reductions, should be identified. Several studies have investigated the decadal trends of 71 

some criteria pollutants in Canada in the past decade. For example, Chan and Vet (2010) 72 

reported upward trends in O3 mixing ratio from 1997-2006 at dozens of sites in Canada. 73 

Xu et al. (2019) and Zhang et al. (2022) also found increasing trends in O3 mixing ratio 74 

from 1996-2016 at multiple sites in Windsor, Ontario, which was attributed to the 75 

reduced titration effect of NO with O3. They also reported that the 95th percentile O3 76 

mixing ratio exhibited a decreasing trend and attributed the decrease to anthropogenic 77 

emission reductions. Mitchell et al. (2021) reported that the 99th percentile O3 mixing 78 

ratios exhibited a decreasing trend from 2000-2018 at urban and regional sites in Nova 79 

Scotia, but such a trend was not found for low-moderate percentile O3 mixing ratios. 80 

Bari and Kindzierski (2016) found no significant trends in PM2.5 mass concentration, 81 

although decreasing trends in organic carbon and elemental carbon from 2007-2014 in 82 

Edmonton. Jeong et al. (2020) reported 34% decrease in PM2.5 mass concentration from 83 

2004-2017 in Toronto and attributed the decrease to the reduced coal-fired power plants 84 

emissions. Wang et al. (2022a) reported significant decreasing trends in organic and 85 
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elemental carbon in PM2.5 from 2003-2019 at seven urban sites in Canada. Studies on 86 

other criteria pollutants are very limited (Feng et al., 2020; Jeong et al.; 2020). 87 

 88 

O3 mixing ratios, especially at high levels, are strongly affected by meteorological 89 

conditions, and thus, trends on the decadal scale can be perturbed by varying weather 90 

conditions from year to year (Simon et al., 2015; Xing et al., 2015; Ma et al., 2021; Lin 91 

et al., 2022). Inter-annual variations of weather conditions also have strong impact on 92 

the decadal trends of other criteria pollutants (Lin et al., 2022). Air quality models are 93 

useful tools to analyze emission-driven air quality trends and meteorological impacts 94 

(Foley et al., 2015; Astitha et al., 2017; Vu et al., 2019), but most modeling results suffer 95 

from large uncertainties which could exceed changes in annual means of simulated 96 

pollutant concentrations. Machine learning techniques such as the random forest (RF) 97 

algorithm and boosted regression trees (BRTs) have been demonstrated to be a powerful 98 

tool to decouple impacts of emission changes and perturbations from varying weather 99 

and/or meteorological conditions, enabling the derivation of deweathered trends in air 100 

pollutants concentrations (Grange et al., 2018; Grange and Carslaw, 2019; Ma et al., 101 

2021; Mallet, 2021; Shi and Brasseur, 2020; Wang et al., 2020; Munir et al., 2021; 102 

Lovric et al., 2021; Hou et al., 2022; Lin et al., 2022). The advantages and limitations 103 

of RF algorithm and BRTs have been described in detail in earlier studies (Grange et 104 

al., 2018; Grange and Carslaw, 2019). Briefly, BRTs method is fast to train and make 105 

prediction, but suffers heavily from overfitting, which may result in unreliable 106 

predictions. RF method can control the overfitting, but yields a poor prediction for 107 

outliers in large percentiles. Thus, using two methods with different strengths and 108 

weaknesses, although their predictions are similar in many ways, can constrain 109 

methodology uncertainties and better evaluate perturbations due to varying weather 110 

conditions than using only one method, as has been demonstrated in our earlier study 111 

(Lin et al., 2022). 112 

 113 

This study attempts to deduct the perturbations due to varying weather conditions on 114 
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the observed mixing ratios (or mass concentrations) of some criteria air pollutants in 115 

Canada during the past two to three decades and thereby investigates their emission-116 

driven trends. We used the RF algorithm and BRTs to generate the deweathered mixing 117 

ratios (or concentrations) of NO2, SO2, CO, O3, Ox and PM2.5 during the past decades 118 

in ten cities equally distributed in eastern and western Canada. Considering that the 119 

machine learning methods may suffer from the weakness in accurately predicting large 120 

percentile concentrations of the studied criteria air pollutants, we also applied our 121 

previously developed identical-percentile autocorrelation analysis method to better 122 

quantify the perturbations due to extreme events such as large-scale wildfires on large 123 

percentile PM2.5 concentrations (Yao and Zhang, 2020; Lin et al., 2022). The Mann-124 

Kendall (M-K) trend test was then employed to resolve the trends in the deweathered 125 

mixing ratios (or mass concentrations). Pearson correlation analysis was further 126 

conducted for the deweathered and original mixing ratios (or mass concentrations) of 127 

the air pollutants against the corresponding provincial-level emissions. City-level 128 

emissions were used in the analysis in cases with large differences between air pollutant 129 

concentrations and provincial-level emissions. In addition, the  Air Quality Heath Index 130 

(AQHI, https://weather.gc.ca/airquality/pages/index_e.html), a health protection tool 131 

designed in Canada to advise the public to adjust outdoor activities based on air 132 

pollution levels, was also analyzed with particular attention to the trends with AQHI 133 

being above 7 and 10, respectively. This study provides a thorough assessment of the 134 

emission-driven trends in the studied criteria pollutants on the time scale of two to three 135 

decades across Canadian urban atmospheres, knowledge from which is much needed 136 

in developing future emission control policies of the concerned pollutants.  137 

2 Methodology 138 

2.1 Monitoring sites and data sources  139 

Ten major cities, including five in eastern Canada (Halifax, Quebec City, Montreal, 140 

Toronto and Hamilton) and five in western Canada (Winnipeg, Calgary, Edmonton, 141 

Vancouver and Victoria), from the National Air Pollution Surveillance (NAPS) program 142 
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are selected for investigating decadal trends of the monitored criteria pollutants (Table 143 

S1). The NAPS program has long-term air quality data of a uniform standard across 144 

Canada (Dabek-Zlotorzynska et al., 2011, 2019; Jeong et al., 2020; Yao and Zhang, 145 

2020; Wang et al., 2021, 2022a). The NAPS program includes both continuous and 146 

time-integrated measurements of gaseous and particulate air pollutants. Continuous 147 

data are available as hourly concentrations and are quality-assured as specified in the 148 

Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines 149 

(https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b).  150 

 151 

Multiple monitoring sites exist in most cities, but only one urban background site was 152 

selected in each city mentioned above based on the following criteria: with the most 153 

complete dataset of the five selected criteria pollutants (NO2, CO, SO2, O3 and PM2.5), 154 

with the longest data record, and with valid data in each year (Table S1). In cases with 155 

a data gap longer than a year, e.g., in Quebec City, Halifax and Calgary, data at a nearby 156 

urban background site (within 1 km) were then used to fill the gap. If no site within 1 157 

km is available, then the data gap is left unfilled. SO2, CO, NOx and PM2.5 emission 158 

data at the provincial level in Canada are obtained from 159 

https://www.canada.ca/en/environment-climate-change/services/environmental-160 

indicators/air-pollutant-emissions.html. City-level air pollutant emissions from various 161 

registered facilities since 2002 were obtained from 162 

https://www.canada.ca/en/services/environment/pollution-waste-163 

management/national-pollutant-release-inventory.html. 164 

 165 

Besides the monitored criteria pollutants described above, AQHI is also calculated in 166 

this study at three-hour resolution using the following formula (Stieb et al., 2008; To et 167 

al., 2013): 168 

AQHI = (100/10.4) × ([(e0.000537×O3-1) + (e0.000871×NO2-1) + (e0.000537×PM2.5-1)], in which 169 

O3 and NO2 represent their respective three-hour average original mixing ratios (in ppb) 170 

and PM2.5 represents its three-hour average original concentration (in µg m-3). The 171 

https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b
https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html
https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html
https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html
https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html
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calculated AQHI is rounded to the nearest positive integer. AQHI between 1-3 172 

represents excellent air quality that is safe for outdoor activities. Outdoor activities may 173 

be reduced at AQHI between 4-6 for certain population with some health issues. AQHI 174 

between 7-10 and >10 correspond to high and very high health risk conditions, 175 

respectively. Note that four alternative AQHI-Plus amendments have been proposed for 176 

wildfire seasons and the AQHI-Plus values are always larger than the corresponding 177 

AQHI values (Yao et al., 2020). One of AQHI-Plus amendments has been implemented 178 

in late 2016 in British Columbia. The AQHI-Plus amendments are not used in this study 179 

since it is not implemented across the whole Canada. 180 

 181 

2.2 Statistical analysis  182 

In this study, two popular machine learning packages, including the “rmweather” R 183 

package (Grange et al., 2018) and the “deweather” R package ( Carslaw and Ropkins, 184 

2012; Carslaw and Taylor, 2009), were used to perform the RF algorithm and the BRTs, 185 

respectively. Besides the monitored hourly average mixing ratio (or mass concentration) 186 

of a pollutant, temporal variables (hour, day, weekday, week and month) and 187 

meteorological parameters (wind speed, wind direction, ambient temperature, relative 188 

humidity and dew point) are also needed as additional independent inputs to the 189 

machining learning process. The hourly meteorological data were obtained from the 190 

meteorological observational station at a nearby airport in each city, which are 191 

accessible from the NOAA Integrated Surface Database (ISD) by using the “worldmet” 192 

R package (Carslaw, 2021). The meteorological data from the nearest airport in every 193 

city should reflect synoptic weather conditions, which have been used in existing 194 

machine learning studies (Vu et al., 2019; Mallet, 2020; Wang et al., 2020; Dai et al., 195 

2021; Ma et al., 2021). Additional meteorological parameters such as boundary layer 196 

height, total cloud cover, surface net solar radiation, surface pressure, total precipitation 197 

and air mass clusters have also been used in some studies to improve the performance 198 

of the machine learning methods (Hou et al., 2022; Shi et al., 2021; Lin et al., 2022). 199 

These additional meteorological parameters were not included in the present study, but 200 
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could be included in future analyses. Nevertheless, good performance can still be 201 

achieved in the present study mainly because of multi-decade length of the datasets, as 202 

demonstrated by an example shown in Fig. 1. Note that the inputs for the two packages 203 

were randomly divided into two groups and the user cannot control the division, i.e., 204 

the training dataset that used 80% of the data and a testing dataset that used the 205 

remaining 20%. Thus, the testing datasets were different between the RF algorithm and 206 

the BRTs. Note that all input parameters and output variables, i.e., the predicted hourly 207 

average mixing ratio (or mass concentration) of a pollutant, for testing were the same 208 

as those used for learning. Moreover, the training and testing were conducted for every 209 

pollutant at every site. 210 

 211 

Five statistical metrics, including coefficient of determination (R2), root mean square 212 

error (RMSE), mean bias (MB), mean fractional bias (MFB) and mean fractional error 213 

(MFE), were calculated to evaluate the performance of the two machine learning 214 

methods. In the literature, criteria and goal values have not been set for the statistical 215 

metrics for the purpose of evaluating machine learning prediction performance. 216 

Alternatively, the criteria and goal values for MFE and MFB proposed by USEPA are 217 

adopted here, which are MFE≤75% and MFB≤±60% for the criteria value and MFE≤50% 218 

and MFB≤±30% for the goal value (USEPA, 2007).  219 

 220 

Fig. 1 shows predictions against observations of NO2 mixing ratio in Halifax using the 221 

testing datasets during 1996-2017, as an example for evaluating the performance of the 222 

two machine learning methods (P value <0.01 for all the correlation). MFB and MFE 223 

values were far below their respective goal values for both RF algorithm and BRTs set 224 

by USEPA. R2 and RMSE were 0.86 and 5.1, respectively, for both methods. MB is -225 

0.04 for RF algorithm and 0.1 for BRTs. The values of these metrics indicated that the 226 

predictions well reproduced the observations. However, the two machine learning 227 

methods overall underpredicted NO2 mixing ratios to a small extent based on the 228 

regression lines slightly below the 1:1 line. The underestimation was mainly due to 229 
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sporadic large values in the measurement of NO2 mixing ratio, which did not provide 230 

sufficient samples for the machine learning methods to learn and yield good predictions. 231 

For all the pollutants in all the cities investigated in this study, the machine learning 232 

predictions generally met the goal values set by USEPA, except for PM2.5 in some 233 

western Canadian cities such as Calgary and Edmonton with the predictions only 234 

meeting criteria values because of the perturbation from large-scale wildfires.   235 

 236 

Following the approach described in earlier studies (Hou et al., 2022; Lin et al., 2022), 237 

the two machine learning methods were run for 1000 times with meteorological 238 

variables randomly resampled from the entire datasets during the study period. The 239 

average model prediction from the 1000 model runs represents the meteorologically 240 

normalized pollutant concentration at a particular time. We also tested averaging 2000 241 

and 3000 model predictions, which produced consistent results with those of using 1000 242 

model predictions. Thus, averaging 1000 model predictions was used for 243 

meteorological normalization in this study. 244 

 245 

As mentioned above, the machine learning methods suffer from the weakness in 246 

accurately predicting high concentration values in large percentiles. We thus applied 247 

the identical-percentile autocorrelation analysis method developed in our previous 248 

study to quantify the perturbations due to extreme events such as large-scale wildfires 249 

on the large percentile concentration values (Yao and Zhang, 2020; Lin et al., 2022). 250 

This method has five steps for data processing and analysis. The first step is to construct 251 

a long-term average data series at hourly resolution covering 365 days by averaging the 252 

corresponding hourly data from all the years of the study period. The second step is to 253 

pair a data series at any given year to the long-term average data series, and if there 254 

were any data gaps (missing hours) in the former data series, data for these hours in the 255 

latter series were also removed so that the two data series have exactly the same size. 256 

The third step is to rearrange all the hourly data from the smallest to the largest value 257 

in each of the data series generated in step 2, and then conduct correlation analysis 258 
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between the pair of data series. Inflection points in the large and small percentile zone 259 

were first visibly identified/guessed, and referenced as upper and lower inflection 260 

points, respectively. The pair of data between the lower and upper inflection points were 261 

correlated repeatedly by varying values of the two inflection points in search for highest 262 

R2 values. The fourth step is to predict the large percentile values exceeding the upper 263 

inflection point using the regression equation with the highest R2 generated in step 3. 264 

The final step is to obtain the perturbations due to extreme events on the large percentile 265 

concentrations by subtracting the observed values from the predicted values.  266 

 267 

Fig. 2 shows three examples calculating the perturbations due to varying weather 268 

conditions and large-scale wildfires on the large percentile concentrations of PM2.5 in 269 

1998, 1999 and 2019 in Edmonton. Large-scale wildfires occurred in 1998 and 2019 270 

(Fig. S1), but no record in 1999. In 1998, data points outside the 4.5th-94th percentile 271 

range were screened out through steps 1-3, and the remaining data points were used to 272 

obtain a regression equation, which shows [PM2.5]data in 1998 = [PM2.5]long-term average ×3.9-273 

18 (R2=0.96, P<0.01) (Fig. 2a). [PM2.5]data in 1998 and [PM2.5]long-term average represent the 274 

same identical percentile values of PM2.5 in re-organized data series of 1998 and the 275 

long-term average through steps 1-3, respectively. The similar definition is applicable 276 

for [PM2.5]data in 1999 and [PM2.5]data in 2019 presented below. In 1999, data points within 277 

the 4.5th-99.7th percentile range resulted in a regression equation of [PM2.5]data in 1999 = 278 

[PM2.5]long-term average ×3.1-15 (R2=0.97, P<0.01) (Fig. 2c). In 2019, data points within 279 

the 5.4th–96th percentile range resulted in [PM2.5]data in 2019 = [PM2.5]long-term average ×2.2-280 

12 (R2=0.94, P<0.01) (Fig. 2e). Note that step 3 is critical to obtain these excellent 281 

correlations (Fig. 2a, 2c and 2e) as compared with those absent of step 3 (Fig. 2b, 2d 282 

and 2f).  283 

 284 

The perturbation due to the extreme weather conditions or the extreme events on the 285 

100th percentile PM2.5 value, i.e., the maximum value in this study, at a particular year 286 

(y) can be calculated as: 287 
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[PM2.5]perturbation at 100th,y = [PM2.5]predicted at 100th,y  -   [PM2.5]observed  at 100th,y 288 

[PM2.5]predicted at 100th,y = [PM2.5]long-term average at 100th ×ky + by 289 

where [PM2.5]observed at 100th,y represents the 100th percentile PM2.5 value observed in y 290 

year, and ky and by represent the slope and intercept, respectively, of the regression 291 

equation with the highest R2 in the y year generated  through steps 1-3. Similarly, the 292 

perturbation inherent from the large percentile values from the final upper inflection 293 

point (mth) to 100th percentile in a particular year can be calculated as: 294 

 [PM2.5]perturbation at mth, y= [PM2.5]predicted at mth, y -  [PM2.5]observed  at mth, y, 295 

[PM2.5]predicted at mth,y = [PM2.5]long-term average at mth ×ky + by 296 

The calculated values from [PM2.5]perturbation at mth,y to [PM2.5]perturbation at 100th,y in the y 297 

year were averaged as [PM2.5]perturbation average,y. The perturbation contribution to the 298 

corresponding original annual average equals to [PM2.5]perturbation average,y×(1-m%) in y 299 

year, and the values were 3.0 g m-3 in 1998, 0.2 g m-3 in 1999 and 1.7 g m-3 in 2019 300 

in Edmonton, corresponding to strong, minimal and moderate perturbations, 301 

respectively, from large wildfires.  302 

 303 

The M-K trend test is a non-parametric test applicable to any type of data distribution 304 

and is employed to resolve the trends in the time series of the deweathered and original 305 

annual average concentration of each pollutant. Qualitative trends revolved by the M-306 

K trend test include 1) an increasing or decreasing trend with a P value of <0.05, and 2) 307 

no significant trend including a probably increasing or decreasing trend, a stable trend, 308 

and a no-trend with all the other conditions (Aziz et al., 2003; Kampata et al., 2008; 309 

Yao and Zhang, 2020). The extracted trends and associated driving factors are discussed 310 

in detail below. 311 

 312 

3. Results  313 

3.1 Trends in deweathered and original NO2 mixing ratios  314 

Fig. 3a and 3b show decadal variations in the original annual averages of NO2 mixing 315 

ratios in the ten Canadian cities. The BRTs-deweathered and RF-deweathered hourly 316 
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averages of NO2 mixing ratios are shown in Fig S2, in which the deweathered results 317 

were also interpreted in terms of increased or reduced emissions of NOx. The decadal 318 

trends resulted from annual averages of BRTs-deweathered, RF-deweathered and 319 

original NO2 mixing ratios are listed in Table 1.  320 

 321 

The deweathered and original annual average NO2 mixing ratios in any of the 10 cities 322 

both showed consistent decreasing trends in the last 2-3 decades (P<0.05 through M-K 323 

trend test). The BRTs-deweathered and RF-deweathered annual averages highly 324 

correlated with the original values with R2>0.95 and P<0.01 (Table 1). The slopes of 325 

zero-intercept regression equations between the deweathered and original annual 326 

average NO2 mixing ratios were mostly within 0.98-1.04, indicating ≤4% differences 327 

between the deweathered and original annual values. These results indicated that the 328 

perturbation due to varying weather conditions only exerted minor influences on the 329 

original annual averages. The only exception is the RF-deweathered annual averages in 330 

Halifax (with a slope of 1.08); however, this may not suggest that the perturbation due 331 

to varying weather conditions was as high as 8% since the BRTs-deweathered annual 332 

averages in the same city showed a slope of only 1.03, indicating that the uncertainties 333 

in the slope associated with the RF-deweathered averages can be as large as 5% (8% 334 

minus 3%) because of its poor prediction for large outlier values.  335 

 336 

The annual decreasing rates in the deweathered and original NO2 mixing ratios in the 337 

studied cities varied from 0.31 to 0.74 ppb year -1, and the overall percentage decreases 338 

ranged from 37% to 62% during the last two to three decades (Table 1). Our results 339 

suggested that varying weather conditions likely played a negligible role in the annual 340 

decreasing rates of NO2 mixing ratio in two eastern (Montreal and Hamilton) and four 341 

western (Winnipeg, Calgary, Vancouver and Victoria) Canadian cities, as can be seen 342 

from the very close annual decreasing rates between the deweathered and original 343 

annual average mixing ratios, despite methodology uncertainties in generating 344 

deweathered mixing ratios as mentioned above. In the remaining four cities, the annual 345 
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decreasing rates were always larger in the original than the deweathered annual average 346 

NO2 mixing ratio, with the largest differences in Toronto (0.07-0.10 ppb year-1), 347 

followed by Halifax (0.06-0.10 ppb year-1), Edmonton (0.06-0.08 ppb year-1) and 348 

Quebec City (0.02-0.07 ppb year-1), suggesting that varying weather conditions 349 

contributed appreciably to the annual decreasing rate. The annual decreasing rates were 350 

highly city-dependent, but there were no significant differences between eastern and 351 

western cities (P>0.05). With continuously decreasing NO2 mixing ratios in the last 352 

decades (Fig. 3), annual average NO2 fell to below 10 ppb by 2019 in half of the studied 353 

cities (Halifax, Montreal, Quebec City, Winnipeg and Victoria), meeting the WHO 2021 354 

guideline. Additional efforts are still needed to lower the NO2 level in the rest of the 355 

cities, especially in Toronto and Edmonton in which annual average NO2 were still as 356 

high as 15 ppb in 2019.  357 

 358 

NO2 in urban atmospheres were mainly formed by the rapid titration reaction of NO 359 

with O3, with NO largely released from anthropogenic emissions, especially the 360 

transport sector (Pappin et al., 2016; Casquero-Vera et al., 2019; Dabek-Zlotorzynska 361 

et al., 2019; Feng et a., 2020; Griffin et al., 2020; Al-Abadleh et al., 2021). The 362 

correlations between the annual average NO2 mixing ratios and corresponding 363 

provincial NOx emissions were thereby analyzed below (Table 1). Note that the on-line 364 

air pollutant emission inventory in Canada reports the emissions since 1990 (ECCC, 365 

2021) so the correlation analysis only covers the period of 1990-2019. Strong 366 

correlations (R2=0.82-0.98) were obtained in all of the five eastern Canadian cities. The 367 

overall decreasing percentages of the deweathered and original NO2 mixing ratios in 368 

Halifax and Quebec City were roughly the same as that of the provincial grand total 369 

NOx emissions and transportation NOx emissions, but in Montreal, Toronto and 370 

Hamilton the former decreasing percentages were smaller than the latter ones. In 371 

contrast, the overall decreasing percentages in NO2 mixing ratio in the five western 372 

Canadian cities were substantially larger than the corresponding decreasing percentages 373 

of the provincial grand total NOx emissions and transportation NOx emissions, and the 374 
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correlation (R2=0.54-0.94) between NO2 mixing ratio and provincial emission were not 375 

as good as those in eastern cities. The extreme case occurred in Calgary, where NO2 376 

mixing ratio decreased by 31-33% during 1990-2007 when the grand total NOx 377 

emissions and transportation NOx emissions in Alberta increased by 11% and 5%, 378 

respectively, noting that a much short period of data were used in this than other cities. 379 

The city-level NOx emissions recorded from various facilities in Calgary increased from 380 

68 tons in 2002 to 262 tons in 2007 (Table S2), which cannot explain the decrease in 381 

NO2 mixing ratios.   382 

 383 

3.2 Trends in deweathered and original mixing ratios of CO and SO2  384 

As mentioned earlier, CO and SO2 in Canadian cities well meet the CAAQS in recent 385 

years. The original annual average mixing ratios of CO and SO2 in the ten cities 386 

generally met the WHO 2021 air quality guidelines in the last decade, except SO2 in 387 

Hamilton (Fig. S4). Thus, the analysis results on deweathered and original mixing ratios 388 

of SO2 and CO in the nine cities and CO in Hamilton were only briefly summarized 389 

below, leaving SO2 in Hamilton to be discussed separately. 390 

 391 

The annual averages of the deweathered CO mixing ratios were reasonably consistent 392 

with the original annual averages in five cities, e.g., the slopes of the deweathered 393 

mixing ratios against the original ones varied from 0.97 to 1.03 in Montreal, Hamilton, 394 

Winnipeg, Edmonton, Vancouver and Victoria, although somewhat large differences 395 

between the deweathered and original mixing rations were seen in Quebec City with a 396 

slope of 1.12 (RF vs. Origin) and Toronto with a slope  of 0.92 (BRTs vs. Origin). The 397 

original and deweathered annual averages of CO decreased by 82% in the last 2-3 398 

decades in six cities, including Halifax (90-92%), Calgary (90-91%), Winnipeg (84-399 

88%), Edmonton (86-86%), Toronto (83-86%) and Vancouver (82-83%) (Table S3), 400 

followed by 66-70% in Hamilton and less than 60% in Quebec City (56-58%) and 401 

Victoria (57-59%). Large percentage decreases in baseline CO mixing ratios across 402 

North America were reported before (Zhou et al., 2017). The deweathered and original 403 
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annual averages of CO mixing ratio significantly correlated with the corresponding 404 

provincial grand total emissions and transportation emissions of CO (R2 =0.68-0.96, 405 

P<0.01) in these nine cities. The overall percentage decreases in CO mixing ratio in 406 

Quebec City and Victoria were approximately the same as those in the corresponding 407 

provincial transportation emissions of CO; however, the former percentage decreases 408 

were evidently larger than the latter ones in the other seven cities mentioned above. In 409 

Montreal, no significant trends were obtained in the deweathered and original CO 410 

mixing ratios during 1995-2010 (P>0.05), despite that the provincial total CO emissions 411 

and transportation CO emissions decreased by 37% and 53%, respectively, during the 412 

same period.  413 

 414 

The deweathered and original annual average mixing ratios of SO2 decreased by 89-97% 415 

in the last 2-3 decades in four cities, including Winnipeg (95-97%), Vancouver (90-416 

95%), Toronto (89-95%) and Halifax (90-93%), followed by 79-86% in Montreal, 78-417 

85% in Quebec City, 73-82% in Victoria, 62-64% in Calgary and 52-55% in Edmonton 418 

(Table S4). Large percentage decreases in SO2 mixing ratio have been reported in rural 419 

atmospheres across North America during the last 2-3 decades (Xing et al., 2015; Feng 420 

et al., 2020). Since 1990, the overall decreasing percentages in SO2 mixing ratio in 421 

Halifax, Toronto, Calgary and Vancouver were evidently larger than those of the 422 

corresponding provincial grand total SO2 emissions. In Montreal, Quebec City, 423 

Winnipeg and Edmonton, the percentage decreases in SO2 mixing ratio were close to 424 

those in the corresponding provincial grand total SO2 emissions during the same periods. 425 

Although SO2 mixing ratio in Victoria decreased by 73-82% during 1999-2019, the 426 

corresponding provincial grand total SO2 emission did not decrease much during the 427 

same period. However, the city-level SO2 emissions from registered facilities in 428 

Victoria decreased from 217 tons in 2002 to near zero in 2019 (Table S2), supporting 429 

the decreases in SO2 mixing ratios. Note that the differences between the two 430 

deweathered mixing ratios of SO2 were enlarged to some extent in comparison with 431 

other pollutants, e.g., with the differences being 10-12% for SO2, but only 2-5% for 432 
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NO2 (as presented above), in Montreal, Toronto and Winnipeg. The increased 433 

uncertainties led to the difference between the RF-deweathered and original SO2 mixing 434 

ratios being up to 16% in Winnipeg, based on the slope of 1.16 listed in Table S4. The 435 

difference between the BRTs-deweathered and original SO2 mixing ratios was, however, 436 

only 4%, suggesting that the perturbation due to varying weather conditions might be 437 

within 4%-16%. Again, the RF algorithm suffers from the weakness in predicting large 438 

outlier values. 439 

 440 

In Hamilton, the annual average of the deweathered SO2 mixing ratios were highly 441 

consistent with those of the original data as indicated by the close to 1.0 slopes. The 442 

deweathered and original annual averages of SO2 mixing ratios decreased by 23-28% 443 

during 1996-2019, which were substantially smaller than the 81% decrease of the 444 

corresponding provincial grand total SO2 emissions during the same period. Such a 445 

large discrepancy indicates that the reduction in SO2 emission in Hamilton likely 446 

substantially lagged behind the average provincial level. This is indeed the case since 447 

SO2 emissions from registered facilities in Hamilton (Table S2) fluctuated around 448 

8.67±1.75×103 tons year-1 during 2002-2009 and then increased to 1.14±0.13×104 tons 449 

year-1 during 2010-2018. This also caused the weak correlations between annual 450 

average SO2 mixing ratio in this city and provincial total SO2 emission (R2 = 0.42-0.57, 451 

P<0.05). In addition, the original annual average SO2 mixing ratio increased from 3.2-452 

3.5 ppb in 2016-2017 to 4.8-5.0 ppb in 2018-2019 when provincial total SO2 emission 453 

changed little. Thus, reducing local SO2 emissions in Hamilton is critical to further 454 

lower SO2 mixing ratio in this city in order to meet the CAAQS and the WHO 2021 455 

guideline, despite the existence of other factors such as regional transport (Zhou et al., 456 

2017; Ren et al., 2020).  457 

 458 

3.3 Trends in deweathered and original O3 and Ox mixing ratios  459 

The original annual averages of O3 and Ox are shown in Fig. S5 and the analysis results 460 

of deweathered and original annual averages are listed in Table S5. Increasing trends in 461 
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the deweathered and original annual average O3 mixing ratio were obtained in nine 462 

cities during the last 2-3 decades, with Halifax as an only exception that showed no 463 

significant trend (P>0.05) during 2000-2017. Theoretically, the increasing trends in the 464 

O3 mixing ratios could be caused by the enhanced tropospheric photochemical 465 

formation of O3 and/or the weakened titration reaction between O3 and NO due to the 466 

substantial reduction of NO emissions (Simon et al., 2015; Zhou et al., 2017; Sicard et 467 

al., 2020; Mitchell et al., 2021; Wang et al., 2022b) (more discussion in Section 4.2 468 

below). In contrast, the decreasing trends in the deweathered and original annual 469 

average Ox mixing ratios were generally obtained, except in Victoria where there was 470 

no significant trend (P>0.05) during 2000-2017. The opposite long-term trends between 471 

O3 and Ox suggested that the increase in O3 is much less than the decrease in NO2, 472 

which does not support the hypothesis of the enhanced tropospheric formation of O3.  473 

 474 

The deweathered and original annual average O3 mixing ratios increased by 10 ppb in 475 

Edmonton from 1981-2019, 8 ppb in Hamilton from 1996-2019 and Calgary from 476 

1986-2014, and <7 ppb in the other cities (Fig. S5, Table S5). The increased O3 mixing 477 

ratio was likely caused by the reduced titration reaction between O3 and NO, 478 

considering the reduced photochemical formation of O3 in the troposphere (Simon et 479 

al., 2015; Xing et al., 2015). Varying weather conditions likely exerted a negligible 480 

influence on the decade increases in O3 mixing ratio in Edmonton, Hamilton, Calgary 481 

and Vancouver on the basis of the almost identical increases in deweathered and original 482 

annual averages. However, the comparison between deweathered and original annual 483 

averages also showed that varying weather conditions did cause an increase of 2 ppb 484 

out of the total of 7 ppb increase in the original annual average O3 in Winnipeg from 485 

1985-2018, and 1 ppb increase in Montreal from 1997-2010 and in Toronto from 2003-486 

2019. In contrast, varying weather conditions likely caused 1 ppb decrease in Quebec 487 

City from 1995-2019 and in Victoria from 1999-2019.  488 

 489 

The deweathered and original annual average Ox mixing ratio decreased by 10-12 ppb 490 
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in Vancouver from 1986-2019, 10 ppb in Halifax from 2000-2019 and in Toronto from 491 

2003-2019, 8-10 ppb in Edmonton from 1981-2019 and <6 ppb in the other cities (Fig. 492 

S5 and Table S5). Based on the simultaneously monitored NO mixing ratios and the 493 

method reportedly used for estimating the primary NO2 emission (Kurtenbach et al., 494 

2012; Simon et al., 2015; Casquero-Vera et al., 2019; Xu et al., 2019), the reduced 495 

primary NO2 emissions likely accounted for only 1-2 ppb decrease in Ox in the ten cities 496 

and generally acted a minor contributor to the decrease in Ox.  497 

 498 

3.4 Trends in deweathered and original PM2.5 mass concentrations  499 

Opposite decadal trends were observed between eastern and western Canadian cities in 500 

the deweathered and original PM2.5 mass concentrations (Table 2, Fig. 3c, 3d and Fig 501 

S6). In eastern Canadian cities, either decreasing or no significant trends were obtained 502 

in the last two decades. The decreasing trends (P<0.05) were identified in the RF-503 

deweathered, BRTs-deweathered and original annual average PM2.5 in Montreal from 504 

2005-2019 and in Hamilton from 1998-2019. The overall decreases were only 2 g m-505 

3 with the decreasing rate of 0.22-0.25 g m-3 year-1 in Montreal and 3-4 g m-3 and 506 

0.14-0.15 g m-3 year-1 in Hamilton. The decreasing trends (P<0.05) were also 507 

identified in the RF-deweathered and BRTs-deweathered PM2.5 in Toronto from 2000-508 

2019 with an overall decrease of only 2 g m-3 and a decreasing rate of only 0.10-0.11 509 

g m-3 year-1. However, no significant trend (P>0.05) was identified in the original 510 

annual average PM2.5 in Toronto, implying that the perturbation due to varying weather 511 

conditions likely cancelled out the mitigation effects of air pollutants. Note that there 512 

were no decreasing trends in the provincial total primary PM2.5 emissions in Quebec 513 

and Ontario during the periods when PM2.5 mass concentration decreased in the above-514 

mentioned three cities. This was not surprising because the major chemical components 515 

in PM2.5 were derived mainly from secondary sources (Dabek-Zlotorzynska et al., 2019; 516 

Jeong et al., 2020; Wang et al., 2021). The decreasing provincial emissions of SO2, NOx 517 

and volatile organic emissions in Quebec and Ontario likely have reduced the amounts 518 

of their oxidized products in PM2.5 (Xing et al., 2015; Yao and Zhang, 2019, 2020; Feng 519 
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et al., 2020; Jeong et al., 2020; ECCC, 2021; Wang et al., 2021, 2022a). No significant 520 

trends (P>0.05) were identified in the deweathered and original PM2.5 concentrations 521 

in Halifax from 2008-2018 and in Quebec City from 1998-2019, which need further 522 

investigation. 523 

 524 

In western Canadian cities, either increasing or no significant trends were extracted in 525 

the deweathered and original annual average PM2.5 mass concentrations. Increasing 526 

trends (P<0.05) were identified in the RF-deweathered, BRTs-deweathered and original 527 

annual average PM2.5 in Winnipeg from 2001-2018 with an overall increase of only 1-528 

2 g m-3 and an increasing rate of 0.09-0.10 g m-3 year-1. Increasing trends (P<0.05) 529 

were identified in the RF-deweathered and original annual average PM2.5 in Victoria 530 

from 1999-2019 with an overall increase of only 1 g m-3 and an increasing rate of 531 

0.07-0.08 g m-3 year-1, but no significant trend was identified in the BRTs-deweathered 532 

annual average PM2.5.  An increasing trend was obtained only in the RF-deweathered 533 

annual average PM2.5 in Vancouver from 2004-2019, and no significant trends were 534 

identified in the BRTs-deweathered and original annual average PM2.5. The 535 

inconsistency between the trends extracted from the three different annual average 536 

PM2.5 data series was mostly because of the small magnitudes of the actual interannual 537 

changes and thus the trends, which are on the same order of magnitude as the 538 

methodology uncertainties. Considering the decreasing trends in NO2, CO and SO2 539 

mixing ratios discussed above and the reported decreasing trends in secondary chemical 540 

components of PM2.5 in Western Canada (Wang et al., 2021, 2022a), the increasing 541 

trends in the deweathered and/or original annual average PM2.5 observed in some 542 

western Canadian cities were likely caused by increased natural emissions, such as from 543 

the increased large-scale wildfires in recent years.  544 

 545 

It is noticed that a few spikes always appeared in the BRTs-deweathered PM2.5 546 

concentrations in the five western Canadian Cities since 2010 (Fig. S6). Most of these 547 

spikes were associated with large-scale wildfire emissions (Littell et al., 2009; Collier 548 
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et al., 2016; Landis et al., 2018; Matz et al., 2020). For example, wildfires caused large 549 

and rapid increases in PM2.5 mass concentration from 10 g m-3 to >400 g m-3 in 550 

Edmonton during 10-12 August 1998 and on 30 May 2019 (Fig. S1). During these 551 

periods, the BRTs method predicts the spikes of PM2.5. However, the RF method 552 

seemingly failed to learn the wildfire signals and missed predicting the spikes 553 

associated with largely increased natural emissions because of its inherent weakness. 554 

 555 

To further explore the causes for the different trends in PM2.5 between eastern and 556 

western Canadian cities, the 95th-100th percentile PM2.5 mass concentration data in each 557 

year were averaged into annual value and were examined below. The top 5% PM2.5 558 

exhibited decreasing trends (P<0.05) in four eastern Canadian cities and no significant 559 

trend (P>0.05) in Halifax (Fig. S7). The decreasing trends further confirmed the 560 

mitigation effects of air pollutants on PM2.5. However, annual average PM2.5 was still 561 

as high as 8.8 g m-3 in Hamilton in 2019, 7.0-7.7 g m-3 in Quebec City, Toronto and 562 

Montreal, and 5.6 g m-3 in Halifax. If keeping the same decreasing rates as mentioned 563 

above, it would take another 1-3 decades to lower annual average PM2.5 by 2-4 g m-3 564 

in order to meet the WHO 2021 guideline.  565 

 566 

No significant trends (P>0.05) were identified in the 95th-100th percentile PM2.5 mass 567 

concentrations in the five western Canadian cities. Note that a large standard deviation 568 

of the 95th-100th percentile PM2.5 mass concentration was found in some years in the 569 

five western cities, indicating a high variability. However, this is not the case in the 570 

eastern Canadian cities. The episodic PM2.5 events likely canceled out the mitigation 571 

effects in the western Canadian cities. The annual average PM2.5 were 6.6-6.8 g m-3 in 572 

2019 in Winnipeg, Edmonton and Victoria, which need great additional mitigation 573 

efforts in order to reduce to a level below 5 g m-3 in the presence of the episodes caused 574 

by natural emissions. Note that the annual average PM2.5 was already lower than 5 g 575 

m-3 in Vancouver, and that the annual average was 8.4  g m-3 at the study site in Calgary 576 

in 2014. The value slightly decreased to 7.6  g m-3 in 2019 at another site ~5 km from 577 
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the study site in Calgary.  578 

 579 

3.5 Trends in AQHI in the ten Canadian cities 580 

Decreasing trends in AQHI were obtained in nine cities (P<0.05), with Calgary as an 581 

only exception (Figs. S9 and S10). The annual average AQHI decreased by 8-29% 582 

during the last two decades to the levels of 1.8 to 3.0 during 2017-2019 in the nine cities.  583 

In Calgary, the annual averages AQHI narrowed around 3.4±0.2 during 1998-2010. In 584 

the five eastern cities, AQHI above 10 occurred at <0.3% frequency before 2010, but 585 

none after 2010. AQHI between 7-10 occurred at <4% frequency before 2010, and 586 

below 0.5% after 2010. In the five western cities, AQHI above 10 occurred at <0.3% 587 

frequency, and AQHI between 7-10 occurred at <2% frequency during the last two 588 

decades. Note that AQHI above 10 still occurred at <0.3% frequency even after 2010 589 

because of the large-scale wildfires. In fact, the occurrence frequencies of AQHI 590 

between 7-10 and above 10 were a bit higher after 2010 (<0.3%) than before 2010 in 591 

Vancouver and Victoria due to the increased wildfire events in the most recent decade.    592 

 593 

On seasonal average, AQHI above 10 occurred most in summer (from June to August) 594 

in most cities, e.g., Victoria (1.1%), Vancouver (0.8%), Edmonton (0.7%) and Winnipeg 595 

(0.1%) in 2018. AQHI above 10 also occurred in winter (from December to February 596 

next year) and spring (from March to May) in some cities, e.g., Edmonton (0.3% in the 597 

spring of 2019 and 0.1-0.3% in the winter of 2012-2013) and Winnipeg (0.1% in the 598 

spring of 2018).  599 

  600 

4.  Discussion  601 

4.1 Perturbations due to varying weather conditions on the decadal trends  602 

Perturbations due to varying weather conditions on the decadal trends of the studied 603 

pollutants are presented in detail in Section 3 above, and key findings are briefly 604 

summarized here. The perturbations are defined as the percentage differences between 605 

the trends of the original and deweathered annual average concentrations. In ~70% of 606 
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the studies cases covering all the selected criteria pollutants in the ten cities, the 607 

perturbation due to varying weather conditions had an influence of within 2% on the 608 

decadal trends of the original annual averages over the 20-year period. In the remaining 609 

cases, relatively larger perturbations were identified, but at most 16%, keeping in mind 610 

that a portion of the percentage differences between the trends of the original and 611 

deweathered annual average concentrations was likely caused by errors inherent from 612 

BRTs and RF predictions. 613 

 614 

Specifically, in all the cases except CO in Quebec City (for which the calculated 615 

perturbation is 7% from BRTs and 12% from RF), at least one of the two machining 616 

leaning methods generated a perturbation of smaller than 5%. For example, the top 617 

three largest perturbations obtained from using one of the two machining leaning 618 

methods were all for SO2, including 16% from RF in Winnipeg, 14% from BRTs in 619 

Montreal and 13% from RF from BRTs in Toronto; however, the corresponding 620 

perturbations from using another one of the two machining leaning methods were quite 621 

smaller (4%, 0.2% and 3%, respectively), indicating possible large methodology 622 

uncertainties. Thus, perturbations due to varying weather conditions should be 623 

generally small on the two-decade time scale in most cases. 624 

 625 

4.2 Trend analysis of O3 net sinks and sources  626 

As reported in literature, a large fraction of ground-level O3 at middle-high latitude 627 

zones comes from secondary reactions associated with natural sources (Barrie et al., 628 

1988; Van Dam et al., 2013; Cooper et al., 2005; Seinfeld and Pandis, 2006; Mitchell 629 

et al., 2021). The natural signal usually has a spring maximum related to stratosphere-630 

troposphere exchange as well as increasing photochemistry, among other potential 631 

factors (Chan and Vet, 2010; Monks et al., 2015; Strode et al., 2018; Xu et al., 2019). 632 

The contributions from stratosphere-troposphere exchange are approximately 40 ppb, 633 

while the sinks associated with natural and anthropogenic factors in the atmospheric 634 

boundary layer may decrease the ground-level O3 to levels lower than 40 ppb (Barrie 635 
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et al., 1988; Van Dam et al., 2013; Chan and Vet, 2010; Monks et al., 2015; Mitchell et 636 

al., 2021). On the other hand, enhanced tropospheric photochemical reactions under 637 

favorable meteorological conditions may increase the ground-level O3 to levels higher 638 

than 40 ppb, causing severe O3 pollution (Monks et al., 2015; Simon et al., 2015; 639 

Seinfeld and Pandis 2006; Xu et al., 2019). In fact, 40 ppb has been widely used as the 640 

threshold value for assessing O3 impacts on ecosystem health (e.g., AOT40 index) 641 

(Avnery et al., 2011). Thus, O3 data with mixing ratios lower and higher than 40 ppb 642 

were analyzed separately below, with the former case representing net O3 sinks 643 

occurring in the atmospheric boundary layer and the latter one representing net O3 644 

sources occurring therein (Table 3).  645 

 646 

In the cases with O3 mixing ratios  40 ppb, the deweathered and original values, 647 

however, exhibited decreasing trends (P<0.05) in all of the five eastern cities and two 648 

western cities (Victoria and Vancouver) (Figs. 4 and S8 and Table 3). The overall 649 

decreases in O3 with mixing ratios  40 ppb were 2 ppb in Halifax from 2000-2017, in 650 

Montreal and Quebec City from 1995-2019, and in Victoria from 1999-2019 (figure not 651 

provided), 4 ppb in Toronto from 2003-2019, 5-6 ppb in Hamilton from 1987-2019, and 652 

12 ppb in Vancouver from 1986-2019 (but only 2 ppb from 2000-2019). Again, a few 653 

spikes and troughs occurred in the BRTs-deweathered values possibly because of 654 

unpredictably increased and decreased emissions of O3 precursors, respectively. In the 655 

cases with Ox mixing ratios  40 ppb, the decreasing trends were obtained in all of the 656 

ten cities. These results further implied that the tropospheric photochemical formation 657 

of O3 likely reduced in seven of the ten cities during the last two to three decades.  658 

 659 

In the cases with O3 mixing ratios  40 ppb in the remaining three western cities, the 660 

decreasing trends (P<0.05) were obtained in the BRTs-deweathered and original values 661 

and no significant trend (P>0.05) in the RF-deweathered values in Winnipeg; the 662 

decreasing trend was obtained only in the original values in Calgary; and no significant 663 

trends in the deweathered and original values in Edmonton. These trend results implied 664 
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that the responses of the fraction of O3 to emission reductions of its precursors were too 665 

weak to be confirmed, especially in the presence of perturbation due to varying weather 666 

conditions.  667 

 668 

In the cases with O3 mixing ratios < 40 ppb, the trends were almost the same as those 669 

from using the full dataset of O3 mixing ratios. This consistency suggested that the 670 

increasing trends in O3 mixing ratio in the nine Canadian cities were mainly due to the 671 

reduced O3 sinks.  672 

 673 

4.3 The perturbation from large-scale wildfires on PM2.5 trend in western Canadian 674 

cities 675 

Wildfire emissions become important contributors to air pollution in North America 676 

with global warning and increased extreme weather conditions such as heatwaves and 677 

severe droughts (Andreae and Merlet, 2001; Littell et al., 2009; Marlon et al., 2013; 678 

Barbero et al., 2015; Abatzoglou and Williams, 2016; Randerson et al., 2017; Mardi et 679 

al., 2021). For example, Meng et al. (2019) estimated that wildfires accounted for 17.1% 680 

of the total population-weighted exposure to PM2.5 for Canadians during 2013-2015 681 

and 2017-2018. The large contribution was not surprising because large wildfires can 682 

rapidly increase hourly PM2.5 mass concentration from a few g m-3 to >400 g m-3 683 

(Landis et al., 2018 and Fig. S1). The estimated annual economic cost attributable to 684 

PM2.5 pollution reached $410M-$1.8B for acute health impacts and $4.3B-$19B for 685 

chronic health impacts in western Canada (Landis et al., 2018; Matz et al., 2020). In the 686 

U.S., wildfire emissions were reported to account for up to 25% of annual primary 687 

PM2.5 emissions (U.S. EPA, 2014). 688 

 689 

Due to the wide occurrence of small-scale wildfires, most of the emitted air pollutants 690 

from these sources and subsequent long-range transport can be considered as natural 691 

background pollution. The key issue is to quantify the abnormally increased 692 

contributions from large-scale wildfires to annual average PM2.5 in each year and their 693 
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perturbations on long-term trends in PM2.5. Using the method described in Section 2, 694 

the perturbation contributions in Winnipeg were estimated to be around 0.50.4 g m-695 

3 in 2001-2018, with larger values of 1.1-1.3 g m-3 associated with large-scale wildfires 696 

in 2002, 2012 and 2018 (Fig. 5a). The larger perturbation contributions in 2012 and 697 

2018 indeed led to an increasing trend in PM2.5 from 2001-2018 in this city (Table 2). 698 

The perturbation contributions were, however, smaller than 0.2 g m-3 in 2001, 2003, 699 

2005, 2006, 2008, 2009, 2014 and 2017, and such small values may be related to 700 

varying weather conditions rather than large-scale wildfires.  701 

 702 

In Edmonton, the perturbation contributions were around 1.00.9  g m-3 in 1998-2019 703 

(Fig. 5b). However, the largest contribution was 3.0 g m-3 in 1998, followed by 2.4 g 704 

m-3 in 2018 and 2.1 g m-3 in 2004, respectively, because of large-scale wildfires. The 705 

perturbation contributions from large-scale wildfires were large enough to cancel out 706 

the mitigation effect of air pollutants on annual averages of PM2.5 in Edmonton. In 707 

Calgary, the perturbation contributions were around 1.20.7 g m-3 in 1998-2013, 708 

depending on if large-scale wildfires occurred in any particular year. For example, the 709 

perturbation contributions were smaller than 0.2 g m-3 in 1999, 2007 and 2013, while 710 

the contributions reached 2.2-2.3  g m-3 in 1998 and 2010. 711 

 712 

 In Victoria, the perturbation contributions were around 0.70.2 g m-3 in 1998-2019., 713 

The perturbation contribution in each year was, however, larger than 0.4 µg m-3, 714 

suggesting that the wildfires were always important contributors. In Vancouver, the 715 

perturbation contributions largely decreased to 0.30.5 g m-3 in 2004-2019. However, 716 

the maximum value still reached 1.7 g m-3 in 2017, followed by 1.4 g m-3 in 2018 717 

and 0.5 g m-3 in 2015. The large perturbation likely overwhelmed or canceled out the 718 

effects of emission reductions on annual average PM2.5. 719 

 720 

5. Conclusions 721 
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Through analysis of deweathered and original annual average concentrations of 722 

selected criteria air pollutants measured in ten major cities in Canada during the last 2-723 

3 decades, we have generated the following decadal trends for these pollutants: 1) 724 

decreasing trends in NO2, CO and SO2 mainly due to reduced primary emissions across 725 

Canada, except no significant trend in CO in Montreal; 2) increasing trends in O3 726 

mainly due to the reduced titration effect across Canada, except no significant trend in 727 

O3 in Halifax; and 3) roughly opposite trends in PM2.5 between eastern and western 728 

Canada, resulted from the combined effects of emission reductions and the occurrence 729 

of large-scale wildfires.  730 

 731 

The overall percentage decrease in NO2 during the last 2-3 decades among the 10 cities 732 

ranged from 37% to 62%, and the annual decreasing rates varied from 0.31 ppb year -1 733 

to 0.74 ppb year -1. The overall percentage decrease in CO varied from 57% to 92% and 734 

the annual decreasing rate ranged from 0.010 ppm year-1
 to 0.076 ppm year-1 between 735 

nine cities. The corresponding numbers for SO2 are from 23% to 93% and from 0.04 736 

ppb year-1 to 0.63 ppb year-1 among the 10 cities. By only considering O3 mixing ratio 737 

 40 ppb, annual average O3 decreased by 2-4 ppb in most cities during the past two-738 

three decades, but not in Calgary and Edmonton, and no consistent decreasing trend 739 

was identified in Winnipeg, implying that the mitigation effects of air pollutants on O3 740 

were too weak to be confirmed.  741 

 742 

The mitigation effects on PM2.5 were detected on the basis of the identified decreasing 743 

trends in three of the five eastern cities regardless of using original or deweathered 744 

annual average data, but this is not the case in the other two eastern cities. In the five 745 

western cities, the perturbation due to large-scale wildfires greatly affected original 746 

annual average PM2.5 and was large enough to cancel out the mitigation effects in some 747 

years, leading to no decreasing trends and in some cases even increasing trends.  748 

 749 
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Excluding Calgary, the annual average AQHI showed a significant decrease by 8-29% 750 

during the last two decades to levels between 1.8 and 3.0 in 2017-2019. However, large-751 

scale wildfire events still occasionally elevated AQHI to a level of above 10 (very high 752 

risk) (<0.3% frequency) in western Canadian cities after 2010. Thus, large-scale 753 

wildfires have become a key factor in causing severe air pollution in Canadian cities, 754 

as was seen in the most recent very large-scale wildfires occurred in Canada from the 755 

later spring to the earlier summer in 2023 that resulted in severe air pollution across 756 

Canada and New York through long-range transport. Urgent work should be conducted 757 

for assessing the impacts of large-scale wildfires on human health and climate change, 758 

besides investigating their occurrence and control mechanisms and transport pathways. 759 

In-depth studies are also needed to explore the causes of the non-decreasing trends in 760 

O3 with mixing ratios  40 ppb in some western Canadian cities, results from which are 761 

critical for making future control policies. 762 
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Table 1. Regression of (BRTs and RF) deweathered against original annual average NO2 mixing 

ratios, annual decreasing rate (ppb year-1) and overall decreasing percentage (%) of 

deweathered and original NO2 mixing ratios (P<0.05 for all the decreasing trends), correlation 

(R2) of deweathered and original NO2 mixing ratios against provincial total NOx emissions and 

transportation NOx emissions (P<0.05 except those marked with “/” for which p>0.05), and 

percentage decreases (%) of the provincial total NOx emissions and transportation NOx 

emissions (P<0.05 for all the decreasing trends except increasing trends in NOx emission from 

1990-2010 in Winnipeg and Calgary#) in ten Canadian cities during the last decades (##since 

1990; bold font numbers represent cases with smaller deceasing percentages in NO2 mixing 

ratios than in corresponding provincial emissions, italic numbers represent R2>0.8, and italic 

bold numbers represent an increasing trend).  

 

City Regression of 
deweathered 
against original 
mixing ratio 
(P<0.01) 

Annual decreasing rate 
(ppb year-1) and overall 
decreasing percentage (%) 
(P<0.05) 

Correlation (R2) of mixing 
ratios against provincial 
total and transportation 
NOx emissions (P<0.05)  

Percentage 
decreases (%) 
of provincial 
total and 
transportation  
emissions&& BRTs RF BRTs RF origin

al 
BRTs RF original 

Halifax (1996-
2017) 

y=1.03×
x 

y=1.08
×x 

0.49, 
62 

0.45, 
58 

0.55, 
50 

0.83, 
0.84 

0.84, 
0.85 

0.86, 
0.87 

54, 56 

Montreal 
(1995-2019) 

y=0.99×
x 

y=1.04
×x 

0.34, 
44 

0.32, 
42 

0.34, 
39 

0.90, 
0.85 

0.91, 
0.86 

0.87, 
0.82 

47, 52 

Quebec 
(1996-2019) 

y=0.98×
x 

y=1.02
×x 

0.44, 
51 

0.39, 
45 

0.46, 
46 

0.97, 
0.97 

0.97, 
0.98 

0.95, 
0.95 

47, 52 

Toronto 
(2004-2019) 

y=1.02×
x 

y=1.04
×x 

0.67, 
40 

0.64, 
39 

0.74, 
37 

0.96, 
0.96 

0.97, 
0.98 

0.94, 
0.94 

52, 52 

Hamilton 
(1996-2019) 

y=1.00×
x 

y=1.02
×x 

0.53, 
42 

0.55, 
44 

0.54, 
42 

0.95, 
0.97 

0.95, 
0.96 

0.92, 
0.93 

58, 57 

Winnipeg 
(1984-2018) 

y=0.99×
x 

y=1.00
×x 

0.37, 
57 

0.34, 
57 

0.34, 
50 

0.90, 
0.93 

0.91, 
0.94 

0.85, 
0.89 

43, 43# 

Edmonton 
(1994-2019) 

y=1.02×
x 

y=1.00
×x 

0.45, 
41 

0.47, 
40 

0.53, 
45 

0.57, 
0.73 

0.54, 
0.73 

0.63, 
0.73 

10, 29 

Calgary 
(1986-2007) 

y=1.00×
x 

y=1.01
×x 

0.60, 
31 

0.60, 
32 

0.61, 
33 

/ / / -11, -5# 

Vancouver 
(1986-2019) 

y=1.00×
x 

y=1.01
×x 

0.36, 
49 

0.36, 
47 

0.37, 
49 

0.63, 
0.75 

0.63, 
0.74 

0.54, 
0.66 

23, 27## 

Victoria 
(1993-2019) 

y=1.01×
x 

y=1.02
×x 

0.31, 
0.49 

0.31, 
0.45 

0.31, 
0.51 

0.58, 
0.69 

0.58, 
0.69 

0.54, 
0.65 

23, 33## 
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Table 2. Regression of (BRTs and RF) deweathered against original annual average PM2.5 mass 

concentrations, annual decreasing rate (μg m-3 year-1) and overall decrease (μg m-3) of 

deweathered and original PM2.5 mass concentrations, and percentage decreases (%) of the 

provincial total PM2.5 emissions in ten Canadian cities during the last decades (decreasing 

trends were obtained with P<0.05 except those marked with “/” for which P>0.05; and bold 

font numbers represent cases with increasing trends). 

 

City Regression of 
deweathered against 
original mixing ratio 
(P<0.01) 

Annual decreasing rate (μg m-3 year-1) 
and overall decrease (μg m-3) 

Decreasing 
percentage (%) of 
provincial total 
PM2.5 emissions 

BRTs RF BRTs RF original 
Halifax (2008-
2018) 

y=1.00×x y=1.02×x / / / 27 

Montreal 
(2005-2019) 

y=1.00×x y=1.01×x 0.24, 2 0.22, 2 0.25, 2 / 

Quebec 
(1998-2019) 

y=1.00×x y=1.01×x / / / / 

Toronto 
(2000-2019) 

y=1.00×x y=1.01×x 0.11, 2 0.10, 2 / / 

Hamilton 
(1998-2019) 

y=1.00×x y=1.01×x 0.15, 4 0.14, 3 0.15, 3 / 

Winnipeg 
(2001-2018) 

y=1.04×x y=1.04×x -0.10, -2  -0.10, -2 -0.09, -1 -11 

Edmonton 
(1998-2019) 

y=1.01×x y=1.03×x / / / -40 

Calgary 
(1998-2014) 

y=1.00×x y=1.03×x / / / -38 

Vancouver 
(2004-2019) 

y=0.99×x y=1.02×x / -0.08, -1 / 28 

Victoria 
(1999-2019) 

y=1.00×x y=1.03×x / -0.08, -1 -0.07, -1 42 
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Table 3. Trends in deweathered and original annual average O3 and Ox mixing ratios at levels 

below and above 40 ppb in ten Canadian cities during the last decades (#decreasing tends with 

P<0.05; ##no trend or stable trend with P>0.10; ###increasing trend with P<0.05). 

 

 O3 Ox 
≥ 40 ppb < 40 ppb ≥ 40 ppb < 40 ppb 

 BRTs RF Original BRT
s 

RF Original BRTs RF Original BRTs RF Original 

Halifax (2000-
2017) 

↓# ↓ ↓ /## / / ↓ ↓ ↓ ↓ ↓ ↓ 

Montreal 
(1997-2010) 

↓ ↓ ↓ ↑### ↑ ↑ ↓ ↓ ↓ / / / 

Quebec 
(1995-2019) 

↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ / ↓ / 

Toronto 
(2003-2019) 

↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ 

Hamilton 
(1996-2019) 

↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ / / / 

Winnipeg 
(1985-2018) 

↓ / ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ / 

Edmonton 
(1981-2019) 

/ / / ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ 

Calgary 
(1986-2014) 

/ / ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ 

Vancouver 
(1986-2019) 

↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ 

Victoria 
(1999-2019) 

↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ / / / 
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List of Figures 

 
Fig. 1. Performance evaluation of the predicted NO2 hourly mixing ratios by BRTs and RF algorithm 

against those observed in Halifax during 1996-2017. Red lines represent linear regression, and color bar 

reflects data number density. Note that different observational data sets are shown between (a) and (b) 

because the inputs for the two packages (BRTs and RF) are randomly divided into two groups for training 

and testing. 

 

Fig. 2. Correlations between hourly PM2.5 concentration in a single year and 22-year average PM2.5 

concentration in each hour of the year in Edmonton. Left columns show percentile series of PM2.5 

in 1998, 1999 and 2019, respectively, against the corresponding 22-year average series. Right 

column shows time series of PM2.5 in 1998, 1999 and 2019, respectively, against the corresponding 

22-year average series. Blue straight dashed lines in a, c and e represent the regression curves within 

linear ranges and their extensions out of the ranges; vertical arrows represent the distance of the 

predicted values from the regression curve. Blue straight lines and dark blue dashed lines in b, d and 

f represent the regression curves and 1:1 lines, respectively. 

 

Fig. 3. Trends of original annual average NO2 (upper row) and PM2.5 (lower row) in five eastern 

(left column) and five western (right column) Canadian Cities. 

 

Fig. 4 Deweathered hourly mixing ratios of O3 (left column) and Ox (right column) at levels ≥40 

ppb in five eastern Canadian cities. 

 

Fig. 5. The calculated perturbation contribution to the corresponding original annual average PM2.5 

concentration (left column) and the mean and standard derivation of the calculated perturbation 

(right column) in five western Canadian cities. 
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